
z/OS

MVS Programming: Authorized Assembler
Services Reference, Volume 1 (ALE-DYN)
Version 2 Release 1

SA23-1372-00

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 611.

This edition applies to Version 2 Release 1 of z/OS (5650-ZOS) and to all subsequent releases and modifications
until otherwise indicated in new editions.

© Copyright IBM Corporation 1988, 2013.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures xiii

Tables xv

About this information xvii
Who should use this information. xvii
How to use this information xvii
z/OS information xvii

How to send your comments to IBM xix
If you have a technical problem xix

z/OS Version 2 Release 1 summary of
changes xxi

Chapter 1. Using the services 1
Compatibility of MVS macros. 1
Addressing mode (AMODE) 2
Address space control (ASC) mode 3

ALET qualification 4
User parameters 4

Telling the system about the execution environment 6
Specifying a macro version number. 7

How to request a macro version using PLISTVER 7
Register use 8
Handling return codes and reason codes 9

Handling program errors 9
Handling environmental and system errors . . . 10

Using X-macros 11
Macro forms 11

Conventional list form macros 12
Alternative list form macros 12

Coding the macros 13
Continuation lines 15

Coding the callable services 16
Including equate (EQU) statements 17
Link-editing linkage-assist routines 17

Service summary 17

Chapter 2. ALESERV — Control entries
in the access list 27
Description 27

Environment 27
Programming requirements 28
Restrictions 28
Input register information 28
Output register information 28
Performance implications 29
Syntax 29
Parameters 30
ABEND codes 33
Return codes 34
Example 39

ALESERV - List form 39

Syntax 39
Parameters 40

ALESERV - Execute form 40
Syntax 40
Parameters 41

Chapter 3. ASCRE — Create address
spaces. 43
Description 43

Environment 43
Programming requirements 43
Restrictions 44
Register information 44
Performance implications 44
Other implications 44
Syntax 45
Parameters 46
Return and reason codes 50
Example 51

ASCRE - List form 52
Syntax 52
Parameters 53

ASCRE - Execute form. 53
Syntax 53
Parameters 54

Chapter 4. ASDES — Terminate an
address space 55
Description 55

Environment 55
Programming requirements 55
Output register information 55
Syntax 56
Parameters 56
Return and reason codes 57

Chapter 5. ASEXT — Extract address
space parameters 59
Description 59

Environment 59
Programming requirements 59
Restrictions 59
Register information 59
Performance implications 60
Syntax 60
Parameters 60
Return and reason codes 60

Chapter 6. ATSET — Set authorization
table. 63
Description 63

Related macros 63
Environment 63
Programming requirements 63

© Copyright IBM Corp. 1988, 2013 iii

Restrictions 63
Input register information 63
Output register information 64
Performance implications 64
Syntax 64
Parameters 65
ABEND codes 65
Return codes 65
Examples 65

Chapter 7. ATTACH and ATTACHX —
Create a subtask 67
Description 67

Environment 68
Programming requirements 68
Restrictions 68
Input register information 68
Output register information 68
Performance implications 69
Syntax 69
Parameters 71
ABEND codes 78
Return codes 78
Example 1 79
Example 2 80
Example 3 80
Example 4 80

ATTACHX - Create a subtask 80
Syntax 80
Parameters 83
Example 1 85
Example 2 86

ATTACH and ATTACHX - List form 87
Syntax 87
Parameters 90

ATTACH and ATTACHX - Execute form 90
Syntax 90
Parameters 93

Chapter 8. AXEXT — Extract
authorization index 95
Description 95

Related macros 95
Environment 95
Programming requirements 95
Restrictions 95
Input register information 95
Output register information 95
Performance implications 96
Syntax 96
Parameters 96
ABEND codes 97
Return codes 97
Examples 97

Chapter 9. AXFRE — Free authorization
index 99
Description 99

Related macros 99
Environment 99

Programming requirements 99
Restrictions 99
Input register information 99
Output register information 100
Performance implications 100
Syntax. 100
Parameters 100
ABEND codes 101
Return codes 101
Examples 101

Chapter 10. AXRES — Reserve
authorization index 103
Description 103

Related macros 103
Environment 103
Programming requirements. 103
Restrictions 103
Input register information 103
Output register information 104
Performance implications 104
Syntax. 104
Parameters 105
ABEND codes 105
Return codes 105
Examples 105

Chapter 11. AXREXX - System REXX
services. 107
Description 107

Environment 107
Programming requirements. 108
Restrictions 108
Input register information 108
Output register information 108
Performance implications 108
Syntax. 108
Parameters 111
ABEND codes 116
Return and reason codes 116
Examples 129

Chapter 12. AXSET — Set
authorization index 131
Description 131

Related macros 131
Environment 131
Programming requirements. 131
Restrictions 131
Input register information 131
Output register information 132
Performance implications 132
Syntax. 132
Parameters 132
ABEND codes 133
Return codes 133
Examples 133

iv z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Chapter 13. BCPii — Base control
program internal interface services . . 135

Chapter 14. BPXEKDA — Kernel data
access 137
Description 137

Environment 137
Programming requirements. 137
Restrictions 137
Input register information 137
Output register information 137
Performance implications 138
Syntax. 138
Parameters 138
Return codes 139

BPXEKDA - List form 140
Syntax. 140
Parameters 140

BPXEKDA - Execute form 141
Syntax. 141
Parameters 141

Chapter 15. BPXESMF — Collect z/OS
UNIX process accounting data 143
Description 143

Environment 143
Programming requirements. 143
Restrictions 143
Input register information 144
Output register information 144
Performance implications 144
Syntax. 144
Parameters 145
ABEND codes 145
Return codes 145
Example 145

BPXESMF - List form. 146
BPXESMF - Execute form 147

Chapter 16. CALLDISP — Pass control
to another ready task 149
Description 149

Environment 149
Programming requirements. 149
Restrictions 149
Input register information 150
Output register information 150
Performance implications 150
Syntax. 150
Parameters 151
Abend codes 151
Return and reason codes 151
Example 1 152
Example 2 152

Chapter 17. CALLRTM — Call
recovery termination manager 153
Description 153

Environment 153

Programming requirements. 154
Restrictions 154
Input register information 154
Output register information 154
Performance implications 155
Syntax. 155
Parameters 156
ABEND codes 158
Return codes 158
Example 1 160
Example 2 161
Example 3 161
Example 4 161

Chapter 18. CHANGKEY — Change
virtual storage protection key 163
Description 163

Environment 163
Programming requirements. 163
Restrictions 163
Input register information 163
Output register information 163
Performance implications 164
Syntax. 164
Parameters 164
ABEND codes 165
Return and reason codes 165
Example 1 165
Example 2 165

Chapter 19. CIRB - Create interruption
request block 167
Description 167

Environment 167
Register information 168
Syntax. 168
Parameters 169
Abend codes 170
Return and reason codes 170
Example 1 170
Example 2 170

Chapter 20. CMDAUTH — Command
authorization service 171
Description 171

Environment 171
Restrictions 171
Register information 171
Programming requirements. 172
Performance implications 172

CMDAUTH - List form 172
Syntax. 172
Parameters 172

CMDAUTH - Execute form. 172
Syntax. 172
Parameters 174
Return codes 175
Example 176

Contents v

Chapter 21. CNZMXURF — UCME
look-up service macro 177
Description 177

Environment 177
Programming requirements. 177
Restrictions 177
Input register information 177
Output register information 177
Performance implications 178
Syntax. 178
Parameters 178
ABEND codes 179
Return and reason codes 179
Example 1 179
Example 2 179

Chapter 22. CNZQUERY — Consoles
query 181
Description 181

Environment 181
Programming requirements. 181
Restrictions 181
Input register information 181
Output register information 182
Performance implications 182
Syntax. 182
Parameters 183
ABEND codes 185
Return and reason codes 185
Example 187

Chapter 23. COFCREAT — Create a
VLF object 191
Description 191

Environment 191
Programming requirements. 191
Restrictions 192
Input register information 192
Output register information 192
Performance implications 193
Syntax. 193
Parameters 194
ABEND codes 195
Return and reason codes 195

COFCREAT - List form 197
Syntax. 197
Parameters 198

COFCREAT - Execute form. 198
Syntax. 198
Parameters 199

Chapter 24. COFDEFIN — Define a
VLF class 201
Description 201

Environment 201
Programming requirements. 201
Restrictions 201
Input register information 201
Output register information 201

Performance implications 202
Syntax. 202
Parameters 203
ABEND codes 204
Return and reason codes 204

COFDEFIN - List form 205
Syntax. 205
Parameters 205

COFDEFIN - Execute form 206
Syntax. 206
Parameters 206

Chapter 25. COFIDENT — Identify a
VLF user 209
Description 209

Environment 209
Programming requirements. 209
Restrictions 210
Input register information 210
Output register information 210
Performance implications 210
Syntax 211
Parameters 211
ABEND codes 212
Return and reason codes 213

COFIDENT - List form 214
Parameters 215

COFIDENT - Execute form 215
Syntax. 215
Parameters 216

Chapter 26. COFNOTIF — Notify VLF 217
Description 217

Environment 217
Programming requirements. 217
Restrictions 217
Input register information 218
Output register information 218
Performance implications 218
Syntax. 218
Parameters 219
ABEND codes 221
Return and reason codes 221

COFNOTIF - List form 223
Syntax. 223
Parameters 223

COFNOTIF - Execute form 224
Syntax. 224
Parameters 225

Chapter 27. COFPURGE — Purge a
VLF class 227
Description 227

Environment 227
Programming requirements. 227
Restrictions 227
Input register information 227
Output register information 227
Performance implications 228
Syntax. 228

vi z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Parameters 228
ABEND codes 229
Return and reason codes 229

COFPURGE - List form 229
Syntax. 229
Parameters 230

COFPURGE - Execute form 230
Syntax. 230
Parameters 231

Chapter 28. COFREMOV — Remove a
VLF user 233
Description 233

Environment 233
Programming requirements. 233
Restrictions 233
Input register information 233
Output register information 233
Performance implications 234
Syntax. 234
Parameters 234
ABEND codes 235
Return and reason codes 235

COFREMOV - List form 236
Syntax. 236
Parameters 236

COFREMOV - Execute form 236
Syntax. 236
Parameters 237

Chapter 29. COFRETRI — Retrieve a
VLF object 239
Description 239

Environment 239
Programming requirements. 239
Restrictions 239
Input register information 239
Output register information 239
Performance implications 240
Syntax. 240
Parameters 241
ABEND codes 242
Return and reason codes 242

COFRETRI - List form 244
Syntax. 244
Parameters 245

COFRETRI - Execute form 245
Syntax. 245
Parameters 246

Chapter 30. COFSDONO — Delete a
DLF (data lookaside facility) object . . 247
Description 247

Environment 247
Programming requirements. 247
Restrictions 247
Input register information 247
Output register information 247
Performance implications 248
Syntax. 248

Parameters 248
ABEND codes 249
Return and reason codes 249

COFSDONO - List form 249
Syntax. 249
Parameters 250

COFSDONO - Execute form 250
Syntax. 250
Parameters 251

Chapter 31. CONFCHG — Request
notification of I/O configuration
changes 253
Description 253

Environment 253
Restrictions 254
Register information 254
Programming requirements. 254
Performance implications 254
Syntax. 254
Parameters 255
Return codes 256
Example 1 256
Example 2 256

CONFCHG - List form 256
Syntax. 257
Parameters 257

CONFCHG - Execute form 257
Syntax. 257
Parameters 258

Chapter 32. CPF — Manage a
command prefix 259
Description 259

Environment 259
Programming requirements. 259
Restrictions 259
Input register information 259
Output register information 260
Performance implications 260

CPF - List form. 260
Syntax. 260

CPF - Execute form 261
Syntax. 261
ABEND codes 264
Return and reason codes 264
Example 266

Chapter 33. CPOOL — Perform cell
pool services 267
Description 267

Environment 267
Programming requirements. 268
Restrictions 268
Input register information 268
Output register information 269
Performance implications 270
Syntax. 270
Parameters 272

Contents vii

ABEND codes 278
Return codes 278
Example 1 279
Example 2 279
Example 3 279
Example 4 279
Example 5 279
Example 6 279

CPOOL - List form 280
Syntax. 280
Parameters 282

CPOOL - Execute form 282
Syntax. 282
Parameters 284

Chapter 34. CSRSI — System
information service 285
Description 285

Environment 285
Programming requirements. 285
Restrictions 285
Input register information 286
Output register information 286
Performance implications 286
Syntax. 286
Parameters 287
Return codes 288

CSRSIC C/370 header file 289

Chapter 35. CSRUNIC — Unicode
instruction services 301
Description 301

Environment 301
Programming requirements. 301
Restrictions 301
Input register information 301
Output register information 302
Performance implications 302
Syntax. 302
Parameters 303
ABEND codes 304
Return codes 305
Examples 310

Chapter 36. CSVAPF — Control the
list of APF-authorized libraries 313
Description 313

Environment 313
Programming requirements. 314
Restrictions 314
Input register information 314
Output register information 314
Performance implications 314
Syntax. 315
Parameters 316
ABEND codes 318
Return and reason codes 318
Example 1 321
Example 2 321
Example 3 321

Example 4 322
Example 5 322

CSVAPF - List form 323
Parameters 323

CSVAPF - Execute form 324
Parameters 325

Chapter 37. CSVDYLPA — Provide
dynamic LPA services 327
Description 327

Return and reason codes 327
Examples 334

REQUEST=ADD option of CSVDYLPA 335
Environment 336
Programming requirements. 336
Restrictions 337
Input register information 337
Output register information 337
Performance implications 337
Syntax. 337
Parameters 340
ABEND codes 352
Return and reason codes 352
Example 352

REQUEST=DELETE option of CSVDYLPA . . . 352
Environment 352
Programming requirements. 352
Restrictions 353
Input register information 353
Output register information 353
Performance implications 353
Syntax. 353
Parameters 354
ABEND codes 358
Return and reason codes 358
Example 358

REQUEST=DEFLPAWAIT option of CSVDYLPA 358
Environment 358
Programming requirements. 358
Restrictions 358
Input register information 358
Output register information 358
Performance implications 359
Syntax. 359
Parameters 360
ABEND codes 361
Return codes 361
Examples 361

REQUEST=QUERYDYN option of CSVDYLPA . . 362
Environment 362
Programming requirements. 362
Restrictions 362
Input register information 362
Output register information 362
Performance implications 363
Syntax. 363
Parameters 363
ABEND codes 363
Return codes 364
Examples 364

REQUEST=QUERYDEFLPA option of CSVDYLPA 364

viii z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Environment 364
Programming requirements. 364
Restrictions 364
Input register information 364
Output register information 364
Performance implications 365
Syntax. 365
Parameters 365
ABEND codes 366
Return codes 366
Examples 366

Chapter 38. CSVDYNEX — Provide
dynamic exits services 367
Description 367

Input register information for CSVDYNEX . . 368
Output register information for CSVDYNEX . . 368
Performance implications 369

Define an exit 369
Environment 370
Programming requirements. 370
Restrictions 370
Input register information 370
Output register information 370
Syntax. 370
Parameters 372
ABEND codes 376
Return and reason codes 376
Example 376

Add an exit routine to an exit 376
Environment 377
Programming requirements. 377
Restrictions 377
Input register information 377
Output register information 377
Syntax. 377
Parameters 379
ABEND codes 383
Return and reason codes 383
Example 383

Change the state of an exit routine 383
Environment 383
Programming requirements. 384
Restrictions 384
Input register information 384
Output register information 384
Syntax. 384
Parameters 385
ABEND codes 386
Return and reason codes 386
Example 386

Delete an exit routine from an exit 386
Environment 387
Programming requirements. 387
Restrictions 387
Input register information 387
Output register information 387
Syntax. 387
Parameters 388
ABEND codes 389
Return and reason codes 389

Example 389
Remove the definition of an exit 389

Environment 389
Programming requirements. 390
Restrictions 390
Input register information 390
Output register information 390
Syntax. 390
Parameters 391
ABEND codes 391
Return and reason codes 391
Example 391

Change the attributes of an exit 391
Environment 392
Programming requirements. 392
Restrictions 392
Input register information 392
Output register information 392
Syntax. 392
Parameters 393
ABEND codes 394
Return and reason codes 394
Example 395

List information about one or more exits 395
Environment 395
Programming requirements. 396
Restrictions 396
Input register information 396
Output register information 396
Syntax. 396
Parameters 397
ABEND codes 398
Return and reason codes 398
Example 398

Call one or more exit routines at an exit 398
Environment 399
Programming requirements. 399
Restrictions 399
Input register information 400
Output register information 400
Syntax. 400
Parameters 401
ABEND codes 404
Return and reason codes 404
Example 404

Provide recovery for an exit routine that
abnormally ended 404

Environment 404
Programming requirements. 405
Restrictions 405
Input register information 405
Output register information 405
Syntax. 405
Parameters 406
ABEND codes 407
Return and reason codes 407
Example 407

Determine whether an exit routine exists for an
exit 407

Environment 408
Programming requirements. 408

Contents ix

Restrictions 408
Input register information 408
Output register information 408
Syntax. 408
Parameters 409
ABEND codes 410
Return and reason codes 410
Example 410

Replace an exit routine for an exit 410
Environment 411
Programming requirements 411
Restrictions 411
Input register information 411
Output register information 411
Syntax 411
Parameters 412
ABEND codes 415
Return and reason codes 415
Example 415

Return and reason codes 415
Examples of the CSVDYNEX macro 424

Example 1 424
Example 2 425
Example 3 425
Example 4 426
Example 5 428
Example 6 431
Example 7 432
Example 8 433
Example 9 433
Example 10 433

CSVDYNEX - List form 434
Parameters 434

CSVDYNEX - Modify form 434
Parameters 435

CSVDYNEX - Execute form 436
Parameters 437

Chapter 39. CSVDYNL — Provide
dynamic LNKLST services. 439
REQUEST=DEFINE option of CSVDYNL 439

Environment 439
Programming requirements. 440
Restrictions 440
Input register information 440
Output register information 440
Performance implications 440
Syntax. 440
Parameters 441
ABEND codes 445
Return and reason codes 445
Examples 445

REQUEST=ADD option of CSVDYNL 445
Environment 445
Programming requirements. 446
Restrictions 446
Input register information 446
Output register information 446
Performance implications 446
Syntax. 446
Parameters 448

ABEND codes 451
Return and reason codes 451
Examples 452

REQUEST=DELETE option of CSVDYNL 452
Environment 452
Programming requirements. 452
Restrictions 452
Input register information 452
Output register information 452
Performance implications 453
Syntax. 453
Parameters 454
ABEND codes 456
Return and reason codes 456
Examples 456

REQUEST=UNDEFINE option of CSVDYNL . . . 456
Environment 457
Programming requirements. 457
Restrictions 457
Input register information 457
Output register information 457
Performance implications 458
Syntax. 458
Parameters 459
ABEND codes 461
Return and reason codes 461
Examples 461

REQUEST=TEST option of CSVDYNL 461
Environment 461
Programming requirements. 462
Restrictions 462
Input register information 462
Output register information 462
Performance implications 462
Syntax. 462
Parameters 463
ABEND codes 466
Return and reason codes 466
Examples 466

REQUEST=LIST option of CSVDYNL 466
Environment 466
Programming requirements. 467
Restrictions 467
Input register information 467
Output register information 467
Performance implications 467
Syntax. 467
Parameters 469
ABEND codes 472
Return and reason codes 472
Examples 472

REQUEST=UPDATE option of CSVDYNL 472
Environment 472
Programming requirements. 473
Restrictions 473
Input register information 473
Output register information 473
Performance implications 473
Syntax. 473
Parameters 474
ABEND codes 477

x z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Return and reason codes 477
Examples 477

REQUEST=QUERYDYN option of CSVDYNL . . 477
Environment 478
Programming requirements. 478
Restrictions 478
Input register information 478
Output register information 478
Performance implications 479
Syntax. 479
Parameters 479
ABEND codes 480
Return codes 480
Examples 480

Return and reason codes 480
Examples 487

Chapter 40. CTRACE — Define a user
application to the component trace
service 491
Description 491

Environment 491
Programming requirements. 492
Restrictions 492
Register information 492
Performance implications 492
Syntax. 492
Parameters 495
ABEND codes 500
Return and reason codes 501
Example 503

CTRACE - List form 503
Syntax. 503
Parameters 504

CTRACE - Execute form. 505
Syntax. 505
Parameters 508

Chapter 41. CTRACECS — Setting
fields in the trace buffer writer control
area 509
Description 509

Environment 509
Programming requirements. 509
Restrictions 509
Register information 509
Performance implications 510
Syntax. 510
Parameters 511
Return and reason codes 513
Example 1 513
Example 2 513
Example 3 513
Example 4 513

Chapter 42. CTRACEWR — Write a full
trace buffer to DASD or tape 515
Description 515

Environment 515

Programming requirements. 515
Restrictions 515
Register information 515
Performance implications 516
Syntax. 516
Parameters 517
ABEND codes 518
Return and reason codes 518
Example 519

CTRACEWR - List form 519
Syntax. 519
Parameters 520

CTRACEWR - Execute form 520
Syntax. 520
Parameters 521

Chapter 43. DATOFF — DAT-OFF
linkage 523
Description 523

Environment 523
Programming requirements. 523
Restrictions 523
Input register information 523
Output register information 523
Performance implications 524
Syntax. 524
Parameters 524
ABEND codes 527
Return codes 527
Examples 527

Chapter 44. DEQ — Release a serially
reusable resource 529
Description 529

Environment 529
Programming requirements. 530
Restrictions 530
Input register information 530
Output register information 530
Performance implications 530
Syntax. 530
Parameters 532
ABEND codes 534
Return and reason codes 535
Example 1 536
Example 2 536
Example 3 536
Example 4 536

DEQ—List form 536
Parameters 537

DEQ - Execute form 538
Parameters 539

Chapter 45. DIV — Data-in-virtual . . . 541
Description 541

Environment 542
Programming requirements. 542
Restrictions 542
Input register information 542
Output register information 543

Contents xi

Performance implications 543
Syntax. 543
Parameters 545
ABEND codes 551
Return and reason codes 551
Example 1 554
Example 2 554

DIV - List form. 554
Syntax. 554
Parameters 556

DIV - Execute form 556
Syntax. 556
Parameters 557

DIV - Modify form 558
Syntax. 558
Parameters 559

Chapter 46. DOM — Delete operator
message 561
Description 561

Environment 561
Programming requirements. 561
Restrictions 562
Register information 562
Performance implications 562
Syntax. 562
Parameters 563
Return and reason codes 564
Example 1 564
Example 2 564
Example 3 564

Chapter 47. DSPSERV — Create,
delete, and control data spaces . . . 567
Description 567

Environment 568
Programming requirements. 568
Restrictions 568
Input register information 569
Output register information 569
Performance implications 569
Syntax. 569
Parameters 572
ABEND codes 579
Return and reason codes 580
Example 1 581
Example 2 581

DSPSERV - List form 581
Syntax. 582
Parameters 582

DSPSERV - Execute form 582

Syntax. 582

Chapter 48. DSPSERV — Create,
delete, and control hiperspaces . . . 587
Description 587

Environment 587
Programming requirements. 588
Restrictions 588
Input register information 588
Output register information 588
Performance implications 589
Syntax. 589
Parameters 591
ABEND codes 598
Return and reason codes 598
Example 1 599
Example 2 600

DSPSERV - List form 600
Syntax. 600
Parameters 601

DSPSERV - Execute form 601
Syntax. 601
Parameters 603

Chapter 49. DYNALLOC — Dynamic
allocation 605
Description 605

Environment 605
Programming requirements. 605
Restrictions 605
Register information 605
Performance implications 606
Syntax. 606
Parameters 606
Return and reason codes 606

Appendix. Accessibility 607
Accessibility features 607
Using assistive technologies 607
Keyboard navigation of the user interface 607
Dotted decimal syntax diagrams 607

Notices 611
Policy for unsupported hardware. 612
Minimum supported hardware 613
Programming interface information 613
Trademarks 613

Index 615

xii z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Figures

1. Sample User Parameter List for Callers in AR
Mode 5

2. Sample Macro Syntax Diagram 14

3. Continuation Coding 16
4. Return Code Area Used by DEQ 535

© Copyright IBM Corp. 1988, 2013 xiii

xiv z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Tables

1. Passing User Parameters in AR Mode 5
2. Service Summary 18
3. Rules for Adding Entries for Data Spaces to

Access Lists 30
4. Rules for Adding Entries for Hiperspaces to

Access Lists 31
5. Return Codes for the ALESERV ADD Macro 34
6. Return Codes for the ALESERV ADDPASN

Macro 36
7. Return Codes for the ALESERV DELETE

Macro 36
8. Return Codes for the ALESERV EXTRACT

Macro 37
9. Return Codes for the ALESERV SEARCH

Macro 38
10. Return Codes for the ALESERV EXTRACTH

Macro 39
11. Return and Reason Codes for the ASCRE

Macro 50
12. Return and Reason Codes for the ASDES

Macro 57
13. Return and Reason Codes for the ASEXT

Macro 61
14. Return Code for the ATSET Macro. 65
15. Return codes for the ATTACH or ATTACHX

macros 78
16. Return Codes for the AXEXT Macro 97
17. Return Codes for the AXFRE Macro 101
18. Return Code for the AXRES Macro 105
19. Return and Reason Codes for the AXREXX

Macro 117
20. Return Code for the AXSET Macro 133
21. Return Codes for the BPXEKDA Macro 139
22. Return Codes for the BPXESMF Macro 145
23. Return codes for the CALLRTM macro for

TYPE=ABTERM 159
24. Return codes for the CALLRTM macro for

TYPE=MEMTERM 159
25. Reason and return codes for the CALLRTM

macro for TYPE=SRBTERM 160
26. Return Codes for the CMDAUTH Macro 175
27. Return and Reason Codes for the

CNZQUERY Macro 185
28. Return and Reason Codes for the COFCREAT

Macro 195
29. Return and Reason Codes for the COFDEFIN

Macro 204
30. Return and Reason Codes for the COFIDENT

Macro 213

31. Return and Reason Codes for the COFNOTIF
Macro 222

32. Return and Reason Codes for the COFPURGE
Macro 229

33. Return and Reason Codes for the
COFREMOV Macro 235

34. Return and Reason Codes for the COFRETRI
Macro 242

35. Return and Reason Codes for the
COFSDONO Macro 249

36. Return Codes for the CONFCHG Macro 256
37. Return and Reason Codes for the CPF Macro

with REQUEST=DEFINE. 264
38. Return and Reason Codes for the CPF Macro

with REQUEST=DELETE 265
39. Return and Reason Codes for the CPF Macro

with REQUEST=REDEFINE. 265
40. Return Codes for the CPOOL LIST Macro 279
41. Return Codes for the CSRUNIC Macro 305
42. Return and Reason Codes for the CSVAPF

Macro 318
43. Return and Reason Codes for the CSVDYLPA

Macro 328
44. Return and Reason Codes for the CSVDYNEX

Macro 416
45. Return and Reason Codes for the CSVDYNL

Macro 480
46. Abend codes for the CTRACE Macro 500
47. Return and Reason Codes for the CTRACE

Macro 501
48. Abend codes for the CTRACEWR Macro 518
49. Return and Reason Codes for the

CTRACEWR Macro 518
50. Return Codes for the DATOFF Macro 527
51. Return Codes for the DEQ Macro with the

RET=HAVE Parameter 535
52. Return and Reason Codes for the DIV Macro 551
53. Return Codes for the DOM

LINKAGE=BRANCH Macro 564
54. Return and Reason Codes for the DSPSERV

CREATE Macro 580
55. Return and Reason Codes for the DSPSERV

EXTEND Macro. 581
56. Return and Reason Codes for the DSPSERV

CREATE Macro 598
57. Return and Reason Codes for the DSPSERV

EXTEND Macro. 599

© Copyright IBM Corp. 1988, 2013 xv

xvi z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

About this information

This information describes the authorized services that the MVS™ operating system
provides; that is, services available only to authorized programs. An authorized
program must meet one or more of the following requirements:
v Running in supervisor state
v Running under PSW key 0-7
v Running with APF-authorization.

Some of the services included in this information are not authorized, but are
included because they are of greater interest to the system programmer than to the
general applications programmer. The functions of these services are of such a
nature that their use should be limited to programmers who write authorized
programs. Services are also included if they have one or more authorized
parameters — parameters available only to authorized programs.

Programmers using assembler language can use the macros described in this
information to invoke the system services that they need. This document includes
the detailed information — such as the function, syntax, and parameters — needed
to code the macros.

This document is divided into four volumes. Volumes 1 through 4 present the
macro descriptions in alphabetical order.

Who should use this information
This information is for the programmer who is using assembler language to code a
system program. A system program is usually one that runs in supervisor state or
runs with PSW key 0-7 or runs with APF authorization.

The information assumes a knowledge of the computer, as described in Principles of
Operation, as well as an in-depth knowledge of assembler language programming.

System macros require High Level Assembler. Assembler language programming is
described in the following information:
v HLASM Programmer's Guide
v HLASM Language Reference

Using this information also requires you to be familiar with the operating system
and the services that programs running under it can invoke.

How to use this information
This information is one of the set of programming documents for MVS. This set
describes how to write programs in assembler language or high-level languages,
such as C, FORTRAN, and COBOL. For more information about the content of this
set of documents, see z/OS Information Roadmap.

z/OS information
This information explains how z/OS references information in other documents
and on the web.

© Copyright IBM Corp. 1988, 2013 xvii

When possible, this information uses cross document links that go directly to the
topic in reference using shortened versions of the document title. For complete
titles and order numbers of the documents for all products that are part of z/OS®,
see z/OS Information Roadmap.

To find the complete z/OS library, including the z/OS Information Center, see
z/OS Internet Library (http://www.ibm.com/systems/z/os/zos/bkserv/).

xviii z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

http://www.ibm.com/systems/z/os/zos/bkserv/

How to send your comments to IBM

We appreciate your input on this publication. Feel free to comment on the clarity,
accuracy, and completeness of the information or provide any other feedback that
you have.

Use one of the following methods to send your comments:
1. Send an email to mhvrcfs@us.ibm.com.
2. Send an email from the "Contact us" web page for z/OS (http://

www.ibm.com/systems/z/os/zos/webqs.html).
3. Mail the comments to the following address:

IBM Corporation
Attention: MHVRCFS Reader Comments
Department H6MA, Building 707
2455 South Road
Poughkeepsie, NY 12601-5400
US

4. Fax the comments to us, as follows:
From the United States and Canada: 1+845+432-9405
From all other countries: Your international access code +1+845+432-9405

Include the following information:
v Your name and address.
v Your email address.
v Your telephone or fax number.
v The publication title and order number:

z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN
SA23-1372-00

v The topic and page number that is related to your comment.
v The text of your comment.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute the comments in any way appropriate without incurring any obligation
to you.

IBM or any other organizations use the personal information that you supply to
contact you only about the issues that you submit.

If you have a technical problem
Do not use the feedback methods that are listed for sending comments. Instead,
take one of the following actions:
v Contact your IBM service representative.
v Call IBM technical support.
v Visit the IBM Support Portal at z/OS support page (http://www.ibm.com/

systems/z/support/).

© Copyright IBM Corp. 1988, 2013 xix

http://www.ibm.com/systems/z/os/zos/webqs.html
http://www.ibm.com/systems/z/os/zos/webqs.html
http://www.ibm.com/systems/z/support/
http://www.ibm.com/systems/z/support/

xx z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

z/OS Version 2 Release 1 summary of changes

See the following publications for all enhancements to z/OS Version 2 Release 1
(V2R1):
v z/OS Migration

v z/OS Planning for Installation

v z/OS Summary of Message and Interface Changes

v z/OS Introduction and Release Guide

© Copyright IBM Corp. 1988, 2013 xxi

xxii z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Chapter 1. Using the services

Macros and callable services are programming interfaces that application programs
can use to access MVS system services. This chapter provides general information
and guidelines about how to use the macros and callable services accurately and
efficiently. For more specific and detailed information about coding a particular
macro or callable service, see the individual service description in this information.

Some of the topics covered in this chapter apply only to macros, some apply only
to callable services, and some apply to both. This chapter uses the word "services"
when referring to information that applies to both service types. When information
applies only to one type or the other, the particular service type is specified.

Note: z/OS macros do not code to restrictions that are imposed by the
COMPAT(CASE) HLASM option or its abbreviation CPAT(CASE). Therefore, you
cannot rely on using COMPAT(CASE) if you use z/OS macros.

The following table lists the topics covered in this chapter and whether the topic
applies to macros, callable services, or both:

Topic Service Type
“Compatibility of MVS macros” Macros
“Addressing mode (AMODE)” on page 2 Both
“Address space control (ASC) mode” on page 3 Both

“ALET qualification” on page 4 Both
“User parameters” on page 4 Macros

“Telling the system about the execution environment” on page 6 Macros
“Specifying a macro version number” on page 7 Macros
“Register use” on page 8 Both
“Handling return codes and reason codes” on page 9 Both

“Handling program errors” on page 9 Both
“Handling environmental and system errors” on page 10 Both

“Using X-macros” on page 11 Macros
“Macro forms” on page 11 Macros
“Coding the macros” on page 13 Macros
“Coding the callable services” on page 16 Callable Services

“Including equate (EQU) statements” on page 17 Callable Services
“Link-editing linkage-assist routines” on page 17 Callable Services

“Service summary” on page 17 Both

Compatibility of MVS macros
When IBM® introduces a new version or a new release of an existing version, the
new version or release supports all MVS macros from previous versions and
releases. Programs assembled on an earlier level of MVS that issue macros will run
on later levels of MVS.

In most cases, the reverse is also true. When you assemble programs that issue
macros on a particular version and release of MVS, those programs can run on
earlier versions and releases of MVS, provided you request only those functions

© Copyright IBM Corp. 1988, 2013 1

that are supported by the earlier version and release. This is useful for installations
that write applications that might be assembled on one level of MVS, but run on a
different level.

As MVS supports new architectures, addressability changes. To take best
advantage of the new architectures, some macros have more than one possible
expansion. You are required to have the macro expand according to the
environment in which the program runs. This topic is described in this
introductory information.

The problem of compatibility is not the same as selecting a macro version through
the PLISTVER parameter to ensure the correct parameter list size for a macro. For
selecting a parameter list version number, see “Specifying a macro version
number” on page 7.

Addressing mode (AMODE)
A program can run in 24-bit, 31-bit, or 64-bit addressing mode. A program that
executes in 24-bit or 31-bit addressing mode can invoke most of the services
described in this information. A program that executes in 64-bit addressing mode
has a smaller group of services that it can invoke.

In general,
v A program running in 24-bit addressing mode cannot pass parameters or

parameter addresses that are higher than 16 megabytes. However, there are
exceptions. For example, a program running in 24-bit addressing mode can:
– Free storage above 16 megabytes using the FREEMAIN macro
– Allocate storage above 16 megabytes using the GETMAIN macro
– Use cell pool services for cell pools located in storage above 16 megabytes

using the CPOOL macro
– Use page services for storage locations above 16 megabytes using the PGSER

macro
v A program running in 24-bit or 31-bit addressing mode cannot pass parameter

addresses that are higher than 2 gigabytes, unless stated otherwise in the
individual service description.

v If a program running in 31-bit or 64-bit addressing mode issues a service,
parameters and parameter addresses can be above or below 16 megabytes,
unless otherwise stated in the individual service description.

Some macros can generate code that is appropriate for programs in either 64-bit
addressing mode or 24-bit or 31-bit addressing mode. These macros check a global
symbol set by the SYSSTATE macro. See “Telling the system about the execution
environment” on page 6 for more information.

When you call a callable service in 24-bit or 31-bit addressing mode, you must pass
31-bit addresses to the system service regardless of what addressing mode your
program is running in. If your program is running in 24-bit mode and you use a
callable service, you must set the high-order byte of parameter addresses to zeros.

You can invoke the following services in 64-bit addressing mode, subject to the
“SVC or PC” restrictions mentioned later in this topic, but you cannot pass
parameters and parameter addresses above 2 gigabytes: ABEND, ATTACHX,
CALLDISP, CHAP, CSVQUERY, DELETE, DEQ, DETACH, DOM, DSPSERV,
DYNALLOC, ENQ, ESPIE, ESTAEX, EXCP, FREEMAIN, GETMAIN, GTRACE,

2 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

IARVSERV, IDENTIFY, IEAARR, LINKX, LOAD, MODESET, PGSER, POST,
RESERVE, SDUMPX, SETRP, STAX, STIMER, STIMERM, STORAGE, SYNCHX,
TIME, TIMEUSED, TTIMER, VRADATA, WAIT, WTO, WTOR, and XCTL.

There are many services that support 64-bit addressing mode and parameter
addresses above 2 gigabytes. Examples are IRAV64, IARST64, and ISGENQ. For
details on the supported addressing mode and parameter address ranges for any
specific service, see the following books:
v z/OS MVS Programming: Assembler Services Reference ABE-HSP

v z/OS MVS Programming: Assembler Services Reference IAR-XCT

v z/OS MVS Programming: Authorized Assembler Services Reference ALE-DYN

v z/OS MVS Programming: Authorized Assembler Services Reference EDT-IXG

v z/OS MVS Programming: Authorized Assembler Services Reference LLA-SDU

v z/OS MVS Programming: Authorized Assembler Services Reference SET-WTO

v z/OS MVS Programming: Sysplex Services Reference

Before invoking a service in 64-bit addressing mode, you must inform system
macros, by specifying SYSSTATE AMODE=64, that you are in 64-bit addressing
mode. You can invoke only those options that result in calling the system by an
SVC or PC in 64-bit addressing mode. You cannot invoke any option that results in
calling the system by a branch-entry in 64-bit addressing mode.

Unless explicitly stated otherwise, assume that a given service cannot be invoked
in 64-bit addressing mode and cannot accept parameters and parameter addresses
above 2 gigabytes.

For information about 64-bit addressing mode and the 64-bit GPR, see z/OS MVS
Programming: Extended Addressability Guide.

Address space control (ASC) mode
A program can run in either primary ASC mode or access register (AR) ASC mode.
In primary mode, the processor uses the contents of general purpose registers
(GPRs) to resolve an address to a specific location. In AR mode, the processor uses
the contents of ARs as well as the contents of GPRs to resolve an address to a
specific location. See z/OS MVS Programming: Assembler Services Guidefor more
detailed information about AR mode.

Some macros can generate code that is appropriate for programs in either primary
mode or AR mode. These macros check a global symbol set by the SYSSTATE
macro. See “Telling the system about the execution environment” on page 6 for
more information. Table 2 on page 18 lists the macros that check the global symbol.

Some services can generate code that is appropriate for programs in primary mode
only. If you write a program in AR mode that invokes one or more services, check
the description in this information for each service your program issues. Unless the
description indicates that a service supports callers in AR mode, the service does
not support callers in AR mode. In this case, use the SAC instruction to change the
ASC mode of your program and issue the service in primary mode.

Whether the caller is in primary or AR ASC mode, the system uses ARs 0-1 and
14-15 as work registers across any service call.

Chapter 1. Using the services 3

ALET qualification
The address space where you can place parameters varies with the individual
service:
v You can place parameters in the primary address space in all service.
v You must place parameters in the primary address space in some services.
v You can place parameters in any address space in some services.

To identify where you can locate parameters in a service, read the individual
service description.

Programs in AR mode that pass parameters must use an access register and the
corresponding general purpose register together (for example, access register 1 and
general purpose register 1) to identify where the parameters are located. The access
register must contain an access list entry token (ALET) that identifies the address
space where the parameters reside. The general purpose register must identify the
location of the parameters within the address space.

The only ALETs that MVS services typically accept are:
v Zero (0), which specifies that the parameters are in the caller's primary address

space
v An ALET for a public entry on the caller's dispatchable unit access list (DU-AL)
v An ALET for a common area data space (CADS)

MVS services do not accept the following ALETs, and you cannot attempt to pass
them to a service:
v One (1), which signifies that the parameters are in the caller's secondary address

space
v An ALET that is on the caller's primary address space access list (PASN-AL) that

does not represent a CADS
v An ALET for a private entry on the PASN-AL or the DU-AL

Throughout, this information uses the term AR/GPR n to mean an access register
and its corresponding general purpose register. For example, to identify access
register 1 and general purpose register 1, this information uses AR/GPR 1.

User parameters
Some macros that you can issue in AR mode include control parameters, user
parameters, or both. Control parameters refer to the macro parameter list, and the
parameters whose addresses are in the parameter list. Control parameters control
the operation of the macro itself. User parameters are parameters that a user
provides to be passed through to a user routine. For example, the PARAM
parameter on the ATTACHX macro defines user parameters. The ATTACHX macro
passes these parameters to the routine that it attaches. All other parameters on the
ATTACHX macro are control parameters that control the operation of the
ATTACHX macro.

Note:

1. User parameters are sometimes referred to as problem program parameters.
2. Control parameters are sometimes referred to as system parameters or control

program parameters.

The macros shown in Table 1 on page 5 allow a caller in AR mode to pass
information in the form of a parameter list (or parameter lists) to another routine.

4 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

This table identifies the parameter that receives the ALET-qualified address of the
parameter list and tells you where the target routine finds the ALET-qualified
address.

Table 1. Passing User Parameters in AR Mode

Macro Parameter Location of User Parameter List Address

ATTACH/ATTACHX PARAM,VL=1 AR/GPR 1 contains the address of a list of
addresses. When either

v a 4-bytes-per-entry parameter list or

v an 8-bytes-per-entry parameter list with
PLIST8ARALETS=YES

is being used, this list also contains the ALETs
associated with those addresses. (See Figure 1
for the format of the 4-bytes-per-entry
parameter list when it contains ALETs.)

ESTAEX PARAM SDWAPARM contains the address of an 8-byte
area, which contains the address and ALET of
the parameter list.

When an AR mode caller who is using a 4-bytes-per-entry parameter list passes
ALET-qualified addresses to the called program through PARAM,VL=1 on the
ATTACH/ATTACHX macro, the system builds a list formatted as shown in
Figure 1. The addresses passed to the called program are at the beginning of the
list, and their associated ALETs follow the addresses. The last address in the list
has the high-order bit on to indicate the end of the list. For example, Figure 1
shows the format of a list where an AR mode issuer of ATTACHX who is using a
4-bytes-per-entry parameter list has coded the PARAM parameter as follows:

PARAM=(A,B,C),VL=1

When an AR mode caller who is using an 8-bytes-per-entry parameter list specifies
PLIST8ARALETS=YES, the system builds a parameter list with the 8-byte
addresses at the beginning of the list and their associated 4-byte ALETs following
the addresses.

For information about linkage conventions, see the chapter in z/OS MVS
Programming: Assembler Services Guide.

@

ALET

@A

@B

@C

GPR1
AR1

0

0

1

ALET A

ALET B

ALET C

Figure 1. Sample User Parameter List for Callers in AR Mode

Chapter 1. Using the services 5

Telling the system about the execution environment
To generate code that is correct for the environment in which the program runs,
some macros need to know one or more of the following characteristics about that
environment:
v The addressing mode (AMODE) at the time the macro is issued
v The ASC mode of the program at the time the macro is issued
v The Architectural level in which the program runs

For macros that are sensitive to their environment, use the SYSSTATE macro to
define the environment. During the assembly stage, SYSSTATE sets one or more
global symbols. Later, in your source code, the macro checks the global symbols
and generates the correct code, which might mean avoiding using a
z/Architecture® instruction or an access register. Table 2 on page 18 lists MVS
macros and identifies macros that need to know the environmental characteristics.

IBM recommends you issue the SYSSTATE macro before you issue other macros.
Once a program has issued SYSSTATE, there is no need to reissue it, unless the
program switches from one AMODE to another or one ASC mode to another or
has code paths that are isolated according to architecture level or operating system
release. If you switch AMODE or ASC mode to a different architecture code path,
issue SYSSTATE immediately after the switch to indicate the new state. In general,
specify SYSSTATE ARCHLVL=1, and switch to SYSSTATE ARCHLVL=2 before
issuing macros in sections of code that run in z/Architecture mode. If you do not
issue the SYSSTATE macro, the system assumes the macro is issued:
v In AMODE other than 64-bit
v In primary ASC mode
v In ESA/390 architectural level

The following table describes the relevant characteristics, the parameter on
SYSSTATE, and the global symbol the macro checks.

Characteristic Parameter on SYSSTATE
Global
symbol

AMODE of 64-bit, or either 24-bit or 31-bit AMODE64=YES or NO &SYSAM64

Primary or AR ASC mode ASCENV=P or AR &SYSASCE

Architectural level of z/Architecture ARCHLVL=0, 1 or 2 &SYSALVL

You can issue the SYSSTATE macro with the TEST parameter in your own
user-written macro to allow your macros to generate code appropriate for their
execution environment.

Callable services do not check the global symbols described in this topic. To
determine whether a callable service is sensitive to the AMODE, ASC mode, or the
Architecture level, see the description of the individual callable service.

In early releases of MVS, the SPLEVEL macro performs a function similar to
SYSSTATE. The SPLEVEL macro identifies the level of the operating system, so
that you can tune a macro expansion based on that level. You can use this where
macro expansions change incompatibly. Because SPLEVEL applies to levels that the
system no longer supports, it is not described in this topic.

6 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Specifying a macro version number
Often there is more than one version of a macro, differentiated by additional
parameters or new or expanded function. For example, version 1 of the IXGCONN
macro provides a connection to a log stream, while version 2 adds new parameters
in support of resource manager programs. This is different than using the
SPLEVEL macro to select a macro version level to solve problems of downward
compatibility.

You can request a specific version of a macro based on the parameters you need to
use in your application, but you should also be attuned to the storage constraints
of the program. The version of a macro might affect the length of the parameter
list generated when the macro is assembled, because when you add new
parameters to a macro, the parameter list must be large enough to fit them. The
size of the parameter list might grow from release to release of z/OS, perhaps
affecting the amount of storage your program needs.

How to request a macro version using PLISTVER
Many macros that have one or more versions supply the PLISTVER parameter. For
those that do, use the PLISTVER parameter to request a version of the macro.
PLISTVER is the only parameter allowed on the list form of a macro (MF), and it
determines which parameter list the system generates. PLISTVER is optional. If
you omit it, the system generates a parameter list for the lowest version that will
accommodate the parameters specified. This is the IMPLIED_VERSION default.
Note that on the list form, the default will cause the smallest parameter list to be
created.

You can also code a specific version number using plistver, or specify MAX:
v You can use plistver to code a decimal value corresponding to the version of the

macro you require. The decimal value you provide determines the amount of
storage allotted for the parameter list.

v You can use MAX to request that the system generate a parameter list for the
highest version number currently available. The amount of storage allotted for
the parameter list will depend on the level of the system on which the macro is
assembled.
IBM recommends, if your program can tolerate additional growth, that you
always specify PLISTVER=MAX on the list form of the macro. MAX ensures that
the list form parameter list is always long enough to hold whatever parameters
might be specified on the execute form when both forms are assembled using
the save level of the system.

Hints for using PLISTVER
There are some general considerations that you should keep in mind when
specifying the version of a macro with PLISTVER:
v If PLISTVER is omitted, the macro generates a parameter list of the lowest

version that allows all the parameters specified to be processed.
v If you code PLISTVER=n and then specify any version ‘n+1’ parameter, the

macro will not assemble.
v If you code PLISTVER=n and do not specify any version ‘n’ parameter, the

macro will generate a version ‘n’ parameter list.
v If you are using the standard form of the macro (MF=S), there is no reason you

need to code the PLISTVER parameter.

Chapter 1. Using the services 7

v Not all macros have the same version numbers. The version numbers need not
be contiguous.

The PLISTVER parameter appears in the syntax diagram and in the parameter
descriptions. Within each macro description, the PLISTVER parameter description
specifies the range of values and lists the parameters applicable for each version of
the macro.

Register use
Some services require that the caller place information in specific general purpose
registers (GPRs) or access registers (ARs) prior to issuing the service. If a service
has such a requirement, the “Input Register Information” topic for the service
provides that information. The topic lists only those registers that have a
requirement. If a register is not specified as having a requirement, then the caller
does not have to place any information in that register unless using it in register
notation for a particular parameter, or using it as a base register.

Once the caller issues the service, the system can change the contents of one or
more registers, and leave the contents of other registers unchanged. When control
returns to the caller, each register contains one of the following values or has the
following status:
v The register content is preserved and is the same as it was before the service

was issued.
v The register contains a value placed there by the system for the caller's use.

Examples of such values are return codes and tokens.
v The system used the register as a work register. Do not assume that the register

content is the same as it was before the service was issued.

Note that the system uses ARs 0, 1, 14, and 15 as work registers for every service,
regardless of whether the caller is in primary or AR address space control (ASC)
mode. The system does not use ARs 2 through 13 for any service.

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Many macros require that the caller have a program base register and assembler
USING instruction in effect when issuing the macro; that is, the caller must have
program addressability. AR mode programs also require that the AR associated with
the caller's base GPR be set to zero. IBM recommends the following:
v When issuing a macro, the caller should always have program addressability in

effect.
v When establishing addressability, the caller should use only registers 2 through

12.

Many macros can take advantage of relative branching when they are used with
the IEABRC macro or with SYSSTATE ARCHLVL=1 or SYSSTATE ARCHLVL=2, if
they are running on z/OS. If relative branching is used, the caller might then need
addressability only to the static data portion of the program, and not to the
executable code.

8 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Handling return codes and reason codes
Most of the services described in this information provide return codes and reason
codes. Return and reason codes indicate the outcome of the service in one of the
following ways:
v Successful completion: you do not need to take any action.
v Successful or partially successful completion, with additional information

supplied: you should evaluate the additional information in light of your
particular program and determine if you need to take any action.

v Unsuccessful completion: some type of error has occurred, and you must take
some action to correct the error.

The errors that cause unsuccessful completion fall into three broad categories:

Program errors
Errors that your program causes: you can correct these.

Environmental errors
Errors not caused directly by your program; rather, your program's request
caused a limit to be exceeded, such as a storage limit, or the limit on the
size of a particular data set. You might or might not be able to correct
these.

System errors
Errors caused by the system: your program did nothing to cause the error,
and you probably cannot correct these.

In some cases, a return or reason code can result from some combination of these
errors.

The return and reason code descriptions for the services in this information
indicate whether the error is a program error, an environmental error, a system
error, or some combination. Whenever possible, the return and reason code
descriptions give you a specific action that you can take to fix the error.

IBM recommends that you read all the return and reason codes for each service
that your program issues. You can then design your program to handle as many
errors as possible. When designing your program, you should allow for the
possibility that future releases of MVS might add new return and reason codes to a
service that your program issues.

Handling program errors
The actions to take in the case of program errors are usually straightforward.
Typical examples of program errors are:
1. Breaking one of the rules of the service. For example:

v Passing parameters that are either in the wrong format or not valid
v Violating one of the environment requirements (addressing mode, locking

requirements, dispatchable unit mode, and so on)
v Providing insufficient storage for information to be returned by the system.

2. Causing errors related to the parameter list. For example:
v Coding an incorrect combination of parameters
v Coding one or more parameters on the service incorrectly
v Inadvertently overlaying an area of the parameter list storage
v Inadvertently destroying the pointer to the parameter list.

Chapter 1. Using the services 9

3. Requesting a service or function for which the calling program is not
authorized, or which is not available on the system on which the program is
running.

In each of the first two cases, you can correct your program. For completeness, the
return and reason code descriptions give you specific actions to perform, even
when it might seem obvious what the action should be.

In the third case, you might have to contact your system administrator or system
programmer to obtain the necessary authorization, or to request that the service or
function be made available on your system, and the return or reason code
description asks you to take that step.

Note: Generally, the system does not take dumps for errors that your program
causes when issuing a system service. If you require such a dump, then it is your
responsibility to request one in your recovery routine. See the topic on providing
recovery in z/OS MVS Programming: Authorized Assembler Services Guide for
information about writing recovery routines.

Handling environmental and system errors
With environmental errors, often your first action should be to rerun your program
or retry the request one or more times. The following are examples of
environmental errors where rerunning your program or retrying the request is
appropriate:
v The request being made through the service exceeds some internal system limit.

Sometimes, rerunning your program or retrying the request results in successful
completion. If the problem persists, it might be an indication of a larger problem
requiring you to consult your system programmer, or possibly IBM support
personnel. Your system programmer might be able to tune the system or cancel
users so that the limit is no longer exceeded.

v The request exceeds an installation-defined limit. If the problem persists, the
action might be to contact your system programmer and request that a
specification in an installation exit or parmlib member be modified.

v The system cannot obtain storage, or some other resource, for your request. If
the problem persists, the action might be to check with the operator to see if
another user in the installation is causing the problem, or to see if the entire
installation is experiencing storage constraint problems.

You might be able to design your program to anticipate certain environmental
errors and handle them dynamically.

With system errors, as with environmental errors, often your first action should be
to rerun your program or retry the request one or more times. If the problem
persists, you might have to contact IBM support personnel.

Whenever possible for environmental and system errors, the return or reason code
description gives you either a specific action you can take, or a list of
recommended actions you can try.

For some errors, providing a specific action is not possible, because the action you
should take depends on your particular application, and on what is happening in
your installation. In those cases, the return or reason code description gives you
one or more possible causes of the error to help you to determine what action to
take.

10 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Some system errors result in return and reason codes that are provided for IBM
diagnostic purposes only. In these cases, the return or reason code description asks
you to record the information and provide it to the appropriate IBM support
personnel.

Using X-macros
Some MVS services support callers in both primary and AR ASC mode. When the
caller is in AR mode, macros must generate larger parameter lists; the increased
size of the list reflects the addition of ALETs to qualify addresses, as described
under “ALET qualification” on page 4. For some MVS macros, two versions of a
particular macro are available: one for callers in primary mode and one for callers
in AR mode. The name of the macro for the AR mode caller is the same as the
name of the macro for primary mode callers, except the AR mode macro name
ends with an “X”. This information refers to these macros as X-macros.

The authorized X-macros are:
v ATTACHX
v ESTAEX
v SDUMPX
v SYNCHX

The only way these macros know that a caller is in AR mode is by checking the
global symbol that the SYSSTATE macro sets. Each of these macros (and
corresponding non-X-macro) checks the symbol. If SYSSTATE ASCENV=AR has
been issued, the macro issues code that is valid for callers in AR mode. If it has not
been issued, the macro generates code that is not valid for callers in AR mode.
When your program returns to primary mode, use the SYSSTATE ASCENV=P
macro to reset the global symbol.

IBM recommends that you use the X-macro regardless of whether your program is
running in primary or AR mode. However, you should consider the following
before deciding which macro to use:

The rules for using all X-macros, except ESTAEX, are:
v Callers in primary mode can invoke either macro.

Some parameters on the X-macros, however, are not valid for callers in primary
mode. Some parameters on the non-X-macros are not valid for callers in AR
mode. Check the macro descriptions for these exceptions.

v Callers in AR mode should issue the X-macros.
If a caller in AR mode issues the non-X-macro, the system substitutes the
X-macro and sends a message describing the substitution.

IBM recommends you always use ESTAEX unless your program and your
recovery routine are in 24-bit addressing mode, or your program requires a branch
entry. In these cases, you should use ESTAE.

Macro forms
You can code most macros in three forms: standard, list, and execute. Some macros
also have a modify form. When you code a macro, you use the MF parameter to
select one of the forms. The list, execute and modify forms are for reenterable
programs that need to change values in the parameter list of the macro. The
standard form is for programs that are not reenterable, or for programs that do not
change values in the parameter list.

Chapter 1. Using the services 11

When a program wants to change values in the parameter list of a macro, it can
make the change dynamically.

However, using the standard form and changing the parameter list dynamically
might cause errors. For example, after storing a new value into the inline, standard
form of the parameter list, a reenterable program operating under a given task
might be interrupted by the system before the program can invoke the macro. In a
multiprogramming environment, another task can use the same reenterable
program, and that task might change the inline parameter list again before the first
task regains control. When the first task regains control, it invokes the macro.
However, the inline parameter list now has the wrong values.

Through the use of the different macro forms, a program that runs in a
multiprogramming environment can avoid errors related to reenterable programs.
The techniques required for using the macro forms, however, are different for some
macros, called alternative list form macros, than for most other macros. For the
alternative list form macros, the list form description notes that different
techniques are required and refers you to the information under “Alternative list
form macros.”

Conventional list form macros
With conventional list form macros, you can use the macro forms as follows:
1. Use the list form of the macro, which expands to the parameter list. Place the

list form in the section of your program where you keep non-executable data,
such as program constants. Do not code it in the instruction stream of your
program.

2. In the instruction stream, code a GETMAIN or a STORAGE macro to obtain
some virtual storage.

3. Code a move character instruction that moves the parameter list from its
non-executable position in your program into the virtual storage area that you
obtained.

4. For macros that have a modify form, you can code the modify form of the
macro to change the parameter list. Use the address parameter of the modify
form to reference the parameter list in the virtual storage area that you
obtained. Thus, the parameter list that you change is the one in the virtual
storage area obtained by the GETMAIN or STORAGE macro.

5. Invoke the macro by issuing the execute form of the macro. Use the address
parameter of the execute form to reference the parameter list in the virtual
storage area that you obtained.

With this technique, the parameter list is safe even if the first task is interrupted
and a second task intervenes. When the program runs under the second task, it
cannot access the parameter list in the virtual storage of the first task.

Alternative list form macros
Certain macros, called alternative list form macros, require a somewhat different
technique for using the list form. With these macros, you do not move the area
defined by the list form into virtual storage that you have obtained; instead, you
place the area defined by the list form into a DSECT. Also, it is the list form, not
the execute form, that you use to specify the address parameter that identifies the
address of the storage for the parameter list. Note that no modify form is available
for these macros.

You can use the macro forms for the alternative list form macros as follows:

12 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

1. Use the list form of the macro to define an area of storage that the execute form
can use to store the parameters. As with other macros, do not code the list form
in the instruction stream of your program.

2. In the instruction stream, code a GETMAIN or a STORAGE macro to obtain
virtual storage for the list form expansion.

3. Place the area defined by the list form into a DSECT that maps a portion of the
virtual storage you obtained.

4. Invoke the macro by issuing the execute form of the macro. The address
parameter specified on the list form references the parameter list in the virtual
storage area that you obtained.

Coding the macros
In this information, each macro description includes a syntax diagram near the
beginning of the macro description. The diagram shows how to code the macro.
The syntax diagram does not explain the meanings of the parameters; the
meanings are explained in the parameter descriptions that follow the syntax
diagram.

The syntax tables assume that the standard begin, end, and continue columns are
used. Thus, column 1 is assumed as the begin column. To change the begin, end,
and continue columns, use the ICTL instruction to establish the coding format you
want to use. If you do not use ICTL, the assembler recognizes the standard
columns. To code the ICTL instruction, see HLASM Language Reference.

Figure 2 on page 14 shows a sample macro, TEST, and summarizes all the coding
information that is available for it. The table is divided into three columns, A, B,
and C.

Chapter 1. Using the services 13

v Column A and Column B contain those parameters that are allowed for the
macro. Column A contains those parameters that are required; column B
contains those parameters which are optional.

v If a single line appears, as shown in A1 and B1, then that is the only available
choice for the particular parameter.

v If two or more lines appear together, as shown in A2 and B2, the parameters on
those lines are mutually exclusive, that is, you can code any one of those
parameters.

v A further distinction is made between mandatory and optional parameters. The
parameter descriptions that follow the syntax table clearly identify those
parameters which are optional.

v The third column, C, provides additional information about coding the macro.

When substitution of a variable is required in column C, the following
classifications are used:

Variable
Classification

Symbol Any symbol valid in the assembler language. The symbol can be as long as
the supported maximum length of a name entry in the assembler you are
using.

Decimal digit
Any decimal digit up to and including the value indicated in the
parameter description. If both symbol and decimal digit are indicated, an
absolute expression is also allowed.

A B C

A1

A2

B1

B2

name name:

TEST

b One or more blanks must precede TEST.

b One or more blanks must follow TEST.

MATH
HIST
GEOG

,DATA=

,LNG=

symbol. Begin in column 1.name

data length data length: symbol or decimal digit, with a maximum value of 256.

,FMT=HEX
,FMT=DEC
,FMT=BIN

Default: FMT=HEX

,PASS=
Default: PASS=65

,grade grade: symbol, decimal digit, or register (1) or (2) - (12).

symbol, decimal digit, or register (1) or (2) - (12).

RX-type address, or register (2) - (12)data addr data addr:

value value:

Figure 2. Sample Macro Syntax Diagram

14 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Register (2)-(12)
One of general purpose registers 2 through 12, specified within
parentheses, previously loaded with the right-adjusted value or address
indicated in the parameter description. You must set the unused high-order
bits to zero. You can designate the register symbolically or with an
absolute expression.

Register (0)
General purpose register 0, previously loaded with the right-adjusted value
or address indicated in the parameter description. You must set the unused
high-order bits to zero. Designate the register as (0) only.

Register (1)
General purpose register 1, previously loaded with the right-adjusted value
or address indicated in the parameter description. You must set the unused
high-order bits to zero. Designate the register as (1) only.

Register (15)
General purpose register 15, previously loaded with the right-adjusted
value or address indicated in the parameter description. You must set the
unused high-order bits to zero. Designate the register as (15) only.

RX-type address
Any address that is valid in an RX-type instruction (for example, LA).

RS-type address
Any address that is valid in an RS-type instruction (for example, STM).

RS-type name
Any name that is valid in an RS-type instruction (for example, STM).

A-type address
Any address that can be written in an A-type address constant.

Default
A value that is used in default of a specified value; that is, the value the
system assumes if the parameter is not coded.

Use the parameters to specify the services and options to be performed, and write
them according to the following rules:
v If the selected parameter is written in all capital letters (for example, MATH,

HIST, or FMT=HEX), code the parameter exactly as shown.
v If the selected parameter is written in italics (for example, grade), substitute the

indicated value, address, or name.
v If the selected parameter is a combination of capital letters and italics separated

by an equal sign (for example, DATA=data addr), code the capital letters and
equal sign as shown, and then make the indicated substitution for the italics.

v Read the table from top to bottom.
v Code commas and parentheses exactly as shown.
v Positional parameters (parameters without equal signs) appear first; you must

code them in the order shown. You may code keyword parameters (parameters
with equal signs) in any order.

v If you select a parameter, read the third column before proceeding to the next
parameter. The third column often contains coding restrictions for the parameter.

Continuation lines
You can continue the parameter field of a macro on one or more additional lines
according to the following rules:

Chapter 1. Using the services 15

v Enter a continuation character (not blank, and not part of the parameter coding)
in column 72 of the line.

v Continue the parameter field on the next line, starting in column 16. All columns
to the left of column 16 must be blank.

You can code the parameter field being continued in one of two ways. Code the
parameter field through column 71, with no blanks, and continue in column 16 of
the next line; or truncate the parameter field by a comma, where a comma
normally falls, with at least one blank before column 71, and then continue in
column 16 of the next line. Figure 3 shows an example of each method.

Coding the callable services
A callable service is a programming interface that uses the CALL macro to access
system services. To code a callable service, code the CALL macro followed by the
name of the callable service, and a parameter list; for example:

CALL service,(parameter list)

The syntax diagram for the sample callable service SCORE:

Syntax Description

CALL SCORE

,(test_type
,level
,data
,format_option
,return_code)

Considerations for coding callable services are:
v You must code all the parameters in the parameter list because parameters are

positional in a callable service interface. That is, the function of each parameter
is determined by its position with respect to the other parameters in the list.
Omitting a parameter, therefore, assigns the omitted parameter's function to the
next parameter in the list.

v You must place values explicitly into all input parameters, because callable
services do not set default values.

v You can use the list and execute forms of the CALL macro to preserve your
program's reentrancy.

NAME 1

NAME 2 OP2

OP1 OPERAND1,OPERAND2,OPERAND3,OPERAND4,OPERAND5,OPERAND6,OPX
ERAND7
OPERAND1,OPERAND2
OPERAND3,OPERAND4,
OPERAND5,OPERAND6,OPERAND7

THIS IS ONE WAY
THIS IS ANOTHER WAY X

X

1 1610 44 72

Figure 3. Continuation Coding

16 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Including equate (EQU) statements
IBM supplies sets of equate (EQU) statements for use with some callable services.
These statements, which you may optionally include in your source code, provide
constants for use in your program. IBM provides the statements as a programming
convenience to save you the trouble of coding the definitions yourself.

Note: Check the “Programming Requirements” section of the individual service
description to determine if the equate statements are available for the callable
service you are using. If the equate statements are available, that section will also
provide a list of the statements that are provided, along with a description of how
to include them in your program.

Link-editing linkage-assist routines
Linkage-assist routines provide the connection between your program and the
system services that your program requests. When using callable services, link-edit
the appropriate linkage-assist routines into your program module so that, during
execution, the linkage-assist routines can resolve the address of, and pass control
to, the requested system services. You can also dynamically link to linkage-assist
routines as an alternative to link-editing. For example, issue the LOAD macro for
the linkage-assist routine, then issue a CALL to the loaded addresses.

To invoke the linkage-editor or binder, code JCL as in the following example:

Note: Omitting NCAL from the linkedit parameters (as the example shows) and
specifying SYS1.CSSLIB in the //SYSLIB statement, as shown, causes the addresses
of all required linkage-assist routines to be automatically resolved. This statement
saves you the trouble of having to specify individual linkage-assist routines in
INCLUDE statements.

Service summary
Table 2 on page 18 lists services described in the following:
v z/OS MVS Programming: Authorized Assembler Services Reference ALE-DYN
v z/OS MVS Programming: Authorized Assembler Services Reference EDT-IXG
v z/OS MVS Programming: Authorized Assembler Services Reference LLA-SDU
v z/OS MVS Programming: Authorized Assembler Services Reference SET-WTO.

For each service, the table indicates:
v Whether a program in AR ASC mode can issue the service
v Whether a program in cross memory mode can issue the service
v Whether the macro checks the SYSSTATE global macro variables
v Whether the macro can be issued in 64-bit addressing mode

//userid JOB ’accounting-info’,’name’,CLASS=x,
// MSGCLASS=x,NOTIFY=userid,MSGLEVEL=(1,1),REGION=4096K
//LINKSTEP EXEC PGM=HEWL,
// PARM=’LIST,LET,XREF,REFR,RENT’
//SYSPRINT DD SYSOUT=x
//SYSLMOD DD DSN=userid.LOADLIB,DISP=OLD
//SYSLIB DD DSN=SYS1.CSSLIB,DISP=SHR
//OBJLIB DD DSN=userid.OBJLIB,DISP=SHR
//SYSUT1 DD UNIT=SYSDA,SPACE=(TRK,(5,2))
//SYSLIN DD *

INCLUDE OBJLIB(userpgm)
ENTRY userpgm
NAME userpgm(R)

/*

Chapter 1. Using the services 17

Note:

1. A program running in primary ASC mode when PASN=HASN=SASN can issue
any of the services listed in the table.

2. Cross memory mode means that at least one of the following conditions is true:

PASN¬=SASN
The primary address space (PASN) and the secondary address space
(SASN) are different.

PASN¬=HASN
The primary address space (PASN) and the home address space
(HASN) are different.

SASN¬=HASN
The secondary address space (SASN) and the home address space
(HASN) are different.

For more information about functions that are available to programs in cross
memory mode, see z/OS MVS Programming: Extended Addressability Guide.

3. Callable services do not check the SYSSTATE or SPLEVEL global variables.

Table 2. Service Summary

Service Can be issued
in AR ASC
mode

Can be issued
in cross
memory mode

Checks
SYSSTATE

Can be issued in
64-bit AMODE

ALESERV Yes Yes No No

ASCRE Yes Yes Yes No

ASDES Yes Yes Yes No

ASEXT Yes Yes No No

ATSET No Yes Yes No

ATTACH Yes (See note 1
on page 25)

No Yes No

ATTACHX Yes No Yes Yes

AXEXT No Yes Yes No

AXFRE No Yes Yes No

AXRES No Yes Yes No

AXREXX No Yes Yes Yes

AXSET No Yes Yes No

BPXEKDA Yes No Yes No

BPXESMF Yes No Yes No

CALLDISP No Yes No Yes

CALLRTM No Yes (See note 2
on page 26)

No No

CHANGKEY No Yes No No

CIRB No No No No

CMDAUTH No No No No

CNZMXURF No Yes No No

CNZTRKR No Yes No No

COFCREAT Yes Yes Yes No

COFDEFIN Yes Yes Yes No

18 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Table 2. Service Summary (continued)

Service Can be issued
in AR ASC
mode

Can be issued
in cross
memory mode

Checks
SYSSTATE

Can be issued in
64-bit AMODE

COFIDENT Yes Yes Yes No

COFNOTIF Yes Yes Yes No

COFPURGE Yes Yes Yes No

COFREMOV Yes Yes Yes No

COFRETRI Yes Yes Yes No

COFSDONO No No Yes No

CONFCHG No No Yes No

CPF No No No No

CPOOL No Yes Yes No

CPUTIMER No Yes Yes No

CSRSI No Yes No No

CSRUNIC Yes Yes No No

CSVAPF Yes (See note 11
on page 26)

Yes (See note 12
on page 26)

Yes No

CSVDYNEX Yes (See note 13
on page 26)

Yes (See note 14
on page 26)

Yes No

CTRACE No No Yes No

CTRACECS Yes No Yes No

CTRACEWR Yes Yes Yes No

DATOFF Yes No No No

DEQ No Yes Yes Yes

DIV Yes No Yes No

DOM No No No Yes

DSPSERV Yes Yes Yes Yes

DYNALLOC No No No Yes

EDTINFO No Yes Yes Yes

ENFREQ No No No No

ENQ No Yes Yes Yes

ESPIE No No No Yes

ESTAE (See note
3 on page 26)

No No Yes No

ESTAEX Yes Yes Yes Yes

ETCON No Yes Yes No

ETCRE No Yes Yes No

ETDEF Yes Yes No No

ETDES No Yes Yes No

ETDIS No Yes Yes No

EVENTS No No No No

EXTRACT No No No No

Chapter 1. Using the services 19

Table 2. Service Summary (continued)

Service Can be issued
in AR ASC
mode

Can be issued
in cross
memory mode

Checks
SYSSTATE

Can be issued in
64-bit AMODE

FESTAE No No No No

FREEMAIN Yes (See note 4
on page 26)

Yes Yes Yes

GETDSAB No No Yes No

GETMAIN Yes (See note 4
on page 26)

Yes Yes Yes

GQSCAN No Yes No No

GTRACE No Yes No Yes

HSPSERV Yes Yes (See note 5
on page 26)

(See note 6 on
page 26)

No

IARCP64 Yes Yes Yes Yes

IARR2V Yes Yes No No

IARSUBSP Yes Yes Yes No

IARST64 Yes Yes Yes Yes

IARVSERV Yes Yes Yes No

IARV64 Yes Yes Yes Yes

IAZXCTKN Yes Yes Yes No

IAZXJSAB Yes Yes (See note 15
on page 26)

Yes No

IEAARR Yes Yes Yes Yes

IEAFP Yes Yes Yes No

IEALSQRY Yes Yes Yes No

IEAMETR Yes Yes Yes No

IEAMRMF3 No Yes No No

IEAMSCHD Yes Yes Yes No

IEANTCR Yes Yes N/A No

IEANTDL Yes Yes N/A No

IEANTRT Yes Yes N/A No

IEARBUP Yes Yes Yes No

IEATDUMP Yes No Yes No

IEATEDS Yes Yes Yes No

IEATXDC Yes Yes Yes Yes

IEAVAPE No Yes No No

IEAVAPE2 No Yes No No

IEAVDPE No Yes No No

IEAVDPE2 No Yes No No

IEAVPSE No Yes No No

IEAVPSE2 No Yes No No

IEAVRLS No Yes No No

IEAVRLS2 No Yes No No

20 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Table 2. Service Summary (continued)

Service Can be issued
in AR ASC
mode

Can be issued
in cross
memory mode

Checks
SYSSTATE

Can be issued in
64-bit AMODE

IEAVRPI No Yes No No

IEAVRPI2 No Yes No No

IEAVTPE No Yes No No

IEAVXFR No Yes No No

IEAVXFR2 No Yes No No

IEA4APE No Yes No Yes

IEA4APE2 No Yes No Yes

IEA4DPE No Yes No Yes

IEA4DPE2 No Yes No Yes

IEA4PSE No Yes No Yes

IEA4PSE2 No Yes No Yes

IEA4RLS No Yes No Yes

IEA4RLS2 No Yes No Yes

IEA4RPI No Yes No Yes

IEA4RPI2 No Yes No Yes

IEA4TPE No Yes No Yes

IEA4XFR No Yes No Yes

IEA4XFR2 No Yes No Yes

IEECMDS Yes Yes Yes No

IEEQEMCS Yes Yes Yes No

IEEVARYD No No Yes No

IEFPPSCN No No Yes No

IEFQMREQ No No No No

IEFSSI Yes No No No

IEFSSVT Yes No No No

IEFSSVTI Yes Yes No No

IFAQUERY Yes Yes No No

IOCINFO Yes Yes No No

IOSADMF No No Yes No

IOSCAPF No Yes (See note 7
on page 26)

Yes No

IOSCAPU Yes Yes (See note 7
on page 26)

Yes No

IOSCDR No No Yes No

IOSCHPD Yes Yes Yes No

IOSCMXA No Yes (See note 7
on page 26)

Yes No

IOSCMXR No Yes (See note 7
on page 26)

Yes No

Chapter 1. Using the services 21

Table 2. Service Summary (continued)

Service Can be issued
in AR ASC
mode

Can be issued
in cross
memory mode

Checks
SYSSTATE

Can be issued in
64-bit AMODE

IOSDCXR No Yes (See note 7
on page 26)

Yes No

IOSENQ Yes Yes Yes No

IOSINFO No No No No

IOSLOOK No No No No

IOSPTHV No No Yes No

IOSSPOF No Yes Yes Yes

IOSUPFA No Yes Yes No

IOSUPFR No Yes Yes No

IOSVRYSW Yes Yes Yes No

IOSWITCH Yes Yes Yes No

IOSZHPF Yes Yes Yes No

IRDFSD Yes Yes Yes No

IRDFSDU Yes Yes Yes No

ISGADMIN Yes Yes Yes Yes

ISGECA Yes Yes Yes Yes

ISGENQ Yes Yes Yes Yes

ISGLCRT (See
note 16 on page
26)

No Yes N/A No

ISGLID (See
note 16 on page
26)

No Yes N/A Yes

ISGLOBT No Yes N/A No

ISGLREL No Yes N/A No

ISGLPRG No Yes N/A No

ISGQUERY Yes Yes Yes Yes

ITTFMTB No No No No

ITZXFILT No Yes Yes No

IWMCLSFY No Yes Yes No

IWMCONN No Yes Yes No

IWMDISC No Yes Yes No

IWMECQRY No Yes Yes No

IWMECREA No Yes Yes No

IWMEDELE No Yes Yes No

IWMMABNL No Yes No No

IWMMCHST No Yes No No

IWMMCREA No Yes Yes No

IWMMDELE No Yes Yes No

IWMMEXTR No Yes Yes No

22 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Table 2. Service Summary (continued)

Service Can be issued
in AR ASC
mode

Can be issued
in cross
memory mode

Checks
SYSSTATE

Can be issued in
64-bit AMODE

IWMMINIT No Yes No No

IWMMNTFY No Yes Yes No

IWMMRELA No Yes Yes No

IWMMSWCH No Yes Yes No

IWMMXFER No Yes No No

IWMPQRY Yes Yes Yes No

IWMRCOLL Yes Yes Yes No

IWMRPT No Yes Yes No

IWMRQRY Yes Yes Yes No

IWMSRDRS No Yes Yes No

IWMSRSRG No Yes Yes No

IWMSRSRS No Yes Yes No

IWMWMCON No Yes Yes No

IWMWQRY Yes Yes Yes No

IWMWQWRK No Yes Yes No

IXCCREAT Yes Yes Yes No

IXCDELET Yes Yes Yes No

IXCJOIN Yes No Yes No

IXCLEAVE Yes No Yes No

IXCMG Yes Yes Yes No

IXCMOD Yes Yes Yes No

IXCMSGI Yes No Yes No

IXCMSGO Yes Yes Yes No

IXCQUERY Yes Yes Yes No

IXCQUIES Yes No Yes No

IXCSETUS Yes Yes Yes No

IXCTERM Yes Yes Yes No

IXGBRWSE Yes Yes Yes Yes

IXGCONN Yes Yes Yes Yes

IXGDELET Yes Yes Yes Yes

IXGWRITE Yes Yes Yes Yes

LLACOPY No No Yes No

LOAD Yes No No Yes

LOADWAIT No Yes Yes No

LOCASCB Yes Yes Yes No

LXFRE No Yes Yes No

LXRES No Yes Yes No

MCSOPER Yes No Yes No

Chapter 1. Using the services 23

Table 2. Service Summary (continued)

Service Can be issued
in AR ASC
mode

Can be issued
in cross
memory mode

Checks
SYSSTATE

Can be issued in
64-bit AMODE

MCSOPMSG Yes No Yes No

MGCR No No No No

MGCRE No No No No

MIHQUERY Yes No Yes No

MODESET No Yes No Yes

NIL Yes Yes Yes No

NMLDEF No No No No

NUCLKUP No No No No

OIL Yes Yes Yes No

OUTADD No No No No

OUTDEL No No No No

PCLINK No Yes No No

PGANY No No No No

PGFIX No Yes No No

PGFIXA No No No No

PGFREE No Yes No No

PGFREEA No No No No

PGSER Yes (See note 8
on page 26)

Yes (See note 8
on page 26)

No Yes

POST No Yes No Yes

PTRACE No Yes No No

PURGEDQ No No No No

QEDIT No No No No

RESERVE No No No Yes

RESMGR Yes Yes No No

RESUME No Yes No No

RISGNL No Yes No No

SCHEDIRB Yes No Yes No

SCHEDULE Yes Yes Yes No

SCHEDXIT No Yes No No

SDUMP Yes (See note 1
on page 25)

Yes (See note 9
on page 26)

Yes No

SDUMPX Yes Yes (See note 9
on page 26)

Yes Yes

SETFRR Yes Yes Yes No

SETLOCK Yes Yes Yes No

SETRP Yes Yes Yes Yes

SJFREQ No Yes No No

SPIE No No No No

24 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Table 2. Service Summary (continued)

Service Can be issued
in AR ASC
mode

Can be issued
in cross
memory mode

Checks
SYSSTATE

Can be issued in
64-bit AMODE

SPOST No No No No

SRBSTAT No Yes No No

SRBTIMER No No No No

STATUS Yes Yes No No

STORAGE Yes Yes No Yes

SUSPEND No Yes No No

SVCUPDTE No No No No

SWAREQ No No No No

SWBTUREQ No No No No

SYMREC No Yes Yes No

SYNCH Yes (See note 1) No Yes No

SYNCHX Yes No Yes Yes

SYSEVENT No No No No

TCBTOKEN Yes Yes No No

TCTL No No No No

TESTAUTH No No No No

TIMEUSED Yes (See note 10
on page 26)

Yes No Yes

T6EXIT No No No No

UCBINFO Yes Yes Yes No

UCBLOOK Yes Yes Yes No

UCBPIN Yes Yes Yes No

UCBSCAN Yes Yes Yes No

VSMLIST No Yes Yes No

VSMLOC No Yes Yes No

VSMREGN No Yes No No

WAIT No Yes No Yes

WTL No No No No

WTO No No No Yes

WTOR No No No Yes

Notes:

1. Primary mode callers can use either macro in the following macro pairs:
v ATTACH or ATTACHX
v SDUMP or SDUMPX
v SYNCH or SYNCHX
IBM recommends that programs in AR ASC mode use the X-macros
(ATTACHX, SDUMPX, and SYNCHX). If, however, a program in AR mode
issues ATTACH, SDUMP, or SYNCH after issuing SYSSTATE ASCENV=AR,
the system substitutes the corresponding X-macro and issues a message telling
you that it made the substitution.

Chapter 1. Using the services 25

2. CALLRTM TYPE=MEMTERM can be issued in cross memory mode. For
CALLRTM TYPE=ABTERM, see the CALLRTM macro description.

3. The only programs that can use ESTAE are programs that are in primary
mode with (PASN=HASN=SASN).
IBM recommends you always use ESTAEX unless your program and your
recovery routine are in 24-bit addressing mode, or your program requires a
branch entry. In these cases, you should use ESTAE.

4. IBM recommends that AR mode callers use the STORAGE macro instead of
using GETMAIN or FREEMAIN.

5. For HSPSERV SREAD and HSPSERV SWRITE, PASN=HASN=SASN for a
non-shared standard hiperspace for which an ALET is not used (that is, the
HSPALET parameter is omitted).

6. If you use the HSPALET parameter, the HSPSERV macro checks SYSSTATE.
7. If the input UCB is captured, the IOSCAPF, IOSCMXA, IOSCMXR, and

IOSDCXR macros can be issued in cross memory mode only if the UCB is
captured in the primary address space. IOSCAPU CAPTOACT without the
ASID parameter also can be issued in cross memory mode if the UCB was
captured in the primary address space. IOSCAPU CAPTUCB and IOSCAPU
UCAPTUCB cannot be issued in cross memory mode.

8. PGSER can be issued in AR ASC mode only if you specify BRANCH=Y.
PGSER can be issued in cross memory mode only if you specify BRANCH=Y
or BRANCH=SPECIAL.

9. Both SDUMP and SDUMPX can be issued in cross memory mode only if you
specify BRANCH=YES.

10. Only TIMEUSED LINKAGE=SYSTEM can be issued in AR ASC mode.
TIMEUSED LINKAGE=BRANCH cannot be issued in AR ASC mode.

11. For a QUERY request, CSVAPF can be issued only in primary mode. For all
other requests, CSVAPF can be issued in primary or AR mode.

12. For CSVAPF with the ADD, DELETE, and DYNFORMAT requests, PASN =
HASN = SASN. For CSVAPF with the QUERY, QUERYFORMAT, and LIST
requests, any PASN, any HASN, any SASN.

13. For a QUERY or a CALL request with FASTPATH=YES, CSVDYNEX can be
issued only in primary mode. For all other requests, CSVDYNEX can be
issued in primary or AR mode.

14. For CSVDYNEX CALL, RECOVER, and QUERY requests, any PASN, any
HASN, any SASN. For all other requests, PASN=HASN=SASN.

15. When the caller of the IAZXJSAB macro specifies the ASCB parameter, any
PASN, any HASN, any SASN; otherwise, PASN=HASN is required.

16. The 64 bit entry names are as follows:
v ISGLCR64
v ISGLID64
v ISGLOB64
v ISGLRE64
v ISGLPB64
v ISGLPR64

26 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Chapter 2. ALESERV — Control entries in the access list

Description
The ALESERV macro manages the contents of access lists. An access list is a table
in which each entry identifies an address space, a data space, a subspace, or a
hiperspace to which a program (or programs) has access. Access list entry tokens
(ALETs) index the entries in the access list.

On the ALESERV macro, address spaces, data spaces, subspaces, and hiperspaces
are identified through STOKENs, an identifier similar to an address space identifier
(ASID). z/OS MVS Programming: Extended Addressability Guide describes STOKENs,
ALETs and how to pass them, access lists, and the EAX-checking that might occur
when you issue the ALESERV macro to add an entry for an address space.

You access data spaces and address spaces, and reference subspaces, through
assembler instructions. You access hiperspaces through the HSPSERV macro.

Use the ALESERV macro to:
v Add an entry to a DU-AL or PASN-AL for a SCOPE=SINGLE data space, a

SCOPE=ALL data space, or a hiperspace (ADD parameter)
v Add an entry to a DU-AL for a subspace (ADD parameter)
v Add an entry to all PASN-ALs for a SCOPE=COMMON data space (ADD

parameter)
v Add the primary address space to the DU-AL (ADDPASN parameter)
v Delete an entry from a DU-AL or PASN-AL (DELETE parameter)
v Obtain a STOKEN for a specified ALET (EXTRACT parameter)
v Locate an ALET for a specified STOKEN (SEARCH parameter)
v Obtain the STOKEN of the home address space (EXTRACTH parameter).

ALESERV is also described in z/OS MVS Programming: Assembler Services Reference
ABE-HSP, with the exception of the CHKEAX parameter.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state, with any PSW key. To request the following

ALESERV services, the program must be supervisor state or
PSW key 0 - 7:

v Make ADD and DELETE requests for SCOPE=ALL and
SCOPE=COMMON data spaces, shared standard, and
ESO hiperspaces for the PASN-AL.

v Use the CHKEAX=NO parameter.

v Make ADD and DELETE requests for SCOPE=ALL and
SCOPE=COMMON data spaces and shared hiperspaces
and ESO hiperspaces for the DU-AL.

Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 24- or 31- bit

© Copyright IBM Corp. 1988, 2013 27

Environmental factor Requirement
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts for ADD,

ADDPASN, and DELETE requests. Enabled or disabled for
I/O and external interrupts for requests other than ADD,
ADDPASN, and DELETE

Locks: No locks held for ADD, ADDPASN, and DELETE requests.
For requests other than ADD, ADDPASN, and DELETE, the
caller may hold locks, but is not required to hold any.

Control parameters: Must reside in an addressable area

Programming requirements
To add a subspace entry to a DU-AL, the caller must be running under the task
that created the subspace.

Restrictions
None.

Input register information
Before issuing the ALESERV macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output register information
When control returns to the caller, the general purpose registers GPRs) contain:

Register
Contents

0 Reason code associated with the return code for SEARCH and EXTRACT
requests; otherwise, used as a work register by the system

1 Address of the ALESERV parameter list

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0 Used as a work register by the system

1 ALET for the parameter list

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

ALESERV macro

28 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Performance implications
None.

Syntax
The standard form of the ALESERV macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede ALESERV.

ALESERV

� One or more blanks must follow ALESERV.

Valid parameters (required parameters are underlined):

ADD AL, STOKEN, ACCESS, ALET, CHKEAX, CHKPT, RELATED

ADDPASN ALET, CHKPT, RELATED

DELETE ALET, CHKEAX, RELATED

EXTRACT ALET, STOKEN, RELATED

SEARCH AL, ALET, STOKEN, RELATED

EXTRACTH STOKEN, RELATED

,ACCESS=PUBLIC Default: ACCESS=PUBLIC

,ACCESS=PRIVATE

,AL=WORKUNIT Default: AL=WORKUNIT

,AL=PASN

,ALET=alet-addr alet-addr: RX-type address or register (2) - (12).
Note: If you specify register notation, the register contains the ALET, rather
than the address of the ALET.

,STOKEN=stoken-addr stoken-addr: RX-type address.

,CHKEAX=YES Default: CHKEAX=YES.

,CHKEAX=NO

,CHKPT=FAIL Default: CHKPT=FAIL

,CHKPT=IGNORE

,RELATED=any-value any-value: Any valid macro parameter specification.

ALESERV macro

Chapter 2. ALESERV — Control entries in the access list 29

Syntax Description

Parameters
The parameters are explained as follows:

ADD
Requests that the system add an entry to the access list and return the ALET.
You are required to use two parameters:
v STOKEN specifies the space for which the entry is to be added
v ALET specifies the address of the location where the system returns the

ALET.

You can also specify whether the access list is DU-AL or PASN-AL (AL
parameter) and, for address spaces, whether the entry is PUBLIC or PRIVATE
(ACCESS parameter). The defaults are DU-AL and PUBLIC.

A subspace access list entry must be added to the DU-AL as a public entry.

To add an entry for a SCOPE=COMMON data space to all PASN-ALs in the
system, use the AL=PASN parameter on ALESERV ADD.

To add an entry for an address space, the problem state, PSW key 8 - F caller
must have EAX-authority to the target address space. The supervisor state or
PSW key 0 - 7 caller can use the CHKEAX=NO parameter, which adds an
entry for the address space without requiring the caller to have EAX-authority.

To ensure the integrity of data spaces and hiperspaces, the system has certain
rules for adding entries for data spaces and hiperspaces to access lists. The
following two tables summarize the rules for problem state programs with
PSW key 8 - F and supervisor state or PSW key 0 - 7 programs.

Table 3. Rules for Adding Entries for Data Spaces to Access Lists

Function Type of data space A problem state
program with PSW key
8 - F:

A supervisor state or key
0-7 program:

Add entries
to the
DU-AL

SCOPE=SINGLE Can add entries for the
data spaces it owns or
created.

Can add entries if the
caller's home and owner's
home address space is the
same.

Add entries
to the
DU-AL

SCOPE=ALL and
SCOPE=COMMON

Cannot add entries. Can add entries.

Add entries
to the
PASN-AL

SCOPE=SINGLE Can add entries if the
caller owns or creates the
data space and the data
space is not already on
the PASN-AL through
the actions of a problem
state program with PSW
key 8 - F.

Can add entries if its
PASN-AL is the same as
the PASN-AL of the
owner's home address
space.

ALESERV macro

30 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Table 3. Rules for Adding Entries for Data Spaces to Access Lists (continued)

Function Type of data space A problem state
program with PSW key
8 - F:

A supervisor state or key
0-7 program:

Add entries
to the
PASN-AL

SCOPE=ALL and
SCOPE=COMMON

Cannot add entries. Can add entries for
SCOPE=COMMON data
spaces. Can add entries for
SCOPE=ALL data spaces if
no unauthorized program
can run in the primary
address space.

Table 4. Rules for Adding Entries for Hiperspaces to Access Lists

Function Type of hiperspace A problem state
program with PSW key
8 - F:

A supervisor state or key
0-7 program:

Add entries
to the
DU-AL

Nonshared standard Can add entries for the
hiperspaces it owns.

Can add entries if the
caller's home and owner's
home address space is the
same.

Add entries
to the
DU-AL

Shared standard
and ESO

Cannot add entries. Can add entries.

Add entries
to the
PASN-AL

Nonshared standard Cannot add entries. Can add entries if its
PASN-AL is the same as
the PASN-AL of the
owner's home address
space.

Add entries
to the
PASN-AL

Shared standard
and ESO

Cannot add entries. Can add entries for shared
standard hiperspaces. Can
add entries for ESO
hiperspaces if no
unauthorized program can
run in the primary address
space.

An access list entry for an ESO hiperspace should never be available to an
unauthorized program.

The following notes are for users of data-in-virtual and hiperspaces.
v Once you add an entry for a standard hiperspace, you cannot use that

hiperspace as a data-in-virtual object
v If a DIV ACCESS is in effect for a standard hiperspace, you cannot add an

entry for that hiperspace.

ADDPASN
Requests that the system add the primary address space to the DU-AL without
requiring a user to have EAX-authority to the address space. The entry is a
public entry. ALET, required with ADDPASN, receives the ALET that identifies
the entry.

DELETE
Requests that the system delete an entry from the DU-AL or the PASN-AL.
ALET, required with DELETE, identifies the entry to be deleted.

ALESERV macro

Chapter 2. ALESERV — Control entries in the access list 31

To delete an entry for an address space, the problem state program with PSW
key 8 - F must have EAX-authority to the target address space. The supervisor
state or PSW key 0 - 7 caller can use the CHKEAX=NO parameter, which
deletes an entry for the address space without requiring the caller to have
EAX-authority.

When the request is for a SCOPE=COMMON data space, ALESERV deletes the
entry from all PASN-ALs in the system.

EXTRACT
Requests that the system find the STOKEN associated with the specified ALET.
The caller can obtain the STOKEN for any space that is represented by a valid
entry on the current access list. STOKEN is a required parameter.

SEARCH
Requests that the system search through the DU-AL or PASN-AL for an ALET
that corresponds to a specified STOKEN. Specify whether the search is to be
through the DU-AL or the PASN-AL. (AL=WORKUNIT is the default.) ALET
and STOKEN are required parameters.

EXTRACTH
Requests that the system find the STOKEN of the home address space.
STOKEN is a required parameter.

,ACCESS=PUBLIC
,ACCESS=PRIVATE

Specifies whether the access list entry you are adding is PUBLIC or PRIVATE.
You cannot add a PRIVATE entry for a data space, subspace, or hiperspace.
The default is ACCESS=PUBLIC.

,AL=WORKUNIT
,AL=PASN

Specifies whether the access list is a DU-AL (WORKUNIT) or a PASN-AL
(PASN). The default is AL=WORKUNIT.

For the ADD request, AL identifies the type of access list. To add entries for
data spaces and hiperspaces to the DU-AL and PASN-AL, see the rules
described in Table 3 on page 30 and Table 4 on page 31.

For the SEARCH request, AL specifies whether the system is to search through
the DU-AL or the PASN-AL.

When adding or searching for a subspace access list entry, you must specify
AL=WORKUNIT.

,ALET=alet-addr
Specifies the 4-byte ALET that either you provide or the system returns,
depending on the other parameters you specify on ALESERV. When you use
RX-type notation, alet-addr specifies the address of the 4-byte field that contains
the ALET. When you use register notation, alet-addr specifies a register that
contains the ALET itself, rather than the address of the ALET.

For the ADD and ADDPASN requests, the system returns the ALET of the
added entry.

For the DELETE request, you provide the ALET for the access list entry to be
deleted. Do not specify an ALET of 0, 1, or 2.

For the EXTRACT request, you provide the ALET whose STOKEN you require.
The system returns the STOKEN in stoken-addr. When you specify ALET 0, the
system returns the caller's primary address space STOKEN. Do not specify
ALET 1 on an EXTRACT request.

ALESERV macro

32 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

For the SEARCH request, you specify where in the access list the system is to
begin the search:
v If you specify minus one (-1), the system starts searching at the beginning of

the DU-AL or PASN-AL.
v If you specify a valid ALET, the system starts searching with the next ALET

in the access list.

The system then returns the searched-for ALET, if present. Otherwise, alet-addr
is unchanged and register 15 contains a return code that specifies that an ALET
for the STOKEN is not on the access list.

,STOKEN=stoken-addr
Specifies an 8-byte identifier of an address space, data space, subspace, or
hiperspace. For ADD processing, STOKEN identifies the space that the
program wants to access.

For the EXTRACT request, the system returns the STOKEN that corresponds to
the specified ALET.

For the SEARCH request, STOKEN identifies the STOKEN for which the
system is to return the corresponding ALET.

For the EXTRACTH request, the system returns the STOKEN of the home
address space.

,CHKEAX=YES
,CHKEAX=NO

Specifies that ALESERV does (CHKEAX=YES) or does not (CHKEAX=NO)
check the EAX authority of the caller to the address space to be added to or
deleted from the access list. The default is CHKEAX=YES.

,CHKPT=FAIL
,CHKPT=IGNORE

Specifies how the system is to process a checkpoint request made through the
CHKPT macro, relevant to the access list entry being added. If you specify
CHKPT=IGNORE, the system ignores the access list entry added (DU-AL or
PASN-AL) and processes the checkpoint operation. If you specify
CHKPT=FAIL, the system rejects the checkpoint operation. The default is
CHKPT=FAIL. Note that this keyword does not apply to an access list entry
being added for a SCOPE=COMMON data space. Access list entries for
SCOPE=COMMON data spaces are always ignored by the system on a
checkpoint request.

If you specify CHKPT=IGNORE, you assume full responsibility of managing
the data space, subspace, or hiperspace storage. See z/OS MVS Programming:
Extended Addressability Guide for more information.

,RELATED=any-value
Specifies information used to self-document macros by “relating” functions or
services to corresponding functions or services. The format and contents of the
information specified are at the discretion of the user, and may be any valid
coding values.

ABEND codes
None.

ALESERV macro

Chapter 2. ALESERV — Control entries in the access list 33

Return codes
When control is returned from ALESERV ADD, register 15 contains one of the
following hexadecimal return codes. A return code of 8 or more means the system
rejects the request.

Table 5. Return Codes for the ALESERV ADD Macro

Hexadecimal Return
Code

Meaning and Action

00 Meaning: ALESERV ADD has completed successfully.

Action: None.

08 Meaning: Program error. The caller is not EAX-authorized to the specified
space; the entry is not added. The ALET returned is incorrect.

Action: Verify that the intended STOKEN is specified.

0C Meaning: Environmental error. The current access list cannot be expanded.
There are no free access list entries and the maximum size has been
reached.

Action: Delete unused entries and reissue the request.

10 Meaning: Environmental error. ALESERV could not obtain storage for an
expanded access list.

Action: Retry the request.

18 Meaning: Program error. A problem-state caller with PSW key 8 - F tried to
add an entry to the PASN-AL for a space other than a SCOPE=SINGLE
data space.

Action: Change the request to add the data space as SCOPE=SINGLE or
change your program to run in supervisor state or key 0-7.

1C Meaning: Program error. The caller is holding a lock.

Action: Release all locks before calling ALESERV.

20 Meaning: Program error. The caller is disabled.

Action: Enable your program before it issues ALESERV.

24 Meaning: Program error. AR 1 contained an ALET of 1 on input or
contained an ALET for the PASN-AL.

Action: Verify that AR 1 contains either an ALET of 0 or the ALET for the
caller's DU-AL.

38 Meaning: Program error. The input STOKEN is not valid.

Action: Verify that the specified STOKEN is a valid STOKEN.

4C Meaning: Program or environmental error. The space represented by the
input STOKEN is not valid for cross memory access.

Action: None required. However, you may want to take some action based
upon your application.

50 Meaning: Program error. The ALESERV parameter list is not valid.

Action: Verify that your program is not overwriting the parameter list and
that the execute form of the macro correctly addresses the parameter list.

54 Meaning: Program error. The caller tried to add a data space, hiperspace,
or subspace to an access list as a private entry.

Action: Specify ACCESS=PUBLIC instead of ACCESS=PRIVATE.

ALESERV macro

34 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Table 5. Return Codes for the ALESERV ADD Macro (continued)

Hexadecimal Return
Code

Meaning and Action

5C Meaning: Program error. The caller was not authorized to add a data space
or a hiperspace to an access list.

Action: Correct your program to specify STOKENs for spaces for which
your program is authorized.

60 Meaning: System error. An unexpected error occurred. The request was not
completed.

Action: Retry the request.

62 Meaning: Program error. A previous error in your program left the access
list in an unexpected format. The error might have occurred because the
SRB environment was not valid when the system dispatched an SRB. The
system did not perform the ALESERV ADD request.

Action: Determine the cause of the error that preceded the ALESERV ADD
request. Correct the error and rerun the program.

64 Meaning: Program error. A problem-state caller with PSW key 8 - F tried to
add an entry using CHKEAX=NO.

Action: Specify CHKEAX=YES.

68 Meaning: Program error. The caller attempted to add a hiperspace under
conditions which are not allowed. See Table 4 on page 31 for a summary of
the rules for adding hiperspaces to an access list.

Action: Verify that the options specified on your ADD request do not
violate the rules specified in Table 4 on page 31.

6C Meaning: Program error. The caller tried to add an entry for a
SCOPE=COMMON data space to a DU-AL.

Action: Change your program to request the ADD to be made to the
PASN-AL.

70 Meaning: Environmental error.

Action: Modify your program to use the HSPSERV macro to access the data
in the hiperspace.

74 Meaning: Program error. A problem-state program with PSW key 8 - F has
already added an entry for the data space to the PASN-AL.

Action: Change your program's logic so that it does not request the second
ADD.

78 Meaning: Program error. A problem-state program with PSW key 8 - F
tried to add an entry to the PASN-AL. The caller is neither the owner nor
the creator of the data space.

Action: Change your program's logic so that it does not add a data space it
did not create or does not own.

80 Meaning: Program error. The caller attempted to add a subspace access list
entry to the PASN-AL.

Action: Change the request to add the subspace access list entry to the
DU-AL.

84 Meaning: Program error. The caller tried to add a subspace access list entry
to the DU-AL, but the caller is not running under the task that owns the
subspace.

Action: Ensure that your program is running under the task that created
the subspace, or check that you are supplying the correct STOKEN.

ALESERV macro

Chapter 2. ALESERV — Control entries in the access list 35

When control is returned from ALESERV ADDPASN, register 15 contains one of
the following hexadecimal return codes.

Table 6. Return Codes for the ALESERV ADDPASN Macro

Hexadecimal Return
Code

Meaning and Action

00 Meaning: ALESERV ADDPASN has completed successfully.

Action: None.

0C Meaning: Environmental error. The current access list cannot be expanded.
There are no free ALEs and the maximum size has been reached.

Action: Delete unused entries and reissue the request.

10 Meaning: Environmental error. ALESERV could not obtain storage for an
expanded access list.

Action: Retry the request.

1C Meaning: Program error. The caller is holding a lock.

Action: Release all locks before calling ALESERV.

20 Meaning: Program error. The caller is disabled.

Action: Enable your program before it issues ALESERV.

24 Meaning: Program error. AR 1 contained an ALET of 1 on input or
contained an ALET for a PASN-AL.

Action: Verify that AR 1 contains either an ALET of 0 or the ALET for the
caller's DU-AL.

50 Meaning: Program error. The ALESERV parameter list is not valid.

Action: Verify that your program is not overwriting the parameter list and
that the execute form of the macro correctly addresses the parameter list.

60 Meaning: System error. An unexpected error occurred. The request was not
completed.

Action: Retry the request.

62 Meaning: Program error. A previous error in your program left the access
list in an unexpected format. The error might have occurred because the
SRB environment was not valid when the system dispatched an SRB. The
system did not perform the ALESERV ADDPASN request.

Action: Determine the cause of the error that preceded the ALESERV ADD
request. Correct the error and rerun the program.

When control is returned from ALESERV DELETE, register 15 contains one of the
following hexadecimal return codes.

Table 7. Return Codes for the ALESERV DELETE Macro

Hexadecimal Return
Code

Meaning and Action

00 Meaning: ALESERV DELETE has completed successfully.

Action: None.

08 Meaning: Program error. The caller is not EAX-authorized to the address
space specified by the ALET. The entry is not deleted.

Action: Verify that the intended STOKEN is specified.

14 Meaning: Program or environmental error. The input ALET corresponds to
an access list entry that is not valid.

Action: Verify that the specified ALET is valid.

ALESERV macro

36 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Table 7. Return Codes for the ALESERV DELETE Macro (continued)

Hexadecimal Return
Code

Meaning and Action

1C Meaning: Program error. The caller is holding a lock.

Action: Release all locks before calling ALESERV.

20 Meaning: Program error. The caller is disabled.

Action: Enable your program before it issues ALESERV.

24 Meaning: Program error. AR 1 contained an ALET of 1 on input or an
ALET for the caller's PASN-AL.

Action: Verify that AR 1 contains either an ALET of 0 or the ALET for the
caller's DU-AL.

28 Meaning: Program error. The caller specified an ALET that is not valid.

Action: Verify that the input ALET is valid.

2C Meaning: Program error. The caller attempted to delete ALET 0, 1, or 2.

Action: Verify that the specified ALET is not ALET 0,1, or 2.

30 Meaning: Program error. A problem-state caller with PSW key 8 - F
attempted to delete an entry from the PASN-AL for a space other than a
SCOPE=SINGLE data space.

Action: Verify that the ALET supplied represents the intended space.

60 Meaning: System error. An unexpected error occurred. The request was not
completed.

Action: Retry the request.

64 Meaning: Program error. A problem-state caller with PSW key 8 - F tried to
delete an entry using CHKEAX=NO.

Action: Specify CHKEAX=YES.

78 Meaning: Program error. A problem-state caller with PSW key 8 - F tried to
delete an entry from the PASN-AL. The caller is neither the creator nor the
owner of the data space, or the PSW key of the caller did not match the
storage key of the data space.

Action: Change your program's logic so that it does not have to try to
delete a data space it did not create or own.

When control is returned from ALESERV EXTRACT, register 15 contains one of the
following hexadecimal return codes.

Table 8. Return Codes for the ALESERV EXTRACT Macro

Hexadecimal Return
Code

Meaning and Action

00 Meaning: ALESERV EXTRACT has completed successfully. Register 0
contains one of the following hexadecimal reason codes:

v 00 - The access list entry is a public entry.

v 04 - The access list entry is a private entry.

Action: None.

14 Meaning: Program or environmental error. The input ALET corresponds to
an access list entry that is not valid.

Action: Verify that the specified ALET is valid.

ALESERV macro

Chapter 2. ALESERV — Control entries in the access list 37

Table 8. Return Codes for the ALESERV EXTRACT Macro (continued)

Hexadecimal Return
Code

Meaning and Action

24 Meaning: Program error. AR 1 contained an ALET of 1 on input or contains
an ALET for the caller's PASN-AL.

Action: Verify that AR 1 contains either an ALET of 0 or the ALET for the
caller's DU-AL.

28 Meaning: Program error. The caller specified an ALET that is not valid.

Action: Verify that the input ALET is valid.

3C Meaning: Program error. The caller specified an ALET value of 1.

Action: Verify that the specified ALET is other than 1.

40 Meaning: Program or environmental error. The space associated with the
input ALET is not valid for cross memory access.

Action: None required. However, you might want to take some action
based upon your application.

44 Meaning: Environmental error. The ALE associated with the input ALET
represents addressing capability to a deleted or terminated space.

Action: None required. However, you might want to discard the specified
ALET and possibly take some action based upon your application.

50 Meaning: Program error. The ALESERV parameter list is not valid.

Action: Verify that your program is not overwriting the parameter list and
that the execute form of the macro correctly addresses the parameter list.

58 Meaning: Program and environmental error. The ALET the caller specified
represents an STOKEN for a data space that is no longer accessible.

Action: None required. However, you might want to discard the specified
ALET and possibly take some action based upon your application.

60 Meaning: System error. An unexpected error occurred. The request was not
completed.

Action: Retry the request.

When control is returned from ALESERV SEARCH, register 15 contains one of the
following hexadecimal return codes.

Table 9. Return Codes for the ALESERV SEARCH Macro

Hexadecimal Return
Code

Meaning and Action

00 Meaning: ALESERV SEARCH has completed successfully. Register 0
contains one of the following hexadecimal reason codes:

v 00 - The access list entry is a public entry.

v 04 - The access list entry is a private entry.

Action: None.

24 Meaning: Program error. AR 1 contained an ALET of 1 on input or an
ALET for the caller's PASN-AL.

Action: Verify that AR 1 contains either an ALET of 0 or the ALET for the
caller's DU-AL.

28 Meaning: Program error. The caller specified an ALET that is not valid.

Action: Verify that the input ALET is valid.

ALESERV macro

38 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Table 9. Return Codes for the ALESERV SEARCH Macro (continued)

Hexadecimal Return
Code

Meaning and Action

34 Meaning: Program error. The caller specified an STOKEN not represented
on the specified access list.

Action: Verify that the specified STOKEN is on the referenced access list.

48 Meaning: Program error. The caller specified AL=WORKUNIT but the
input ALET indexes into the PASN-AL, or the caller specified AL=PASN
and the ALET indexes into the DU-AL.

Action: Change the AL or the ALET parameters to specify the correct AL
and ALET combination.

60 Meaning: System error. An unexpected error occurred. The request was not
completed.

Action: Retry the request.

When control is returned from ALESERV EXTRACTH, register 15 contains one of
the following hexadecimal return codes.

Table 10. Return Codes for the ALESERV EXTRACTH Macro

Hexadecimal Return
Code

Meaning and Action

00 Meaning: ALESERV EXTRACTH has completed successfully.

Action: None.

24 Meaning: Program error. AR 1 contained an ALET of 1 on input or contains
an ALET associated with the caller's PASN-AL.

Action: Verify that AR 1 contains either an ALET of 0 or the ALET for the
caller's DU-AL.

60 Meaning: System error. An unexpected error occurred. The request was not
completed.

Action: Retry the request.

Example
Add an entry to a DU-AL for a data space by issuing the following:

ALESERV ADD,STOKEN=DSPCSTKN,ALET=DSPCALET
*
DSPCSTKN DS CL8 DATA SPACE STOKEN
DSPCALET DS F DATA SPACE ALET

ALESERV - List form
The list form of ALESERV assigns the correct amount of storage for the ALESERV
parameter list.

Syntax
The list form is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

ALESERV macro

Chapter 2. ALESERV — Control entries in the access list 39

Syntax Description

� One or more blanks must precede ALESERV.

ALESERV

� One or more blanks must follow ALESERV.

MF=L

,RELATED=any-value

Parameters
The parameters are explained as follows:

MF=L
Specifies the list form of ALESERV.

,RELATED=any-value
Specifies information used to self document macros by ‘relating’ functions or
services to corresponding functions or services. The format and contents of the
information specified are at the discretion of the user, and may be any valid
macro parameter expression.

ALESERV - Execute form
The execute form of ALESERV uses a remote parameter list that can be generated
by the list form of ALESERV.

Syntax
The execute form of the ALESERV macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede ALESERV.

ALESERV

� One or more blanks must follow ALESERV.

Valid parameters (Required parameters are underlined)

ADD AL, STOKEN, ACCESS, ALET, CHKEAX, CHKPT, MF,

RELATED

ADDPASN ALET, CHKPT, MF, RELATED

DELETE ALET, MF, CHKEAX, RELATED

ALESERV macro

40 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Syntax Description

EXTRACT ALET, STOKEN, MF, RELATED

SEARCH AL, ALET, STOKEN, RELATED, MF

EXTRACTH STOKEN, MF, RELATED

,ACCESS=PUBLIC Default: ACCESS=PUBLIC

,ACCESS=PRIVATE

,AL=WORKUNIT Default: AL=WORKUNIT

,AL=PASN

,ALET=alet-addr alet-addr: RX-type address or register (2) - (12).
Note: If you specify register notation, the register contains the ALET, rather
than the address of the ALET.

,STOKEN=stoken-addr stoken-addr: RX-type address.

,CHKEAX=YES Default: CHKEAX=YES.

,CHKEAX=NO

,CHKPT=FAIL Default: CHKPT=FAIL

,CHKPT=IGNORE

,RELATED=any-value any-value: Any valid macro parameter specification.

,MF=(E,list-addr) list-addr: RX-type address or register (2)-(12).

Parameters
The parameters are explained under the standard form of ALESERV with the
following exceptions:

,MF=(E,list-addr)
Specifies the execute form, which uses a remote parameter list. list addr
specifies the address of the remote parameter list, generated by the list form of
the macro.

ALESERV macro

Chapter 2. ALESERV — Control entries in the access list 41

ALESERV macro

42 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Chapter 3. ASCRE — Create address spaces

Description
The ASCRE macro creates an address space. The caller of ASCRE can establish
cross memory linkages between the creating address space and the created address
space. In this macro description, the created address space is called the “new”
address space.

Use the INIT parameter to specify an address space initialization routine that runs
in the new address space. The initialization routine performs such actions as
loading modules into the new address space and building control blocks there.

Use either the ASNAME or STPARM parameter to name the new address space
and specify the first program that will run after the initialization routine completes.
This first program has all system services available to it.

Optionally, you can use the AXLIST, TKLIST, and LXLIST parameters to set up
cross memory linkages that allow programs in the new address space to use the
services of programs in the creator's address space.
v AXLIST specifies the location of a list of authorization index (AX) values that the

caller obtained through AXRES.
v TKLIST specifies the location of the list of tokens that represents the entry tables

built by the creating address space.
v LXLIST specifies the location of a list of linkage index (LX) values that the caller

obtained through LXRES.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Supervisor state
Dispatchable unit mode: Task
Cross memory mode: PASN=HASN or PASN¬=HASN
AMODE: Any
ASC mode: Primary or AR
Interrupt Status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: For callers in primary mode, control parameters must be in

the primary address space.
For callers in AR address space control (ASC) mode, the
parameters can be in the primary address space (qualified
by an ALET of 0) or in any space addressable through
public entries in the caller's dispatchable unit access list
(DU-AL).

Programming requirements
The caller in AR ASC mode must have issued SYSSTATE ASCENV=AR to tell
ASCRE to generate code and addresses appropriate for callers in AR mode.

© Copyright IBM Corp. 1988, 2013 43

Restrictions
The caller must not have an enabled unlocked task (EUT) functional recovery
routine (FRR) established.

Register information
After the caller issues the macro, the system might use some registers as work
registers or might change the contents of some registers. When the system returns
control to the caller, the contents of these registers are not the same as they were
before the macro was issued. Therefore, if the caller depends on these registers
containing the same value before and after issuing the macro, the caller must save
these registers before issuing the macro and restore them after the system returns
control.

When control returns to the caller, the general purpose registers (GPRs) contain:

Register
Contents

0 Reason code

1 If the return code is 4, GPR 1 contains the address of the ASCB for the new
address space. Otherwise, GPR 1 is used as a work register by the system.

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0 Used as a work register by the system

1 Contains a 0 if the return code is 4; otherwise, used as a work register by
the system.

2-13 Unchanged

14-15 Used as work registers by the system

See z/OS MVS Programming: Extended Addressability Guide for information on
initializing address spaces. It also gives an example of coding the ASCRE macro.

Performance implications
None.

Other implications
A task started under JES2 using the default IEESYSAS proc will have a jobname of
IEESYSAS in the JES2 $DS(sss), where sss is the started task number. The SDSF
panel DA will also show a jobname of IEESYSAS. The stepname, however, will be
that of the started task. The z/OS command- D A,L will show both a jobname and
stepname of the started task.

ASCRE macro

44 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Syntax
The standard form of the ASCRE macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede ASCRE.

ASCRE

� One or more blanks must follow ASCRE.

ASNAME=as name as name: One to eight characters, enclosed in apostrophes.

STPARM=start parm addr start parm addr: RX-type address or register (2) - (12).

,INIT=init rtn name init rtn name: One to eight characters, enclosed in apostrophes.

,INIT=init rtn name addr init rtn name addr: RX-type address or register (2) - (12).

,ODA=output data addr output data addr: RX-type address or register (2) - (12).

,TRMEXIT=term rtn addr term rtn addr: RX-type address or register (2) - (12).

,UTOKEN=user token addr user token addr: RX-type address or register (2) - (12).

Note: Specify UTOKEN only if you specify TRMEXIT.

,ASPARM=parm area addr parm area addr: RX-type address or register (2) - (12).

,ATTR=attribute list attribute list: List of attributes, separated by commas.

,AXLIST=ax list addr ax list addr: RX-type address or register (2) - (12).

,TKLIST=token list addr token list addr: RX-type address or register (2) - (12).

Note: When you specify TKLIST, specify LXLIST also.

,LXLIST=lx list addr lx list addr: RX-type address or register (2) - (12).

,ELXLIST=lx list addr elx list addr: RX-type address or register (2) - (12).

Note: Specify LXLIST only if you specify TKLIST.

,RELATED=value value: Any valid macro parameter specification.

ASCRE macro

Chapter 3. ASCRE — Create address spaces 45

Parameters
The parameters are explained as follows:

ASNAME=as name
STPARM=start parm addr

Specifies either the name of the new address space or the address of a
parameter string that is input to an internal START command. You must
specify either STPARM or ASNAME. Use ASNAME if you are adding a
procedure to SYS1.PROCLIB and you are not passing parameters to JCL.

ASNAME specifies the address space name (the same as the name of the
procedure in SYS1.PROCLIB that specifies the first program to execute in the
new address space.) The operator uses this name to issue certain commands,
such as the DISPLAY command that displays information about the address
space. The name must consist of 1 to 8 characters, enclosed by apostrophes.
The first character must be alphabetic or national (#, $, or @); other characters
can be alphabetic, national, or numeric.

STPARM specifies the address of a parameter string that is input to an internal
START command that the system uses to start the address space. The string
consists of a two-byte length field, followed by up to 124 bytes of parameter
data. The length field identifies the length of the parameter data (not including
the length field itself). The parameter data consists of START command
parameters, for example “GTF,,,JES2”. Data must begin with the address space
name, which corresponds to the procedure in SYS1.PROCLIB that specifies the
first program that is to execute in the new address space.

If you do not need special DD definitions for data sets, specify the common
system address space procedure IEESYSAS. In the parameter data, specify the
system-defined procedure IEESYSAS in the following format:
IEESYSAS.x,PROG=y

where:
v x is name of the address space.
v y is the name of the first program to execute in the new address space.

,INIT=init rtn name
,INIT=init rtn name addr

Specifies the name of the address space initialization routine or the address of
the name. The name is a string of up to eight alphanumeric characters; if you
specify init rtn name, you must enclose the name in apostrophes. The first
character of the name must be alphabetic or national; other characters can be
alphabetic, national, or numeric. If the name is less than eight characters,
left-justify the name and pad with blanks on the right to make up the eight
characters.

The routine, which performs functions such as loading modules, must reside in
either the LPA (PLPA, MLPA, fixed LPA) or in a library in the LNKLST
concatenation. If the routine uses the two ECBs (EAERIMWT and EAEASWT)
that the system provides for communication between the creating address
space and the initialization routine, the routine must be in 31-bit addressing
mode.

INIT is a required parameter. If you do not need an initialization routine, you
can specify the dummy module IEFBR14 on the INIT parameter.

ASCRE macro

46 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

,ODA=output data addr
Specifies the address of a 24-byte area that contains output information from
the ASCRE macro. The output information, mapped by the macro IHAASEO,
consists of:
v Eight bytes for the STOKEN of the new address space

If you use the ASDES macro to terminate the new address space, you can
obtain the STOKEN from this field.

v Four bytes for the address of the ASCB of the new address space
v Four bytes for the address of the two contiguous ECBs (EAERIMWT and

EAEASWT).
The creator of the address space and the new address space can use these
two ECBs for communicating and synchronizing. They are mapped by
IEZEAECB. A program must be in 31-bit addressing mode when it
references them.

v Eight bytes (not part of the programming interface)

ODA is required.

,TRMEXIT=term rtn addr
Specifies the address of the termination routine that gets control when the new
address space terminates. The routine receives control in 31-bit addressing
mode as an asynchronous exit in the creator's address space under the creator's
TCB. If you specify UTOKEN, on entry to the routine, register 1 contains the
address of a copy of the token specified by the UTOKEN parameter.

On entry to the routine:
v GPR 1 contains the address of a copy of the 64-bit token that the UTOKEN

parameter supplies.
v GPR 13 contains the address of a standard 18-word save area.
v GPR 14 contains the return address.
v GPR 15 contains the entry point address.

If you specify TRMEXIT, you can also specify UTOKEN.

,UTOKEN=user token addr
Specifies the address of a 64-bit token of your choice that the termination
routine can use to identify the new address space. Do not specify UTOKEN
unless you specify TRMEXIT. If you specify TRMEXIT without specifying
UTOKEN, the termination routine does not have the user data.

,ASPARM=parm area addr
Specifies the address of a parameter string that the new address space can
obtain through the ASEXT macro. The parameter string consists of a halfword
length field, followed by up to 254 bytes of parameter data. The length field
contains the length of the parameter data (not including the length field itself).

,ATTR=attr
Specifies some attributes of the new address space. Attributes specified on the
execute form of the ASCRE macro are added to the options specified on the list
form.

Options for the ATTR parameter are as follows:

JOBSPACE
The address space is to be marked as a "job" (started task) address space,
instead of as a "system" address space.

ASCRE macro

Chapter 3. ASCRE — Create address spaces 47

NONURG
Specifies that the address space will be used by nonurgent services. Specify
either NONURG or HIPRI. NONURG is the default.

HIPRI
Indicates that the address space is for a high-priority service. Specify either
NONURG or HIPRI. NONURG is the default.

PERM
Specifies that the system does not terminate the new address space when
the TCB that represents the creating program terminates. If you do not
specify PERM, the system terminates the new address space when it
terminates the TCB.

,NOMT
The address space may not be memtermed unless a DAT error occurs. If a
DAT error does occur then the recovery action is controlled by the NOMD
option. If an unrecoverable error occurs for an address space created with
NOMT the entire system is placed into a wait state.

This specification does not prevent the ASDES service from forcing the
termination of the address space.

,NOMD
The address space may not be memtermed on a DAT error.

This option is honored only if NOMT is also specified. If a DAT error
occurs for an address space created with NOMD the entire system is
placed into a wait state.

,1LPU
The address space must have all private area long-term fixed pages
assigned to preferred (nonreconfigurable and non-V=R) storage frames.

This option is the same as specifying LPREF for a program on a PPT
definition.

,2LPU
The address space must have all private area short-term fixed pages
assigned to preferred (nonreconfigurable and non-V=R) storage frames.

This option is the same as specifying SPREF for a program on a PPT
definition.

,N2LP
The address space does not need to have all private area short-term fixed
pages assigned to preferred storage frames. That is, the program's
short-term fixes are in fact short-term fixes and can be allowed in
reconfigurable storage.

This option is the same as specifying NOPREF for a program on a PPT
definition.

,PRIV
The address space is privileged.

A task marked PRIV is put in the SYSSTC service class if it is not explicitly
classified in the WLM classification rules.

,NOSWAP
The address space is non-swappable.

ASCRE macro

48 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

,CANCEL
The address space jobstep can be canceled after the ASCRE initialization
routine is completed.

,REUSASID
The address space is assigned to a reusable ASID, if REUSASID(YES) was
specified in parmlib member DIAGxx. For more information about reusing
ASIDs, see z/OS MVS Programming: Extended Addressability Guide.

,AXLIST=ax list addr
Specifies the address of a list of halfwords containing the AX values for the
new address space. These values determine the PT and SSAR authority for
programs. (This list was obtained through the AXRES macro.) The first entry in
the list describes the number of AX values in the list (from 1 to 32).

Using this parameter has the same effect as a program in the new address
space issuing the ATSET macro once for each AX value in the list.

,TKLIST=token list addr
Specifies the address of a list of fullword tokens that represent the entry tables
that the system is to connect to the linkage table of the new address space. The
first entry in the list describes the number of token values that follow (from 1
to 32). The ETCRE macro returned these tokens in register 0. Using this
parameter has the same effect as a program in the new address space issuing
the TKLIST parameter on the ETCON macro.

When you specify TKLIST, you must also specify LXLIST.

,LXLIST=lx list addr
,ELXLIST=elx list addr

lx list addr specifies the address of a list of values that represent indexes into
the linkage table. Each linkage index (LX) value represents an entry in the
linkage table. The system connects the entry tables specified by the TKLIST
parameter to the LX values specified in this list. The first entry in the list must
be the number of LX values that follow (from 1 to 32). The number of LX
values must be the same as the number of entry table tokens. Using this
parameter has the same effect as a program in the new address space issuing
the LXLIST parameter on the ETCON macro.

elx list addr specifies the address of an area that contains extended linkage
index (LX) values returned by the ELXLIST parameter of LXRES. The first
word in the area must be the number of extended LX values that follow (from
1 to 32). Each subsequent eight bytes contains an extended LX value, which
consists of a 4-byte sequence number followed by an LX value. Each extended
linkage index value represents an entry in the linkage table. The system
connects the entry tables specified by the TKLIST parameter to the extended
LX values specified in this list. The number of extended LX values must be the
same as the number of entry table tokens. Using this parameter has the same
effect as a program in the new address space issuing the ELXLIST parameter
on the ETCON macro.

When you specify TKLIST, you must also specify either LXLIST or ELXLIST.

,RELATED=value
Specifies information used to self-document macros by “relating” functions or
services to corresponding functions or services. The format and contents of the
information specified are at the discretion of the user, and may be any valid
coding values.

ASCRE macro

Chapter 3. ASCRE — Create address spaces 49

Return and reason codes
The following table gives the return codes from register 15 and the associated
reason codes from register 0.

Table 11. Return and Reason Codes for the ASCRE Macro

Decimal Return
Code

Decimal Reason
Code

Meaning

00 00 Meaning: The address space has been created. Data has
been returned in the output data area.

00 04 Meaning: The address space creation has been scheduled.
Data has been returned in the output data area.

04 04 Meaning: The address space has been created; there was an
error accessing the ODA.

04 08 Meaning: The address space creation has been scheduled;
there was an error accessing ODA.

08 04 Meaning: The caller is not in supervisor state.

08 08 Meaning: The caller is not enabled.

08 12 Meaning: The caller is not in task mode.

08 16 Meaning: The caller is not unlocked.

08 20 Meaning: GPR 0 has an invalid function code on input.

08 24 Meaning: ASCRE could not establish recovery.

12 04 ASCRE cannot reference the parameter list.

12 08 Meaning: The version number in the parameter list is not
valid.

12 12 Meaning: The reserved field in the parameter list is not 0.

16 04 Meaning: ASCRE cannot reference the INIT parameter.

16 08 Meaning: The initialization routine is not specified or is
specified incorrectly.

20 04 Meaning: ASCRE cannot reference the STPARM or
ASNAME parameter.

20 08 Meaning: Neither STPARM or ASNAME was specified.

20 12 Meaning: The STPARM length is not 1-124.

24 04 Meaning: The reserved attribute bit is set.

24 08 Meaning: Both HIPRI and NONURG are specified.

28 04 Meaning: ASCRE cannot reference the UTOKEN.

28 08 Meaning: UTOKEN is specified without TRMEXIT.

32 04 Meaning: ASCRE cannot reference the ASPARM parameter.

32 08 Meaning: The ASPARM length is not 0-254.

36 04 Meaning: ASCRE cannot reference AXLIST.

36 08 Meaning: The AXLIST length is not 1-32 elements.

40 04 Meaning: ASCRE cannot reference LXLIST.

40 08 Meaning: The LXLIST length is not 1-32 elements.

44 04 Meaning: ASCRE cannot reference the TKLIST parameter.

44 08 Meaning: The TKLIST length is not same as LXLIST length.

ASCRE macro

50 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Table 11. Return and Reason Codes for the ASCRE Macro (continued)

Decimal Return
Code

Decimal Reason
Code

Meaning

48 08 Meaning: The ASCRE invocation specified one of the
following:

v ASNAME, but the address space name is not valid.

v STPARM for a procedure other than IEESYSAS, but the
address space name is not valid.

v STPARM for procedure IEESYSAS, but did not correctly
provide the required format of IEESYSAS.x, where x is
the name of the address space.

52 04 Meaning: A storage shortage prevented the creation of an
address space. Resubmit the failed job because the shortage
might have been caused by a temporary strain on
workload. If the problem persists, you might have to
reevaluate your installation defined storage thresholds.

52 08 Meaning: Either the maximum number of address spaces
was exceeded or the system could not obtain storage for
the ASCB or ASSB. The system programmer can change the
value specified on the MAXUSER parameter in the
IEASYSxx parmlib member (to increase the number of
address spaces that are available).

52 12, 16 Meaning: Record the return and reason codes and inform
your technical support personnel.

56 16 Meaning: The caller specified an address space attribute
that is not valid.

60, 64, 68, 72 Any Meaning: Record the return and reason codes and inform
your technical support personnel.

Example
Create an address space named ASPACE1. Note the USING statements that
establish addressability for different segments of code.
ASCRETST CSECT
ASCRETST AMODE 31
ASCRETST RMODE ANY

BALR 10,0 ESTABLISH ...
USING *,10 ... ADDRESSABILITY
.
.

* ISSUE ASCRE SPECIFYING A TERMINATION ROUTINE NAME IN STORAGE
ASCRE ASNAME=’ADSPACE1’,INIT=INITNAME,TRMEXIT=TERMEXIT,ODA=ODAAREA
.
.

* TERMINATION EXIT
TERMEXIT DS 0H

USING *,15 REGISTER 15 CONTAINS ENTRY ADDRESS
SAVE (14,12),,* SAVE REGISTERS

.
* PERFORM ADDRESS SPACE TERMINATION PROCESSING

.

.
RETURN (14,12) RESTORE REGISTERS; RETURN TO SYSTEM
.
.

* DATA AREAS
INITNAME DC CL8’INITMOD’
ODAAREA DS CL24

END

ASCRE macro

Chapter 3. ASCRE — Create address spaces 51

ASCRE - List form
The list form of the ASCRE macro constructs a nonexecutable parameter list. This
list, or a copy of it for reentrant programs, can be referred to by the execute form
of the macro.

Syntax
The list form of the ASCRE macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede ASCRE.

ASCRE

� One or more blanks must follow ASCRE.

ASNAME=as name as name: One to eight characters, enclosed in apostrophes.

STPARM=start parm addr start parm addr: RX-type address.

,INIT=init rtn name init rtn name: One to eight characters, enclosed in apostrophes.

,INIT=init rtn name addr init rtn name addr: RX-type address or register (2) - (12).

,ODA=output data addr output data addr: A-type address.

,TRMEXIT=term rtn addr term rtn addr: A-type address.

,UTOKEN=user token addr user token addr: A-type address.

Note: Specify UTOKEN only if you specify TRMEXIT.

,ASPARM=parm area addr parm area addr: A-type address.

,ATTR=attribute list attribute list: List of attributes, separated by commas.

,AXLIST=ax list addr ax list addr: A-type address.

,TKLIST=token list addr token list addr: A-type address.

Note: When you specify TKLIST, specify LXLIST also.

,LXLIST=lx list addr lx list addr: A-type address.

Note: Specify LXLIST only if you specify TKLIST.

ASCRE macro

52 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Syntax Description

,RELATED=value value: Any valid macro parameter specification.

,MF=L

Parameters
The parameters are explained under the standard form of the ASCRE macro with
the following exception:

,MF=L
Specifies the list form of ASCRE.

ASCRE - Execute form
The execute form of the ASCRE macro can refer to and modify a remote parameter
list built by the list form of the macro.

Syntax
The execute form of the macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede ASCRE.

ASCRE

� One or more blanks must follow ASCRE.

ASNAME=as name as name: One to eight characters, enclosed in apostrophes.

STPARM=start parm addr start parm addr: RX-type address or register (2) - (12).

,INIT=init rtn name init rtn name: One to eight characters, enclosed in apostrophes.

,INIT=init rtn name addr init rtn name addr: RX-type address or register (2) - (12).

,ODA=output data addr output data addr: RX-type address or register (2) - (12).

,TRMEXIT=term rtn addr term rtn addr: RX-type address or register (2) - (12).

,UTOKEN=user token addr user token addr: RX-type address or register (2) - (12).

Note: Specify UTOKEN only if you specify TRMEXIT.

,ASPARM=parm area addr parm area addr: RX-type address or register (2) - (12).

ASCRE macro

Chapter 3. ASCRE — Create address spaces 53

Syntax Description

,ATTR=attribute list attribute list: List of attributes, separated by commas.

,AXLIST=ax list addr ax list addr: RX-type address or register (2) - (12).

,TKLIST=token list addr token list addr: RX-type address or register (2) - (12).

Note: When you specify TKLIST, specify LXLIST also.

,LXLIST=lx list addr lx list addr: RX-type address or register (2) - (12).

Note: Specify LXLIST only if you specify TKLIST.

,RELATED=value value: Any valid macro parameter specification.

,MF=(E,cntl addr) cntl addr: RX-type address or register (2) - (12)

Parameters
The parameters are explained under the standard form of the ASCRE macro with
the following exception:

,MF=(E,cntl addr)
Specifies the execute form of the ASCRE macro. cntl addr is the address of the
remote parameter list that the list form of the macro provided.

ASCRE macro

54 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Chapter 4. ASDES — Terminate an address space

Description
The ASDES macro terminates an address space that was created through the
ASCRE macro.

z/OS MVS Programming: Extended Addressability Guide describes how to create and
terminate address spaces.

ASDES processing circumvents all task recovery and task resource manager
processing. Its use should be restricted to a select group of routines that can
determine that task recovery and task manager clean-up are either not warranted
or will not successfully operate in the address space being terminated. An alternate
way to terminate an address space is to use CALLRTM TYPE=ABTERM and
specify the jobstep TCB.

Environment
Requirements for the caller of ASDES are:

Environmental factor Requirement
Minimum authorization: Supervisor state
Dispatchable unit mode: Task
Cross memory mode: PASN=HASN or PASN¬=HASN
AMODE: Any
ASC mode: Primary or AR
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: For callers in primary mode, control parameters must be in

the primary address space. For callers in AR mode, the
parameters can be in any space addressable through public
entries in the caller's dispatchable unit access list (DU-AL).

Programming requirements
Callers in access register (AR) mode must have issued SYSSTATE ASCENV=AR to
tell ASDES to generate code and addresses appropriate for callers in AR mode.

The caller must not have an enabled unlocked task (EUT) functional recovery
routine (FRR) established.

Output register information
After the caller issues the macro, the macro might use some registers as work
registers or might change the contents of some registers. When the macro returns
control to the caller, the contents of these registers are not the same as they were
before the macro was issued. Therefore, if the caller depends on these registers
containing the same value before and after issuing the macro, the caller must save
these registers before issuing the macro and restore them after the system returns
control.

When control returns to the caller, the general purpose registers (GPRs) contain:

© Copyright IBM Corp. 1988, 2013 55

Register
Contents

0 Reason code

1 Used as a work register by the macro

2-13 Unchanged

14 Used as a work register by the macro

15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the macro

2-13 Unchanged

14-15 Used as work registers by the macro

Syntax
The syntax of the ASDES macro is as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede ASDES.

ASDES

� One or more blanks must follow ASDES.

STOKEN=stoken-addr stoken-addr: RX-type address or registers (2) - (12).

,RELATED=value value: Any valid macro parameter specification.

Parameters
The parameters are explained as follows:

STOKEN=stoken-addr
Specifies the address of an eight-byte area that contains the STOKEN of the
address space you want to terminate. The system returned the STOKEN in the
24-byte area requested by the ODA parameter on the ASCRE macro that
created the address space. STOKEN is a required parameter.

,RELATED=value
Specifies information used to self-document macros by “relating” functions or

ASDES macro

56 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

services to corresponding functions or services. The format and contents of the
information specified are at the discretion of the user, and may be any valid
coding values.

Return and reason codes
Return codes and reason codes (in decimal form) are shown in the following table.

Table 12. Return and Reason Codes for the ASDES Macro

Decimal Return
Code

Decimal Reason
Code

Meaning

00 00 Meaning: Address space is terminated.

08 04 Meaning: Caller is not in supervisor state.

08 08 Meaning: Caller is not enabled.

08 12 Meaning: Caller is not in task mode.

08 16 Meaning: Caller is not unlocked.

08 20 Meaning: GPR 0 had invalid function code.

08 24 Meaning: ASDES could not establish recovery.

12 04 Meaning: ASDES could not reference the STOKEN
parameter.

12 08 Meaning: STOKEN does not map to a valid address space.
Address space might have already terminated.

16 04 Meaning: The address space was not created by ASCRE.

ASDES macro

Chapter 4. ASDES — Terminate an address space 57

ASDES macro

58 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Chapter 5. ASEXT — Extract address space parameters

Description
The ASEXT macro returns to the caller the address of a copy of a parameter string
that the creating program made available at the time it created the primary address
space. Use this macro only if the primary address space was created through the
ASCRE macro and you specified the ASPARM parameter on the ASCRE macro.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Supervisor state
Dispatchable unit mode: Task or SRB
Cross memory mode: PASN=HASN or PASN¬=HASN
AMODE: 24-bit or 31-bit. To reference the copy of the parameter

string, the user must be in 31-bit addressing mode.
ASC mode: Primary or AR
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Must be in the primary address space

Programming requirements
The caller must not have an enabled unlocked task (EUT) functional recovery
routine (FRR) established.

Restrictions
None.

Register information
After the caller issues the macro, the system might use some registers as work
registers or might change the contents of some registers. When the system returns
control to the caller, the contents of these registers are not the same as they were
before the macro was issued. Therefore, if the caller depends on these registers
containing the same value before and after issuing the macro, the caller must save
these registers before issuing the macro and restore them after the system returns
control.

When control returns to the caller, the general purpose registers (GPRs) contain:

Register
Contents

0 Reason code, described in “Return and reason codes” on page 60.

1 Address of the extracted parameter string if the return code is 0; otherwise,
contains a 0.

2-13 Unchanged

14 Used as a work register by the system

15 Return code, described in “Return and reason codes” on page 60

© Copyright IBM Corp. 1988, 2013 59

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0 Used as a work register by the system.

1 AR 1 contains a 0, which indicates that the parameter string copy is
addressable in the primary address space.

2-13 Unchanged

14-15 Used as work registers by the system

Performance implications
None.

Syntax
The syntax of the ASEXT macro is as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede ASEXT.

ASEXT

� One or more blanks must follow ASEXT.

ASPARM

,RELATED=value value: Any valid macro parameter specification.

Parameters
The parameters are explained as follows:

ASPARM
Requests the address of a copy of the parameter string (including the halfword
length field) that the creator of the address space specified on the ASPARM
parameter on the ASCRE macro. ASPARM is required.

,RELATED=value
Specifies information used to self-document macros by “relating” functions or
services to corresponding functions or services. The format and contents of the
information specified are at the discretion of the user, and may be any valid
coding values.

Return and reason codes
When ASEXT macro returns control to your program, GPR 15 contains a return
code and GPR 0 contains a reason code.

ASEXT macro

60 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Table 13. Return and Reason Codes for the ASEXT Macro

Decimal Return
Code

Decimal Reason
Code

Meaning

00 00 Meaning: The ASEXT service has completed successfully.

08 04 Meaning: The caller is not in supervisor state.

08 08 Meaning: The caller is not enabled.

08 12 Meaning: The caller is not in task mode.

08 16 Meaning: The caller is not unlocked.

08 20 Meaning: GPR 0 on input has an invalid function code.

08 24 Meaning: ASEXT is unable to establish recovery.

12 04 Meaning: GPR 1 has an invalid extract code on input.

16 04 Meaning: An unexpected error occurred while ASEXT was
in progress.

ASEXT macro

Chapter 5. ASEXT — Extract address space parameters 61

ASEXT macro

62 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Chapter 6. ATSET — Set authorization table

Description
The ATSET macro sets up an entry in the authorization table or in the
authorization table bits. ATSET sets the PT and SSAR authority in the
authorization table entry of the home address space. The authorization index value
(AX) determines what entry is set.

The extended authorization index (EAX) determines what authorization table bits
are set. To an address space, the EAX authority and SSAR authority are the same.

Related macros
ATEXT, AXFRE, AXRES, and AXSET

Environment
These are the requirements for the caller:

Environmental factor Requirement
Minimum authorization: Supervisor state or PKM 0-7
Dispatchable unit mode: Task or SRB
Cross memory mode: PASN=HASN or PASN ¬=HASN
AMODE: Any
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Must be addressable in the caller's primary address space

Programming requirements
None.

Restrictions
None.

Input register information
The ATSET macro is sensitive to the SYSSTATE macro with the OSREL=ZOSV1R6
parameter
v If the caller has issued the SYSSTATE macro with the OSREL=ZOSV1R6

parameter (Version 1 Release 6 of z/OS or later) before issuing the ATSET
macro, the caller does not have to place any information into any general
purpose register (GPR) unless using it in register notation for a particular
parameter, or using it as a base register.

v Otherwise, the caller must ensure that the following general purpose register
contains the specified information:

Register
Contents

13 The address of an 18-word save area

© Copyright IBM Corp. 1988, 2013 63

Output register information
After the caller issues the macro, the macro might use some registers as work
registers or might change the contents of some registers. When the macro returns
control to the caller, the contents of these registers are not the same as they were
before the macro was issued. Therefore, if the caller depends on these registers
containing the same value before and after issuing the macro, the caller must save
these registers before issuing the macro and restore them after the system returns
control.

When control returns to the caller, the general purpose registers (GPRs) contain:

Register
Contents

0-1 Used as work registers by the macro

2-13 Unchanged

14 Used as a work register by the macro

15 Return code

Performance implications
None.

Syntax
This is the standard form of the ATSET macro:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede ATSET.

ATSET

� One or more blanks must follow ATSET.

AX=ax value ax value: RX-type address or general register (0) - (12).

,PT=NO Default: PT=NO

,PT=YES

,SSAR=NO Default: SSAR=NO

,SSAR=YES

,RELATED=value value: Any valid macro keyword specification.

ATSET macro

64 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Parameters
These are the parameters:

AX=ax value
Specifies the AX value for which the PT and SSAR authority are to be set. The
RX-type address points to the address of a half word containing the AX value.
It is addressable in primary mode. When the register form is used, the AX
value must be in bits 16-31. Bits 0-15 are ignored.

,PT=NO
,PT=YES

Specifies, YES or NO, whether program transfer (PT) is allowed into the home
address space by routines executing with the specified AX.

,SSAR=NO
,SSAR=YES

Specifies, YES or NO, whether routines, executing with the specified AX, are
allowed to establish secondary addressability to the home address space. It
also specifies, YES or NO, whether routines with the specified EAX are
allowed to access the address space through access registers.

,RELATED=value
Specifies information used to self-document macros. It “relates” functions or
services to corresponding functions or services. The user can use any valid
coding value. The format and contents are at the user's discretion.

Note: Every time you invoke the ATSET macro, you must set PT and SSAR
authority. Specify: PT=YES.

ABEND codes
v 052
v 053

See z/OS MVS System Codes for an explanation and programmer responses for
these codes.

Return codes
When ATSET macro returns control to your program, GPR 15 contains a return
code.

Table 14. Return Code for the ATSET Macro.

Hexadecimal Return
Code

Meaning

00 The selected authorization table entry has been set.

Examples
For examples of the use of this and other cross memory macros, refer to z/OS MVS
Programming: Extended Addressability Guide.

ATSET macro

Chapter 6. ATSET — Set authorization table 65

66 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Chapter 7. ATTACH and ATTACHX — Create a subtask

Note: IBM recommends that you use the ATTACHX macro rather than the
ATTACH macro.

Description
The ATTACH macro causes the system to create a new task and indicates the entry
point in the program to be given control when the new task becomes active. The
entry point name that is specified must be a member name or an alias in a
directory of a partitioned data set, or must have been specified in an IDENTIFY
macro. If the system cannot locate the specified entry point, it abnormally
terminates the new subtask.

The descriptions of ATTACH and ATTACHX are:
v The standard form of the ATTACH macro, which includes general information

about the ATTACH and ATTACHX macros, with some specific information
about the ATTACH macro. The syntax of the ATTACH macro is presented, and
all ATTACH parameters are explained.

v The standard form of the ATTACHX macro, which includes information specific
to the ATTACHX macro and to callers in AR mode.

v The list form of the ATTACH and ATTACHX macros.
v The execute form of the ATTACH and ATTACHX macros.

The new task is a subtask of the originating task. The originating task is the active
task when the ATTACH macro is issued. The limit and dispatching priorities of the
new task are the same as those of the originating task (unless modified in the
ATTACH macro).

The load module containing the program to be given control is brought into virtual
storage unless a usable copy is available in virtual storage. The issuing program
can provide: an event control block, in which termination of the subtask is posted;
an exit routine to be given control, when the subtask is terminated; and a
parameter list the address of which is passed in GPR 1 to the subtask. The subtask
is automatically removed from the system upon completion of its execution, unless
the ECB or ETXR parameters are coded.

ATTACH and ATTACHX are also described in z/OS MVS Programming: Assembler
Services Reference ABE-HSP, with the exception of the following parameters, which
are restricted to use by authorized programs: SM, SVAREA, KEY, DISP, TID,
NSHSPV, NSHSPL, JSTCB, and RSAPF.

© Copyright IBM Corp. 1988, 2013 67

Environment
The requirements for the caller of ATTACH or ATTACHX are:

Environmental factor Requirement
Minimum authorization: Problem state, and any PSW key. To use the SM, SVAREA,

KEY, DISP, TID, NSHSPV, NSHSPL, JSTCB, or RSAPF
parameter, the caller must either run in supervisor state or
with PSW key 0-7. When the caller specifies JSTCB=YES and
the program comes from an APF-authorized library or the
link pack area and is link-edited with the APF-authorization
attribute, the task runs with APF authorization.

Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: If you use the STAI parameter, 24-bit; otherwise, 24- or 31-

or 64-bit
Note: AMODE 64 is valid only for the ATTACHX macro.

ASC mode: If you use the STAI parameter, primary; otherwise, primary
or access register (AR)

Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: For both primary ASC mode callers and AR ASC mode

callers, control parameters must be in the primary address
space.

Programming requirements
If your program is in AR mode, issue SYSSTATE ASCENV=AR so the system can
generate code that is appropriate for AR mode. If you issue SYSSTATE
ASCENV=AR and then issue ATTACH, the system substitutes the ATTACHX
macro and issues a message telling you that it made the substitution.

Restrictions
v If the caller is running in 31-bit addressing mode, all input parameters can have

addresses greater than 16 megabytes, except for the address of the DCB.
v The ECB must be in storage addressable by both the caller of ATTACH and the

system.
v Only job step tasks can issue ATTACH with JSTCB=YES. A task cannot issue a

series of ATTACH macros that would cause its subtasks to be a mix of job step
and nonjob step tasks.

v The caller cannot have an EUT FRR established.
v The parameter list specified for an ESTAI exit must be addressable using a 31-bit

address.

Input register information
Before issuing the ATTACH or ATTACHX macro, if you want to pass a parameter
list to the new task without coding the PARAM or MF=E parameter, the caller
must ensure that the following GPR contains the specified information:

Register
Contents

1 Address of the parameter list

Output register information
When control returns to the caller, the GPRs contain:

ATTACH and ATTACHX macros

68 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Register
Contents

0 Used as a work register by the system

1 If GPR 15 contains a return code other than X'00', zero; otherwise, the
address of the task control block for the subtask

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0 Used as a work register by the system

1 Zero (the ALET of the task control block address)

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after system returns.

Performance implications
None.

Syntax
The standard form of the ATTACH macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede ATTACH.

ATTACH

� One or more blanks must follow ATTACH.

EP=entry name entry name: Symbol.

EPLOC=entry name addr entry name addr: A-type address, or register (2) - (12).

DE=list entry addr list entry addr: A-type address, or register (2) - (12).

,DCB=dcb addr dcb addr: A-type address, or register (2) - (12).

ATTACH and ATTACHX macros

Chapter 7. ATTACH and ATTACHX — Create a subtask 69

Syntax Description

,LPMOD=limit prior nmbr limit prior nmbr: Symbol, decimal digit, or register (2) - (12).

,DPMOD=disp prior nmbr disp prior nmbr: Symbol, decimal digit, or register (2) - (12).

,PARAM=(addr) addr: A-type address

,PARAM=(addr),VL=1 Note: addr is one or more addresses, separated by commas. For example,
PARAM=(addr,addr,addr)

,ECB=ecb addr ecb addr: A-type address, or register (2) - (12).

,ETXR=exit rtn addr exit rtn addr: A-type address, or register (2) - (12).

,GSPV=subpool nmbr subpool nmbr: Symbol, decimal digit, or register (2) - (12).

,GSPL=subpool list addr subpool list addr: A-type address, or register (2) - (12).

,SHSPV=subpool nmbr subpool nmbr: Symbol, decimal digit, or register (2) - (12).

,SHSPL=subpool list addr subpool list addr: A-type address, or register (2) - (12).

,SZERO=YES Default: SZERO=YES

,SZERO=NO

,TASKLIB=dcb addr dcb addr: A-type address, or register (2) - (12).

,STAI=(exit addr) exit addr: A-type address, or register (2) - (12).

,STAI=(exit addr,parm addr) parm addr: A-type address, or register (2) - (12).

,ESTAI=(exit addr) Note: AR mode callers and 31-bit callers must not use STAI.

,ESTAI=(exit addr,parm addr)

,PURGE=QUIESCE Note: PURGE may be specified only if STAI or ESTAI is specified.

,PURGE=NONE Default for STAI: PURGE=QUIESCE

,PURGE=HALT Default for ESTAI: PURGE=NONE

,ASYNCH=NO Default for STAI: ASYNCH=NO

,ASYNCH=YES Default for ESTAI: ASYNCH=YES

Note: ASYNCH may be coded only if STAI or ESTAI is specified.

,TERM=NO Note: TERM may be specified only if ESTAI is specified.

,TERM=YES Default: TERM=NO

,JSTCB=NO Default: JSTCB=NO

,JSTCB=YES

ATTACH and ATTACHX macros

70 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Syntax Description

,SM=PROB Default: SM=PROB

,SM=SUPV

,SVAREA=YES Default: SVAREA=YES

,SVAREA=NO

,KEY=PROP Default: KEY=PROP

,KEY=ZERO

,DISP=YES Default: DISP=YES

,DISP=NO

,DISP=RESET,TCB=tcb addr tcb addr: RX-type address or address in register (2) - (12).

,TID=task id task id: Decimal digits 0-255, or register (2) - (12).

Default: TID=0

Note: IBM recommends that you specify a value less than 200.

,NSHSPV=subpool nmbr subpool nmbr: Symbol, decimal digit, or register (2) - (12).

,NSHSPL=subpool list addr subpool list addr: A-type address, or register (2) - (12).

,RSAPF=NO Default: RSAPF=NO

,RSAPF=YES

,ALCOPY=YES Default: ALCOPY=NO

,ALCOPY=NO

,RELATED=value value: Any valid macro keyword specification.

Parameters
The parameters are explained as follows:

EP=entry name
EPLOC=entry name addr
DE=list entry addr

Specifies the entry name, the address of the entry name, or the address of the
name field of a 62-byte entry name list. The entry name is constructed using
the BLDL macro. When EPLOC is coded, entry name addr points to an
eight-byte field. When the name is less than eight characters, left-justify the
name and pad with blanks on the right to make up the eight characters.

Note:

ATTACH and ATTACHX macros

Chapter 7. ATTACH and ATTACHX — Create a subtask 71

1. ATTACH processing can attach a load module in 24-bit or 31-bit addressing
mode physically resident above or below 16 megabytes virtual. The
AMODE and RMODE, load module attributes located in the directory entry
for the load module, provide this information. The RMODE indicates the
place of the module; the AMODE indicates the addressing mode of the
module. When the AMODE of the entry point is ANY, it is attached with
the same addressing mode as the caller.

2. When you use the DE parameter with the ATTACH macro, DE specifies the
address of a list created by a BLDL macro. You must issue the BLDL and
the ATTACH from the same task; otherwise, the system abnormally
terminates the program with a completion code of X'106'. Do not issue an
ATTACH or a DETACH between issuances of the BLDL and ATTACH.

3. See z/OS DFSMS Macro Instructions for Data Sets and z/OS DFSMS Using
Data Sets for a description of the BLDL macro.

The contents of the GPRs on entry to the subtask are:

Register
Contents

0 Does not contain any information for use by the routine.

1 Address of the user parameter list if specified on either the PARAM or
MF=E parameters; otherwise, contains whatever GPR 1 contained at
the time the ATTACH macro was issued.

2 - 12 Do not contain any information for use by the routine.

13 Address of a 144-byte save area if SVAREA=YES was specified;
Otherwise, zero.

14 Return address. Bit 0 is 0 if the subtask routine gets control in 24-bit
addressing mode; bit 0 is 1 if the subtask routine gets control in 31-bit
addressing mode.

15 When the subtask routine is to run in 24-bit or 31-bit addressing mode,
the entry point address of the subtask routine.

When the subtask routine is to run in 64-bit addressing mode, it is
expected to use relative branching and register 15 contains a value that
can be used to determine the addressing mode of the issuer of the
ATTACH or ATTACHX macro as follows:
v Issuer AMODE 24: X'FFFFF000'
v Issuer AMODE 31: X'FFFFF002'
v Issuer AMODE 64: X'FFFFF004'

The contents of the ARs on entry to the subtask are:

Register
Contents

0 Does not contain any information for use by the routine.

1 Zero if you specified a user parameter list on either the PARAM or
MF=E parameters; otherwise, contains whatever AR 1 contained at the
time the ATTACH macro was issued.

2-12 Do not contain any information for use by the routine.

13-15 Zeroes

ATTACH and ATTACHX macros

72 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

,DCB=dcb addr
Specifies the address of the data control block for the partitioned data set
containing the entry name.

Note: The DCB must be opened before the ATTACH macro is executed. The
DCB must reside in storage below 16 megabytes.

,LPMOD=limit prior nmbr
Specifies the number (0 to 255) to be subtracted from the current limit priority
of the originating task. The resulting number is the limit priority of the
subtask, with a higher number representing a higher limit priority.

If you omit this parameter, the current limit priority of the originating task is
assigned as the limit priority of the subtask.

,DPMOD=disp prior nmbr
Specifies the signed number (-255 to +255) to be algebraically added to the
current dispatching priority of the originating task. The resulting number is
assigned as the dispatching priority of the subtask, with a higher number
representing a higher dispatching priority. If, however, the resulting number is
higher than the limit priority of the subtask, the limit priority is assigned as
the dispatching priority.

If a register is designated, a negative number must be in two's complement
form in the register. If you omit this parameter, the dispatching priority
assigned is the smaller of either the subtask's limit priority or the originating
task's dispatching priority.

,PARAM=(addr)
,PARAM=(addr),VL=1

Specifies an address or addresses to be passed to the attached program.
ATTACH expands each address inline to a fullword on a fullword boundary, in
the order designated, building a parameter list. When the program receives
control, register 1 contains the address of the first word of the parameter list.

Specify VL=1 only if the called program can be passed a variable number of
parameters. VL=1 causes the high-order bit of the last address to be set to 1;
the bit can be checked to find the end of the list.

,ECB=ecb addr
Specifies the address of an event control block for the subtask. The system uses
this to indicate the termination of the subtask. This enables the issuer of the
attach to wait on it, using the WAIT macro, and enables the system to post it
on behalf of the terminating task. The return code, (when the task terminates
normally), or the completion code, (when the task terminates abnormally), is
placed in the event control block. When this parameter is coded, a DETACH
macro must be issued to remove the subtask from virtual storage after the
subtask terminates. The system assumes that the ECB is in the home address
space.

,ETXR=exit rtn addr
Specifies the address of the end-of-task exit routine. It is given control after the
subtask normally or abnormally terminates. The exit routine is given control
when the originating task becomes active after the subtask terminates. It must
be in virtual storage. When this parameter is coded, a DETACH macro must be
issued to remove the subtask from the system after the subtask terminates.

The exit routine runs asynchronously under the originating task. The routine
receives control in the addressing mode of the issuer of the ATTACH macro.
The system abnormally ends a task with completion code X'72A' if the task

ATTACH and ATTACHX macros

Chapter 7. ATTACH and ATTACHX — Create a subtask 73

attempts to create two subtasks with the same exit routine in different
addressing modes. Upon entry, the routine has an empty dispatchable unit
access list (DU-AL). To establish addressability to a data space created by the
originating task and shared with the terminating subtask, the routine can issue
the ALESERV macro with the ADD parameter, and specify the STOKEN of the
data space.

The exit routine receives control with the following environment:

Environmental factor Requirement
Authorization: Problem state, PSW key is the same as TCB key of the issuer

of the ATTACH macro.
Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 24-bit when the issuer of the ATTACH macro is AMODE 24;

Otherwise, 31-bit.
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Not applicable.

When the exit routine is given control, the contents of the GPRs are:

Register
Contents

0 Does not contain any information for use by the routine.

1 Address of the task control block for terminated task

2-12 Do not contain any information for use by the routine.

13 Address of a 72-byte save area provided by the system

14 Return address

15 Address of the exit routine

When the exit routine receives control, the contents of ARs are:

Register
Contents

0 Does not contain any information for use by the routine.

1 Zero

2-12 Do not contain any information for use by the routine.

13-15 Zeroes

The exit routine is responsible for saving and restoring the registers.

,GSPV=subpool nmbr
,GSPL=subpool list addr

Specifies a virtual storage subpool number, or address of a list of virtual
storage subpool numbers, each less than 128. Ownership of each of the
specified subpools is assigned to the subtask. Subpool zero is an exception. It
can be specified but it cannot be transferred. When a task transfers ownership
of a subpool, it can no longer obtain or release the associated virtual storage
areas. When GSPL is specified, the first byte of the list contains the number of
remaining bytes in the list. Each of the following bytes contains a virtual
storage subpool number.

ATTACH and ATTACHX macros

74 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

,SHSPV=subpool nmbr
,SHSPL=subpool list addr

Specifies a virtual storage subpool number or the address of a list of virtual
storage subpool numbers, each less than 128. Programs of the originating task
and the subtask can use the associated virtual storage areas. When SHSPL is
specified, the first byte of the list contains the number of remaining bytes in
the list. Each of the following bytes contains a virtual storage subpool number.

,SZERO=YES
,SZERO=NO

Specifies whether subpool 0 is to be shared (YES) or not to be shared (NO)
with the subtask.

,TASKLIB=dcb addr
Specifies the address of the DCB for the library to be used as the attached
subtask's library. Otherwise, the subtask library is propagated from the
originating task. (Note: The DCB must be opened before the ATTACH macro is
executed.) SYS1.LINKLIB is the last library searched. If the DCB address
specifies SYS1.LINKLIB, the search begins with SYS1.LINKLIB, goes through
other libraries, and ends with SYS1.LINKLIB. The system abnormally
terminates the attached subtask with a completion code of X'806' if the
requested module is not in the subtask library and is not in the other libraries
searched.

See “Location of the Load Module” in z/OS MVS Programming: Assembler
Services Guide for additional information on using the TASKLIB parameter.

Note: DCB must reside in 24-bit addressable storage.

,STAI=(exit addr)
,STAI=(exit addr,parm addr)
,ESTAI=(exit addr)
,ESTAI=(exit addr,parm addr)

Specifies whether a STAI or ESTAI recovery routine is to be defined for the
attached task; any STAI or ESTAI recovery routines defined for the attached
task are automatically propagated to its subtasks.

The exit addr specifies the address of the STAI or ESTAI recovery routine that is
to receive control if the subtask encounters an error; the recovery routine must
be in virtual storage at the time of the error. The parm addr is the address of a
parameter list which may be used by the STAI or ESTAI recovery routine. The
address must be 24-bit for STAI and 31-bit for ESTAI.

ATTACHX processing passes control to an ESTAI recovery routine in the
addressing mode of the issuer of the ATTACHX macro. A STAI exit routine can
run only in 24-bit addressing mode. If a caller in the wrong addressing mode
or AR mode specifies the STAI parameter on the ATTACH macro, the caller
ends abnormally with a completion code of X'52A'.

,PURGE=QUIESCE
,PURGE=NONE
,PURGE=HALT

Specifies the action to be taken with regard to I/O operations when the
subtask encounters an error. NONE indicates that no action is specified. HALT
indicates halting of I/O operations. QUIESCE indicates quiescing of I/O
operations.

,ASYNCH=NO

ATTACH and ATTACHX macros

Chapter 7. ATTACH and ATTACHX — Create a subtask 75

,ASYNCH=YES
Specifies whether asynchronous exits are to be allowed when a subtask
encounters an error.

ASYNCH=YES must be coded if:
v Any supervisor services that require asynchronous interruptions to complete

their normal processing are going to be requested by the recovery routine.
v PURGE=QUIESCE is specified for any access method that requires

asynchronous interruptions to complete normal input/output processing.
v PURGE=NONE is specified and the CHECK macro is issued in the recovery

routine for any access method that requires asynchronous interruptions to
complete normal input/output processing.

Note: If ASYNCH=YES is specified and the error was an error in
asynchronous exit handling, recursion will develop when an asynchronous exit
handling was the cause of the failure.

,TERM=NO
,TERM=YES

Specifies whether the recovery routine associated with the ESTAI request is
scheduled in these situations:
v System-initiated logoff
v Job step timer expiration
v Wait time limit for job step exceeded
v DETACH macro without the STAE=YES parameter issued from a

higher-level task (possibly by the system if the higher-level task encountered
an error)

v Operator cancel
v Error on a higher-level task
v Error in the job step task when a nonjob step task issued the ABEND macro

with the STEP parameter.
v z/OS UNIX is canceled and the user's task is in a wait in the z/OS UNIX

kernel.

,JSTCB=NO
,JSTCB=YES

Specifies whether the attached task is to be a job step task. YES specifies that
the attached task is to be a job step task.

NO specifies that the attached task is to be a nonjob step task and that the job
step task of the issuer of ATTACH will be propagated to the newly attached
task.

Note:

1. JSTCB=YES causes a new job pack area to be established for the attached
task. Modules within the job pack area of the task issuing the ATTACH are
not available to the newly attached task. See information about program
management in z/OS MVS Programming: Authorized Assembler Services Guide
for details.

2. The use of JSTCB=YES affects the ownership of those virtual storage
subpools that are owned by job step tasks. See information about virtual
storage management in z/OS MVS Programming: Authorized Assembler
Services Guide for details.

ATTACH and ATTACHX macros

76 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

3. Do not specify JSTCB=YES unless you know that the design of your
application requires the special attributes of a job step task.

,SM=PROB
,SM=SUPV

PROB specifies that the attached task is to run in problem state. SUPV specifies
that the attached subtask is to run in supervisor state.

,SVAREA=YES
,SVAREA=NO

Specifies whether a save area is needed for the attached task. YES specifies that
the ATTACH routine obtains a 144-byte save area. When the attaching and
attached task share subpool zero, the save area is obtained there. Otherwise, it
is obtained from a new 4KB block. NO specifies that no save area is needed.

,KEY=PROP
,KEY=ZERO

ZERO specifies that the protection key of the newly created task should be
zero. PROP specifies that the protection key of the newly created task should
be propagated from the task using ATTACH.

,DISP=YES
,DISP=NO
,DISP=RESET,TCB=tcb addr

YES specifies that the attached subtask is dispatchable. NO specifies that the
subtask is nondispatchable; the system places the address of the TCB for the
task in GPR 1, but ATTACH processing for the task does not complete.

When you specify DISP=NO, you must issue ATTACH again with the
DISP=RESET,TCB=tcb addr parameter so that ATTACH processing completes
for the subtask. When you issue ATTACH with DISP=RESET,TCB=tcb addr, you
cannot specify any other parameters on the ATTACH macro. ATTACH
DISP=RESET,TCB=tcb addr resets to dispatchable the subtask specified by tcb
addr and all subtasks of the attaching program that were attached using the
DISP=NO parameter.

,TID=task id
Specifies the task identifier to be placed in the TCB field of the attached
subtask. IBM recommends that you specify a value less than 200 for task id.

,NSHSPV=subpool nmbr
,NSHSPL=subpool list addr

Specifies the virtual storage subpool number 236 or 237, or the address of a list
of virtual storage subpool numbers 236 and 237. The subpools specified are not
shared with the subtask.

When NSHSPL is specified, the first byte of the list contains the number of
bytes remaining in the list. Each of the subsequent bytes contains a virtual
storage subpool number.

,RSAPF=YES
,RSAPF=NO

Specifies that the attached subtask comes from an unauthorized library. When
it comes from an APF-authorized library or the link pack area and is
link-edited with the APF-authorized attribute, the step begins execution with
APF authorization.

RSAPF=YES when these conditions are met:
v The caller is running in supervisor state, system key (0-7), or both
v The caller is running non-APF authorized

ATTACH and ATTACHX macros

Chapter 7. ATTACH and ATTACHX — Create a subtask 77

v The subtask is attached in the problem program state and with a nonsystem
key.

Specify RSAPF=NO when the APF authorization of the step is to remain
unchanged.

,ALCOPY=NO
,ALCOPY=YES

Specifies the EAX value for the subtask and determines the contents of its
access list. ALCOPY=NO gives the subtask an EAX of zero and a null access
list. ALCOPY=YES gives the subtask:
v The same EAX as the caller
v A copy of the caller's DU-AL. For details about how the system copies a

DU-AL, see the topic on access lists in z/OS MVS Extended Addressability
Guide.

The default is ALCOPY=NO.

,RELATED=(value)
Specifies information used to self-document macros by “relating” functions or
services to corresponding functions or services. The format and contents of the
information specified are at the discretion of the user. They can be any valid
coding values.

ABEND codes
The caller of ATTACH or ATTACHX might receive one of the following
hexadecimal ABEND codes:

ABEND Code Associated Reason Code
12A 0,4
22A 0
42A None
52A 0,4,8
72A 0,4,8,C,10,14
82A None
92A 0,4,8,C,10,14,18

Note: ABEND code 92A results from an error not directly
caused by the caller.

See z/OS MVS System Codes for explanations and responses for these codes.

Return codes
When control is returned, register 15 contains one of the return codes in the
following table.

Table 15. Return codes for the ATTACH or ATTACHX macros

Hexadecimal Return
Code

Meaning and Action

00 Meaning: Successful completion.

Action: None.

04 Meaning: Program error. ATTACH was issued in a STAE exit. Processing
not completed.

Action: Change your program so that the ATTACH is not issued in a STAE
exit.

ATTACH and ATTACHX macros

78 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Table 15. Return codes for the ATTACH or ATTACHX macros (continued)

Hexadecimal Return
Code

Meaning and Action

08 Meaning: Environmental error. Insufficient storage available for control
block for STAI/ESTAI request. Processing not completed.

Action: Retry the request.

0C Meaning: Program error. An incorrect exit routine address or incorrect
parameter list address was specified with STAI parameter. Processing not
completed.

Action: Ensure that the exit routine and parameter list addresses are
correct.

14 Meaning: Program error. An authorized task that specified JSTCB=YES is
not a job step task. Processing not completed.

Action: Either remove the JSTCB=YES option from this ATTACH macro or
specify JSTCB=YES on the ATTACH macro for the current task.

18 Meaning: Program error. An attempt to create a new subtask would cause
the current task to have a mix of job step and nonjob step subtasks.
Processing not completed.

Action: Change your program so that the ATTACH macros that it issues all
specify the same value for JSTCB=.

20 Meaning: Program error, due to one of the following reasons:

v The current task was not subspace active and the ATTACHX macro
specified ADDRENV=SUBSP.

v The current task is a subspace task that is not subspace active and issued
either ATTACH, or ATTACHX with ADDRENV=SAME specified or
defaulted.

Action:

v If the current task was not subspace active and the ATTACHX macro
specified ADDRENV=SUBSP, update your program so that it issues
ATTACHX with ADDRENV=SUBSP only if it is subspace active.

v If the current task is a subspace task that is not subspace active and
ADDRENV=SAME was specified or defaulted, update your program so
that it issues ATTACH, or ATTACHX with ADDRENV=SAME specified
or defaulted, only if it is not a subspace task or is a subspace task that is
not subspace active.

24 Meaning: Program error. ADDRENV=SAME was specified or defaulted
and the issuer was a subspace task that is subspace active, but the task was
processing with a different active subspace than that which was in effect
when it was attached.

Action: Update your program if it is a subspace task and subspace active
so that it issues ATTACH or ATTACHX with ADDRENV=SAME only if the
task was processing with the same active subspace that was in effect when
it was attached.

Note: It is possible for the originating task to obtain return code 00, and still not
have the subtask successfully created (for example, if the entry name could not be
found). In such cases, the new subtask is abnormally terminated.

Example 1
Attach program SYSPROGM, runs with protection key 0 and in supervisor mode.
Subpool 0 is not to be shared, and the subtask is not to have a save area.
ATTACH EP=SYSPROGM,KEY=ZERO,SM=SUPV,SZERO=NO,SVAREA=NO

ATTACH and ATTACHX macros

Chapter 7. ATTACH and ATTACHX — Create a subtask 79

Example 2
Cause the program named in the list to be attached. Establish RTN as an end of
task exit routine.

ATTACH DE=LISTNAME,ETXR=RTN

Example 3
Cause PROGRAM1 to be attached, share subpool 5, supply WORD1 so that the
originating task can know when the subtask is complete, and establish EXIT1 as an
ESTAI exit.

ATTACH EP=PROGRAM1,SHSPV=5,ECB=WORD1,ESTAI=(EXIT1)

Example 4
Cause PROGRAM1 to be attached, and share subpool zero. The subtask is to
receive control:
v With the same extended authorization index EAX as the caller.
v With a copy of the caller's DU-AL.

ATTACH EP=PROGRAM1,SZERO=YES,ALCOPY=YES

ATTACHX - Create a subtask
The ATTACHX macro creates a subtask for callers in AR mode or primary mode. It
indicates the entry point in the program to be given control when the subtask
becomes active.

The format of the PARAM parameter list for callers in AR mode differs from the
format for callers in primary mode.

At entry to the attached task, if the caller specifies a user parameter list on the
PARAM parameter or by issuing the execute form of the macro with MF=E:
v GPR 1 contains the address of the user parameter list
v If the caller of the ATTACHX macro is in AR mode, AR 1 contains an ALET of 0.

Syntax
The standard form of the ATTACHX macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede ATTACH or ATTACHX.

ATTACHX

� One or more blanks must follow ATTACH or ATTACHX.

EP=entry name entry name: Symbol.

EPLOC=entry name addr entry name addr: A-type address, or register (2) - (12).

DE=list entry addr list entry addr: A-type address, or register (2) - (12).

ATTACH and ATTACHX macros

80 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Syntax Description

,DCB=dcb addr dcb addr: A-type address, or register (2) - (12).

,LPMOD=limit prior nmbr limit prior nmbr: Symbol, decimal digit, or register (2) - (12).

,DPMOD=disp prior nmbr disp prior nmbr: Symbol, decimal digit, or register (2 - (12).

,PARAM=(addr) addr: A-type address

,PARAM=(addr),VL=1 Note: addr is one or more addresses, separated by commas. For example,
PARAM=(addr,addr,addr)

,PLIST4=YES Default: None.

,PLIST4=NO

,PLIST8=YES Default: None.

,PLIST8=NO

,PLIST8ARALETS=NO Default: PLIST8ARALETS=NO

,PLIST8ARALETS=YES

,ECB=ecb addr ecb addr: A-type address, or register (2) - (12).

,ETXR=exit rtn addr exit rtn addr: A-type address, or register (2) - (12).

,GSPV=subpool nmbr subpool nmbr: Symbol, decimal digit, or register (2) - (12).

,GSPL=subpool list addr subpool list addr: A-type address, or register (2) - (12).

,SHSPV=subpool nmbr subpool nmbr: Symbol, decimal digit, or register (2) - (12).

,SHSPL=subpool list addr subpool list addr: A-type address, or register (2) - (12).

,SZERO=YES Default: SZERO=YES

,SZERO=NO

,TASKLIB=dcb addr dcb addr: A-type address, or register (2) - (12).

,STAI=(exit addr) exit addr: A-type address, or register (2) - (12)

,STAI=(exit addr,parm addr) parm addr: A-type address, or register (2) - (12)

,ESTAI=(exit addr) Note: AR mode callers and 31-bit callers must not use STAI.

,ESTAI=(exit addr,parm addr)

SDWALOC31=NO Note: SDWALOC31 may be specified only when ESTAI is specified.

SDWALOC31=YES Default: SDWALOC31=NO

ATTACH and ATTACHX macros

Chapter 7. ATTACH and ATTACHX — Create a subtask 81

Syntax Description

,PURGE=QUIESCE Note: Specify PURGE only if you specify ESTAI.

,PURGE=NONE Default for ESTAI: PURGE=NONE

,PURGE=HALT

,ASYNCH=NO Note: Specify SYNCH only if you specify ESTAI.

,ASYNCH=YES Default for ESTAI: ASYNCH=YES

,TERM=NO Note: TERM may be specified only if ESTAI is specified.

,TERM=YES Default: TERM=NO

,JSTCB=NO Default: JSTCB=NO

,JSTCB=YES

,SM=PROB Default: SM=PROB

,SM=SUPV

,SVAREA=YES Default: SVAREA=YES

,SVAREA=NO

,KEY=PROP Default: KEY=PROP

,KEY=ZERO

,KEY=NINE

,PKM=SYSTEM_RULES Default: PKM=SYSTEM_RULES

,PKM=REPLACE

,DISP=YES Default: DISP=YES

,DISP=NO

,DISP=RESET,TCB=tcb addr tcb addr: RX-type address or address in register (2) - (12)

,TID=task id task id: Decimal digits 0-255, or register (2) - (12).

Default: TID=0

Note: IBM recommends that you specify a value less than 200.

,NSHSPV=subpool nmbr subpool nmbr: Symbol, decimal digit, or register (2) - (12).

,NSHSPL=subpool list addr subpool list addr: A-type address, or register (2) - (12).

,RSAPF=NO Default: RSAPF=NO

,RSAPF=YES

ATTACH and ATTACHX macros

82 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Syntax Description

,ALCOPY=YES Default: ALCOPY=NO

,ALCOPY=NO

,RELATED=value value: Any valid macro keyword specification.

,ADDRENV=SAME
,ADDRENV=SUBSP

Default: ADDRENV=SAME

Parameters
The parameters are as explained under ATTACH, with the following exception:

,PARAM=(addr)
,PARAM=(addr),VL=1

Specifies an address or addresses to be passed to the attached task. ATTACHX
expands each address inline to a fullword boundary and builds a parameter
list with the addresses in the order specified. When the attached task receives
control, register 1 contains the address of the parameter list. When PARAM is
not specified, ATTACHX passes GPR1 and AR1 unchanged to the attached
routine.

When an AR mode caller uses either:
v a parameter list with 4 bytes per entry; or
v a parameter list with 8 bytes per entry and specifies PLIST8ARALETS=YES,

the addresses passed to the subtask are in the first part of the parameter list
and their associated ALETs are in the second part. For a non-AR mode caller,
or for an AR mode caller using a parameter list with 8 bytes per entry without
PLIST8ARALETS=YES, ALETs are not passed in the parameter list. When
ALETs are passed in the parameter list, the ALETs occupy consecutive 4-byte
fields, whether the parameter list is 4 or 8 bytes per entry. See the description
of the PLIST4 and PLIST8 keywords below for more information about
controlling the bytes-per-entry in the parameter list. See the description of the
PLIST8ARALETS keyword below for more information about ALETs and
8-bytes-per-entry parameter lists.

When using a 4-bytes-per-entry parameter list, specify VL=1 when you pass a
variable number of parameters. VL=1 results in setting the high-order bit of the
last address to 1. The 1 in the high-order bit identifies the last address
parameter (which is not the last word in the list when the ALETs are also
saved). When using an 8-bytes-per-entry parameter list, VL=1 is not valid.

Note: If you specify only one address for PARAM= and you are not using
register notation, you do not need to enter the parentheses.

,PLIST4=YES
,PLIST4=NO

,PLIST8=YES
,PLIST8=NO

Defines the size of the parameter list entries for a parameter list to be built by
ATTACHX based on the PARAM keyword.

ATTACH and ATTACHX macros

Chapter 7. ATTACH and ATTACHX — Create a subtask 83

PLIST4 and PLIST8 cannot be specified together. If neither is specified, the
default is:
v If running AMODE 64, PLIST8=YES
v If not running AMODE 64, PLIST4=YES

If running AMODE 64 and PLIST4=YES is specified, the system builds a
4-bytes-per-entry parameter list just as it would if the program were running
AMODE 24 or AMODE 31 and did not specify PLIST4 or PLIST8.

If running AMODE 24 or AMODE 31 and PLIST8 is specified, the system
builds an 8-bytes-per-entry parameter list just as it would if the program were
running AMODE 64 and did not specify PLIST4 or PLIST8.

,PLIST8ARALETS=NO
,PLIST8ARALETS=YES

If there is to be an 8-byte-per-entry parameter list and the invoker is in AR
mode, indicates if the parameter list is also to contain the ALETs associated
with the addresses. Otherwise, this parameter is ignored.

,PLIST8ARALETS=NO
Indicates that the 8-byte-per-entry parameter list is to consist of just the
8-byte addresses.

,PLIST8ARALETS=YES
Indicates that the 8-byte-per-entry parameter list is to consist of the
following two parts:
v All the 8-byte addresses,
v All the associated ALETs in consecutive 4-byte fields.

,SDWALOC31=NO
,SDWALOC31=YES

Specifies the location of the ESTAI's SDWA.

If using ESTAI and SDWALOC31=YES, then the SDWA is in 31–bit storage.

If using ESTAI and SDWALOC31=NO, then the SDWA is in 24–bit storage.

,KEY=PROP
,KEY=ZERO
,KEY=NINE

ZERO specifies that the protection key of the newly created task should be
zero. PROP specifies that the protection key of the newly created task should
be propagated from the task using ATTACH. NINE specifies that the protection
key of the newly created task should be nine.

You can use KEY=NINE to help to prevent the attached task from
inadvertently modifying storage owned by the attaching task, since a program
running in with PSW key 9 cannot modify storage in any other PSW key. The
following parameters are not valid when KEY=NINE is specified: GSPL, GSPV,
SHSPL, SHSPV. In addition, if you specify KEY=NINE, you must specify
SZERO=NO.

Within a task that was attached with the KEY=NINE parameter:
v the system-provided save area is above 16M (for a non-KEY=NINE task, the

save area is below 16M)
v the CEL anchor pointer is above 16M. For a task that is not KEY=NINE, the

CEL anchor pointer is below 16M.

ATTACH and ATTACHX macros

84 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

v a re-entrant program, whether from an APF-authorized concatenation or not,
is placed into key 0 storage (for a non-KEY=NINE task, only re-entrant
programs from an APF-authorized concatenation are placed into key 0
storage).

,PKM=SYSTEM_RULES
,PKM=REPLACE

SYSTEM_RULES specifies that the system should determine the appropriate
PSW key mask using the following rules:
v If KEY=ZERO, the PSW key mask represents key 0 plus key 9.
v If KEY=PROP, but the mother task's initial key does not match the mother

task's current key, the PSW key mask represents the PSW key of the
daughter task plus key 9.

v If KEY=PROP and the mother task's initial key matches the mother task's
current key, or if KEY=NINE, the PSW key mask represents the mother
task's initial key plus the mother task's initial PSW key mask plus the PSW
key of the daughter task plus key 9.

REPLACE specifies that the PSW key mask is to be replaced with a value
representing the PSW key of the daughter task plus key 9.

The default is PKM=SYSTEM_RULES.

,ADDRENV=SAME
,ADDRENV=SUBSP

Identifies processing related to the subspace environment for the new task. In
general, the program is responsible for keeping track of whether it is a
subspace task or whether it is subspace active.

A subspace task is a task that was attached either by ATTACHX with
ADDRENV=SUBSP or by a task that itself was a subspace task that was
subspace active at the time of the ATTACH or ATTACHX.

Note: It is up to the program that issues BSG to keep track of whether it is
subspace active.

,ADDRENV=SAME
If the current task is a subspace task and is active to the same active
subspace that was in effect when the current task was attached, make
the new task a subspace task that is active to that subspace. If the
current task is not a subspace task, take no action. Do not use this
option if the current task is a subspace task that either is not subspace
active or is subspace active but for a different subspace than was in
effect when the current task was attached.

,ADDRENV=SUBSP
If the current task is a subspace task and is subspace active, make the
new task a subspace task and active to that subspace. Do not specify
this option if the current task is not subspace active.

Example 1
With the caller in AR ASC mode, cause PROGRAM1 to be attached and share
subpool zero. The subtask is to receive control:
v With the same extended authorization index EAX as the caller
v With a copy of the caller's DU-AL
v Executing in AR ASC mode.

ATTACH and ATTACHX macros

Chapter 7. ATTACH and ATTACHX — Create a subtask 85

TESTCASE CSECT
.
SYSSTATE ASCENV=AR
.
ATTACHX EP=PROGRAM1,SZERO=YES,ALCOPY=YES
.
END TESTCASE

Example 2
Attach a nondispatchable subtask called SUBTASK1, then reset SUBTASK1 to be
dispatchable.

PRINT NOGEN
NODISP CSECT
NODISP AMODE ANY
NODISP RMODE ANY

* The following code performs these functions: *
* 1. Creates a nondispatchable subtask by issuing the *
* ATTACHX macro with the DISP=NO parameter. *
* 2. Restarts the task by making it dispatchable with the *

ATTACHX macro and the DISP=RESET parameter. *
* *

SPACE 3

* Entry linkage *

STM R14,R12,12(R13)
BALR R12,0
USING BEGN,R12

BEGN DS 0H
LA R12,0(,R12) CLEAN HI-BYTE OF ENTRY REGISTERS
LA R13,0(,R13)
SPACE 3
ST R13,SAVE+4
LA R15,SAVE
ST R15,8(0,R13)
LR R13,R15
EJECT

* Attach a subtask. The subtask is in problem state and is *
* nondispatchable. *

SPACE 3
ATTACHX EP=SUBTASK1, X

ECB=AMYECB, X
DISP=NO

SPACE 3
ST R1,TCBADDR SAVE SUBTASK TCB ADDRESS
EJECT
. PROCESSING CONTINUES
.
.

**
* *
* Start the subtask by resetting it to be dispatchable.*
* *
**

SPACE 3
L 2,TCBADDR GET TARGET TCB ADDRESS
SPACE 3

RESET ATTACHX DISP=RESET,TCB=(2)
SPACE 3
EJECT

ATTACH and ATTACHX macros

86 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

* Wait until subtask completes, then detach subtask.*

SPACE 3
WAIT 1,ECB=AMYECB
SPACE 3
DETACH TCBADDR DETACH SUBTASK
EJECT

* End of program *

SPACE 3
FINI DS 0H

L R13,SAVE+4
DROP R12
LM R14,R12,12(R13)
XR R15,R15
BR R14
EJECT

* Define constants *

SAVE DC 18F’0’
*
TCBADDR DC F’0’ ADDRESS OF SUBTASK TCB
AMYECB DC F’0’ END-OF-SUBTASK ECB

SPACE 3
EJECT

* Register equates *

SPACE 3
R12 EQU 12
R13 EQU 13
R14 EQU 14
R15 EQU 15

END

ATTACH and ATTACHX - List form
Two parameter lists are used on ATTACH or ATTACHX: a control parameter list
and an optional user parameter list. You can construct only the control parameter
list in the list form. Address parameters to be passed in a parameter list to the
attached subtask can be provided using the list form of the CALL macro. This
parameter list can be referred to in the execute form.

Syntax
The list form of ATTACH and ATTACHX is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede ATTACH or ATTACHX.

ATTACH

ATTACHX

� One or more blanks must follow ATTACH or ATTACHX.

ATTACH and ATTACHX macros

Chapter 7. ATTACH and ATTACHX — Create a subtask 87

Syntax Description

EP=entry name entry name: Symbol.

EPLOC=entry name addr entry name addr: A-type address.

DE=list entry addr list entry addr: A-type address.

,DCB=dcb addr dcb addr: A-type address.

,LPMOD=limit prior nmbr limit prior nmbr: Symbol or decimal digit.

,DPMOD=disp prior nmbr disp prior nmbr: Symbol or decimal digit.

,PLIST8ARALETS=NO Default: PLIST8ARALETS=NO

,PLIST8ARALETS=YES Note: PLIST8ARALETS is valid only with ATTACHX.

,ECB=ecb addr ecb addr: A-type address.

,ETXR=exit rtn addr exit rtn addr: A-type address.

,GSPV=subpool nmbr subpool nmbr: Symbol or decimal digit.

,GSPL=subpool list addr subpool list addr: A-type address.

,SHSPV=subpool nmbr subpool nmbr: Symbol or decimal digit.

,SHSPL=subpool list addr subpool list addr: A-type address.

,SZERO=YES Default: SZERO=YES

,SZERO=NO

,TASKLIB=dcb addr dcb addr: A-type address.

,STAI=(exit addr) exit addr: A-type address.

,STAI=(exit addr,parm addr) parm addr: A-type address.

,ESTAI=(exit addr) Note: AR mode callers and 31-bit callers must not use STAI.

,ESTAI=(exit addr,parm addr)

SDWALOC31=NO Note: SDWALOC31 is valid only when ESTAI is specified AND when using
ATTACHX.

SDWALOC31=YES Default: SDWALOC31=NO

,PURGE=QUIESCE Note: PURGE may be specified only if STAI or ESTAI is specified.

,PURGE=NONE Default for STAI: PURGE=QUIESCE

,PURGE=HALT Default for ESTAI: PURGE=NONE

ATTACH and ATTACHX macros

88 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Syntax Description

,ASYNCH=NO Default for STAI: ASYNCH=NO

,ASYNCH=YES Default for ESTAI: ASYNCH=YES

Note: ASYNCH can be specified only when STAI or ESTAI is specified.

,TERM=NO Note: TERM can be specified only when ESTAI is specified.

,TERM=YES Default: TERM=NO

,SM=PROB Default: SM=PROB

,SM=SUPV

,SVAREA=YES Default: SVAREA=YES

,SVAREA=NO

,KEY=PROP Default: KEY=PROP

,KEY=ZERO

,KEY=NINE Note:KEY=NINE is valid only when using ATTACHX.

,PKM=SYSTEM_RULES Default: PKM=SYSTEM_RULES

,PKM=REPLACE Note:PKM is valid only when using ATTACHX.

,DISP=YES Default: DISP=YES

,DISP=NO

,DISP=RESET,TCB=tcb addr tcb addr: RX-type address or address in register (2) - (12)

,TID=task id task id: Decimal digits 0-255.

Default: TID=0

Note: IBM recommends that you specify a value less than 200.

,NSHSPV=subpool nmbr subpool nmbr: Symbol, decimal digit.

,NSHSPL=subpool list addr subpool list addr: A-type address.

,RSAPF=NO Default: RSAPF=NO

,RSAPF=YES

,ALCOPY=YES Default: ALCOPY=NO

,ALCOPY=NO

,RELATED=value value: Any valid macro keyword specification.

ATTACH and ATTACHX macros

Chapter 7. ATTACH and ATTACHX — Create a subtask 89

Syntax Description

,ADDRENV=SAME
,ADDRENV=SUBSP

Default: ADDRENV=SAME

,SF=L

Parameters
Some parameters in the syntax diagram are only available on the ATTACHX
macro. If you are using the ATTACH macro, check the standard form to ensure
that the parameters that you want to use are supported by that macro.

The parameters are explained under the standard form of the ATTACH or
ATTACHX macro, with the following exception:

,SF=L
Specifies the list form of the ATTACH or ATTACHX macro.

ATTACH and ATTACHX - Execute form
Two parameter lists are used on ATTACH and ATTACHX; a control parameter list
and an optional user parameter list to be passed to the attached subtask. Either or
both of these parameter lists can be remote (that is, in an area you specifically
obtained); you can use the execute form of ATTACH and ATTACHX to refer to or
modify them. If only the user parameter list is remote, parameters that require use
of the control parameter list cause that list to be constructed inline as part of the
macro expansion.

For programs in AR mode, ATTACHX builds the parameter list so that the
addresses passed to the system are in the first half of the parameter list and their
corresponding ALETs are in the last half of the list. Therefore, the parameter list for
callers in AR mode is twice as long as the parameter list for callers in primary
mode for the same number of addresses.

Syntax
The execute form of ATTACH and ATTACHX is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede ATTACH or ATTACHX.

ATTACH

ATTACHX

� One or more blanks must follow ATTACH or ATTACHX.

EP=entry name entry name: Symbol.

ATTACH and ATTACHX macros

90 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Syntax Description

EPLOC=entry name addr entry name addr: RX-type address, or address in register (2) - (12).

DE=list entry addr list entry addr: RX-type address, or address in register (2) - (12).

,DCB=dcb addr dcb addr: RX-type address, or address in register (2) - (12).

,LPMOD=limit prior nmbr limit prior nmbr: Symbol, decimal digit , or address in register (2) - (12).

,DPMOD=disp prior nmbr disp prior nmbr: Symbol, decimal digit, or address in register (2) - (12).

,PARAM=(addr) addr: RX-type address

,PARAM=(addr),VL=1 Note: addr is one or more addresses, separated by commas. For example,
PARAM=(addr,addr,addr)

,PLIST4=YES PLIST4 is valid only with ATTACHX.

,PLIST4=NO Default: None.

,PLIST8=YES PLIST8 is valid only with ATTACHX.

,PLIST8=NO Default: None.

,PLIST8ARALETS=NO Default: PLIST8ARALETS=NO

,PLIST8ARALETS=YES Note: PLIST8ARALETS is valid only with ATTACHX.

,ECB=ecb addr ecb addr: RX-type address, or address in register (2) - (12).

,ETXR=exit rtn addr exit rtn addr: RX-type address, or address in register (2) - (12).

,GSPV=subpool nmbr subpool nmbr: Symbol, decimal digit, or address in register (2) - (12).

,GSPL=subpool list addr subpool list addr: RX-type address, or address in register (2) - (12).

,SHSPV=subpool nmbr subpool nmbr: Symbol, decimal digit, or address in register (2) - (12).

,SHSPL=subpool list addr subpool list addr: RX-type address, or address in register (2) - (12).

,SZERO=YES

,SZERO=NO

,TASKLIB=dcb addr dcb addr: RX-type address, or address in register (2) - (12).

,STAI=(exit addr) exit addr: RX-type address, or address in register (2) - (12).

,STAI=(exit addr,parm addr) parm addr: RX-type address, or address in register (2) - (12).

,ESTAI=(exit addr) Note: AR mode callers and 31-bit callers must not use STAI.

ATTACH and ATTACHX macros

Chapter 7. ATTACH and ATTACHX — Create a subtask 91

Syntax Description

,ESTAI=(exit addr,parm addr)

SDWALOC31=NO Note: SDWALOC31 is valid only when using ATTACHX ANDwhen ESTAI
is specified.

SDWALOC31=YES Default: SDWALOC31=NO

,PURGE=QUIESCE Note: PURGE may be specified only when STAI or ESTAI is specified.

,PURGE=NONE

,PURGE=HALT

,ASYNCH=NO Note: ASYNCH may be specified only when STAI or ESTAI is specified.

,ASYNCH=YES

,TERM=NO Note: TERM may be specified only when ESTAI is specified.

,TERM=YES

,SM=PROB Default: SM=PROB

,SM=SUPV

,SVAREA=YES Default: SVAREA=YES

,SVAREA=NO

,KEY=PROP Default: KEY=PROP

,KEY=ZERO Note:KEY=NINE is valid only when using ATTACHX

,KEY=NINE

,PKM=SYSTEM_RULES Default: PKM=SYSTEM_RULES

,PKM=REPLACE Note:PKM is valid only when using ATTACHX.

,DISP=YES Default: DISP=YES

,DISP=NO

,DISP=RESET,TCB=tcb addr tcb addr: RX-type address or address in register (2) - (12)

,TID=task id task id: Decimal digits 0-255, or address in register (2) - (12).

Default: TID=0

Note: IBM recommends that you specify a value less than 200.

,NSHSPV=subpool nmbr subpool nmbr: Symbol, decimal digit, or address in register (2) - (12).

,NSHSPL=subpool list addr subpool list addr: RX-type address, or address in register (2) - (12).

,RSAPF=NO Default: RSAPF=NO

,RSAPF=YES

ATTACH and ATTACHX macros

92 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Syntax Description

,ALCOPY=YES Default: ALCOPY=NO

,ALCOPY=NO

,RELATED=value value: Any valid macro keyword specification.

,ADDRENV=SAME
,ADDRENV=SUBSP

Default: ADDRENV=SAME

,MF=(E,prob addr) prob addr: RX-type address, or address in register (1) or (2) - (12).

,SF=(E,ctrl addr) ctrl addr: RX-type address, or address in register (2) - (12) or (15).

,MF=(E,prob addr),SF=(E,ctrl addr)

Parameters
Some parameters in the syntax diagram are only available on the ATTACHX
macro. If you are using the ATTACH macro, check the standard form to ensure
that the parameters that you want to use are supported by that macro.

The parameters are explained under the standard form of the ATTACH macro,
with these exceptions:

,MF=(E,prob addr)
,SF=(E,ctrl addr)
,MF=(E,prob addr),SF=(E,ctrl addr)

Specifies the execute form of the ATTACH or ATTACHX macro. It uses a
remote user parameter list, a remote control parameter list, or both.

Note:

1. When STAI is specified on the execute form, these fields are overlaid in the
control parameter list: exit addr, parm addr, PURGE, and ASYNCH. When parm
addr is not specified, zero is used. When PURGE or ASYNCH are not specified,
defaults are used.

2. When ESTAI is specified on the execute form, these fields are overlaid in the
control parameter list: exit addr, parm addr, PURGE, ASYNCH, and TERM.
When parm addr is not specified, zero is used. When PURGE, ASYNCH, or
TERM are not specified, defaults are used.

3. The STAI or ESTAI must be completely specified on either the list or execute
form, but not on both forms.

4. When SZERO is not specified on the list or execute form, the default is
SZERO=YES. When SZERO=NO is specified on either the list form or a
previous execute form using the same SF=list, SZERO=YES is ignored for any
subsequent execute forms of the macro. Once SZERO=NO is specified, it is in
effect for all users of that list and cannot be overridden.

5. When RSAPF is not specified on the list or execute form, the default is
RSAPF=NO. When RSAPF=YES is specified on either the list form or a
previous execute form using the same SF=list, RSAPF=NO is ignored for any
subsequent execute forms of the macro. Once RSAPF=YES is specified, it is in
effect for all users of that list and cannot be overridden.

ATTACH and ATTACHX macros

Chapter 7. ATTACH and ATTACHX — Create a subtask 93

6. You cannot specify DISP=RESET,TCB=tcb addr on the List Form. However, you
can build a list by using only the SF=L parameter, and use that list for the
execute form that specifies DISP=RESET,TCB=tcb addr.

ATTACH and ATTACHX macros

94 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Chapter 8. AXEXT — Extract authorization index

Description
The AXEXT macro returns the authorization index value, AX, of the address space.

Related macros
ATSET, AXFRE, AXRES, and AXSET

Environment
These are the requirements for the caller:

Environmental factor Requirement
Minimum authorization: Supervisor state or PKM 0-7
Dispatchable unit mode: Task or SRB
Cross memory mode: PASN=HASN or PASN¬=HASN
AMODE: Any
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Must be in the primary address space

Programming requirements
None.

Restrictions
None.

Input register information
The AXEXT macro is sensitive to the SYSSTATE macro with the OSREL=ZOSV1R6
parameter
v If the caller has issued the SYSSTATE macro with the OSREL=ZOSV1R6

parameter (Version 1 Release 6 of z/OS or later) before issuing the AXEXT
macro, the caller does not have to place any information into any general
purpose register (GPR) unless using it in register notation for a particular
parameter, or using it as a base register.

v Otherwise, the caller must ensure that the following general purpose register
contains the specified information:

Register
Contents

13 The address of an 18-word save area

Output register information
After the caller issues the macro, the macro might use some registers as work
registers or might change the contents of some registers. When the macro returns
control to the caller, the contents of these registers are not the same as they were
before the macro was issued. Therefore, if the caller depends on these registers

© Copyright IBM Corp. 1988, 2013 95

containing the same value before and after issuing the macro, the caller must save
these registers before issuing the macro and restore them after the system returns
control.

When control returns to the caller, the general purpose registers (GPRs) contain:

Register
Contents

0 Bits 16-31 contain the extracted AX; bits 0-15 are set to zero

1 Used as a work register by the macro

2-13 Unchanged

14 Used as a work register by the macro

15 Return code

Performance implications
None.

Syntax
This is the standard form of the AXEXT macro:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede AXEXT.

AXEXT

� One or more blanks must follow AXEXT.

ASID=asid value asid value: RX-type address or register (0) - (12).

Default: Current PASID.

,RELATED=value value: Any valid macro keyword specification.

Parameters
These are the parameters:

ASID=asid value
Specifies the ASID of the address space from where the AX is to be extracted.
When the RX-type address is used, it points to a halfword containing the
ASID. When the register form is used, bits 16-31 contain the ASID and bits 0-15
are set to zero. When ASID is not specified, the current PASID is assumed.

,RELATED=value
Specifies information used to self-document macros by “relating” functions or

AXEXT macro

96 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

services to corresponding functions or services. The format and content of the
information are set at the discretion of the user. They can be any valid coding
values.

ABEND codes
v 052
v 053

See z/OS MVS System Codes for an explanation and programmer responses for
these codes.

Return codes
When AXEXT macro returns control to your program, GPR 15 contains a return
code.

Table 16. Return Codes for the AXEXT Macro

Hexadecimal Return
Code

Meaning

00 The AX value of the specified address space was successfully obtained.

Examples
For examples of the use of this and other cross memory macros, refer to the
chapter on cross memory communication in z/OS MVS Programming: Extended
Addressability Guide.

AXEXT macro

Chapter 8. AXEXT — Extract authorization index 97

98 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Chapter 9. AXFRE — Free authorization index

Description
The AXFRE macro returns one or more authorization index (AX) values to the
system. The AX value can be used as an extended authorization index (EAX)
value. The caller must ensure that the AXs to be returned are no longer being used
by any address space as an AX or an EX; otherwise, the caller abnormally
terminates. On completion of the AXFRE macro, all authorization of the freed AX
values in authorization tables for the entire system are purged. The caller must be
dispatched in the address space that owns the AX.

Related macros
AXEXT, ATSET, AXRES, and AXSET

Environment
These are the requirements for the caller:

Environmental factor Requirement
Minimum authorization: Supervisor state or PKM = 0 to 7
Dispatchable unit mode: SRB or task
Cross memory mode: PASN=HASN
AMODE: Any
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: For callers in primary mode, control parameters must be in

the primary address space.

Register 13 must point to a standard register save area addressable in primary
mode.

Programming requirements
When the macro is issued, the list of AX values passed to the AXFRE macro must
be addressable in primary mode.

Restrictions
None.

Input register information
The AXFRE macro is sensitive to the SYSSTATE macro with the OSREL=ZOSV1R6
parameter
v If the caller has issued the SYSSTATE macro with the OSREL=ZOSV1R6

parameter (Version 1 Release 6 of z/OS or later) before issuing the AXFRE
macro, the caller does not have to place any information into any general
purpose register (GPR) unless using it in register notation for a particular
parameter, or using it as a base register.

v Otherwise, the caller must ensure that the following general purpose register
contains the specified information:

© Copyright IBM Corp. 1988, 2013 99

Register
Contents

13 The address of an 18-word save area

Output register information
After the caller issues the macro, the macro might use some registers as work
registers or might change the contents of some registers. When the macro returns
control to the caller, the contents of these registers are not the same as they were
before the macro was issued. Therefore, if the caller depends on these registers
containing the same value before and after issuing the macro, the caller must save
these registers before issuing the macro and restore them after the system returns
control.

When control returns to the caller, the general purpose registers (GPRs) contain:

Register
Contents

0-1 Used as work registers by the macro

2-13 Unchanged

14 Used as a work register by the macro

15 Return code

Performance implications
None.

Syntax
This is the standard form of the AXFRE macro:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede AXFRE.

AXFRE

� One or more blanks must follow AXFRE.

AXLIST=list addr list addr: RX-type address or register (0) - (12).

,RELATED=value value: Any valid macro keyword specification.

Parameters
These are the parameters:

AXFRE macro

100 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

AXLIST=list addr
Specifies the address of a variable length list of halfword entries that contain
the AX values to be freed. The first halfword must contain the number of
values in the list.

,RELATED=value
Specifies information used to self-document macros by “relating” functions or
services to corresponding functions or services. The format and contents of the
information specified are at the discretion of the user and can be any valid
coding values.

ABEND codes
v 052
v 053

See z/OS MVS System Codes for an explanation and programmer responses for
these codes.

Return codes
When AXFRE macro returns control to your program, GPR 15 contains a return
code.

Table 17. Return Codes for the AXFRE Macro

Hexadecimal Return
Code

Meaning and Action

00 Meaning: The specified authorization index or indexes are successfully
freed.

Action: None.

04 Meaning: The specified authorization index or indexes are not successfully
freed. One or more of the indexes are unavailable for use.

Action: None required. However, do not attempt to reuse these indexes.

Examples
For examples of the use of this and other cross memory macros, refer to the
chapter on cross memory communication in z/OS MVS Programming: Extended
Addressability Guide.

AXFRE macro

Chapter 9. AXFRE — Free authorization index 101

102 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Chapter 10. AXRES — Reserve authorization index

Description
The AXRES macro reserves one or more authorization index (AX) values for the
caller's use. The AX values are owned by the current home address space.

The AXSET macro sets the AX of the home address space to the value (or values)
that is reserved by the AXRES macro.

The caller can use the value returned by the system as an AX through the AXSET
macro, or as an extended authorization index (EAX) through the ETDEF, ETCRE,
and ETCON macros. The AX value associated with a program determines whether
that program is permitted to issue the PT instruction with another address space as
the target, and/or set another address space as its secondary address space
through the SSAR instruction. The EAX value determines whether a program
running with the EAX can access data in another address space through a private
access list entry.

Related macros
ATSET, AXFRE, AXEXT, and AXSET

Environment
These are the requirements for the caller:

Environmental factor Requirement
Minimum authorization: Supervisor state or PKM = 0 to 7
Dispatchable unit mode: SRB or task
Cross memory mode: PASN=HASN
AMODE: Any
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: For callers in primary mode, control parameters must be in

the primary address space.

Programming requirements
The parameter list passed to the AXRES macro must be addressable in primary
mode when the macro expansion is executed.

Restrictions
None.

Input register information
The AXRES macro is sensitive to the SYSSTATE macro with the OSREL=ZOSV1R6
parameter
v If the caller has issued the SYSSTATE macro with the OSREL=ZOSV1R6

parameter (Version 1 Release 6 of z/OS or later) before issuing the AXRES

© Copyright IBM Corp. 1988, 2013 103

macro, the caller does not have to place any information into any general
purpose register (GPR) unless using it in register notation for a particular
parameter, or using it as a base register.

v Otherwise, the caller must ensure that the following general purpose register
contains the specified information:

Register
Contents

13 The address of an 18-word save area

Output register information
After the caller issues the macro, the macro might use some registers as work
registers or might change the contents of some registers. When the macro returns
control to the caller, the contents of these registers are not the same as they were
before the macro was issued. Therefore, if the caller depends on these registers
containing the same value before and after issuing the macro, the caller must save
these registers before issuing the macro and restore them after the system returns
control.

When control returns to the caller, the general purpose registers (GPRs) contain:

Register
Contents

0-1 Used as work registers by the macro

2-13 Unchanged

14 Used as a work register by the macro

15 Return code

Performance implications
None.

Syntax
This is the standard form of the AXRES macro:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede AXRES.

AXRES

� One or more blanks must follow AXRES.

AXLIST=list addr list addr: RX-type address or register (0) - (12).

,RELATED=value value: Any valid macro keyword specification.

AXRES macro

104 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Parameters
The parameters are explained as follows:

AXLIST=list addr
Specifies the address of a variable length list, addressable in primary mode, of
halfword entries in which requested AX values are to be returned. The first
halfword must contain the number of values to be returned. Enough halfwords
must follow the first entry to contain the requested number of values. If the
requested number of AX values is not available, the caller is abnormally
terminated.

,RELATED=value
Specifies information used to self-document macros by “relating” functions or
services to corresponding functions or services. The format and contents of the
information specified are at the discretion of the user and can be any valid
coding values.

ABEND codes
v 052
v 053

See z/OS MVS System Codes for an explanation and programmer responses for
these codes.

Return codes
When AXRES macro returns control to your program, GPR 15 contains a return
code.

Table 18. Return Code for the AXRES Macro

Hexadecimal Return
Code

Meaning

00 The AX value or values were successfully reserved.

Examples
For examples of the use of this and other cross memory macros, refer to the
chapter on cross memory communication in z/OS MVS Programming: Extended
Addressability Guide.

AXRES macro

Chapter 10. AXRES — Reserve authorization index 105

106 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Chapter 11. AXREXX - System REXX services

Description
AXREXX provides a macro interface for System REXX services.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: The caller must be authorized with any of the following

attributes:

v Supervisor state

v PKM 0-7

v PSW key 0-7

v APF-authorized
Dispatchable unit mode: Task mode
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31- or 64-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks may be held.
Control parameters: Control parameters must be in the primary address space.

However, control parameters for AR-mode callers must be in
an address or data space that is addressable through a
public entry on the caller's dispatchable unit access list
(DU-AL).

The user-provided REXX arguments supplied by the
REXXARGS parameter have the same requirements and
restrictions as the control parameters.

The user-provided REXX variables in the REXXVARS
parameter have the same requirements and restrictions as
the control parameters.

The user-provided data set name in the REXXINDSN
parameter has the same requirements and restrictions as the
control parameters.

The user-provided data set name in the REXXOUTDSN
parameter has the same requirements and restrictions as the
control parameters.

The user-provided information in the REXXDIAG parameter
has the same requirements and restrictions as the control
parameters.

The user-provided information in the UTOKEN parameter
has the same requirements and restrictions as the control
parameters.

The user-provided information in the REXXLIB parameter
has the same requirements and restrictions as the control
parameters.

© Copyright IBM Corp. 1988, 2013 107

Programming requirements
AXRZARG must be included in the invoking module.

Restrictions
The caller must not have any FRRs (Functional Recovery Routines) established.

Input register information
Before issuing the AXREXX macro, the caller does not have to place any
information into any general purpose register (GPR) or access register (AR), unless
using the input register in register notation for a particular parameter, or using the
input register as a base register.

Output register information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register
Contents

0 When the value in register 15 is not zero, the reason code from the service

1 Used as a work register by the system

2-13 Unchanged

14 Used as a work register by the system

15 The return code from the AXREXX Service

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
The AXREXX macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

One or more blanks must precede AXREXX.

AXREXX macro

108 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Syntax Description

AXREXX

One or more blanks must follow AXREXX.

REQUEST=EXECUTE

REQUEST=CANCEL

REQUEST=GETREXXLIB

,SECURITY=BYUTOKEN Default: SECURITY=BYUTOKEN

,SECURITY=BYAXRUSER

,REXXLIB=xrexxlib xrexxlib: RS-type address or address in register (2) - (12)

,REXXLIB=NO_REXXLIB Default: REXXLIB=NO_REXXLIB

,REXXLIBLEN=xrexxliblen rexxliblen: RS-type address or address in register (2) - (12)

,REXXLIBLEN=NO_REXXLIBLEN Default: REXXLIBLEN=NO_REXXLIBLEN

,UTOKEN=utoken utoken: RS-type address or address in register (2) - (12)

,UTOKEN=TASK Default: UTOKEN=TASK

,TSO=NO Default: TSO=NO

,TSO=YES

,REXXINDSN=rexxindsn xrexxindsn: RS-type address or address in register (2) -
(12)

,REXXINDSN=NO REXXINDSN Default: REXXINDSN=NO_REXXNDSN

,REXXINEMEMNAME=rexxinmemname rexxinmemname: RS-type address or address in register (2)
- (12)

,REXXINMEMNAME=NO REXXINMEMNAME Default: REXXINMEMNAME=NO_REXXINMEMNAME

,CONSDATA=NO Default: CONSDATA=NO

,CONSDATA=YES

,CART=cart cart: RS-type address or address in register (2) - (12)

,CONSNAME=consname consname: RS-type address or address in register (2) - (12)

,TIMELIMIT=YES Default: TIMELIMIT=YES

,TIMELIMIT=NO

AXREXX macro

Chapter 11. AXREXX - System REXX services 109

Syntax Description

,TIMEINT=timeint timeint: RS-type address or address in register (2) - (12)

,TIMEINT=SYSTEM Default: TIMEINT=SYSTEM

,NAME=name name: RS-type address or address in register (2) - (12)

,REXXARGS=rexxargs rexxargs: RS-type address or address in register (2) - (12)

,REXXARGS=NO_ARGS Default: REXXARGS=NO_ARGS

,REXXVARS=rexxvars rexxvars: RS-type address or address in register (2) - (12)

,REXXVARS=NO_VARS Default: REXXVARS=NO_VARS

,REXXOUTDSN=rexxoutdsn rexxoutdsn: RS-type address or address in register (2) -
(12)

,REXXOUTDSN=NO_REXXOUTDSN Default: REXXOUTDSN=NO_REXXOUTDSN

,REXXOUTMEMNAME=rexxoutmemname rexxoutmemname: RS-type address or address in register
(2) - (12)

,REXXOUTMEMNAME=NO_REXXOUTMEMNAME Default:
REXXOUTMEMNAME=NO_REXXOUTMEMNAME

,REXXDIAG=rexxdiag rexxdiag: RS-type address or address in register (2) - (12)

,SYNC=YES Default: SYNC=YES

,SYNC=NO

,OREQTOKEN=oreqtoken oreqtoken: RS-type address or address in register (2) - (12)

,REQTOKEN=reqtoken reqtoken: RS-type address or address in register (2) - (12)

,RETCODE=retcode retcode: RS-type address or register (2) - (12)

,RSNCODE=rsncode rsncode: RS-type address or register (2) - (12)

,PLISTVER=IMPLIED_VERSION Default: PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0

,MF=S Default: MF=S

,MF=(L,list addr) list addr: RS-type address or register (1) - (12)

,MF=(L,list addr,attr)

,MF=(L,list addr,0D)

,MF=(E,list addr)

AXREXX macro

110 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Syntax Description

,MF=(E,list addr,COMPLETE)

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the AXREXX
macro invocation. The name must conform to the rules for an ordinary
assembler language symbol.

REQUEST=EXECUTE
REQUEST=CANCEL
REQUEST=GETREXXLIB

A required parameter, which identifies the request type.

REQUEST=EXECUTE
Executes a REXX exec.

REQUEST=CANCEL
Cancels a prior Execute request.

REQUEST=GETREXXLIB
Returns the REXXLIB concatenation.

,SECURITY=BYUTOKEN
,SECURITY=BYAXRUSER

When REQUEST=EXECUTE is specified, an optional parameter that
indicates how the security environment should be established for the exec.
The default is SECURITY=BYTOKEN.

,SECURITY=BYUTOKEN
Keyword that indicates that the security environment should be
established from the UTOKEN that was passed or defaulted.

,SECURITY=BYAXRUSER
Keyword that indicates that the security environment should be
established from the value of AXRUSER specified in AXR00.

,REXXLIB=xrexxlib
When REQUEST=GETREXXLIB is specified, a required parameter that
indicates the storage area where the REXXLIB concatenation details are
returned. For the mapping of this storage area, see AxrRxlHeader and
AxrRxlEntry of AXRZARG in z/OS MVS Data Areas in z/OS Internet
Library at http://www.ibm.com/systems/z/os/zos/bkserv/.

To code: Specify the RS-type address, or address in register (2) - (12), of a
fullword field.

,REXXLIBLEN=xrexxliblen
When REQUEST=GETREXXLIB is specified, a required parameter
containing the length of the value of the Rexxlib parameter in bytes. The
length must be greater than or equal to 20480.

To code: Specify the RS-type address, or address in register (2) - (12), of a
fullword field.

,UTOKEN=utoken

AXREXX macro

Chapter 11. AXREXX - System REXX services 111

http://www.ibm.com/systems/z/os/zos/bkserv/

,UTOKEN=TASK
When SECURITY=BYUTOKEN and REQUEST=EXECUTE are specified, an
optional keyword that contains the security token to be used to establish
the security environment under which the exec is to be executed. The
optional input field contains the address of the security token to be
associated with the execution of the REXX exec. The REXX exec will run
under the security environment associated with the input UTOKEN.
Additionally, if the REXX exec invokes the AXRCMD function, the
UTOKEN is passed to MGCRE to provide security information. You can
obtain the UTOKEN value by using the RACROUTE
REQUEST=TOKENXTR, RACROUTE REQUEST=VERIFYX, or RACROUTE
REQUEST=TOKENBLD macros. See z/OS Security Server RACROUTE Macro
Reference for more information about the RACROUTE macros. The
UTOKEN should be that of the user on whose behalf the exec is issued.
UTOKEN is an optional parameter; if it is omitted, the UTOKEN of the
invoker will be used. The default is TASK, which indicates the use of the
UTOKEN associated with the task invoking AXREXX.

To code: Specify the RS-type address, or address in register (2) - (12), of an
80-character field.

,TSO=NO
,TSO=YES

When REQUEST=EXECUTE is specified, an optional parameter that
indicates whether the exec is to be run in a TSO host command
environment. If the exec is to perform dynamic allocation (e.g. with TSO
ALLOCATE or BPXWDYN), it should be run in the TSO=YES
environment. The default is TSO=NO.

,TSO=NO
Indicates that the exec is to run in an MVS host command
environment, in an address space with up to 63 other concurrently
running execs.

,TSO=YES
Indicates the exec is to be run in a TSO host command environment. In
this case, the exec will run isolated in a separate address space with no
other concurrent work. Not all of the services and functionality of TSO
will be present. Additionally, TSO services which depend upon JES as
the primary subsystem will not work. See z/OS MVS Programming:
Authorized Assembler Services Guide for a discussion of what TSO
services are supported. TSO=YES users should be aware that there is a
limit of 8 TSO Server address spaces.

,REXXINDSN=rexxindsn
,REXXINDSN=NO_REXXINDSN

When TSO=NO and REQUEST=EXECUTE are specified, an optional input
parameter containing the name of the data set that the PARSE external
function will read data from. The exec may obtain the DDNAME
associated with this data set by accessing the AXRINDD variable. The
default is NO_REXXINDSN.

To code: Specify the RS-type address, or address in register (2) - (12), of a
44-character field.

,REXXINMEMNAME=rexxinmemname
,REXXINMEMNAME=NO_REXXINMEMNAME

When REXXINDSN=rexxindsn, TSO=NO and REQUEST=EXECUTE are

AXREXX macro

112 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

specified, an optional input parameter containing the name of the member
in the data set specified by the REXXINDSN keyword. The default is
NO_REXXINMEMNAME.

To code: Specify the RS-type address, or address in register (2) - (12), of an
8-character field.

,CONSDATA=NO
,CONSDATA=YES

When REQUEST=EXECUTE is specified, an optional keyword that
indicates whether the results of the execution of the exec are to be treated
as a system command.

,CONSDATA=NO
Indicates that the exec is not being invoked as a system command.

,CONSDATA=YES
Indicates that the exec is invoked as a system command. It also
specifies console attributes of the issuer to be used on AXRWTO or
AXRMLWTO function invocations that the REXX exec may make.

,CART=cart
When CONSDATA=YES and REQUEST=EXECUTE are specified, the
address of an 8-character field that contains the name of the command and
response token to be used on any AXRWTO or AXRMLWTO invocations
by the exec.

To code: Specify the RS-type address, or address in register (2)-(12), of an
8-character field.

,CONSNAME=consname
When CONSDATA=YES and REQUEST=EXECUTE are specified, the name
of the console to be used with any AXRWTO or AXRMLWTO function
invocations in the EXEC.

To code: Specify the RS-type address, or address in register (2)-(12), of an
8-character field.

,TIMELIMIT=YES
,TIMELIMIT=NO

When REQUEST=EXECUTE is specified, an optional parameter indicating
whether a time limit is applied. This time limit does not include the time
the request spends waiting to be dispatched.

,TIMELIMIT=YES
Indicates that a time limit should be applied.

,TIMELIMIT=NO
Indicates that no time limit is to be applied.

,TIMEINT=timeint
,TIMEINT=SYSTEM

When TIMELIMIT=YES and REQUEST=EXECUTE are specified, you can
specify an optional input parameter containing the number of seconds to
allow the REXX exec to run. If the exec exceeds the threshold, it will be
stopped and a return or reason code will be set indicating so. A maximum
of 21474536 seconds can be specified. A value of 0 is equivalent to
TIMELIMIT=NO. The default is SYSTEM, which indicates that a default of
30 seconds will be used.

To code: Specify the RS-type address, or address in register (2)-(12), of a
fullword field.

AXREXX macro

Chapter 11. AXREXX - System REXX services 113

,NAME=name
When REQUEST=EXECUTE is specified, a required input parameter
containing the name of the REXX exec.

To code: Specify the RS-type address, or address in register (2)-(12), of an
8-character field.

,REXXARGS=rexxargs
,REXXARGS=NO_ARGS

When REQUEST=EXECUTE is specified, you can specify an optional
input/output parameter containing the argument list to be passed to the
REXX program. The mapping of the argument list is specified by a header
section mapped by AXRARGLST followed by one or more sections
mapped by AXRARGENTRY for each argument. The entries mapped by
AXRARGENTRY must appear in the same order as the arguments
specified on the ARG statement in the REXX program. The mappings for
both AXRARGLST and AXRARGENTRY can be found in AXRZARG. For
more detailed information about how to initialize this parameter see z/OS
MVS Programming: Authorized Assembler Services Guide. The default is
NO_ARGS.

To code: Specify the RS-type address, or address in register (2)-(12), of a
character field.

,REXXVARS=rexxvars
,REXXVARS=NO_VARS

When REQUEST=EXECUTE is specified, you can specify an optional
input/output parameter containing a variable list that can be used to
initialize variables in the REXX programs. The variable list can also be
used to obtain the final value of variables in the REXX program. Use the
same mapping as RexxArgs. The default is NO_VARS.

To code: Specify the RS-type address, or address in register (2)-(12), of a
character field.

,REXXOUTDSN=rexxoutdsn
,REXXOUTDSN=NO_REXXOUTDSN

When REQUEST=EXECUTE is specified, an optional input parameter
containing the name of the data set that the exec will direct the output
from SAY, error messages and tracing to. The REXX exec may obtain the
DDNAME associated with this data set by accessing the AXROUTDD
variable. The default is NO_REXXOUTDSN.

To code: Specify the RS-type address, or address in register (2)-(12), of a
44-character field.

,REXXOUTMEMNAME=rexxoutmemname
,REXXOUTMEMNAME=NO_REXXOUTMEMNAME

When REXXOUTDSN=rexxoutdsn and REQUEST=EXECUTE are specified,
an optional input parameter containing the name of the member in the
data set specified by the REXXOUTDSN keyword. The default is
NO_REXXOUTMEMNAME.

To code: Specify the RS-type address, or address in register (2)-(12), of an
8-character field.

,REXXDIAG=rexxdiag
When REQUEST=EXECUTE is specified, an optional output parameter
buffer containing the return code from the exec and diagnostic data. For
SYNC=NO invocations, not all the diagnostic data from the execution of

AXREXX macro

114 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

the exec will be returned. In particular, the return code from the exec will
not be returned. See AXRDIAG in AXRZARG for a mapping.

To code: Specify the RS-type address, or address in register (2)-(12), of a
character field.

,SYNC=YES
,SYNC=NO

When REQUEST=EXECUTE is specified, you can specify an optional
parameter that indicates whether the request is synchronous. The default is
SYNC=YES.

,SYNC=YES
Indicates the request is synchronous.

,SYNC=NO
Indicates the request is asynchronous.

,OREQTOKEN=oreqtoken
When SYNC=NO and REQUEST=EXECUTE are specified, an optional
output parameter containing a unique token associated with this EXECUTE
request.

To code: Specify the RS-type address, or address in register (2)-(12), of a
16-character field.

,REQTOKEN=reqtoken
When REQUEST=CANCEL is specified, a required input parameter
containing the token that was returned when the EXECUTE request was
made.

To code: Specify the RS-type address, or address in register (2)-(12), of a 16
character field.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied
from GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied
from GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro.
PLISTVER determines which parameter list the system generates.
PLISTVER is an optional input parameter on all forms of the macro,
including the list form. When using PLISTVER, specify the same value on
all of the macro forms used for a request. The values are:
v IMPLIED_VERSION, which is the lowest version that allows all

parameters specified on the request to be processed. If you omit the
PLISTVER parameter, IMPLIED_VERSION is the default.

v MAX, indicates you want the parameter list to be the largest size
currently possible. This size might grow from release to release and
affect the amount of storage that your program needs.
If you can tolerate the size change, IBM recommends that you always
specify PLISTVER=MAX on the list form of the macro. Specifying MAX

AXREXX macro

Chapter 11. AXREXX - System REXX services 115

ensures that the list-form parameter list is always long enough to hold
all the parameters you might specify on the execute form, when both
forms are assembled with the same level of the system. In this way,
MAX ensures that the parameter list does not overwrite nearby storage.

v 0, if you use the currently available parameters.

To code: Specify one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 0

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an
inline parameter list and generates the macro invocation to transfer control
to the service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together
with the execute form of the macro for applications that require reentrant
code. The list form defines an area of storage that the execute form uses to
store the parameters. Only the PLISTVER parameter may be coded with
the list form of the macro.

Use MF=E to specify the execute form of the macro. Use the execute form
together with the list form of the macro for applications that require
reentrant code. The execute form of the macro stores the parameters into
the storage area defined by the list form, and generates the macro
invocation to transfer control to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and
MF=E, this can be an RS-type address or an address in register (1)-(12).

,attr
An optional 1 to 60 character input string that you use to force
boundary alignment of the parameter list. Use a value of 0F to force
the parameter list to a word boundary, or 0D to force the parameter list
to a doubleword boundary. If you do not code attr, the system
provides a value of 0D.

,COMPLETE
Specifies that the system is to check for required parameters and
supply defaults for omitted optional parameters.

ABEND codes
None.

Return and reason codes
When the AXREXX macro returns control to your program:
v GPR 15 (and retcode, when you code RETCODE) contains a return code.

AXREXX macro

116 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

v When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code
RSNCODE) contains a reason code.

Macro AXRZARG provides equate symbols for the return and reason codes.

The following table identifies the hexadecimal return and reason codes and the
equate symbol associated with each reason code. IBM support personnel may
request the entire reason code, including the xxxx value.

Table 19. Return and Reason Codes for the AXREXX Macro

Return Code Reason Code Equate Symbol Meaning and Action

0 — Equate Symbol: AxrRetCodeOK

Meaning: AXREXX request successful.

Action: None required. If RexxDiag was specified, AXRDIAG1, AXRDIAG2,
AXRDIAG3, and AXRDIAG4 contain the message ids of any message
beginning with IRX (REXX) or IKJ (TSO) that were issued when processing
the exec. The format of the message id is packed decimal with the sign bits
shifted out. A 1 in the high order byte distinguishes an IKJ message from
and IRX message.

8 — Equate Symbol: AxrRetcodeError

Meaning: The AXREXX request failed due to a user error.

Action: Refer to the action provided with the specific reason code.

8 xxxx0801 Equate Symbol: AXRNoFrrAllowed

Meaning: Caller invoked AXREXX with an FRR.

Action: Remove the FRR and then invoke AXREXX.

8 xxxx0802 Equate Symbol: AXRNoLocksAllowed

Meaning: Caller invoked AXREXX holding a lock.

Action: Free the lock and then invoke AXREXX.

8 xxxx0803 Equate Symbol: AXRNotTcbMode

Meaning: Caller was not running as a task.

Action: Move the invocation of AXREXX under a task.

8 xxxx0804 Equate Symbol: AXRNotAuthorized

Meaning: Caller is not APF authorized, running in a system key or in
supervisor state.

Action: Avoid invoking AXREXX in this environment.

8 xxxx0805 Equate Symbol: AXRNotEnabled

Meaning: Caller is disabled.

Action: Avoid invoking AXREXX in this environment.

8 xxxx0806 Equate Symbol: AXRRexxArgsCannotAccess

Meaning: The RexxArgs parameter is not accessible.

Action: Verify that the RexxArgs parameter is accessible and in the key in
which AXREXX was invoked

AXREXX macro

Chapter 11. AXREXX - System REXX services 117

Table 19. Return and Reason Codes for the AXREXX Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

8 xxxx0807 Equate Symbol: AXRArgCannotAccess

Meaning: An argument in the argument list cannot be accessed.

Action: Refer to AxrArgLstEntryInError in the RexxArgs parameter to
determine the index of the argument that was not accessible. Verify that
AxrArgAddr and AxrArgAlet contain the address and alet of the argument.
Verify that the argument is in the same key as the invoker.

8 xxxx0808 Equate Symbol: AxrArgBadLength

Meaning: The length of an argument is not valid.

Action: Refer to AxrArgLstEntryInError in the RexxArgs parameter to
determine the index of the argument whose length was incorrect. Correct
AxrArgLength.

8 xxxx0809 Equate Symbol: AxrArgBadType

Meaning: Type of an argument is not valid.

Action: Refer to AxrArgLstEntryInError in the RexxArgs parameter to
determine the index of the argument whose type is incorrect. Correct
AxrArgType with one of the valid types listed in AXRZARG.

8 xxxx080A Equate Symbol: AXRPlistCannotAccess

Meaning: The input parameter list was not accessible.

Action: Verify that the input parameter list is in the same key as the
invoker. Verify that it is accessible.

8 xxxx080B Equate Symbol: AxrArgTooMany

Meaning: Too many arguments were specified.

Action: Verify the contents of AxrArgLstNumber in the RexxArgs parameter.
The maximum possible value is 20.

8 xxxx080C Equate Symbol: AxrArgBadNumeric

Meaning: The output argument from a REXX exec is not numeric.

Action: Refer to AxrArgLstEntryInError in the RexxArgs parameter for the
index of the invalid argument. Make sure that the REXX exec did not return
a value in scientific notation.

8 xxxx080D Equate Symbol: AXRArgBadBitString

Meaning: The output argument from a REXX exec is not a bit string.

Action: Refer to AxrArgLstEntryInError in the RexxArgs parameter for the
incorrect argument. Correct the exec or change AxrArgType.

8 xxxx080E Equate Symbol: AXRArgBadHexString

Meaning: The output argument from a REXX exec is not a hex string.

Action: Refer to AxrArgLstEntryInError in the RexxArgs parameter for the
index of the incorrect argument. Correct the exec or change AxrArgType.

8 xxxx0810 Equate Symbol: AXRArgBadNameLength

Meaning: The length of the name of an argument is too long.

Action: Refer to AxrArgLstEntryInError in the RexxArgs parameter for the
index of the incorrect argument. Correct AxrArgNameLength.

AXREXX macro

118 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Table 19. Return and Reason Codes for the AXREXX Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

8 xxxx0811 Equate Symbol: AXRNotAbleToAllocateRexxInDsn

Meaning: The REXX processor was unable to allocate the REXXINDsn data
set.

Action: The return and reason codes from DYNALLOC are inserted into
AXRDIAG1 and AXRDIAG2 in the RexxDiag parameter. Look up the return
and reason codes in the z/OS MVS Programming: Authorized Assembler
Services Guide. Look in the System Log for any messages that were issued by
DYNALLOC.

8 xxxx0812 Equate Symbol: AXRNotAbleToAllocateRexxOutDsn

Meaning: The System REXX processor was unable to allocate the
RexxOutDsn data set.

Action: The return and reason codes from DYNALLOC are inserted into
AXRDIAG1 and AXRDIAG2 in the RexxDiag parameter. Look up the return
and reason codes in the z/OS MVS Programming: Authorized Assembler
Services Guide. Look in the System Log for any messages that were issued by
DYNALLOC.

8 xxxx0813 Equate Symbol: AXRUtokenCannotAccess

Meaning: Unable to access the Utoken input parameter.

Action: Ensure that the Utoken input parameter is in the key of the
AXREXX invoker and that it is accessible.

8 xxxx0814 Equate Symbol: AXRRexxInDsnCannotAccess

Meaning: Unable to access the RexxInDsn input parameter.

Action: Ensure that the RexxInDsn input parameter is in the key of the
AXREXX invoker and that it is accessible.

8 xxxx0815 Equate Symbol: AXRRexxOutDsnCannotAccess

Meaning: Unable to access the RexxOutDsn input parameter.

Action: Ensure that the RexxOutDsn input parameter is in the key of the
AXREXX invoker and that it is accessible.

8 xxxx0816 Equate Symbol: AXRRexxVarsCannotAccess

Meaning: Unable to access the RexxVars input parameter.

Action: Ensure that the RexxVars parameter is accessible and in the key in
which AXREXX was invoked.

8 xxxx0817 Equate Symbol: AXRBadTimeInt

Meaning: The value of the Timeint keyword is not valid.

Action: Ensure that the value of the TimeInt keyword is less than 21474536
seconds.

8 xxxx0818 Equate Symbol: AXRArgBadAcronym

Meaning: The acronym for the RexxArgs keyword is incorrect.

Action: Ensure that AxrArgLstID is set to AxrArgLstAcro.

8 xxxx0819 Equate Symbol: AXRVarBadAcronym

Meaning: The acronym for the RexxVars keyword is not correct.

Action: Ensure that AxrArgLstId is set to AxrVarLstAcro.

AXREXX macro

Chapter 11. AXREXX - System REXX services 119

Table 19. Return and Reason Codes for the AXREXX Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

8 xxxx081A Equate Symbol: AXRArgBadVersion

Meaning: The version for the RexxArgs keyword is not correct.

Action: Ensure that the version is one that is supported.

8 xxxx081B Equate Symbol: AXRVarBadVersion

Meaning: The version for the RexxVars keyword is not correct.

Action: Ensure that the version is one that is supported.

8 xxxx081C Equate Symbol: AxrVarTooMany

Meaning: Too many variables were specified.

Action: Verify the contents of AxrArgLstNumber in the RexxVars parameter.
The maximum possible value is 256.

8 xxxx081D Equate Symbol: AxrVarBadNumeric

Meaning: An output variable from a REXX exec is not numeric.

Action: Refer to AxrArgLstEntryInError in the RexxVars parameter for the
index of the incorrect variable. Make sure that the REXX exec did not return
a value in scientific notation.

8 xxxx081E Equate Symbol: AXRVarBadBitString

Meaning: An output variable from a REXX exec is not a bit string.

Action: Refer to AxrArgLstEntryInError in the RexxVars parameter for the
index of the incorrect variable. Correct the exec or change AxrArgType.

8 xxxx081F Equate Symbol: AXRVarBadHexString

Meaning: An output variable from a REXX exec is not a hex string.

Action: Refer to AxrArgLstEntryInError in the RexxVars parameter for the
index of the incorrect variable. Correct the exec or change AxrArgType.

8 xxxx0820 Equate Symbol: AXRVarBadNameLength

Meaning: The length of the name of a variable is too long.

Action: Refer to AxrArgLstEntryInError in the RexxVars parameter for the
index of the incorrect variable. Correct the AxrArgNameLength.

8 xxxx0821 Equate Symbol: AXRVarBadType

Meaning: The type specification for a variable is not valid.

Action: Refer to AxrArgLstEntryInError in the RexxVars parameter for the
index of the incorrect variable. Correct AxrArgType with one of the valid
types listed in AXRZARG.

8 xxxx0822 Equate Symbol: AXRVarCannotAccess

Meaning: A variable could not be accessed.

Action: Refer to AxrArgLstEntryInError in the RexxVars parameter for the
index of the variable that could not be accessed. Ensure that AxrArgAddr
and AxrArgAlet contain the address and alet of the variable. Ensure that the
variable is in the same key as the invoker.

8 xxxx0823 Equate Symbol: AXRVarBadLength

Meaning: The length of a variable was not valid.

Action: Refer to AxrArgLstEntryInError in the RexxVars parameter for the
index of the variable whose length is not valid. Correct AxrArgLength.

AXREXX macro

120 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Table 19. Return and Reason Codes for the AXREXX Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

8 xxxx0824 Equate Symbol: AXRArgLstRsvNotZero

Meaning: A reserved field in the AXRARGLST mapping was non-zero for
the RexxArgs AXREXX parameter.

Action: Clear the reserved fields in the AXRARGLST mapping.

8 xxxx0825 Equate Symbol: AXRVarLstRsvNotZero

Meaning: A reserved field in the AXRARGLST mapping was not zero for
the RexxVars AXREXX parameter.

Action: Clear the reserved fields in the AXRARGLST mapping.

8 xxxx0826 Equate Symbol: AXRNotAbleToUnallocateRexxInDsn

Meaning: A bad return code was returned from DYNALLOC when
attempting to unallocate the RexxinDsn data set.

Action: The return and reason codes from DYNALLOC are insterted into
AXRDIAG1 and AXRDIAG2 in the RexxDiag parameter. Look in the System
Log for any messages that DYNALLOC may have issued.

8 xxxx0827 Equate Symbol: AXRNotAbleToUnallocateRexxOutDsn

Meaning: A bad return code was returned from DYNALLOC when
attempting to unallocate the RexxOutDsn data set.

Action: The return and reason codes from DYNALLOC are inserted into
AXRDIAG1 and AXRDIAG2 in the RexxDiag parameter. Look in the System
Log for any messages that DYNALLOC may have issued.

8 xxxx0828 Equate Symbol: AXRExecSyntaxError

Meaning: A syntax error or another run time error was encountered during
the execution of a REXX exec.

Action: The REXX interpreter issues one or more error messages that
indicate the offending line number. If RexxOutDsn is specified, look at the
data set for the message. If RexxOutDsn is not specified but CONSDATA is
specified, look at the console or the system log. If RexxDiag is specified:

v AXRDIAG1 contains the number of the error which corresponds to an
IRXnnnI message.

v AXRDIAG2 contains the line number where the error occurred.

v AXRDIAG3 and AXRDIAG4 contain the message ids of the last two IRX
or IKJ messages that were issued before the exec completed.

All of these values are in packed decimal format with the sign bits shifted
out. A 1 in the high order byte distinguishes an IKJ message from an IRX
message.

8 xxxx082A Equate Symbol: AXRArgNumericTooBig

Meaning: The value of an output argument was either too large or too
small to be represented in the buffer that was passed.

Action: Inspect AxrArgLstEntryInError in the RexxArgs parameter for the
index of the argument that caused the error.

8 xxxx082B Equate Symbol: AXRVarNoExist

Meaning: An output variable was not set in the exec.

Action: Inspect AxrArgLstEntryInError in the RexxVars parameter for the
index of the output variable that caused the error. Determine why this
variable was not set in the exec.

AXREXX macro

Chapter 11. AXREXX - System REXX services 121

Table 19. Return and Reason Codes for the AXREXX Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

8 xxxx082C Equate Symbol: AXRArgNoExist

Meaning: An output argument was not set in the exec.

Action: Inspect AxrArgLstEntryInError in the RexxArgs parameter for the
index of the argument that caused the error. Determine why this argument
was not set in the exec.

8 xxxx082D Equate Symbol: AXRVarTooLong

Meaning: The buffer of the client could not accommodate the value of the
variable.

Action: Inspect AxrArgLstEntryInError in the RexxVars parameter for the
index of the variable that caused the error. Increase the size of the output
variable or ensure that the variable's size can be accommodated by the
passed buffer.

8 xxxx082E Equate Symbol: AXRArgTooLong

Meaning: The buffer of the client could not accommodate the value of the
argument.

Action: Inspect AxrArgLstEntryInError in the RexxArgs parameter for the
index of the argument that caused the error. Increase the size of the output
argument or ensure that the argument's size can be accommodated by the
passed buffer.

8 xxxx082F Equate Symbol: AXRVarBadName

Meaning: The name of a variable was not acceptable to REXX.

Action: Inspect AxrArgLstEntryInError in the RexxVars parameter for the
index of the variable that caused the error. Correct the name.

8 xxxx0830 Equate Symbol: AXRArgBadName

Meaning: The name of an argument was not acceptable to REXX.

Action: Inspect AxrArgLstEntryInError in the RexxArgs parameter for the
index of the argument that caused the error. Correct the name.

8 xxxx0831 Equate Symbol: AXRVarNumericTooBig

Meaning: A value of an output variable was either too large or too small to
be represented in the buffer that was passed.

Action: Inspect AxrArgLstEntryInError in the RexxVars parameter for the
index of the variable that caused the error.

8 xxxx0832 Equate Symbol: AXRArgNameCannotAccess

Meaning: The argument name was not accessible.

Action: Inspect AxrArgLstEntryInError in the RexxVars parameter for the
index of the argument that caused the error. Ensure that AxrArgNameAddr
and AxrArgNameAlet contain the address and alet of the argument name.
Ensure that the argument name is in the same key as the invoker.

8 xxxx0833 Equate Symbol: AXRVarNameCannotAccess

Meaning: The variable name was not accessible and caused a program
check when System REXX attempted to access.

Action: Inspect AxrArgLstEntryInError in the RexxVars parameter for the
index of the variable that caused the error. Ensure that AxrArgNameAddr
and AxrArgNameAlet contain the address and alet of the variable name.
Ensure that the variable name is in the same key as the invoker.

AXREXX macro

122 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Table 19. Return and Reason Codes for the AXREXX Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

8 xxxx0835 Equate Symbol: AXRDiagCannotAccess

Meaning: The value of the RexxDiag parameter was not accessible.

Action: Ensure the RexxDiag parameter is in the same key as the invoker.
Correct the RexxDiag parameter.

8 xxxx0837 Equate Symbol: AXRArgNeitherInOrOut

Meaning: A REXX argument is neither an input or output argument.

Action: Inspect AxrArgLstEntryInError in the RexxArgs parameter for the
index of the offending argument and set either AXRArgInput,
AXRArgOutput or both in the argument list entry.

8 xxxx0838 Equate Symbol: AXRVarNeitherInOrOut

Meaning: A REXX variable is neither an input or output variable.

Action: Inspect AxrArgLstEntryInError in the RexxArgs parameter for the
index of the offending variable and set either AXRArgInput,
AXRArgOutput, or both in the entry in the variable list entry.

8 xxxx0839 Equate Symbol: AXRArgBadUnsigned

Meaning: An unsigned argument returned from REXX was prefixed with a
sign.

Action: AxrArgLstEntryInError in the RexxArgs parameter contains the
index of the invalid argument. Correct the REXX exec to return an unsigned
value or change the argument to signed.

8 xxxx083A Equate Symbol: AXRVarBadUnsigned

Meaning: An unsigned variable returned from REXX was prefixed with a
sign.

Action: AxrArgLstEntryInError in the RexxVars parameter contains the
index of the invalid variable. Change the exec to return an unsigned value
or change the variable to be signed.

8 xxxx083B Equate Symbol: AXRBadConsoleName

Meaning: The specified CONSNAME parameter was syntactically incorrect.

Action: Correct the syntax of the CONSNAME parameter so that it is a
syntactically valid console name.

8 xxxx083E Equate Symbol: AXRRexxInNotAuth

Meaning: Invoker is not SAF authorized to the data set name specified on
the RexxInDsn keyword.

Action: Either change the data set name or change the security environment
so that the data set can be accessed.

8 xxxx083F Equate Symbol: AXRRexxOutNotAuth

Meaning: Invoker is not SAF authorized to access the data set name
specified on the RexxOutDsn keyword.

Action: Either change the data set name or change the security environment
so that the data set can be accessed.

8 xxxx0840 Equate Symbol: AXRRexxInDsnBad

Meaning: The RexxInDsn specification is not syntactically correct.

Action: Change the input to a valid data set name.

AXREXX macro

Chapter 11. AXREXX - System REXX services 123

Table 19. Return and Reason Codes for the AXREXX Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

8 xxxx0841 Equate Symbol: AXRRexxOutDsnBad

Meaning: The RexxOutDsn specification is not syntactically correct.

Action: Change the input to a valid data set name.

8 xxxx0842 Equate Symbol: AXRRacrouteBad

Meaning: RACROUTE VERIFY returned a bad return code when attempting
to create a security environment prior to running the REXX exec.

Action: The SAF return code is stored in AXRDIAG1. The RACF® return
and reason codes are stored in AXRDIAG2 and AXRDIAG3 respectively (all
in the REXXDiag parameter). Certain types of address spaces do not have a
legitimate security environment and as such the AXREXX invoker may have
to provide a different UTOKEN or use SECURITY=BYAXRUSER.

8 xxxx0843 Equate Symbol: AXRRexxOutCannotOpen

Meaning: A failure occurred when attempting to open the data set specified
by RexxOutDsn.

Action: The return code from IRXINOUT is set in AXRDIAG1. The return
code is documented in z/OS TSO/E REXX Reference. Additionally, the REXX
interpreter may issue messages describing the error.

8 xxxx0844 Equate Symbol: AXRRexxInCannotOpen

Meaning: A failure occurred when attempting to open the specified by
RexxInDsn.

Action: The return code from IRXINOUT is set in AXRDIAG1 in the
RexxDiag parameter and is documented in the z/OS TSO/E REXX Reference.
Additionally, the REXX interpreter may issue messages describing the error.

8 xxxx0846 Equate Symbol: AXRBadRequest

Meaning: The AXREXX input parameter list is incorrect. An incorrect
request type is specified.

Action: Determine why the AXREXX input parameter list is incorrect.

8 xxxx0847 Equate Symbol: AXRArgRsvNotZero

Meaning: A reserved field in the AXRARGENTRY mapping was non-zero
for the RexxArgs AXREXX parameter.

Action: AxrArgLstEntryInError in the RexxArgs parameter contains the
index of the entry that caused the error. Clear the reserved fields.

8 xxxx0848 Equate Symbol: AXRVarRsvNotZero

Meaning: A reserved field in the AXRARGENTRY mapping was non-zero
for the RexxVars AXREXX parameter.

Action: AxrArgLstEntryInError in the RexxVars parameter contains the
index of the entry that caused the error. Clear the reserved fields.

8 xxxx0849 Equate Symbol: AXRBadReqToken

Meaning: For a CANCEL request, the input Request Token is not valid.

Action: Correct the invocation to provide a valid Request Token.

8 xxxx084A Equate Symbol: AXRRexxInNotSeq

Meaning: RexxInDsn is a PDS, but RexxInMemName is not specified.

Action: Specify the RexxInMemName keyword or change RexxInDsn.

AXREXX macro

124 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Table 19. Return and Reason Codes for the AXREXX Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

8 xxxx084B Equate Symbol: AXRRexxInNotPDS

Meaning: RexxInMemName is specified but RexxInDsn is not a PDS.

Action: Remove RexxInMemName or specify a PDS for RexxInDsn.

8 xxxx084C Equate Symbol: AXRRexxOutNotSeq

Meaning: RexxOutDsn is a PDS, but RexxOutMemName is not specified.

Action: Specify the RexxOutMemName keyword or change RexxOutDsn.

8 xxxx084D Equate Symbol: AXRRexxOutNotPDS

Meaning: RexxOutMemName is specified but RexxOutDsn is not a
partitioned data set (PDS).

Action: Remove the RexxOutMemName keyword or change the
specification of RexxOutDsn to a PDS.

8 xxxx084E Equate Symbol: AXRRexxInNotMember

Meaning: RexxInMemName does not exist in the data set specified by
RexxInDsn.

Action: Either create the member or specify a different RexxInDsn data set
name.

8 xxxx0850 Equate Symbol: AXRVarBadValue

Meaning: The value of an input variable was not acceptable to REXX.

Action: Inspect AxrArgLstEntryInError in the RexxVars parameter for the
index of the variable that caused the error.

8 xxxx0851 Equate Symbol: AXRExecNotFound

Meaning: The exec was not found in the System REXX library.

Action: Correct the spelling of the exec in the NAME keyword.

8 xxxx0852 Equate Symbol: AXRVarOutBadValue

Meaning: The value of an output variable was not acceptable to REXX.

Action: Inspect AxrArgLstEntryInError in the RexxVars parameter for the
index of the variable that caused the error.

8 xxxx0853 Equate Symbol: AXRArgOutBadValue

Meaning: The value of an output argument was not acceptable to REXX.

Action: Inspect AxrARgLstEntryInError in the RexxArgs parameter for the
index of the argument that caused the error.

8 xxxx0854 Equate Symbol: AXRParmlistBadAlet

Meaning: The ALET of the parmlist is not valid.

Action: Correct the Alet.

8 xxxx0855 Equate Symbol: AXRUtokenBadAlet

Meaning: The ALET of the UTOKEN parameter is not valid.

Action: Correct the Alet.

8 xxxx0856 Equate Symbol: AXRRexxArgsBadAlet

Meaning: The ALET of the REXXARGS parameter is not valid.

Action: Correct the Alet.

AXREXX macro

Chapter 11. AXREXX - System REXX services 125

Table 19. Return and Reason Codes for the AXREXX Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

8 xxxx0857 Equate Symbol: AXRRexxVarsBadAlet

Meaning: The ALET of the REXXVARS parameter is not valid.

Action: Correct the Alet.

8 xxxx0858 Equate Symbol: AXRRexxInDsnBadAlet

Meaning: The ALET of the REXXINDSN parameter is not valid.

Action: Correct the Alet.

8 xxxx0859 Equate Symbol: AXRRexxOutDsnBadAlet

Meaning: The ALET of the REXXOUTDSN parameter is not valid.

Action: Correct the Alet.

8 xxxx085A Equate Symbol: AXRRexxDiagBadAlet

Meaning: The ALET of the REXXDIAG parameter is not valid.

Action: Correct the Alet.

8 xxxx085B Equate Symbol: AXRArgBadAlet

Meaning: The ALET of the argument entry is not valid.

Action: Refer to AxrArgLstEntryInError in the RexxArgs parameter to
determine the index of the argument entry whose alet was incorrect. Correct
AxrArgAlet.

8 xxxx085C Equate Symbol: AXRArgNameBadAlet

Meaning: The ALET of the argument entry name is not valid.

Action: Refer to AxrArgLstEntryInError in the RexxArgs parameter to
determine the index of the argument entry name whose alet was incorrect.
Correct AxrArgNameAlet.

8 xxxx085D Equate Symbol: AXRVarBadAlet

Meaning: The ALET of the variable entry is not valid.

Action: Refer to AxrArgLstEntryInError in the RexxVars parameter to
determine the index of the variable entry whose alet was incorrect. Correct
AxrArgAlet.

8 xxxx085E Equate Symbol: AXRVarNameBadAlet

Meaning: The ALET of the variable entry name is not valid.

Action: Refer to AxrArgLstEntryInError in the RexxVars parameter to
determine the index of the variable entry name whose alet was incorrect.
Correct AxrArgNameAlet.

8 xxxx085F Equate Symbol: AXRRexxlibBadAlet

Meaning: The ALET of the Rexxlib parameter is not valid.

Action: Correct the ALET.

8 xxxx0860 Equate Symbol: AXRBadRexxlibLen

Meaning: The length specified by the RexxlibLen keyword is not valid.

Action: Ensure that the specified RexxlibLen is greater than or equal to
8192.

AXREXX macro

126 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Table 19. Return and Reason Codes for the AXREXX Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

8 xxxx0861 Equate Symbol: AXRBadRexxlib

Meaning: A program check occurred when attempting to access the
parameter specified by the REXXLIB keyword.

Action: Correct the Rexxlib keyword.

C — Equate Symbol: AxrRetcodeEnvError

Meaning: Environmental error

Action: Refer to the action provided with the specific reason code.

C xxxx0C01 Equate Symbol: AxrNotActive

Meaning: Function is not available. Either the AXR address space has
terminated or has not initialized.

Action: Avoid requesting this function until the ENF signal for AXR
initialization is issued or message AXR0102I is issued. If the AXR address
space has terminated, it needs to be restarted.

C xxxx0C02 Equate Symbol: AxrArgNoStorage

Meaning: No storage is available for a REXX argument or variable.

Action: Reissue the AXREXX request after the requests that are in progress
complete.

C xxxx0C03 Equate Symbol: AXRAllReqBlocksInUse

Meaning: All the storage available to represent REXX requests is in use.

Action: Reissue the AXREXX request after the requests that are in progress
complete.

C xxxx0C04 Equate Symbol: AXRTooManyRexxReqs

Meaning: The threshold of active and waiting REXX requests has been
exceeded.

Action: System REXX will issue ENF signal (65) with a qualifier of
'10000000'x to indicate that it has begun accepting new requests. The
AXREXX invoker can listen for this signal.

C xxxx0C05 Equate Symbol: AXRBadIWMEREG

Meaning: A bad return code was returned from IWMEREG. The return code
and reason codes from IWMEREG are placed in AXRDIAG1 and
AXRDIAG2 in the RexxDiag parameter respectively.

Action: Examine the return and reason codes from IWMEREG. If no
diagnosis is possible, contact IBM Service.

C xxxx0C06 Equate Symbol: AXRAscreFailed

Meaning: An attempt to create a server address space to run the exec failed.

Action: The return and reason codes from ASCRE are stored in AxrDiag1
and AxrDiag2 in the RexxDiag parameter.

C xxxx0C07 Equate Symbol: AXRReqCancelled

Meaning: The request was cancelled.

Action: None.

AXREXX macro

Chapter 11. AXREXX - System REXX services 127

Table 19. Return and Reason Codes for the AXREXX Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

C xxxx0C08 Equate Symbol: AXRExecRexxEnvError

Meaning: The REXX Interpreter was unable to run the exec.

Action: The REXX Interpreter issues one or more messages describing the
problem. If REXXOUTDSN was specified, look in the data set for the
messages. If CONSDATA was specified and REXXOUTDSN was not
specified, look at the console or the system log. If RexxDiag was specified,
AXRDIAG1, AXRDIAG2, AXRDIAG3 and AXRDIAG4 contain the message
ids of any messages beginning with IRX (REXX) or IKJ (TSO) that were
issued. The format of the message id is packed decimal with the sign bits
shifted out. A 1 in the high order byte distinguishes an IKJ message from an
IRX message.

C xxxx0C09 Equate Symbol: AXRBadAxruser

Meaning: AXRUSER was improperly defined in parmlib member AXR00.

Action: Correct AXR00 and restart System REXX.

C xxxx0C10 Equate Symbol: AxrTooManyExtents

Meaning: The REXXLIB concatenation contains too many extents. Sysrexx
cannot process any more execs.

Action: Sysrexx must be terminated. The REXXLIB concatenation must then
be modified so that the number of extents is reduced below the limit.
SYSREXX may then be restarted.

C xxxx0C0A Equate Symbol: AXRTimeIntExpired

Meaning: The input time limit expired before the exec completed.

Action: Increase the time limit or modify the exec.

C xxxx0C0B Equate Symbol: AXRReqNotActive

Meaning: For a CANCEL request, the request to be cancelled is no longer
active.

Action: None.

C xxxx0C0C Equate Symbol: AXRReqAlreadyCancelled

Meaning: For a CANCEL request, the request to be cancelled is already
cancelled.

Action: None.

C xxxx0C0D Equate Symbol: AXRRexxOutFail

Meaning: A failure occurred when attempting to process the data set
specified by the RexxOutDsn parameter. If the failure was due to an abend,
the abend code is saved in AXRDIAG1 and the abend reason code is saved
in AXRDIAG2 in the RexxDiag parameter. No dump is taken.

Action: Look up the abend and reason code in the z/OS MVS System Codes
to determine the proper action.

C xxxx0C0E Equate Symbol: AXRRexxInFail

Meaning: A failure occurred when attempting to process the data set
specified by the RexxInDsn parameter. If the failure was due to an abend,
the abend code is saved in AXRDIAG1 and the abend reason code is saved
in AXRDIAG2 of the RexxDiag parameter. No dump is taken.

Action: Look up the abend and reason code in z/OS MVS System Codes to
determine the proper action.

AXREXX macro

128 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Table 19. Return and Reason Codes for the AXREXX Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

C xxxx0C0F Equate Symbol: AXRBadIWMECREA

Meaning: A bad return code was returned from IWMECREA. The return
code and reason codes from IWMESQRY and the return and reason codes
from IWMECREA are placed in AXRDIAG1, AXRDIAG2, AXRDIAG3 and
AXRDIAG4 respectively of the RexxDiag parameter.

Action: Inspect the return and reason codes from IWMESQRY and
IWMECREA by looking it up in the z/OS MVS Programming: Workload
Management Services. If the problem cannot be resolved, contact IBM Service.

10 — Equate Symbol: AxrRetcodeCompError

Meaning: Unexpected failure.

Action: Refer to the action provided with the specific reason code.

10 xxxx1001 Equate Symbol: AxrRexxServerAbended

Meaning: An abend occurred after the REXX server began processing the
request.

Action: Contact IBM Service with information from the dump.

10 xxxx1002 Equate Symbol: AxrBadServerRC

Meaning: An unexpected return code was returned from the REXX server.

Action: Contact IBM Service with information from the dump.

10 xxxx1003 Equate Symbol: AXRRexxClientAbended

Meaning: An abend occurred before the request was passed to the REXX
Server or after the request was processed by the REXX server.

Action: Contact IBM Service with information from the dump.

10 xxxx1007 Equate Symbol: AXRExitAbended

Meaning: An abend occurred in a System REXX defined exit, which is given
control by the REXX interpreter or in the REXX interpreter.

Action: If the abend occurred within a System REXX exit, contact IBM
Service with information from the dump.

10 xxxx100B Equate Symbol: AXRAddrSpaceTerm

Meaning: The address space created to run an exec either terminated before
running the exec or while running the exec.

Action: If the address space was cancelled then there is no action. If the
address space was terminated unexpectedly, then contact IBM Service.

10 xxxx100D Equate Symbol: AXRCancelAbended

Meaning: An attempt to cancel a request resulted in an abend.

Action: Contact IBM Service with information from the dump.

10 xxxx100F Equate Symbol: AXRRexxInterpreterAbend

Meaning: Either the REXX interpreter abended or was percolated to.

Action: See the RexxDiag parameter. AxrDiag1 contains either 100 for a user
abend or 104 for a system abend. AxrDiag2 contains the abend code. A
system dump may be produced.

Examples
See z/OS MVS Programming: Authorized Assembler Services Guide for examples.

AXREXX macro

Chapter 11. AXREXX - System REXX services 129

130 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Chapter 12. AXSET — Set authorization index

Description
The AXSET macro sets the authorization index (AX) of the home address space to
the value specified by the caller. The AX must be reserved. The address space in
which the AX is being changed cannot own SASN=OLD connected space switch
entry tables. All routines that subsequently execute, with a PASID of the address
space for the AX being changed, execute with the new AX.

Related macros
ATSET, AXFRE, AXRES, and AXEXT

Environment
These are the requirements for the caller:

Environmental factor Requirement
Minimum authorization: Supervisor state or PKM = 0-7
Dispatchable unit mode: Task or SRB
Cross memory mode: PASN=HASN or PASN¬=HASN
AMODE: Any
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Primary

Programming requirements
None.

Restrictions
None.

Input register information
The AXSET macro is sensitive to the SYSSTATE macro with the OSREL=ZOSV1R6
parameter
v If the caller has issued the SYSSTATE macro with the OSREL=ZOSV1R6

parameter (Version 1 Release 6 of z/OS or later) before issuing the AXSET
macro, the caller does not have to place any information into any general
purpose register (GPR) unless using it in register notation for a particular
parameter, or using it as a base register.

v Otherwise, the caller must ensure that the following general purpose register
contains the specified information:

Register
Contents

13 The address of an 18-word save area

© Copyright IBM Corp. 1988, 2013 131

Output register information
After the caller issues the macro, the macro might use some registers as work
registers or might change the contents of some registers. When the macro returns
control to the caller, the contents of these registers are not the same as they were
before the macro was issued. Therefore, if the caller depends on these registers
containing the same value before and after issuing the macro, the caller must save
these registers before issuing the macro and restore them after the system returns
control.

When control returns to the caller, the general purpose registers (GPRs) contain:

Register
Contents

0 Bits 0-15 contain zeros; bits 16-31 contain the replaced Authority Index
(AX)

1 Used as a work register by the macro

2-13 Unchanged

14 Used as a work register by the macro

15 Return code

Performance implications
None.

Syntax
This is the standard form of the AXSET macro:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede AXSET.

AXSET

� One or more blanks must follow AXSET.

AX=AX value AX value: RX-type address or register (0) - (12).

,RELATED=value value: Any valid macro keyword specification.

Parameters
These are the parameters:

AX=AX value
Specifies the new AX value. The RX-type address specifies a halfword

AXSET macro

132 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

containing the new AX. When the register form is used, the register must
contain the new AX in bits 16-31, and bits 0-15 must be zero.

,RELATED=value
Specifies information used to self-document macros by “relating” functions or
services to corresponding functions or services. The format and contents of the
information specified are at the discretion of the user and can be any valid
coding values.

ABEND codes
v 052
v 053

See z/OS MVS System Codes for an explanation and programmer responses for
these codes.

Return codes
When AXSET macro returns control to your program, GPR 15 contains a return
code.

Table 20. Return Code for the AXSET Macro

Hexadecimal Return
Code

Meaning

00 The AX of the home address space is set to the value specified by the caller.

Examples
For examples of the use of this and other cross memory macros, refer to the
chapter on cross memory communication in z/OS MVS Programming: Extended
Addressability Guide.

AXSET macro

Chapter 12. AXSET — Set authorization index 133

134 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Chapter 13. BCPii — Base control program internal interface
services

IBM provides support within z/OS that allows authorized applications to query,
change, and perform basic operational procedures against the installed System z
hardware base. This support provides a set of high-level application program
interfaces (APIs) for data exchange and command requests. The functionality,
called base control program internal interface (BCPii), is delivered in the base of
the operating system. This support not only allows control of the hardware that
the APIs are executing on, but also extends to other System z processors within the
attached process control network. This support does not require communication on
an IP network for connectivity to the support element (SE)/hardware management
console (HMC). Calls using the BCPii APIs can be made from either C or
assembler programming languages.

The services listed below are all documented in z/OS MVS Programming: Callable
Services for High-Level Languages. See that information for a complete description of
the BCPii APIs as well as an overall description of how to use BCPii on the z/OS
operating system.

That information contains the following callable services:
v HWICMD Callable Service
v HWICONN Callable Service
v HWIDISC Callable Service
v HWIEVENT Callable Service
v HWILIST Callable Service
v HWIQUERY Callable Service
v HWISET Callable Service
v HWIBeginEventDelivery Callable Service
v HWIEndEventDelivery Callable Service
v HWIManageEvents Callable Service
v HWIGetEvent Callable Service

© Copyright IBM Corp. 1988, 2013 135

136 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Chapter 14. BPXEKDA — Kernel data access

Description
The BPXEKDA macro provides an interface for an authorized report application to
retrieve kernel data, such as:
v A list of current processes (for the entire system or for a specific userid)
v A list of threads within a specific process
v A list of current BPXPRMxx option settings
v All system-wide file system information

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Supervisor state
Dispatchable unit mode: Task
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: Unlocked
Control parameters: All parameters must be addressable by the caller and in the

primary address space.

Programming requirements
If the supplied buffer is in the primary address space (ALET=0), BPXEKDA will
protect the last page of the buffer to guard against overlays of storage following
the buffer. If the buffer is not in the primary address space, the caller is responsible
for protecting the last page of the buffer to prevent potential overlays.

Restrictions
None.

Input register information
Before issuing the BPXEKDA macro, the caller must ensure that the following
general-purpose registers (GPRs) contain the specified information:

Register
Contents

0-12 Undefined

13 Address of a 72-byte register save area

14-15 Undefined

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

© Copyright IBM Corp. 1988, 2013 137

0-1 Unpredictable

2-13 Unchanged

14 Next instruction address

15 Return code

Performance implications
None.

Syntax
The standard form of the BPXEKDA macro is written as follows:

Syntax Description

name name: symbol. The name is optional.

� One or more blanks must precede BPXEKDA.

BPXEKDA

� One or more blanks must follow BPXEKDA.

,KBUFLEN=xkbuflen xkbuflen: RS-type address or register (2) - (12).

,KBUFALET=xkbufalet xkbufalet: RS-type address or register (2) - (12).

KBUFPTR=xkbufptr xkbufptr: RS-type address or register (2) - (12).

,RETCODE=xretcode xretcode: RS-type address or register (2) - (12).

,MF=S Default: MF=S

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the BPXEKDA
macro invocation. The name must conform to the rules for an ordinary
assembler language symbol. Default: No name.

,KBUFLEN=xkbuflen
The name (RS-type) or address in register (2) - (12) of a required fullword field
that contains the length of the supplied buffer. It is recommended that this
buffer be at least 1 megabyte in length to contain all of the data that could be
returned for the input request data. Upon successful completion, this area is
defined by the mapping macro BPXZODMV. If BPXEKDA is unsuccessful, this
area contains incorrect data.

BPXEKDA macro

138 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

,KBUFALET=xkbufalet
The name (RS-type) or address in register (2) - (12) of a required fullword field
that contains the ALET of the supplied buffer.

KBUFPTR=xkbufptr
The name (RS-type) or address in register (2) - (12) of a required 4–byte area
that contains the address of a required input/output area that is to contain the
input request data and the output data to be returned by BPXEKDA. The
mapping macro BPXZODMV maps all of this input and output data. The input
request data is mapped by the OdmvInputParms field. The remainder of the
BPXZODMV mapping macro describes data that is returned by BPXEKDA
when it completes successfully.

,RETCODE=xretcode
The name (RS-type) of an optional fullword output variable, or register (2) -
(12), into which the return code is to be copied from GPR 15.

,MF=S
An optional parameter that requests the standard form, which places
parameters into an inline parameter list and invokes the BPXEKDA macro
service. MF=S is the default.

Return codes
The following are the return codes from BPXEKDA and their explanations:

Table 21. Return Codes for the BPXEKDA Macro

Hexadecimal Return
Code

Meaning and Action

00 Meaning: BPXEKDA completed successfully.

Action: None required.

04 Meaning: The macro was unsuccessful. The supplied user name or
ASID was not found.

Action: None required.

08 Meaning: The macro was unsuccessful. An internal error occurred
attempting to obtain file system mount data.

Action: None required.

12 Meaning: The macro was unsuccessful. The supplied buffer was
not large enough to hold all of the data that the macro attempted
to return.

Action: None required.

16 Meaning: The macro was unsuccessful. The input flags specified
mutually exclusive values.

Action: None required.

20 Meaning: The macro was unsuccessful. The caller does not have
the correct authorization to use this service.

Action: None required.

24 Meaning: The macro was unsuccessful. The caller did not specify
the address of an output area in OdmvOutPtr.

Action: None required.

BPXEKDA macro

Chapter 14. BPXEKDA — Kernel data access 139

Table 21. Return Codes for the BPXEKDA Macro (continued)

Hexadecimal Return
Code

Meaning and Action

28 Meaning: OMVS inactive

Action: None required.

BPXEKDA - List form
Use the list form of the BPXEKDA macro together with the execute form of the
macro for applications that require reentrant code. The list form of the macro
defines an area of storage, which the execute form of the macro uses to store the
parameters.

Syntax
The list form of the BPXEKDA macro is written as follows:

Syntax Description

name name: symbol. The name is optional.

� One or more blanks must precede BPXEKDA.

BPXEKDA

� One or more blanks must follow BPXEKDA.

,MF=(L,xmfctrl) xmfctrl: Symbol.

,MF=(L,xmfattr) xmfattr: 1– to 60–character input string. Default: 0D.

Parameters
The parameters of the list form are explained as follows:

,MF=(L,xmfctrl)
MF=(L,xmfctrl ,xmfattr

Specifies the list form of the BPXEKDA macro.

xmfctrl is the name of a storage area to contain the parameters.

xmfattr is an optional 1- to 60-character input string, which can contain any
value that is valid on an assembler DS pseudo-op. You can use this parameter
to force boundary alignment of the parameter list. If you do not code xmfattr,
the system provides a value of 0D, which forces the parameter list to a
doubleword boundary.

BPXEKDA macro

140 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

BPXEKDA - Execute form

Syntax
The execute form of the BPXEKDA macro is written as follows:

Syntax Description

name name: symbol. The name is optional.

� One or more blanks must precede BPXEKDA.

BPXEKDA

� One or more blanks must follow BPXEKDA.

,KBUFLEN=xkbuflen xkbuflen: RS-type address or register (2) - (12).

,KBUFALET=xkbufalet xkbufalet: RS-type address or register (2) - (12).

KBUFPTR=xkbufptr xkbufptr: RS-type address or register (2) - (12).

,RETCODE=xretcode xretcode: RS-type address or register (2) - (12).

,MF=(E,xmfctrl) xmfctrl: RS-type address or register (2) - (12).

Parameters
The parameters are explained under the standard form of the BPXEKDA macro,
with the following exceptions:

,MF=(E,xmfctrl)
Specifies the execute form of the BPXEKDA macro.

xmfctrl specifies the area that the system uses to store the parameters.

BPXEKDA macro

Chapter 14. BPXEKDA — Kernel data access 141

BPXEKDA macro

142 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Chapter 15. BPXESMF — Collect z/OS UNIX process
accounting data

Description
The BPXESMF macro provides z/OS UNIX accounting data when the macro
targets an address space that is an z/OS UNIX process.

The caller provides the address of a storage area where process accounting data is
to be written after successful completion of BPXESMF. The contents of this storage
area are defined by mapping macro BPXYOSMF.

SMF recording must be active for type 30 records in order for some of the values
returned in BPXYOSMF to be accumulated.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Supervisor state and PSW key 0
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: The caller may hold suspend locks, but is not required to

hold any.
Control parameters: Control parameters must be in the primary address space.

Programming requirements
The program issuing the BPXESMF macro should include the mapping macro,
BPXYOSMF. Before invoking BPXESMF, a storage area of size, OSMF#LENGTH,
should be allocated to contain macro output.

After invoking BPXESMF, the return code should be checked to verify that the
macro completed successfully. If the macro did not complete successfully, output
should be discarded as incorrect.

OSMFVERSION value returned will be the lesser of the OSMF#VERSION passed
via the BPXESMF invocation and OSMF#VERSION used during the compilation of
the system service.

OSMFLENGTH value will identify the last field touched by the system service and
corresponds to OSMF#VERSION found in the appropriate level of BPXYOSMF.

Restrictions
None.

© Copyright IBM Corp. 1988, 2013 143

Input register information
Before issuing the BPXESMF macro, the caller must ensure that the following
general-purpose registers (GPRs) contain the specified information:

Register
Contents

13 Address of a 72-byte register save area.

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Next instruction address

15 Return code

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
There are no performance implications.

Syntax
The standard form of the BPXESMF macro is written as follows:

Syntax Description

name name: symbol. The name is optional.

� One or more blanks must precede BPXESMF.

BPXESMF

� One or more blanks must follow BPXESMF.

ACCTDAT=acctdata acctdata: RX-type address or register (2) - (12).

,ASCBPTR=ascbptr ascbptr: RX-type address or register (2) - (12).

,RETCODE=rc rc: RX-type address or register (2) - (12).

,MF=S Default: MF=S

BPXESMF macro

144 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Parameters
The parameters are explained as follows:

ACCTDAT=acctdata
Specifies the location of the storage area where BPXESMF is to place output
process accounting data.

,ASCBPTR=ascbptr
Specifies the location of the address space control block for the address space
from which accounting data is to be collected. Specifying
ASCBPTR=PSAAOLD is requesting accounting data for the current process
and is equivalent of not specifying this keyword.

A program that uses IHAAVST to cycle through all address spaces, should
construct a loop (1 to AvstMaxU) and invoke BPXESMF for each valid
(AvstAval(i) = OFF) address space (AvstEnty(i)).

,RETCODE=rc
Specifies the location where the system is to store the return code. The return
code is also in GPR 15. RETCODE is an optional parameter.

,MF=S
An optional parameter that requests the standard form, which places
parameters into an inline parameter list and invokes the BPXESMF macro
service. MF=S is the default.

ABEND codes
Users of ASCBPTR should be able to recover from an occasional 0C4 program
check because collection of accounting data will be made without protection that
the target address space may be deleted.

Return codes
When the BPXESMF macro returns control to your program, GPR 15 contains a
return code. No reason code is returned by this macro.

Table 22. Return Codes for the BPXESMF Macro

Hexadecimal Return
Code

Meaning and Action

00 Meaning: BPXESMF completed successfully

Action: The storage area passed in parameter ACCTDAT can now be
mapped using macro BPXYOSMF.

08 Meaning: The macro was unable to obtain process accounting data.

Action: Normally this means that the primary address space is not an z/OS
UNIX process when the macro is invoked. The contents of the storage area
passed in parameter ACCTDAT should be discarded as invalid.

0C Meaning: No longer used.

Action: Apply the proper PTF to BPXAMSMF or recompile with the
BPXESMF macro of the level of the system.

Example
The following example shows how a program running in supervisor state, key
zero, might invoke the BPXESMF macro to obtain z/OS UNIX process accounting
data for the primary address space. Key steps in this program are as follows:

BPXESMF macro

Chapter 15. BPXESMF — Collect z/OS UNIX process accounting data 145

1. Assign register 13 to the address of a 72-byte register save area. In this example
it is assumed that standard linkage is used on entry. Therefore, register 13 is
assumed to already be pointing to a standard 72-byte register save area.

2. Issue the GETMAIN macro to obtain storage for the process accounting data.
The size of the storage area needed can be found in the OSMF#LENGTH
equate in macro BPXYOSMF.

3. Issue the BPXESMF macro to obtain process accounting data.
4. Verify successful completion of the macro before using the output process

accounting data.
5. If BPXESMF returned successfully, the BPXYOSMF macro is used to map

output process accounting data.
*
* GET STORAGE FOR PROCESS ACCOUNTING DATA
*

LA R0,OSMF#LENGTH
GETMAIN RU,LV=(R0)
LR R9,R1
USING OSMF,R9

*
* ISSUE BPXESMF TO GET PROCESS ACCOUNTING DATA
*

BPXESMF ACCTDAT=OSMF
LTR R15,R15
BNZ ERROR

*
* USE VALID PROCESS ACCOUNTING DATA
*

MVC UID,OSMFRUID
MVC PID,OSMFPROCESSID
. . .
. . .
B DONE

*
* HANDLE BPXESMF ERRORS
*
ERROR EQU *

. . .

. . .
DONE LR R1,R9

LA R0,OSMF#LENGTH
FREEMAIN RU,LV=(R0),A=(R1)
. . .
. . .

@SA00001 DS 18F
UID DS F
PID DS F

BPXYOSMF

BPXESMF - List form
Use the list form of the BPXESMF macro together with the execute form of the
macro for applications that require reentrant code. The list form of the macro
defines an area of storage, which the execute form of the macro uses to contain the
parameters.

The list form of the BPXESMF macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1. The name is optional.

BPXESMF macro

146 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Syntax Description

� One or more blanks must precede BPXESMF.

BPXESMF

� One or more blanks must follow BPXESMF.

MF=(L,list addr) list addr: Symbol.

MF=(L,list addr,attr) attr: 1- to 60-character input string.

MF=(L,list addr,0D) Default: 0D

The parameters of the list form are explained as follows:

MF=(L,list addr)
MF=(L,list addr,attr)
MF=(L,list addr,0D)

Specifies the list form of the BPXESMF macro.

list addr is the name of a storage area to contain the parameters.

attr is an optional 1- to 60-character input string, which can contain any value
that is valid on an assembler DS pseudo-op. You can use this parameter to
force boundary alignment of the parameter list. If you do not code attr, the
system provides a value of 0D, which forces the parameter list to a
doubleword boundary.

BPXESMF - Execute form
Use the execute form of the BPXESMF macro together with the list form of the
macro for applications that require reentrant code. The execute form of the macro
stores the parameters into the storage area defined by the list form.

The execute form of the BPXESMF macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede BPXESMF.

BPXESMF

� One or more blanks must follow BPXESMF.

ACCTDAT=acctdata acctdata: RX-type address or register (2) - (12).

BPXESMF macro

Chapter 15. BPXESMF — Collect z/OS UNIX process accounting data 147

Syntax Description

,ASCBPTR=ascbptr ascbptr: RX-type address or register (2) - (12).

,RETCODE=rc rc: RX-type address or register (2) - (12).

,MF=(E,list addr) list addr: RX-type address or address in register (2) - (12).

The parameters are explained under the standard form of the BPXESMF macro
with the following exception:

,MF=(E,list addr)
Specifies the execute form of the BPXESMF macro.

list addr specifies the area that the system uses to contain the parameters.

BPXESMF macro

148 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Chapter 16. CALLDISP — Pass control to another ready task

Description
The CALLDISP macro saves the caller's status in the current TCB/RB, and passes
control to another ready task. The task with the highest priority is the one that
receives control. When the original task is redispatched, control is returned to the
next sequential instruction.

Environment
These are the requirements for the caller:
v When BRANCH=NO

Environmental factor Requirement
Minimum authorization: None.
Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 24- or 31- or 64-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: None.

v When BRANCH=YES

Note: When BRANCH=YES, the caller must include the IHAPSA mapping
macro.

Environmental factor Requirement
Minimum authorization: When FIXED=NO: Supervisor state or PKM allowing key 0

When FIXED=YES: Supervisor state and PSW key 0
Dispatchable unit mode: Task
Cross memory mode: PASN=HASN or PASN¬=HASN
AMODE: 24- or 31-bit
ASC mode: Any
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: None.

Programming requirements
None.

Restrictions
None.

© Copyright IBM Corp. 1988, 2013 149

Input register information
Before issuing the CALLDISP macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0-13 Unchanged

14 Unchanged when BRANCH=NO, used as a work register by the system
when BRANCH=YES

15 Used as a work register by the system

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as a work register by the system

Performance implications
None.

Syntax
This is the standard form of the CALLDISP macro:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede CALLDISP.

CALLDISP

� One or more blanks must follow CALLDISP.

BRANCH=NO Default: BRANCH=NO

BRANCH=YES

,FIXED=YES Default: (Available only when BRANCH=YES is coded)

,FIXED=NO FIXED=YES

,FRRSTK=SAVE Default: (Available only when BRANCH=YES is coded)

CALLDISP macro

150 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Syntax Description

,FRRSTK=NOSAVE FRRSTK=NOSAVE

Parameters
These are the parameters:

BRANCH=NO
BRANCH=YES

Specifies whether the branch entry (BRANCH=YES) or the SVC entry
(BRANCH=NO) of CALLDISP is to be used. The default is BRANCH=NO.

BRANCH=YES is restricted to key 0 supervisor state callers. Routines in cross
memory mode must specify BRANCH=YES. See z/OS MVS Programming:
Authorized Assembler Services Guide for more information about the
requirements for using the BRANCH=YES option of the CALLDISP Macro.

Routines that are unlocked, have no enabled unlocked task FRRs on the stack,
and are not in cross memory mode, can use BRANCH=NO.

,FIXED=YES
,FIXED=NO

Specifies that the code invoking branch entry CALLDISP is in fixed storage
(FIXED=YES) or in pageable storage (FIXED=NO). For FIXED=NO, registers
14-1 are altered.

,FRRSTK=SAVE
,FRRSTK=NOSAVE

Specifies that the current FRR stack be saved and restored (FRRSTK=SAVE),
when at least one of the FRRs is an enabled unlocked task (EUT) FRR, or
purged (FRRSTK=NOSAVE). When FRRSTK=SAVE is specified:
v The caller cannot hold any locks or an abend results.
v When EUT FRRs exist, the current FRR stack is saved and the caller can

hold either the LOCAL or CML lock.
v When no EUT FRR exists, the caller cannot hold any locks. Otherwise, an

abend occurs.
v Asynchronous exits (IRBs and SIRBs) are not dispatched until all EUT FRRs

are deleted.

For more information, see “Suspension and Resumption of Request Blocks” in
z/OS MVS Programming: Authorized Assembler Services Guide for an explanation
of the CALLDISP function used with SUSPEND/RESUME processing.

Abend codes
05D

See z/OS MVS System Codes for an explanation and programmer responses for
these codes.

Return and reason codes
None.

CALLDISP macro

Chapter 16. CALLDISP — Pass control to another ready task 151

Example 1
Pass control to another ready task.
CALLDISP

Example 2
A non-page-fixed task with an enabled, unlocked task FRR gives control to another
ready task. When the original task regains control, the contents of registers 14, 15,
0, and 1 have been destroyed.
CALLDISP FIXED=NO,FRRSTK=SAVE,BRANCH=YES

CALLDISP macro

152 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Chapter 17. CALLRTM — Call recovery termination manager

Description
The CALLRTM macro schedules abnormal termination for a task, an address
space, or a preemptable SRB identified by the token returned by the
SRBIDTOKEN= parameter of the IEAMSCHD macro.

To terminate a task, use TYPE=ABTERM and the following parameter or
parameters to identify the specific task.
v For a task in the home address space, use TCB or TTOKEN.
v For a task in a specific address space, use one of the following:

– TTOKEN and ASID
– TCB and ASID.

To terminate an address space, use TYPE=MEMTERM. Be aware, however, that
tasks in the abending address space cannot perform recovery and task-level
resource managers do not get control. (Note that address space recovery routines
and resource managers do get control.) To terminate an address space, consider
using CALLRTM TYPE=ABTERM,RETRY=NO to abend each job step task in the
address space. When all tasks in the address space have terminated, the system
terminates the address space.

To terminate a preemptable SRB identified by the token returned by the
SRBIDTOKEN= parameter of the IEAMSCHD macro, use TYPE=SRBTERM. The
target SRB is processed asynchronously and may terminate after control has
returned to the invoking program. Also, the target SRB may finish normally before
RTM can terminate it with the requested completion code. If the target SRB has not
started yet, it may be purged instead of abended (in which case its RMTR will
receive control).

For more information about using CALLRTM, see z/OS MVS Programming:
Authorized Assembler Services Guide.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Supervisor state and PSW key 0
Dispatchable unit mode: Task or SRB
Cross memory mode: For TYPE=MEMTERM and TYPE=SRBTERM, any PASN,

any HASN, any SASN. For TYPE=ABTERM, see the TCB
and TTOKEN parameter descriptions.

AMODE: 24- or 31-bit, except for TYPE=SRBTERM which only
supports AMODE 31 callers.

ASC mode: Primary or secondary
Interrupt status: When using TTOKEN to terminate a task other than the

current one, the caller must not be disabled for I/O and
external interrupts.

Locks: When terminating a task without specifying ASID, the caller
must hold the LOCAL lock. When terminating an SRB, any
lock may be held, but none are required.

© Copyright IBM Corp. 1988, 2013 153

Environmental factor Requirement
Control parameters: For callers in primary ASC mode, control parameters must

be in the primary address space; in secondary mode, control
parameters must be in the secondary address space.

Programming requirements
v When the caller runs in 31-bit addressing mode, all input parameters except the

TCB can reside above 16 megabytes. The TCB always resides below 16
megabytes.

v The caller must include the CVT mapping macro.

Restrictions
None.

Input register information
Before issuing the CALLRTM macro with TYPE=MEMTERM, or with
TYPE=ABTERM with ASID or TTOKEN or both, the caller must ensure that the
following general purpose registers (GPRs) contain the specified information.

Register
Contents

13 The address of a 72-byte work area

Note: The work area that you provide is not the standard 72-byte save
area. The system stores into the area. If you pass in register 13 the save
area that you are using to link your program to your caller's, you will not
be able to get back to your caller.

Before issuing the CALLRTM macro with TYPE=SRBTERM, the caller must ensure
that the following general purpose registers (GPRs) contain the specified
information.

Register
Contents

13 The address of a 144-byte work area

Note: The work area that you provide is not the standard 144-byte save
area. The system stores into the area. If you pass in register 13 the save
area that you are using to link your program to your caller's, you will not
be able to get back to your caller.

Output register information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register
Contents

0-1 Used as work registers by the system

2 If you specify the ASID parameter, used as a work register by the system;
otherwise, unchanged

3 If you specify the DUMPOPT or DUMPOPX parameter, used as a work
register by the system; otherwise, unchanged

CALLRTM macro

154 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

4-5 Unchanged

6 If you specify the TYPE=ABTERM or TYPE=SRBTERM, COMPCOD, and
REASON parameters, used as a work register by the system; otherwise,
unchanged

7-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
The CALLRTM macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede CALLRTM.

CALLRTM

� One or more blanks must follow CALLRTM.

TYPE=ABTERM

TYPE=MEMTERM

TYPE=SRBTERM

,SRBIDTOKEN=token addr token addr: 16-byte token.

,COMPCOD=comp code comp code: Symbol, decimal digit, or register (1) - (12).

,REASON=code code: Symbol, decimal or hexadecimal number, or register (2) - (12).

CALLRTM macro

Chapter 17. CALLRTM — Call recovery termination manager 155

Syntax Description

,ASID=asid asid: Decimal digits 0-32,765 or register (2) - (15).

,TCB=tcb addr tcb addr: 0, or register (2) - (12).

,TTOKEN=ttoken ttoken: 0, or register (2) - (12).

Note: Use TCB and TTOKEN only with TYPE=ABTERM.

Default: TCB=0

,STEP=NO Default: STEP=NO

,STEP=YES Note: Use STEP only with TYPE=ABTERM.

,DUMP=YES Default: DUMP=YES

,DUMP=NO Note: Use DUMP only with TYPE=ABTERM.

,DUMPOPT=parm list addr parm list addr: Register (3) - (15).

,DUMPOPX=parm list addr parm list addr: Register (3) - (15).

Note: Use DUMPOPT and DUMPOPX only with DUMP=YES.

,RETRY=YES Default: RETRY=YES

,RETRY=NO Note: Use RETRY only with TYPE=ABTERM.

,SYSTEM=YES Default: SYSTEM=YES

,SYSTEM=NO

Parameters
The parameters are explained as follows:

TYPE=ABTERM
TYPE=MEMTERM
TYPE=SRBTERM,SRBIDTOKEN=token addr

Specifies whether CALLRTM is to terminate a task (ABTERM), an address
space (MEMTERM), or a preemptable SRB (SRBTERM) identified by the token
returned by the SRBIDTOKEN= parameter of the IEAMSCHD macro.

For TYPE=ABTERM, you must identify the task through the TCB or TTOKEN
parameters.

For TYPE=MEMTERM, no task-level recovery processing occurs.

For TYPE=SRBTERM, the 16-byte token pointed to by token addr uniquely
identifies the preemptable SRB to be terminated, including its ASID. The
following CALLRTM parameters are valid when TYPE=SRBTERM has been
specified: COMPCOD, REASON, RETRY, SYSTEM. The default values for
RETRY and SYSTEM are YES. COMPCOD must be specified. Use CALLRTM
TYPE=SRBTERM only when the SRBIDTOKEN has been successfully returned
by the IEAMSCHD macro, as indicated by a non-zero value in the first eight
bytes of the SRBIDTOKEN.

CALLRTM macro

156 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

,COMPCOD=compcode
Specifies the system (if you specify SYSTEM=YES or take the default) or user
(if you specify SYSTEM=NO) completion code (0 - 4096 decimal) that you
associate with the abnormal termination. Specify this parameter as a
hexadecimal code (x‘80A’), a decimal code (2058), or a register containing a
hexadecimal code. In all cases, the result is hexadecimal.

,REASON=code
Specifies information to supplement the completion code associated with an
abnormal termination. The value range for the reason code is a 32-bit
hexadecimal number or 31-bit decimal number. In all cases, the result is
hexadecimal.

The system passes the reason code value to the recovery routine in the
SDWACRC field of the SDWA.

For TYPE=SRBTERM, set the high-order bit of the reason code to 1 when you
want to indicate that an SVCDUMP is not necessary for the abend being
issued. The system does not do anything special with this bit, but recovery
routines can use the information when determining if they should request an
SVCDUMP of the abend.

,ASID=asid
Specifies the address space to be terminated (for MEMTERM), or the one that
contains the task to be terminated (for ABTERM). ASID=0, the default, specifies
the home address space.

,TCB=tcb addr
,TTOKEN=ttoken

Specifies the task to be terminated. TCB=0 is the default, which identifies the
current task.

tcb addr is the address of the TCB that CALLRTM is to terminate.

If the current task is specified or implicitly specified by not specifying either
TCB= or TTOKEN=, a non-zero ASID parameter must also be specified.

When you specify TCB=tcb address and you omit the ASID parameter, the
system assumes the task is in the home address space and that the home
address space is currently addressable. That is:
v If you are in primary ASC mode, the primary address space must be the

home address space (PASN=HASN).
v If you are in secondary ASC mode, the secondary address space must be the

home address space (SASN=HASN).

ttoken specifies the TTOKEN for the task that is to be terminated. ASID with
TTOKEN identifies a task in the specified address space.

When you omit the ASID parameter, there are requirements on locks. See
“Environment” on page 153.

,STEP=NO
,STEP=YES

Specifies whether the job step task associated with the specified task is (YES)
or is not (NO) to be abnormally terminated if the specified task terminates.
Note that the job step task does not end abnormally if the specified task
successfully retries.

STEP is valid only for TYPE=ABTERM.

,DUMP=YES

CALLRTM macro

Chapter 17. CALLRTM — Call recovery termination manager 157

,DUMP=NO
Specifies whether a dump is (YES) or is not (NO) to be taken. You can use
DUMPOPT or DUMPOPX to specify the dump options; otherwise, the contents
of the dump are defined by the //SYSABEND, //SYSMDUMP, or
//SYSUDUMP DD statement and the system or user-defined defaults. The
target address space of the CALLRTM request is treated as the dump error
address space.

The final decision on whether a dump will be taken depends on the recovery
routines that run as a result of this CALLRTM. If the recovery routines indicate
in the ",DUMP=" option of the SETRP macro whether a dump is to be taken,
this specification overrides the ",DUMP=" value in CALLRTM.

,DUMPOPT=parm list addr
,DUMPOPX=parm list addr

Specifies the address of a parameter list of dump options. To create the
parameter list, use the list form of the SNAP or SNAPX macro; or build the
parameter list by coding your own data constants. DUMPOPT specifies the
address of a parameter list that the SNAP macro creates. DUMPOPX specifies
the address of a parameter list that the SNAPX macro creates. When you
terminate a task that is not the current one, the dump options must reside in
fixed or disabled reference (DREF) storage.

The system dump options, specified by the CHNGDUMP operator command,
can add to or override this parameter list. All recovery routines entered for the
failure can also add to the list of dump options. The TCB, DCB, ID, and
STRHDR options available on SNAP or SNAPX are ignored when they appear
in the parameter list. The TCB is for the task that receives the ABEND. The
DCB is provided by the ABDUMP routine. When a //SYSABEND,
//SYSMDUMP, or //SYSUDUMP DD statement is not provided, the system
ignores the DUMPOPT or DUMPOPX parameters.

Note: When you use this parameter, the system destroys the contents of
register 3.

,RETRY=YES
,RETRY=NO

Specifies whether the target task's recovery routines can retry. If you specify
RETRY=NO, the recovery routines are forced to percolate rather than retry.
RETRY is valid only for TYPE=ABTERM. RETRY=YES is the default.

,SYSTEM=YES
,SYSTEM=NO

Specifies whether the completion code is to be a system or user completion
code.

ABEND codes
CALLRTM might abnormally terminate with abend code X'70D'. See z/OS MVS
System Codes for an explanation of this abend code and its associated reason codes.

Return codes
When CALLRTM returns control to your program, for TYPE=ABTERM, register 15
contains one of the following hexadecimal return codes.

CALLRTM macro

158 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Table 23. Return codes for the CALLRTM macro for TYPE=ABTERM

Hexadecimal return
code

Meaning and action

00 Meaning: The ABTERM request was processed successfully.

Action: None.

04 Meaning: The task has already been scheduled for termination by a
previous ABTERM request.

Action: None.

08 Meaning: An asynchronous unit of work has been scheduled to terminate
the task.

Action: None.

18 Meaning: Program error. The ASID value is not valid.

Action: Ensure that the ASID specified represents a currently active address
space.

1C Meaning: Program error. The TCB address or TTOKEN does not represent
a valid TCB.

Action: Ensure that the TCB address or TTOKEN represents a valid TCB
within the primary address space or the ASID parameter is also specified to
further qualify the target TCB.

20 Meaning: Program error. TTOKEN specifies a TCB in another address
space.

Action: The ASID parameter must also be specified to terminate the TCB in
another address space.

24 Meaning: Program error. The caller tried to terminate a task other than the
current task, but did not hold the LOCAL lock.

Action: Ensure that the LOCAL lock is obtained prior to invoking the
CALLRTM macro for this type of request.

28 Meaning: Program error. TTOKEN specifies a task other than the current
one and the caller is disabled for I/O and external interrupts.

Action: Ensure that the caller is enabled for I/O and external interrupts
before invoking the CALLRTM macro for this type of request.

When CALLRTM returns control to your program, for TYPE=MEMTERM, register
15 contains one of the following hexadecimal return codes.

Table 24. Return codes for the CALLRTM macro for TYPE=MEMTERM

Hexadecimal return
code

Meaning and action

00 Meaning: The MEMTERM request was scheduled successfully. Note that
memory termination occurs asyncronously and that the actual termination
process might not have started when the CALLRTM service returns to its
caller. Termination of an address space might also be temporarily deferred
by a system service. If so, when the deferral condition is released, the
system will honor the MEMTERM request.

Action: None.

18 Meaning: Program error. The ASID value is not valid.

Action: Ensure that the ASID represents a currently active address space.

CALLRTM macro

Chapter 17. CALLRTM — Call recovery termination manager 159

Table 24. Return codes for the CALLRTM macro for TYPE=MEMTERM (continued)

Hexadecimal return
code

Meaning and action

2C Meaning: Environmental error. The requested ASID represents an address
space that is non-memtermable.

Action: The memory termination request is not honored. Depending on the
circumstances involved, it might be appropriate to stop the system with a
WAIT state when this return code is received.

When CALLRTM returns control to your program, for TYPE=SRBTERM, register
15 contains one of the following hexadecimal reason and return codes. The first 3
bytes of the register contain the reason code and the last byte contains the return
code.

Table 25. Reason and return codes for the CALLRTM macro for TYPE=SRBTERM

Hexadecimal
reason code

Hexadecimal
return code

Meaning and action

000000 00 Meaning: The SRBTERM request was scheduled
successfully. The target SRB will be terminated at the next
opportunity.

Action: None.

000001 04 Meaning: The SRBIDTOKEN is no longer valid. This return
code implies that the target SRB has already terminated.

Action: None.

000002 04 Meaning: An SRBTERM request with RETRY=YES was
issued against an SRB for which a previous SRBTERM
request with RETRY=NO is still being processed. The older
RETRY=NO SRBTERM will be honored rather than the
new RETRY=YES SRBTERM.

Action: None.

000001 08 Meaning: The SRBIDTOKEN contains data that is not
valid.

Action: Ensure that the SRBIDTOKEN parameter points to
a valid token which was returned by the IEAMSCHD
service.

000001 10 Meaning: System error. The target SRB will terminate if it
is running, but may not terminate if it is suspended or
stopped.

Action: If the SRB does not terminate, reissue the
SRBTERM request a reasonable number of times. If the SRB
still does not terminate, report this error to the appropriate
IBM support personnel.

000002 10 Meaning: System error. The target SRB will not be
terminated.

Action: Report this error to the appropriate IBM support
personnel.

Example 1
Terminate the primary address space with a completion code of 123.
CALLRTM TYPE=MEMTERM,COMPCOD=123,ASID=0

CALLRTM macro

160 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Example 2
Schedule the TCB, addressed in register 8, for abnormal termination. The abnormal
termination of the TCB takes place in the address space identified by the ASID,
specified in register 5. It has a completion code of 123.
CALLRTM TYPE=ABTERM,COMPCOD=123,ASID=(5),TCB=(8)

Example 3
Terminate the current task and its associated job step task. Register 1 identifies the
completion code and register 6 identifies the accompanying reason code. The
system does not allow the recovery routines of the job step task and its attached
tasks to retry from the abend.
CALLRTM TYPE=ABTERM,RETRY=NO,STEP=YES,TCB=0,COMPCOD=(1),REASON=(6)

Example 4
Terminate the address space identified by the contents of register 2. Register 1
identifies the completion code. TYPE=MEMTERM prevents all task-related
recovery, including task resource managers, from getting control. The system gives
control only to the address space's resource managers.
CALLRTM TYPE=MEMTERM,ASID=(2),COMPCOD=(1)

CALLRTM macro

Chapter 17. CALLRTM — Call recovery termination manager 161

CALLRTM macro

162 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Chapter 18. CHANGKEY — Change virtual storage protection
key

Description
The CHANGKEY macro changes the protection key and fetch protection status of
one or more pages of virtual storage. CHANGKEY is valid for virtual storage that
is obtained by a GETMAIN or a STORAGE macro. The storage must be obtained
in page multiples.

Note: If the system cannot complete the CHANGKEY request, it restores processed
pages to their initial key and fetch protection status.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Supervisor state and key 0
Dispatchable unit mode: Task or SRB
Cross memory mode: PASN=HASN=SASN or PASN¬=HASN¬=SASN
AMODE: 24- or 31-bit
ASC mode: Primary
Interrupt status: Enabled or disabled for I/O and external interrupts
Locks: No requirement
Control parameters: Must be in the primary address space

Programming requirements
The caller must include the CVT and IHAPSA mapping macros and establish
addressability to the CVT with a USING statement.

Restrictions
v CHANGKEY can be used only for storage that has been obtained using the

GETMAIN or STORAGE macros
v CHANGKEY cannot be used to change the storage key to key 0
v CHANGKEY can be used only with subpools 0-127, 129–132, 203-205, 213-215,

244, 247-248, and 251-252
v All storage for which CHANGKEY is invoked must have the same initial key

and fetch protection status.
v CHANGKEY cannot be used for virtual storage that has been defined as shared

(through the IARVSERV macro) with a read-only or a shared-write view.

Input register information
When issuing the CHANGKEY macro, GPR 13 must point to a standard 18-word
save area. If the caller is disabled, the save area must be in fixed storage.

Output register information
After the caller issues the macro, the system might use some registers as work
registers or might change the contents of some registers. When the system returns
control to the caller, the contents of these registers are not the same as they were

© Copyright IBM Corp. 1988, 2013 163

before the macro was issued. Therefore, if the caller depends on these registers
containing the same value before and after issuing the macro, the caller must save
these registers before issuing the macro and restore them after the system returns
control.

When control returns to the caller, the GPRs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code (always 0)

When control returns to the caller, the access registers (ARs) are unchanged.

Performance implications
None.

Syntax
The CHANGKEY macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede CHANGKEY.

CHANGKEY

� One or more blanks must follow CHANGKEY.

R,BA=page addr,EA=page addr page addr: A-type address or register (1) - (12).

L,LISTAD=list addr Note: The R-type macro expansion alters the contents of register 2. EA
should not be specified as (1).

list addr: A-type address or register (1) - (12).

,KEY=stor key stor key: Decimal digit 1-15 or register (0) or register (3) - (12).

,BRANCH=YES

Parameters
The parameters are explained as follows:

R,BA=page addr,EA=page addr

CHANGKEY macro

164 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

L,LISTAD=list addr
Specifies the type of CHANGKEY request:

R Indicates a request to change the key of a single area of virtual storage.

L Indicates a request to change the key of one or more areas of virtual
storage.

BA Specifies the address of the first byte of the first page of the virtual
storage area whose key is to be changed.

EA Specifies the address of the first byte of the last page of the virtual
storage area whose key is to be changed.

LISTAD specifies the address of the first doubleword of a variable length
parameter list in fixed storage. The first word of each element is defined as BA
above and the second word of each element as EA above. If the high-order bit
of the second word is one, then that element is the last element in the
parameter list.

Note:

1. BA must be less than or equal to EA.
2. BA, EA, and LISTAD are expected to be 31-bit addresses, regardless of the

caller's addressing mode.

,KEY=stor key
Specifies the new storage key and fetch protection status for the virtual storage
areas specified. If the stor key specification is a decimal digit, the system
assumes you want fetch protection. If you do not want fetch protection, specify
the protection key in bits 24-27 of a register and leave bit 28 at zero to indicate
no fetch protection.

,BRANCH=YES
The only entry available into the CHANGKEY service routine is branch entry.

ABEND codes
CHANGKEY might terminate abnormally with an abend code of X'08F'. See z/OS
MVS System Codes for an explanation and response for this code.

Return and reason codes
CHANGKEY returns a zero return code in GPR 15.

Example 1
Change the storage key and ensure fetch protection of a single page of virtual
storage addressed by register 5.

L 4,FLCCVT(0,0) LOAD ADDRESS OF THE CVT INTO REGISTER 4
USING CVT,4 ESTABLISH ADDRESSABILITY TO CVT
CHANGKEY R,BA=(REG5),EA=(REG5),KEY=8,BRANCH=YES
.
.
CVT INCLUDE THE CVT
IHAPSA INCLUDE THE PSA

Example 2
Change the storage key and ensure fetch protection of two noncontiguous pages of
virtual storage addressed by PAGE1 and PAGE2 respectively.

CHANGKEY macro

Chapter 18. CHANGKEY — Change virtual storage protection key 165

L 4,FLCCVT(0,0) LOAD ADDRESS OF THE CVT INTO REGISTER 4
USING CVT,4 ESTABLISH ADDRESSABILITY TO CVT
CHANGKEY L,LISTAD=PLIST,KEY=10,BRANCH=YES

.

.

.
PLIST DC 2A(PAGE1) FIRST ELEMENT IN LIST

DC A(PAGE2) BA PART OF SECOND ELEMENT
DC AL1(X’80’) INDICATES LAST ELEMENT IN LIST
DC AL3(PAGE2) EA PART OF SECOND ELEMENT
CVT INCLUDE THE CVT
IHAPSA INCLUDE THE PSA

CHANGKEY macro

166 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Chapter 19. CIRB - Create interruption request block

Note: IBM recommends that you use the SCHEDIRB macro rather than CIRB.

Description
The CIRB macro initializes an interruption request block (IRB) for asynchronous
exit processing.

If you intend that the IRB run under a task other than the task that issues CIRB,
and you want the system to free the IRB, then you must use BRANCH=YES,
having placed the address of the TCB of the task using the IRB into register 4
before issuing CIRB.

For information about asynchronous exit routines, see z/OS MVS Programming:
Authorized Assembler Services Guide.

Environment
These are the requirements for the caller:
v When BRANCH=NO

Environmental factor Requirement
Minimum authorization: None.
Dispatchable unit mode: Task
Cross memory mode: PASN = HASN
AMODE: Any
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Must be in the primary address space

v When BRANCH=YES

Environmental factor Requirement
Minimum authorization: Supervisor state and PSW key 0
Dispatchable unit mode: Task or SRB
Cross memory mode: PASN=HASN
AMODE: Any
ASC mode: Primary
Locks: LOCAL lock held
Control parameters: Must be in the primary address space

For BRANCH=YES:
v The caller must pass the address of the target TCB in register 4.
v The caller must include the CVT mapping macro.
v Control is returned in supervisor state, key zero, with the same lock as held on

entry.

© Copyright IBM Corp. 1988, 2013 167

Register information
After the caller issues the macro, the macro might use some registers as work
registers or might change the contents of some registers. When the macro returns
control to the caller, the contents of these registers are not the same as they were
before the macro was issued. Therefore, if the caller depends on these registers
containing the same value before and after issuing the macro, the caller must save
these registers before issuing the macro and restore them after the system returns
control.

When control returns to the caller, the general purpose registers (GPRs) contain:

Register
Contents

0 Used as a work register by the macro

1 The address of the created IRB

2-13 Unchanged

14-15 Used as work registers by the macro

Syntax
This is the standard form of the CIRB macro:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede CIRB.

CIRB

� One or more blanks must follow CIRB.

EP=entry point addr entry point addr: RX-type address, or register (0) or (2) - (12).

,KEY=PP Default: KEY=PP

,KEY=SUPR

,MODE=PP Default: MODE=PP

,MODE=SUPR

,SVAREA=NO Default: SVAREA=NO

,SVAREA=YES

,RETIQE=YES Default: RETIQE=YES

,RETIQE=NO

CIRB macro

168 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Syntax Description

,STAB=DYN

,WKAREA=workarea size workarea size: Decimal digit, or register (2) - (12).

Default: zero

,BRANCH=NO Default: BRANCH=NO

,BRANCH=YES

,RETRN=NO Default: RETRN=NO

,RETRN=YES Note: This parameter has meaning only when RETIQE=NO is specified.

,AMODE=CALLER Default: AMODE=CALLER

,AMODE=DEFINED

Parameters
These are the parameters:

EP=entry point addr
Specifies the address of the entry point of the user's asynchronous exit routine.

,KEY=PP
,KEY=SUPR

Specifies whether the asynchronous exit routine operates with a key of zero
(SUPR) or with a key obtained from the TCB of the task issuing the CIRB
macro (PP).

,MODE=PP
,MODE=SUPR

Specifies whether the asynchronous exit routine executes in problem program
(PP) or supervisor (SUPR) mode.

,SVAREA=NO
,SVAREA=YES

Specifies whether to obtain a 72-byte register save area from the virtual storage
assigned to the problem program. When a save area is requested, CIRB places
the save area address in the IRB. The address of this area is passed to the user
routine via register 13.

,RETIQE=YES
,RETIQE=NO

Specifies whether the associated queue elements are request queue elements
(YES) or interruption queue elements (NO).

,STAB=DYN
Specifies that the IRB (including the work area) is to be freed on termination of
the exit routine.

Note: When the STAB parameter is omitted from the CIRB macro, the IRB
remains available for later use by the task issuing the macro.

CIRB macro

Chapter 19. CIRB - Create interruption request block 169

,WKAREA=workarea size
Specifies the size, in doublewords, of the work area to be included in the IRB.
The area can be used to build IQEs. The first four bytes of the obtained work
area contain the address of the next available IQE (RBNEXAV field). The
maximum size is 255 doublewords. Note that CIRB does not clear the
workarea. For example, to request an IQE but no additional workarea, specify
3, for 3 doublewords, to request a 16-byte IQE plus additional space used by
MVS.

,BRANCH=NO
,BRANCH=YES

Specifies whether branch linkage (YES) or SVC linkage (NO) to CIRB is
provided.

,RETRN=NO
,RETRN=YES

Specifies whether the IQE is (YES) or is not (NO) kept so it can be used again
after when the asynchronous exit terminates.

,AMODE=CALLER
,AMODE=DEFINED

Specifies the addressing mode where the exit routine is to be given control.

When CALLER is specified, the exit routine receives control in the same
addressing mode as the caller.

When DEFINED is specified, the addressing mode of the exit routine is pointer
defined. The addressing mode is determined by the setting of the high order
bit of the entry point address for the exit routine. When the bit is set, the
addressing mode is 31-bit; when the bit is not set, the addressing mode is
24-bit.

Abend codes
None.

Return and reason codes
None.

Example 1
Create an IRB to be used in scheduling an asynchronous exit. The exit is scheduled
via the IQE interface to the exit effector. It receives control in the supervisor state.
The IRB is to be freed when it terminates. The exit receives control at the IQERTN
label.
CIRB EP=IQERTN,MODE=SUPR,RETIQE=NO,STAB=DYN,BRANCH=NO

Example 2
Create an IRB to be used in scheduling an asynchronous exit. The RQE interface to
the exit effector is used to schedule the routine. The exit gets control at the
RQETEST label.
CIRB EP=RQETEST,KEY=SUPR,MODE=SUPR,STAB=DYN,BRANCH=NO

CIRB macro

170 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Chapter 20. CMDAUTH — Command authorization service

Description
The CMDAUTH macro verifies the RACF authorization of commands. Each
parameter corresponds to a RACROUTE parameter.

There is a list and an execute form, but no standard form of the CMDAUTH
macro.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Supervisor state and key 0 - 7
Dispatchable unit mode: Task
Cross memory mode: HASN=PASN=SASN
AMODE: 24- or 31-bit addressing mode
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Must be addressable in the caller's primary address space

Restrictions
None.

Register information
After the caller issues the macro, the system might use some registers as work
registers or might change the contents of some registers. When the system returns
control to the caller, the contents of these registers are not the same as they were
before the macro was issued. Therefore, if the caller depends on these registers
containing the same value before and after issuing the macro, the caller must save
these registers before issuing the macro and restore them after the system returns
control.

When control returns to the caller, the general purpose registers (GPRs) contain:

Register
Contents

0 Return code from the security product. If the security product is RACF, see
the description of the return codes listed with the RACROUTE
REQUEST=AUTH macro in z/OS Security Server RACROUTE Macro
Reference

1 Address of error messages if MSGRTN=YES is specified; otherwise, used as
a work register by the system.

2-13 Unchanged

14 Used as a work register by the system

15 Return code

© Copyright IBM Corp. 1988, 2013 171

Programming requirements
None.

Performance implications
None.

CMDAUTH - List form
Use the list form of the CMDAUTH macro to construct a nonexecutable control
program parameter list.

Syntax
The list form of the CMDAUTH macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede CMDAUTH.

CMDAUTH

� One or more blanks must follow CMDAUTH.

,MF=(L, cntl addr) cntl addr: RX-type address or register (2) - (12).

Parameters
The parameters for the list form of the CMDAUTH macro are explained as follows:

,MF=(L,cntl addr)
Specifies the list form of CMDAUTH. cntl addr defines the area into which the
system stores the parameter list.

CMDAUTH - Execute form
The execute form of the CMDAUTH macro can refer to and modify the parameter
list constructed by the list form of the macro.

Syntax
The execute form of the CMDAUTH macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede CMDAUTH.

CMDAUTH macro

172 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Syntax Description

CMDAUTH

� One or more blanks must follow CMDAUTH.

ENTITY = entity name addr entity name addr: RX-type address or register (2) - (12).

,ATTR = access level addr access level addr: RX-type address or register (2) - (12).

,LOGSTR=log string addr log string addr: RX-type address or register (2) - (12).

Note: See usage note (following) for usage information.

,UTOKEN=utoken addr utoken addr: RX-type address or register (2) - (12).

Note: See usage note (following) for usage information.

,CNTLBLK=cntl blk addr cntl blk addr: RX-type address or register (2) - (12).

Note: See usage note (following) for usage information.

,CBLKTYPE=CIB Note: See usage note (following) for usage information.

,CBLKTYPE=CMDX (For use of CMDAUTH in command installation exit)

,CBLKTYPE=SSCM

,REQSTOR = reqstor addr reqstor addr: RX-type address or register (2) - (12).

,SUBSYS = subsys addr subsys addr: RX-type address or register (2) - (12).

,MSGSUPP=YES Default: NO

,MSGSUPP=NO

,MSGRTN=YES Default: NO

,MSGRTN=NO

,MSGSP=subpool number Default: 229.

,MF=(E, cntl addr) cntl addr: RX-type address or register (2) - (12).

Usage Note: You must specify one of the following parameter combinations:
v UTOKEN and LOGSTR
v CNTLBLK and CBLKTYPE

You cannot specify both of the preceding combinations. Also note that:
v UTOKEN is not valid with CNTLBLK and CBLKTYPE

CMDAUTH macro

Chapter 20. CMDAUTH — Command authorization service 173

v LOGSTR is optional with CNTLBLK and CBLKTYPE
v CNTLBLK is not valid with UTOKEN and LOGSTR
v CBLKTYPE is not valid with UTOKEN and LOGSTR

You can use CNTLBLK and CBLKTYPE to obtain authorization information
without having to specify the UTOKEN and LOGSTR for the command. See the
description of the CBLKTYPE parameter for further information.

Parameters
The parameters are explained as follows:

ENTITY=entity name addr
Specifies the address of a required 39-byte input field containing the resource
name for the command whose authority you are checking. If the entity name is
less than 39 bytes, left-justify it and pad it on the right with blanks.

ENTITY corresponds to the RACROUTE REQUEST=AUTH parameter,
ENTITY.

,ATTR=access level addr
Specifies the SAF access level for the command whose authority you are
checking. The bits set in the 1-byte field indicate the access level. The following
settings apply:
v 02 - READ
v 04 - UPDATE
v 08 - CONTROL.

ATTR corresponds to the RACROUTE REQUEST=AUTH parameter, ATTR.

LOGSTR=log string addr
Specifies the address of a required input field containing the command text of
the command whose authority you are checking. The first byte of the input
field must contain the length of the command text.

LOGSTR corresponds to the RACROUTE REQUEST=AUTH parameter,
LOGSTR.

UTOKEN=utoken addr
Specifies the address of the UTOKEN that RACROUTE will use for command
authorization.

UTOKEN corresponds to the RACROUTE REQUEST=AUTH parameter,
UTOKEN.

CNTLBLK=cntl blk addr
Specifies the address of the control block the system passes as input to
CMDAUTH.

CBLKTYPE=CIB
CBLKTYPE=SSCM

Specifies the type of control block whose address you specify on the CNTLBLK
parameter.

You can use the CIB as input when you need authorization information for
START, STOP, or MODIFY commands.

Use the SSCM as the control block input for any subsystems that use the
CMDAUTH macro during SSI command exit (function code 10) processing.

,REQSTOR=reqstor addr
Specifies the address of an 8-byte character field containing the control point

CMDAUTH macro

174 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

name. (This address identifies a unique control point within a set of control
points that exists in a subsystem.) If the control point name is less than eight
bytes, left-justify it and pad it on the right with blanks.

If you code this operand and RACF is installed, change the RACF router table
to match the operand.

,SUBSYS=subsys addr
Specifies the address of an 8-byte character field containing the calling
subsystem's name, version, and release level. If the subsystem's name is less
than eight bytes, left-justify it and pad it on the right with blanks.

If you code this operand and RACF is installed, change the RACF router table
to match the operand.

,MSGSUPP=YES
,MSGSUPP=NO

Indicates whether you want to suppress write-to-operator (WTO) messages
from SAF and RACF. The default is NO.

,MSGRTN=YES
,MSGRTN=NO

Indicates whether you want CMDAUTH to return error messages to the caller.
If you specify YES, CMDAUTH returns the address of the messages to register
1. The default is NO.

Note: The caller must release the storage obtained when MSGRTN = YES. The
address of the message in register 1 points to the following structure. For
example:
ST R1,MSGPT SAVE THE ADDRESS OF MESSAGE POINTER
USING MSGMAP,R1 OBTAIN ADDRESSABILITY TO THE MESSAGE
...

TITLE ’MESSAGE MAP’
MSGMAP DSECT

DS 0CL13
MSGHEADR DS 0CL12 MESSAGE HEADER
MSGLEN DS F LENGTH OF MESSAGE
MSGNEXTP DS A ADDRESS OF NEXT MESSAGE
MSGWPL DS A START OF MESSAGE WPL
MSGTXT DS 0CL1 START OF MESSAGE TEXT

,MSGSP=subpool number
Specifies the number of the subpool into which you want error messages
returned. The default is 229.

,MF=(E,cntl addr)
Specifies the execute form of CMDAUTH. This form generates the code to
store the parameters into the parameter list and execute the CMDAUTH
macro. cntl addr defines the area into which the system stores the parameter
list.

Return codes
When CMDAUTH macro returns control to your program, GPR 15 contains a
return code.

Table 26. Return Codes for the CMDAUTH Macro

Hexadecimal Return
Code

Meaning

00 Meaning: Command issuer is authorized to issue the command.

CMDAUTH macro

Chapter 20. CMDAUTH — Command authorization service 175

Table 26. Return Codes for the CMDAUTH Macro (continued)

Hexadecimal Return
Code

Meaning

04 Meaning: No authorization decision was made.

08 Meaning: Command issuer is not authorized to issue the command.

Example
Verify the authorization of a command. Register 4 points to the data set name and
register 3 points to the access level setting.
DO_CMDAUTH CMDAUTH ENTITY=(R4),ATTR=(R3),SUBSYS=SUB_NAME,

REQSTOR=REQ_NAME,UTOKEN=UTOKEN_ADDR,
LOGSTR=LOG_STR,MF=(E,CMDAUTH_LIST)

CMDAUTH macro

176 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Chapter 21. CNZMXURF — UCME look-up service macro

Description
Use the CNZMXURF macro to locate the console control block (UCME) that
contains a specific console ID. CNZMXURF can only be used to look up MCS and
SMCS console IDs.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state and any PSW key.
Dispatchable unit mode: Task
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 24- or 31-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: The caller must hold the CMS lock.
Control parameters: Not applicable; held in a register.

Programming requirements
Before issuing the CNZMXURF macro, place a 4-byte console ID into a register. No
register save area is required; however, the input registers are saved on the linkage
stack.

Restrictions
None.

Input register information
Before issuing the CNZMXURF macro, the caller must either place a 4-byte console
ID into a register, or directly specify the RX-type address of a 4-byte console ID.

Output register information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register
Contents

0 UCME pointer

1 Used as a work register by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

© Copyright IBM Corp. 1988, 2013 177

0–15 Unchanged

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
The CNZMXURF macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede CNZMXURF.

CNZMXURF

� One or more blanks must follow CNZMXURF.

register register: General purpose register Register (2-12) containing a 4-byte console
ID.

or

console-ID console-ID: RX-type address containing a 4-byte console ID.

,INUSE=NO Default: INUSE=NO

,INUSE=YES

Parameters
The parameters are explained as follows:

register
Contains the 4-byte console ID for which the corresponding UCME is to be
located.

console-ID
Contains the 4-byte console ID for which the corresponding UCME is to be
located.

INUSE=YES
The UCME corresponding to the input console ID will be returned only if it is
initialized and in use.

INUSE=NO
The UCME corresponding to the input console ID will be returned, even if it is
not initialized and not in use.

CNZMXURF macro

178 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

ABEND codes
None.

Return and reason codes
When the CNZMXURF macro returns control to your program, register 15 contains
one of the following hexadecimal return codes:

Hexadecimal
Return Code

Meaning and Action

00 Meaning: No errors. A pointer to the UCME containing the console ID
is returned in register 0.

Action: None.

04 Meaning: A UCME containing the specified console ID was not found.
Register 0 contains zero.

Action: None.

08 Meaning: Incorrect console ID input or there is no UCME for the
specified console ID. Register 0 contains zero.

v Non-MCS console class was supplied.

v INTERNAL console ID (0) was supplied.

v INSTREAM console ID (128) was supplied.

v UNKNOWN console ID (255) was supplied.

v There is no UCME for the specified 4-byte console ID or the UCME
for the console ID is not initialized and in use.

Action: None.

16 Meaning: CNZMXURF service is not available.

Action: None.

Example 1
Locate the UCME associated with the 4-byte console ID in register 4.
CNZMXURF (4)

Example 2
Locate the UCME associated with the 4-byte console ID stored in field
“MYCONID”.
CNZMXURF MYCONID

CNZMXURF macro

Chapter 21. CNZMXURF — UCME look-up service macro 179

CNZMXURF macro

180 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Chapter 22. CNZQUERY — Consoles query

Description
CNZQUERY enables you to obtain information about the consoles component. You
can specify whether you want information about WTORs and the message
retention facility (AMRF) returned. The information is returned in an answer area
defined by mapping macro CNZMYQUA.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Supervisor state or PKM 0
Dispatchable unit mode: Task
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: The caller must not be locked.
Control parameters: Control parameters must be in the primary address space or,

for AR-mode callers, must be in an address/data space that
is addressable through a public entry on the caller's
dispatchable unit access list (DU-AL).

The user-provided answer area (via the ANSAREAALET
parameter) must be in a 2G data space on the caller's
dispatchable unit access list or must be a 2G commmon-area
data space.

Programming requirements
The caller must include the CNZMYQUA macro to get a mapping of the output
area which is in the data space designated by the ANSAREAALET keyword. This
macro also includes symbolic constants for the return and reason codes provided
by this service.

It is recommended that, after using the returned information the pages in the
ANSAREAALET data space be released with the RELEASE parameter of the
DSPSERV macro.

Restrictions
The caller must not have EUT FRRs established.

Input register information
Before issuing the CNZQUERY macro, the caller does not have to place any
information into any general purpose register (GPR) unless using it in register
notation for a particular parameter, or using it as a base register.

In that case, the caller does not have to place any information into any access
register (AR) unless using it in register notation for a particular parameter, or using
it as a base register.

© Copyright IBM Corp. 1988, 2013 181

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0 Reason code if GPR15 is not 0

1 Used as a work register by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Performance implications
None.

Syntax
The CNZQUERY macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede CNZQUERY.

CNZQUERY

� One or more blanks must follow CNZQUERY.

WTOR=NO DEFAULT: WTOR=NO

WTOR=YES

,AMRF=NO DEFAULT: AMRF=NO

,AMRF=YES

,ANSAREAALET=ansareaalet ansareaalet: RS-type address or address in register (2) - (12)

,RETCODE=retcode retcode: RS-type address or register (2) - (12).

CNZQUERY macro

182 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Syntax Description

,RSNCODE=rsncode rsncode: RS-type address or register (2) - (12).

,PLISTVER=IMPLIED_VERSION Default: PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0

,MF=S Default: MF=S

,MF=(L,list addr) list addr: RS-type address or register (1) - (12)

,MF=(L,list addr,attr)

,MF=(L,list addr,0D)

,MF=(E,list addr)

,MF=(E,list addr,COMPLETE)

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the CNZQUERY
macro invocation. The name must conform to the rules for an ordinary
assembler language symbol.

WTOR=NO
WTOR=YES

An optional parameter that indicates whether or not information about WTORs
is to be returned.

DEFAULT: NO

WTOR=NO
Do not return information about WTORs.

WTOR=YES
Return information about WTORs. A queue of OREs is returned, each of
which has field ORERWQE which contains the address of the associated
WQE only when bits ORESUSP and OREINUSE are both off. When either
of those bits is on, there is no associated WQE, as the building of the ORE
is not yet complete. The address of the first ORE is in field
CNZMYQUAH_First_ORE_Addr. The ORE is mapped by IHAORE and the
address of the next ORE is in field ORELKP, with a zero value in ORELKP
indicating that this is the last element of the queue. The WQE is mapped
by IHAWQE. Bit Cnzmyquah_Valid_WTOR_INFO is set to 1 when the
information is successfully returned.

,AMRF=NO
,AMRF=YES

A optional parameter that indicates whether or not information about the
action message retention facility (AMRF) is to be returned.

DEFAULT: NO

,AMRF=NO
Do not return information about the AMRF.

CNZQUERY macro

Chapter 22. CNZQUERY — Consoles query 183

,AMRF=YES
Return information about the AMRF. Three queues of WQEs are returned.
The address of the first immediate action WQE is in field
CNZMYQUAH_First_IA_WQE_Addr. The address of the first eventual
action WQE is in field CNZMYQUAH_First_EA_Addr. The address of the
first critical eventual action WQE is in field
CNZMYQUAH_First_CEA_WQE_Addr. The WQE is mapped by IHAWQE
and the address of the next WQE is in field WQELKP, with a zero value in
WQELKP indicating that this is the last element of the queue. In addition,
some status information about AMRF is returned (field
CNZMYQUAH_AMRF_Status). Bit Cnzmyquah_Valid_AMRF_INFO is set
to 1 when the information is successfully returned.

,ANSAREAALET=ansareaalet
A required input field that contains the ALET of the data space which is to
contain the output information. The data space must be on the dispatchable
unit access list or be a common area data space. It must include the address
range X'1000' through X'7FFFEFFF' (that is, it is a 2G data space). It may
contain the 0 and X'7FFFF000' pages. The area is mapped by macro
CNZMYQUA. The header area, mapped by dsect CNZMYQUAHDR, will
begin at location X'1000' in the data space.

To code: Specify the RS-type address, or address in register (2)-(12), of a
fullword field.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from
GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from
GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter in the "0–0" range that specifies the version of the
macro. PLISTVER is the only key allowed on the list form of MF and
determines which parakmeter list is generated. Note that MAX may be
specified instead of a number, and the parameter list will be of the largest size
currently supported. This size may grow from release to release (thus possibly
affecting the amount of storage needed by your program). If your program can
tolerate this, IBM recommends that you always specify MAX when creating the
list form parameter list as that will ensure that the list form parameter list is
always long enough to hold whatever parameters might be specified on the
execute form.

DEFAULT: IMPLIED_VERSION. When PLISTVER is omitted, the default is
the lowest version which allows all of the parameters specified on the
invocation to be processed.

To code: Specify one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 0

CNZQUERY macro

184 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline
parameter list and generates the macro invocation to transfer control to the
service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with
the execute form of the macro for applications that require reentrant code. The
list form defines an area of storage that the execute form uses to store the
parameters. Only the PLISTVER parameter may be coded with the list form of
the macro.

Use MF=E to specify the execute form of the macro. Use the execute form
together with the list form of the macro for applications that require reentrant
code. The execute form of the macro stores the parameters into the storage area
defined by the list form, and generates the macro invocation to transfer control
to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and
MF=E, this can be an RS-type address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary
alignment of the parameter list. Use a value of 0F to force the parameter
list to a word boundary, or 0D to force the parameter list to a doubleword
boundary. If you do not code attr, the system provides a value of 0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply
defaults for omitted optional parameters.

ABEND codes
CNZQUERY might terminate abnormally with an abend code of X'0C2'. See z/OS
MVS System Codes for an explanation and response for this code.

Return and reason codes
Return and reason code constants are defined in macro CNZMYQUA.

When the CNZQUERY macro returns control to your program, GPR 15 (and
retcode, if you coded RETCODE) contains one of the following hexadecimal return
codes. GPR 0 (and rsncode, if you coded RSNCODE) contains one of the following
reason codes.

Table 27. Return and Reason Codes for the CNZQUERY Macro

Hexadecimal
Return Code

Reason Code Equate symbol
Meaning and Action

00 00 Equate symbol: CNZQUERYRc_OK

Meaning: CNZQUERY request successful.

Action: None.

CNZQUERY macro

Chapter 22. CNZQUERY — Consoles query 185

Table 27. Return and Reason Codes for the CNZQUERY Macro (continued)

Hexadecimal
Return Code

Reason Code Equate symbol
Meaning and Action

08 Equate symbol: CNZQUERYRc_InvParm

Meaning: CNZQUERY request specifies invalid parameter.

Action: Refer to action under the individual reason code.

08 xxxx0801 Equate symbol: CnzqueryRsn_BadParmList

Meaning: Unable to access parameter list.

Action: Check for possible storage overlay.

08 xxxx0802 Equate symbol: CnzqueryRsn_SrbMode

Meaning: SRB mode.

Action: Avoid requesting this function in SRB mode.

08 xxxx0803 Equate symbol: CnzqueryRsn_NotEnabled

Meaning: Not enabled.

Action: Avoid requesting this function while not enabled.

08 xxxx0804 Equate symbol: CnzqueryRsn_BadAnsAreaALET

Meaning: Bad answer area ALET.

Action: Make sure that the ALET associated with the
answer area is valid. The access register might not have
been set up correctly.

08 xxxx0805 Equate symbol: CnzqueryRsn_BadAnsArea

Meaning: Error accessing answer area. The data space
might not have been defined to span 2G.

Action: Make sure that the provided answer area is a valid
2G data space.

08 xxxx0806 Equate symbol: CnzqueryRsn_ReservedNot0

Meaning: Reserved field not 0.

Action: Check for possible storage overlay of the parameter
list.

08 xxxx0807 Equate symbol: CnzqueryRsn_BadParmlistALET

Meaning: Bad parmlist ALET.

Action: Make sure that the ALET of the parameter list is
valid. The access register might not have been set up
correctly.

08 xxxx0808 Equate symbol: CnzqueryRsn_BadVersion

Meaning: Bad version number.

Action: Check for possible storage overlay of the parameter
list.

08 xxxx0809 Equate symbol: CnzqueryRsn_Locked

Meaning: Locked.

Action: Avoid requesting this function in this environment.

CNZQUERY macro

186 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Table 27. Return and Reason Codes for the CNZQUERY Macro (continued)

Hexadecimal
Return Code

Reason Code Equate symbol
Meaning and Action

08 080A Equate symbol: CnzqueryRsn_FRR

Meaning: An FRR is set.

Action: Avoid requesting this function in this environment.

10 Equate symbol: CnzqueryRC_CompError

Meaning: Unexpected failure.

Action: Refer to the action provided with the specific
reason code.

10 xxxx1001 Equate symbol: CnzqueryRsn_CompError

Meaning: Unexpected failure. The state of the request is
unpredictable.

Action: Contact your system programmer.

Example
* * 25800000
* Example 1 * 25850000
* * 25900000
* Operation: * 25950000
* * 26000000
* After having established addressability and a dynamic area, * 26050000
* * 26100000
* * 26150000
* 1. Create a 2G data space * 26200000
* * 26250000
* 2. Add the data space to the dispatchable unit access list * 26300000
* * 26350000
* 3. Invoke CNZQUERY to retrieve WTOR and AMRF information * 26400000
* * 26450000
* 4. Examine the WTOR queue * 26500000
* * 26550000
* 5. Examine the AMRF Immediate Action queue * 26600000
* * 26650000
* 6. Delete the access list entry * 26700000
* * 26750000
* 7. Delete the data space * 26800000
* * 26850000
* * 26900000
* * 26950000
* The code is as follows. * 27000000
* * 27050000
* SAC 512 Enter AR ASC mode * 27100000
* SYSSTATE ASCENV=AR,ARCHLVL=2 * 27150000
* *** * 27200000
* * Create a 2G data space * * 27250000
* *** * 27300000
* DSPSERV CREATE,NAME=dsName,BLOCKS=MaxBlocks, * * 27350000
* STOKEN=dsSTOKEN, * * 27400000
* MF=(E,DSPSERVL) * 27450000
* * * 27500000
* * Place code here to check return code from GPR 15 and * 27550000
* * reason code from GPR 0. * 27600000
* * * 27650000
* *** * 27700000
* * Add the data space to the dispatchable unit access list * * 27750000
* *** * 27800000
* ALESERV ADD,STOKEN=dsSTOKEN,ALET=dsALET, * * 27850000

CNZQUERY macro

Chapter 22. CNZQUERY — Consoles query 187

* MF=(E,ALESERVL) * 27900000
* * * 27950000
* * Place code here to check return code from GPR 15. * 28000000
* * * 28050000
* *** * 28100000
* * Retrieve WTOR and AMRF information * * 28150000
* *** * 28200000
* CNZQUERY WTOR=YES,AMRF=YES,ANSAREAALET=dsALET, * * 28250000
* RETCODE=LRetcode,RSNCODE=LRsncode, * * 28300000
* MF=(E,CNZQUERYL) * 28350000
* * * 28400000
* * Place code here to check return/reason codes. * 28450000
* * * 28500000
* LHI 2,HeaderAddr Access header info * 28550000
* LAM 2,2,dsALET With ALET * 28600000
* USING CnzmyquaHdr,2 * 28650000
* *** * 28700000
* * Examine the WTOR queue * * 28750000
* *** * 28800000
* CPYA 3,2 ORE ALET = hdr ALET * 28850000
* ICM 3,B’1111’,Cnzmyquah_First_ORE_Addr * 28900000
* JZ NO_OREs * 28950000
* USING OREF,3 * 29000000
* CPYA 4,2 WQE ALET = ORE ALET * 29050000
* NEXT_ORE DS 0H * 29100000
* L 4,ORERWQE * 29150000
* USING WQE,4 * 29200000
* * * 29250000
* * Place code here to examine the specific ORE and * 29300000
* * its associated WQE * 29350000
* * * 29400000
* DROP 4 * 29450000
* ICM 3,B’1111’,ORELKP * 29500000
* JNZ NEXT_ORE * 29550000
* DROP 3 * 29600000
* NO_OREs DS 0H * 29650000
* *** * 29700000
* * Examine the AMRF Immediate Action queue * * 29750000
* *** * 29800000
* CPYA 3,2 WQE ALET = hdr ALET * 29850000
* ICM 3,B’1111’,Cnzmyquah_First_IA_WQE_Addr * 29900000
* JZ NO_WQEs * 29950000
* USING WQE,3 * 30000000
* NEXT_WQE DS 0H * 30050000
* * * 30100000
* * Place code here to examine the specific WQE. * 30150000
* * * 30200000
* ICM 3,B’1111’,WQELKP * 30250000
* JNZ NEXT_WQE * 30300000
* DROP 3 * 30350000
* NO_WQEs DS 0H * 30400000
* *** * 30450000
* *** * 30500000
* * Delete the access list entry * * 30550000
* *** * 30600000
* ALESERV DELETE,ALET=dsALET, * * 30650000
* MF=(E,ALESERVL) * 30700000
* * * 30750000
* * Place code here to check return code from GPR 15. * 30800000
* * * 30850000
* *** * 30900000
* * Delete the data space * * 30950000
* *** * 31000000
* DSPSERV DELETE,STOKEN=dsSTOKEN, * * 31050000
* MF=(E,DSPSERVL) * 31100000
* * * 31150000
* * Place code here to check return code from GPR 15 and * 31200000

CNZQUERY macro

188 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

* * reason code from GPR 0. * 31250000
* * * 31300000
* *** * 31350000
* * Exit the module * * 31400000
* *** * 31450000
* * * 31500000
* * Place code here to free the dynamic area and * 31550000
* * exit the module. * 31600000
* * here * 31650000
* * * 31700000
* HeaderAddr EQU x’1000’ Where Cnzmyqua_Hdr is placed * 31750000
* STATAREA DS 0D * 31800000
* dsName DC CL8’MYDATASP’ * 31850000
* MaxBlocks DC A(524288) Number of blocks in full 2G data space* 31900000
* DYNAREA DSECT * 31950000
* dsSTOKEN DS D * 32000000
* dsALET DS D * 32050000
* LRetcode DS F * 32100000
* LRsncode DS F * 32150000
* ListForms DS 0D * 32200000
* DSPSERV MF=(L,DSPSERVL) * 32250000
* ORG ListForms * 32300000
* ALESERVL ALESERV MF=L * 32350000
* ORG ListForms * 32400000
* CNZQUERY MF=(L,CNZQUERYL) * 32450000
* ORG , * 32500000
* CNZMYQUA Output information * 32550000
* IHAWQE WQE * 32600000
* IHAORE ORE * 32650000
* * 32700000

CNZQUERY macro

Chapter 22. CNZQUERY — Consoles query 189

CNZQUERY macro

190 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Chapter 23. COFCREAT — Create a VLF object

Description
The COFCREAT macro allows your application to add an object, on behalf of an
end user, to a class of VLF objects. Before issuing COFCREAT, or any VLF macro,
you need to understand the information on using the virtual lookaside facility
(VLF) that appears in z/OS MVS Programming: Authorized Assembler Services Guide.

Normal processing of an end user request for an object includes the following
steps:
1. Issue the COFRETRI macro to attempt to retrieve the object.
2. Examine the return code from COFRETRI. VLF can only create an object after

you have tried to retrieve it and when COFRETRI completed with one of the
following conditions:
v Object not found (return code 8)
v Best available object found (return code 2)
v Best available object found, but target area is not large enough (return code

6)
3. If the return code is 8, create the object. (Processing return codes 2 or 6 might

also require you to create the object.) Between issuing the COFRETRI and the
COFCREAT for the object, do not issue any COFRETRI macro with the same
UTOKEN.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Supervisor state, with PSW key 0-7
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 24- or 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Must be in the primary address space

Programming requirements
v Your program must be running under a task with the same home ASID as the

issuer of the COFIDENT macro that identified the user.
v For non-PDS classes, you can issue COFCREAT with the REPLACE option. If

you specify REPLACE, VLF does not require that COFRETRI precede
COFCREAT. Because VLF cannot then guarantee that the source object has not
changed, your application must ensure that the source object remains unchanged
between the time when you reference the source object to create the object parts
list and the time when you receive control back from COFCREAT.
If you do not specify REPLACE, you must issue the COFRETRI macro before
you issue COFCREAT.

© Copyright IBM Corp. 1988, 2013 191

v To ensure the integrity of the data, the working storage that your application
uses to create the VLF object must not be key 8 storage, and you must perform
the following steps:
1. Change to (or remain in) supervisor state.
2. Issue a BLDL macro for the PDS member using the same DDNAME used to

identify the user to VLF. If a user changes the data set allocation associated
with a DDNAME used to identify a VLF user, VLF invalidates that user's
token (UTOKEN).

3. Save the “K” value from a successful BLDL to pass to VLF as the CINDEX
value on COFCREAT.

4. Read the object from DASD, ensuring the following:
– The DCB used for I/O must not be in key 8 storage.
– The I/O buffers must not be in key 8 storage.

5. Issue the COFCREAT macro to create the VLF object.
6. If necessary, copy the object to key 8 storage to enable the user program to

access it.
Failure to follow these steps compromises the integrity of data objects in VLF
storage. Depending on the nature of the class of VLF objects, incorrect data
could cause severe system integrity problems.

v If you do not specify REPLACE and issue COFCREAT for an object that already
exists in VLF storage, VLF returns a successful completion code but does not
replace the object data. In this case, VLF assumes that the data you supply is
identical to the data that already exists in its storage.
If you specify REPLACE and issue COFCREAT for an object that already exists
in VLF storage, VLF does replace the existing object with the parts specified in
the object parts list.

Restrictions
None.

Input register information
Before issuing the COFCREAT macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0 Reason code

1 Used as a work register by the system

2-14 Unchanged

15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

COFCREAT macro

192 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

2-14 Unchanged

15 Used as a work register by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
The standard form of the COFCREAT macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede COFCREAT

COFCREAT

� One or more blanks must follow COFCREAT

MAJOR=major major: Rx-type address or register (2) - (12).

CINDEX=cindex cindex: Rx-type address or register (2) - (12).

,DDNAME=ddname ddname: Rx-type address or register (2) - (12).

Specify DDNAME only with CINDEX.

,REPLACE=NO Default: REPLACE=NO

,REPLACE=YES Specify REPLACE only with MAJOR.

,MINOR=minor minor: Rx-type address or register (2) - (12).

,UTOKEN=utoken utoken: Rx-type address or register (2) - (12).

,OBJPRTL=objprtl objprtl: Rx-type address or register (2) - (12).

,OBJPLSZ=objplsz objplsz: Rx-type address or register (2) - (12).

,RETCODE=retcod retcod: Rx-type address or register (2) - (12).

,RSNCODE=rsncod rsncod: Rx-type address or register (2) - (12).

COFCREAT macro

Chapter 23. COFCREAT — Create a VLF object 193

Syntax Description

Parameters
The parameters are explained as follows:

MAJOR=major
Specifies the major name of the object to be created. The length of the major
name must be the same as the length specified by MAJLEN on the COFDEFIN
macro that defined the class of objects. Specify MAJOR only for a non-PDS
class. (For a PDS class, you must use CINDEX and DDNAME.)

CINDEX=cindex
Identifies a one-byte field that contains the concatenation index of the major
name associated with the object being created. CINDEX is required for a PDS
class. The index is the zero-origin relative number of the major name for the
object in the major name list of the user creating the object. This list is the one
supplied to VLF on the COFIDENT macro that identified the user to VLF.

For concatenated partitioned data sets, the CINDEX value is the same as the
“K” (concatenation index) value returned when your application issued a
BLDL macro to locate a member.

When you specify CINDEX, you must also specify DDNAME.

,DDNAME=ddname
Specifies the 8-character DDNAME of the concatenated data set list. DDNAME
is required for a PDS class. This DDNAME must be the same as the one
supplied to VLF on the COFIDENT macro that identifies the user to VLF. It
represents the major name search order for this identified user.

When you specify DDNAME, you must also specify CINDEX.

,REPLACE=YES
,REPLACE=NO

Indicates that an object existing in VLF should (REPLACE=YES) or should not
(REPLACE=NO) be replaced by the parts in the input object parts list. If the
object does not exist in VLF, then VLF creates a new object.

,MINOR=minor
Specifies the minor name of the object. The length of the significant portion of
the name depends on the MINLEN value defined for the class on the
COFDEFIN macro, either explicitly or by default. (For a PDS class, the length
is always 8.)

,UTOKEN=utoken
Specifies the required 16-character user token returned from the COFIDENT
macro for the user on whose behalf your application is issuing COFCREAT.

,OBJPRTL=objprtl
Specifies the required object parts list. The object parts list describes the source
areas from which VLF can obtain consecutive parts of the object. The object
parts list consists of a fullword containing the number of object parts, followed
by three words for each part:
1. A fullword that contains the ALET that currently addresses the part. An

ALET of 1, referencing the SASN of the caller, or ALETs referencing entries
on the PASN access list of the caller, are not allowed.

2. A fullword that contains the 31-bit address of the data for the part.

COFCREAT macro

194 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

3. A fullword that contains the length of the part.

The number of parts list entries must be from 1 to 16. If your program is not
running in access register (AR) ASC mode, the ALET(s) must be zero.

,OBJPLSZ=objplsz
Specifies the required fullword field that contains the size (in bytes) of the
object parts list.

,RETCODE=retcod
Specifies the location where the system is to store the return code. The return
code is also in general purpose register (GPR) 15. If you specify a storage
location, it must be on a fullword boundary,

,RSNCODE=rsncod
Specifies the location where the system is to store the reason code. If you
specify a storage location, it must be on a fullword boundary. The reason code
is also in GPR 0.

ABEND codes
None.

Return and reason codes
When the COFCREAT macro returns control to your program, GPR 15 (and retcod,
if you coded RETCODE) contains one of the following hexadecimal return codes.
GPR 0 (and rsncod, if you coded RSNCODE) contains one of the following reason
codes.

Table 28. Return and Reason Codes for the COFCREAT Macro

Hexadecimal
Return Code

Reason Code Meaning and Action

00 00 Meaning: The VLF object has been created.

Action: None.

02 02 Meaning: Program error. No VLF object was created
because the create request specified an ineligible major
name.

Action: Check the major name specified on the macro
invocation. Ensure that there is a matching EMAJ specified
major name for this class in the SYS1.PARMLIB member
COFVLFnn.

02 04 Meaning: Environmental error. No VLF object was created.
A retrieve request was not done for this minor name, a
time-out occurred for the pending create, or the pending
create was invalidated by a notification that the object
might have changed.

Action: Issue the COFRETRI macro prior to issuing the
COFCREAT macro. It may be necessary to retry the
COFRETRI/COFCREAT invocations several times.

02 06 Meaning: Environmental error. No VLF object was created
because the create request specified a major name that has
been invalidated by a notification that the object might
have changed. The user token will be invalidated. This
situation also can occur as a result of a Modify VLF
command that changes the major name.

Action: Issue a COFIDENT macro to reidentify the user to
VLF.

COFCREAT macro

Chapter 23. COFCREAT — Create a VLF object 195

Table 28. Return and Reason Codes for the COFCREAT Macro (continued)

Hexadecimal
Return Code

Reason Code Meaning and Action

04 00 Meaning: Program error. The requested major name is not
in the user's search order.

Action: Ensure that the requested major name was
specified in the search order specified through the
MAJNLST when the user was identified with the
COFIDENT macro.

0A 00 Meaning: Program error. The parameter list cannot be
accessed.

Action: Make necessary corrections to ensure that the
parameter list ALET is on the dispatchable unit access list
(DU-AL) and rerun the job.

0C 00 Meaning: Program error. The class to which the user is
identified is not currently defined.

Action: Redefine the class with COFDEFIN and retry the
COFCREAT.

10 00 Meaning: Program error. A user token was specified but
the user is not currently identified to VLF.

Action: Identify the user with COFIDENT and retry the
COFCREAT.

12 00 Meaning: Program error. The DDNAME is not the same as
the DDNAME specified on the COFIDENT macro that
returned this user token.

Action: Use the same DDNAME that was specified with
the COFIDENT, and retry the COFCREAT.

14 00 Meaning: Environmental error. VLF incurred a program
check when it tried to access the object parts list.

Action: Retry the operation. If the problem persists, specify
a smaller OBJPLSZ parameter for the OBJPRTL.

18 00 Meaning: Program error. The class to which the user is
identified is a PDS class, but CINDEX was not specified.

Action: Reissue the COFCREAT, and include the required
CINDEX keyword.

18 02 Meaning: Program error. OBJPLSZ was larger than the
maximum allowable size, or the number of parts in the
object parts list was greater than 16.

Action: Ensure that the specified OBJPLSZ was not greater
than 16, and that the number of object parts specified in
OBJPE4RTL is not greater than 16, and then reissue the
COFCREAT macro.

18 04 Meaning: Program error. REPLACE was specified, but the
class to which the user is identified is a PDS class.

Action: Reissue the COFCREAT without specifying the
REPLACE option.

18 0A Meaning: Program error. The major name cannot be
accessed by the specified ALET. The ALET is a SASN
ALET, or the ALET is not on the dispatchable unit access
list (DU-AL).

Action: Make necessary corrections to ensure that the major
name ALET parameter is on the dispatchable unit access
list (DU-AL) and rerun the job.

COFCREAT macro

196 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Table 28. Return and Reason Codes for the COFCREAT Macro (continued)

Hexadecimal
Return Code

Reason Code Meaning and Action

18 0B Meaning: Program error. The minor name cannot be
accessed by the specified ALET. The ALET is a SASN
ALET, or the ALET is not on the dispatchable unit access
list (DU-AL).

Action: Make necessary corrections to ensure that the
minor name ALET parameter is on the dispatchable unit
access list (DU-AL) and rerun the job.

18 0C Meaning: Program error. The object parts list cannot be
accessed using the specified ALET. The ALET is a SASN
ALET, or the ALET is not on the dispatchable unit access
list (DU-AL).

Action: Make necessary corrections to ensure that the
objects parts list ALET parameter is on the dispatchable
unit access list (DU-AL) and rerun the job.

18 0D Meaning: Program error. A part in the object parts list
cannot be accessed using the specified ALET. The ALET is
a SASN ALET, or the ALET is not on the dispatchable unit
access list (DU-AL).

Action: Make necessary corrections to ensure that the
objects parts list ALET parameter is on the dispatchable
unit access list (DU-AL) and rerun the job.

1C 00 Meaning: Environmental error. There was not enough
storage available to create this object.

Action: Increase the value of MAXVIRT for this class in the
SYS1.PARMLIB member COFVLFnn; or ensure that
TRIM=ON is specified when the class is defined with
COFDEFIN; or free storage through the use of COFPURGE.

28 00 Meaning: Environmental error. VLF is not active.

Action: Issue the Start VLF system command, and rerun
the job.

2C nnnn Meaning: System error. There was an unexpected error in
VLF.

Action: Record the return and reason codes and supply
them to the appropriate IBM support personnel.

COFCREAT - List form
Use the list form of the COFCREAT macro together with the execute form of the
macro for applications that require reentrant code. The list form of the macro
defines an area of storage, which the execute form of the macro uses to store the
parameters.

Syntax
The list form of the COFCREAT macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede COFCREAT

COFCREAT macro

Chapter 23. COFCREAT — Create a VLF object 197

Syntax Description

COFCREAT

� One or more blanks must follow COFCREAT

MF=(L,list addr) list addr: Symbol.

MF=(L,list addr,attr) attr: 1- to 60-character input string. Default 0D.

Parameters
The parameters of the list form are explained as follows:

MF=(L,list addr)
MF=(L,list addr,attr)

Specifies the list form of the COFCREAT macro.

list addr is the name of a storage area to contain the parameters.

attr is an optional 1- to 60-character input string, which can contain any value
that is valid on an assembler DS pseudo-op. You can use this parameter to
force boundary alignment of the parameter list. If you do not code attr, the
system provides a value of 0D, which forces the parameter list to a
doubleword boundary.

COFCREAT - Execute form

Syntax
The execute form of the COFCREAT macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede COFCREAT

COFCREAT

� One or more blanks must follow COFCREAT

MAJORmajor major: Rx-type address or register (2) - (12).

,CINDEX=cindex cindex: Rx-type address or register (2) - (12).

,DDNAME=ddname ddname: Rx-type address or register (2) - (12).

Specify DDNAME only with CINDEX.

COFCREAT macro

198 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Syntax Description

,REPLACE=YES Specify REPLACE only with MAJOR.

,REPLACE=NO Default: REPLACE=NO

,MINOR=minor retcod: Rx-type address or register (2) - (12).

,UTOKEN=utoken utoken: Rx-type address or register (2) - (12).

,OBJPRTL=objprtl objprtl: Rx-type address or register (2) - (12).

,OBJPLSZ=objplsz objplsz: Rx-type address or register (2) - (12).

,RETCODE=retcod retcod: Rx-type address or register (2) - (12).

,RSNCODE=rsncod retcod: Rx-type address or register (2) - (12).

,MF=(E,list addr) list addr: Rx-type address or register (2) - (12).

Parameters
The parameters are explained under the standard form of the COFCREAT macro,
with the following exception:

,MF=(E,list addr)
Specifies the execute form of the COFCREAT macro.

list addr specifies the area that the system uses to store the parameters.

COFCREAT macro

Chapter 23. COFCREAT — Create a VLF object 199

COFCREAT macro

200 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Chapter 24. COFDEFIN — Define a VLF class

Description
COFDEFIN defines a class of virtual lookaside facility (VLF) objects. Before issuing
COFDEFIN, or any VLF macro, you need to understand the information on using
the VLF that appears in z/OS MVS Programming: Authorized Assembler Services
Guide.

When you define a class of VLF objects, the system allocates virtual storage for the
class and generates the necessary control blocks. If the class has already been
defined, VLF rejects the request. The maximum amount of virtual storage available
for the class can be controlled by the MAXVIRT keyword on the CLASS statement
in the COFVLFxx parmlib member. When the MAXVIRT keyword is not used, the
default is 4096 pages.

The system obtains the attributes of the class from the input parameters of the
macro and the description of the class in the active COFVLFxx parmlib member.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Supervisor state, with PSW key 0-7
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 24- or 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Must be in the primary address space

Programming requirements
None.

Restrictions
None.

Input register information
Upon invocation, the general purpose registers (GPRs) must contain:

Register
Contents

1 Address of parameter list

13 Address of standard 72-byte save area

Output register information
When control returns to the caller, the GPRs contain:

© Copyright IBM Corp. 1988, 2013 201

Register
Contents

0 Reason code

1 Used as a work register by the system

2-14 Unchanged

15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-14 Unchanged

15 Used as a work register by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
The standard form of the COFDEFIN macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede COFDEFIN

COFDEFIN

� One or more blanks must follow COFDEFIN

CLASS=class class: RX-type address or register (2) - (12).

,MAJLEN=majlen majlen: RX-type address or register (2) - (12).

,MINLEN=minlen majlen: RX-type address or register (2) - (12).

,TRIM=ON Default: ON

,TRIM=OFF

COFDEFIN macro

202 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Syntax Description

,AUTHRET=NO Default: NO

,AUTHRET=YES

,RETCODE=retcod retcod: RX-type address or register (2) - (12).

,RSNCODE=rsncod rsncod: RX-type address or register (2) - (12).

Parameters
The parameters of the standard form are as follows:

CLASS=class
Specifies a 7-byte field that identifies the name of the class of VLF objects to be
created. The name, which can be from 1 to 7 characters, can consist of any
combination of upper case alphabetic and numeric characters and @, #, and $.
The name must match the name of a class described in the active COFVLFxx
parmlib member.

IBM-supplied VLF class names begin with the uppercase letters A-I. Choose
names for installation-supplied VLF classes that begin with J-Z, numeric
characters, or @, #, or $.

,MAJLEN=majlen
Identifies a 1-byte field specifying the length, from 1 to 64 bytes, of the major
names in this class. This parameter is required for a non-PDS class. For a PDS
class, the length is always 50.

,MINLEN=minlen
Identifies a 1-byte field specifying the length, from 1 to 64 bytes, of the minor
names in this class. This parameter is required for a non-PDS class. For a PDS
class, the length is always 8.

,TRIM=ON
,TRIM=OFF

An optional parameter that specifies how you want VLF to manage virtual
storage for the objects in the class. If you specify TRIM=ON, which is the
default, VLF automatically removes the least recently used objects when it
needs space. If you specify TRIM=OFF, VLF removes objects only when it is
specifically notified. Allowing VLF to manage the storage (TRIM=ON) ensures
that, if space is limited, the most recently used objects tend to remain in virtual
storage.

,AUTHRET=NO
,AUTHRET=YES

An optional parameter that indicates whether tasks that issue the COFRETRI
macro to retrieve objects from the class must be in supervisor state or have
PSW key mask 0-7. To restrict retrieves for the class to such tasks, specify
AUTHRET=YES. The default is AUTHRET=NO.

,RETCODE=retcod
Specifies the location where the system is to store the return code. The return
code is also in general purpose register (GPR) 15. If you specify a storage
location, it must be on a fullword boundary.

COFDEFIN macro

Chapter 24. COFDEFIN — Define a VLF class 203

,RSNCODE=rsncod
Specifies the location where the system is to store the reason code. The reason
code is also in GPR 0. If you specify a storage location, it must be on a
fullword boundary.

ABEND codes
None.

Return and reason codes
When the COFDEFIN macro returns control to your program, GPR 15 (and retcod,
if you coded RETCODE) contains one of the following hexadecimal return codes.
GPR 0 (and rsncod, if you coded RSNCODE) contains one of the following
hexadecimal reason codes.

Table 29. Return and Reason Codes for the COFDEFIN Macro

Hexadecimal
Return Code

Hexadecimal
Reason Code

Meaning and Action

00 00 Meaning: The define request was successful.

Action: None.

02 04 Meaning: A define request for the same class is currently in
progress.

Action: None required.

02 08 Meaning: The class is already defined.

Action: You must issue COFPURGE for the class before
you can redefine the class.

02 0C Meaning: The class is already defined. VLF has changed
the existing class definition to require that issuers of
COFRETRI for the class be in supervisor state or have PSW
key mask 0-7.

Action: You must issue COFPURGE for the class before
you can redefine the class.

04 00 Meaning: Environmental error. The define request failed.
The class state is not valid.

Action: Rerun the program.

08 00 Meaning: Environmental error. A purge request for the
same class was issued before the define request completed.

Action: Rerun the program.

08 04 Meaning: Environmental error. The class was being purged
when you issued COFDEFIN.

Action: Rerun the program.

0C 00 Meaning: Program error. There was no description for the
class in the active COFVLFxx parmlib member.

Action: Check that the class specified in the macro
invocation matches a class specified in the SYS1.PARMLIB
member COFVLFxx.

10 04 Meaning: Program error. The value for MAJLEN is not
within the allowed range.

Action: Specify a value between 1 and 64 for MAJLEN, and
rerun the program.

COFDEFIN macro

204 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Table 29. Return and Reason Codes for the COFDEFIN Macro (continued)

Hexadecimal
Return Code

Hexadecimal
Reason Code

Meaning and Action

10 08 Meaning: Program error. The value for MINLEN is not
within the allowed range.

Action: Specify a value between 1 and 64 for MINLEN,
and rerun the program.

10 0C Meaning: Program error. The values for both MAJLEN and
MINLEN are not within the allowed range.

Action: Specify a value between 1 and 64 for both
MAJLEN and MINLEN, and rerun the program.

18 00 Meaning: Program error. The parameter list ALET is not
valid.

Action: Make necessary corrections in the application, and
rerun the job.

28 00 Meaning: Environmental error. VLF is not active.

Action: Issue the Start VLF command, and rerun the job.

2C nnnn Meaning: System error. There was an unexpected error in
VLF.

Action: Record the return and reason code and supply it to
the appropriate IBM support personnel.

COFDEFIN - List form

Syntax
The list form of the COFDEFIN macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede COFDEFIN

COFDEFIN

� One or more blanks must follow COFDEFIN

MF=(L,list addr) list addr: Symbol.

MF=(L,list addr,attr) attr: 1- to 60-character input string. Default: 0D.

Parameters
The parameters of the list form are as follows:

MF=(L,list addr)
MF=(L,list addr,attr)

Specifies the list form of the COFDEFIN macro.

COFDEFIN macro

Chapter 24. COFDEFIN — Define a VLF class 205

list addr is the name of a storage area to contain the parameters.

attr is an optional 1- to 60-character input string, which can contain any value
that is valid on an assembler DS pseudo-op. You can use this parameter to
force boundary alignment of the parameter list. If you do not code attr, the
system provides a value of 0D, which forces the parameter list to a
doubleword boundary.

COFDEFIN - Execute form

Syntax
The execute form of the COFDEFIN macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede COFDEFIN

COFDEFIN

� One or more blanks must follow COFDEFIN

CLASS=class class: RX-type address or register (2) - (12).

,MAJLEN=majlen majlen: RX-type address or register (2) - (12).

,MINLEN=minlen majlen: RX-type address or register (2) - (12).

,TRIM=ON Default: ON

,TRIM=OFF

,AUTHRET=YES Default: NO

,AUTHRET=NO

,RETCODE=retcode retcode: RX-type address or register (2) - (12).

,RSNCODE=rsncod rsncod: RX-type address or register (2) - (12).

,MF=(E,list addr) list addr: RX-type address or register (2) - (12).

Parameters
The parameters are explained under the standard form of the COFDEFIN macro,
with the following exceptions:

COFDEFIN macro

206 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

,MF=(E,list addr)
Specifies the execute form of the COFDEFIN macro.

list addr specifies the area that the system uses to store the parameters.

COFDEFIN macro

Chapter 24. COFDEFIN — Define a VLF class 207

COFDEFIN macro

208 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Chapter 25. COFIDENT — Identify a VLF user

Description
The COFIDENT macro allows an individual user to access a particular class of VLF
objects. Before issuing COFIDENT, or any VLF macro, you need to understand the
information on using the virtual lookaside facility (VLF) that appears in z/OS MVS
Programming: Authorized Assembler Services Guide.

You must issue COFIDENT to identify the class and user before VLF can retrieve
or create objects on behalf of that user. With COFIDENT, you also specify to VLF
the search order it is to use to locate objects for the user.

As part of COFIDENT processing, VLF returns a unique user token (UTOKEN).
The user token identifies the user (through an associated home ASID), class, and
search order. Other VLF functions, such as retrieving or creating objects, require
you to supply this user token.

The value of the user token returned by the successful completion of this function
is never zero. Thus, you can check a saved user token field for zero to determine if
an end user has been identified to VLF.

If the end user has private data sets in a DDNAME concatenation (data sets not
defined for this class in the active COFVLFxx parmlib member), they are not
eligible data sets. That is, VLF does not use them as a source of VLF objects.

If you have control over the search orders, VLF works most efficiently when
private data sets (or ineligible major names for non-PDS classes) are either not
allowed or follow the eligible names rather than precede them.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Supervisor state, with PSW key 0-7
Dispatchable unit mode: Task for PDS class (if you specify DDNAME); task or SRB

for non-PDS class (if you specify MAJNLST)
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 24- or 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Must be in the primary address space

Programming requirements
v Before obtaining the user token, you must ensure that the user is authorized to

access the objects. Open the DDNAME or perform authority checking before you
issue the COFIDENT macro.

v The storage area to be used for the parameter list must reside in the caller's
primary address space. The ALET used to qualify this storage must be 0.

© Copyright IBM Corp. 1988, 2013 209

v When you specify DDNAME, you must issue the COFIDENT macro from a task
running under the same home ASID as the task that allocated the DDNAME.

v When you specify SCOPE=HOME or take the default, the returned user token
(UTOKEN) is valid only for tasks with the same home ASID as the issuer of the
COFIDENT macro. Subsequent VLF macros (COFCREAT, COFRETRI, or
COFREMOV) that supply this user token must have the same home ASID.

v When you specify SCOPE=SYSTEM, the issuers of the COFCREAT and
COFREMOV macros must have the same home ASID as the issuer of
COFIDENT. However, the COFRETRI macro can be issued by tasks that have a
home ASID that is different from the home ASID of the issuer of the COFIDENT
macro. VLF treats a COFRETRI macro issued with this UTOKEN as if the
request had come from the task that issued the COFIDENT macro. Any task that
supplies the UTOKEN can retrieve objects created with the UTOKEN unless the
COFDEFIN macro that defined the class specified AUTHRET=YES. In this case,
only supervisor-state tasks, or tasks running with PSW key 0-7, can retrieve
objects from the class.

Restrictions
None.

Input register information
Before issuing the COFIDENT macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0 Reason code

1 Used as a work register by the system

2-14 Unchanged

15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-14 Unchanged

15 Used as a work register by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

COFIDENT macro

210 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Syntax
The standard form of the COFIDENT macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede COFIDENT

COFIDENT

� One or more blanks must follow COFIDENT

DDNAME=ddname ddname: Rx-type address or register (2) - (12).

MAJNLST=majnlst majnlst: Rx-type address or register (2) - (12).

,CLASS=class class: Rx-type address or register (2) - (12).

,SCOPE=HOME Default: HOME

,SCOPE=SYSTEM

,UTOKEN=utoken utoken: Rx-type address or register (2) - (12).

,RETCODE=retcod retcod: Rx-type address or register (2) - (12).

,RSNCODE=rsncod rsncod: Rx-type address or register (2) - (12).

Parameters
The parameters of the standard form are explained as follows:

DDNAME=ddname
Specifies, for a PDS class, the ddname of a concatenated data set list. When
VLF locates objects on behalf of this user, it uses the order in which data sets
appear in this data set list as its search order. Note that the concatenated data
set list can contain private data sets; VLF creates objects, however, only from
eligible data sets (data sets included in the class description in the active
COFVLFxx parmlib member). Specify DDNAME only for PDS classes.

Note: Before you issue COFIDENT, you must verify that the end user is
authorized to access any data sets referenced by this DDNAME. Open the
DDNAME before issuing the COFIDENT macro to ensure that the end user
has authority to access the data sets in the DDNAME concatenation.

If you specify DDNAME, do not specify MAJNLIST.

MAJNLST=majnlst
Defines, for non-PDS classes, the search order VLF is to use to locate objects

COFIDENT macro

Chapter 25. COFIDENT — Identify a VLF user 211

for this user. Each entry in the list must match a major name defined for the
class through EMAJ in the active COFVLFxx parmlib member.

MAJNLST is required for a non-PDS class. The list that majnlst points to
consists of a 4-byte field containing the number of entries in the list, followed
by a contiguous list of from 1 to 256 major names. The list must contain at
least one entry.

Each name in the list must be the same length, padded with blanks on the
right if necessary. The length of each name in the list must be equal to the
length supplied for MAJLEN on the COFDEFIN macro when the class was
defined.

Note that the variable name of the major name list may be ALET qualified, but
that an ALET of 1, referencing the SASN of the caller, or ALETs referencing
entries on the PASN access list of the caller, are not allowed.

If you specify MAJNLST, do not specify DDNAME.

,CLASS=class
Specifies the required 7-character name of a VLF class, already defined to VLF
through the COFDEFIN macro.

,SCOPE=HOME
,SCOPE=SYSTEM

An optional parameter that indicates the scope of services that can retrieve
objects with the UTOKEN returned by this COFIDENT. The default is HOME.

HOME indicates that only services with the same home ASID as the task
issuing the COFIDENT macro can retrieve objects with the returned user token
(UTOKEN).

SYSTEM indicates that services with a home ASID different from that of the
task issuing the COFIDENT macro can retrieve objects with the returned user
token (UTOKEN). In this case, a COFRETRI macro issued with this UTOKEN
is treated as if the request had come from the task that issued the COFIDENT
macro. SCOPE=SYSTEM allows a service running under a particular home
ASID to control a set of VLF objects and allow all tasks in the system to access
those objects.

,UTOKEN=utoken
Specifies a required 16-character output variable that contains the unique user
token value that VLF returns to identify this user. You will provide this value
on subsequent requests to create or retrieve VLF objects on behalf of this user.

,RETCODE=retcod
Specifies the location where the system is to store the return code. The return
code is also in general purpose register (GPR) 15. If you specify a storage
location, it must be on a fullword boundary.

,RSNCODE=rsncod
Specifies the location where the system is to store the reason code. The reason
code is also in GPR 0. If you specify a storage location, it must be on a
fullword boundary.

ABEND codes
None.

COFIDENT macro

212 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Return and reason codes
When the COFIDENT macro returns control to your program, GPR 15 (and retcod,
if you coded RETCODE) contains one of the following hexadecimal return codes.
GPR 0 (and rsncod, if you coded RSNCODE) contains one of the following
hexadecimal reason codes.

Table 30. Return and Reason Codes for the COFIDENT Macro

Hexadecimal
Return Code

Reason Code Meaning and Action

00 00 Meaning: Successful completion. The user has been
identified to VLF with the specified major name search
order.

Action: None.

02 08 Meaning: The user is already identified to VLF for this
class. The user token from the previous IDENTIFY has
been returned in the UTOKEN field.

Action: None required.

04 00 Meaning: Environmental error. The identify request cannot
be completed. Another identify request from the same
home ASID is currently in progress for the same class and
DDNAME.

Action: Rerun the program.

08 00 Meaning: Program error. No major names in the search
order contain objects that are eligible objects for VLF. The
data sets listed in the search order will not be cached by
VLF.

Action: None required.

0C 00 Meaning: Environmental error. The class has not been
defined to VLF.

Action: Issue COFDEFIN for this class and retry the
COFIDENT.

10 00 Meaning: Program error. VLF could not obtain the list of
partitioned data sets for the input DDNAME. The task
invoking VLF might not have been running under the
same home ASID as the task that allocated the DDNAME.

Action: Issue the COFREMOV macro to remove the user
from VLF. Then issue COFIDENT to reidentify the user,
and rerun the program.

14 00 Meaning: Program error. There was an incorrect input
parameter. Either the DDNAME keyword was not specified
for an input PDS class, or the DDNAME keyword was
specified for a non-PDS class.

Action: If the class specified is a PDS, you must also
specify the DDNAME keyword. If the class specified is a
non-PDS, you must not specify the DDNAME keyword.
Make the appropriate correction and rerun the program.

18 08 Meaning: Program error. The number of major names in a
search order is not in the range 1 through 256.

Action: The first word in the list pointed to by MAJNLST
must contain a number from 1 through 256. Make this
correction and retry the COFIDENT.

COFIDENT macro

Chapter 25. COFIDENT — Identify a VLF user 213

Table 30. Return and Reason Codes for the COFIDENT Macro (continued)

Hexadecimal
Return Code

Reason Code Meaning and Action

18 0C Meaning: Program error. The input major name list was
qualified using either a SASN ALET or an ALET not on the
caller's dispatchable unit access list (DU-AL).

Action: Make the necessary corrections to ensure that the
input major name list ALET is on the dispatchable unit
access list (DU-AL) and rerun the job.

1C 04 Meaning: Program error. The DDNAME was not open.

Action: Open the DDNAME and rerun the program.

1C 08 Meaning: Program error. The DDNAME was not allocated.

Action: Allocate the DDNAME before you issue the
COFIDENT macro.

1C 12 Meaning: Environmental error. The DDNAME
concatenation was changed without deallocating the
DDNAME. VLF no longer accepts user identification
requests that specify the DDNAME.

Action: Issue the COFREMOV macro to remove the user
from VLF. Then issue COFIDENT to reidentify the user.

28 00 Meaning: Environmental error. VLF is not active.

Action: Issue the START VLF command, and rerun the job.

2C nnnn Meaning: System error. There was an unexpected error in
VLF. nnnn is the reason code.

Action: Record the return and reason codes and supply
them to the appropriate IBM support personnel.

COFIDENT - List form
The list form of the COFIDENT macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede COFIDENT

COFIDENT

� One or more blanks must follow COFIDENT

MF=(L,mfctrl mfctrl: Symbol

MF=(L,mfctrl,mfattr mfattr: 1- to 60-character input string. Default: 0D.

COFIDENT macro

214 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Parameters
The parameters of the list form are explained as follows:

MF=(L,list addr)
MF=(L,list addr,attr)

Specifies the list form of the COFIDENT macro.

list addr is the name of a storage area to contain the parameters.

attr is an optional 1- to 60-character input string, which can contain any value
that is valid on an assembler DS pseudo-op. You can use this parameter to
force boundary alignment of the parameter list. If you do not code attr, the
system provides a value of 0D, which forces the parameter list to a
doubleword boundary.

COFIDENT - Execute form

Syntax
The execute form of the COFIDENT macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede COFIDENT

COFIDENT

� One or more blanks must follow COFIDENT

DDNAME=ddname ddname: Rx-type address or register (2) - (12).

MAJNLST=majnlst majnlst: Rx-type address or register (2) - (12).

,CLASS=class class: Rx-type address or register (2) - (12).

,SCOPE=HONE Default: HOME

,SCOPE=SYSTEM

,UTOKEN=utoken utoken: Rx-type address or register (2) - (12).

,RETCODE=retcod retcod: Rx-type address or register (2) - (12).

,RSNCODE=rsncod rsncod: Rx-type address or register (2) - (12).

,MF=(E,list addr) list addr: Rx-type address or register (2) - (12).

COFIDENT macro

Chapter 25. COFIDENT — Identify a VLF user 215

Parameters
The parameters are explained under the standard form of the COFIDENT macro,
with the following exceptions:

,MF=(E,list addr)
Specifies the execute form of the COFIDENT macro.

list addr specifies the area that the system uses to store the parameters.

COFIDENT macro

216 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Chapter 26. COFNOTIF — Notify VLF

Description
The COFNOTIF macro allows an application using VLF to notify VLF that some
set of VLF objects is no longer valid because of changes to the permanent data.
Before issuing COFNOTIF, or any VLF macro, you need to understand the
information on using the virtual lookaside facility (VLF) that appears in z/OS MVS
Programming: Authorized Assembler Services Guide.

You can issue COFNOTIF to notify VLF about the following kinds of changes:
v One or more major names have been deleted. You must specify

FUNC=DELMAJOR and MAJLIST.
You might need to specify MAJNUM and MAJLEN, and you also might need to
specify CLASS.

v One or more minor names have been changed. You must specify
FUNC=DELMINOR (for a deletion), FUNC=ADDMINOR (for an addition), or
FUNC=UPDMINOR (for a change). You must also specify MAJOR and
MINLIST.
You might need to specify MINNUM and MINLEN, and you also might need to
specify CLASS.

v A volume is no longer in use. You must specify FUNC=PURGEVOL and
VOLUME.

Note that an update to a minor name with one or more alias names means that
you must specify the minor name and each alias name. VLF views each alias name
as a separate minor name and thus needs to know about the update under each
name.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Supervisor state, with PSW key 0-7
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 24- or 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Must be in the primary address space

Programming requirements
None.

Restrictions
None.

© Copyright IBM Corp. 1988, 2013 217

Input register information
Before issuing the COFNOTIF macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output register information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register
Contents

0 Reason code

1 Used as a work register by the system

2-14 Unchanged

15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system

2-14 Unchanged

15 Used as a work register by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
The standard form of the COFNOTIF macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede COFNOTIF

COFNOTIF

� One or more blanks must follow COFNOTIF

FUNC=DELMAJOR

FUNC=DELMINOR

FUNC=ADDMINOR

COFNOTIF macro

218 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Syntax Description

FUNC=UPDMINOR

FUNC=PURGEVOL

,MAJLIST=majlist majlist: Rx-type address or register (2) - (12).

You must specify MAJLIST=majlist when you specify FUNC=DELMAJOR.

,MAJNUM=majnum majnum: Rx-type address or register (2) - (12).

,MAJLEN=majlen majlen: Rx-type address or register (2) - (12).

,MAJOR=major major. Rx-type address or register (2) - (12).

You must specify MAJLIST=major when you specify FUNC=DELMINOR,
FUNC=ADDMINOR, or FUNC=UPDMINOR.

,MINLIST=minlist minlist. Rx-type address or register (2) - (12).

You must specify MINLIST=minlist when you specify FUNC=DELMINOR,
FUNC=ADDMINOR, or FUNC=UPDMINOR.

,MINNUM=minnum minnum: Rx-type address or register (2) - (12).

,MINLEN=minlen minlen: Rx-type address or register (2) - (12).

,VOLUME=volume volume: Rx-type address or register (2) - (12).

,CLASS=class class: Rx-type address or register (2) - (12).

,RETCODE=retcod retcod: Rx-type address or register (2) - (12).

,RSNCODE=rsncod rsncod: Rx-type address or register (2) - (12).

Parameters
The parameters of the standard form are explained as follows:

FUNC=DELMAJOR
FUNC=DELMINOR
FUNC=ADDMINOR
FUNC=UPDMINOR
FUNC=PURGEVOL

Is a required parameter that indicates the nature of the change that you are
reporting. The meaning of each value is as follows:
v FUNC=DELMAJOR specifies that one or more major names have been

deleted.

COFNOTIF macro

Chapter 26. COFNOTIF — Notify VLF 219

v FUNC=DELMINOR specifies that one or more minor names have been
deleted from a major name.

v FUNC=ADDMINOR specifies that one or more minor names have been
added to a major name.

v FUNC=UPDMINOR specifies that the objects corresponding to one or more
existing minor names have been changed.

v FUNC=PURGEVOL specifies that a physical storage device has been
logically disconnected from the system, or that all of the information on the
device has been deleted or replaced.

,MAJLIST=majlist
Identifies the list of major names with which the change is associated. When
you specify FUNC=DELMAJOR, you must specify MAJLIST to identify the
major name(s) VLF is to delete. If the list contains more than one major name,
you must also specify MAJNUM. Each major name in the list must be the
same length. If the major name length is not 64, you must also specify
MAJLEN.

Use the following structure to specify the major name for a PDS class:
v 6-character volume serial name (padded with blanks if necessary)
v PDS name (a maximum of 44 characters), padded with blanks to equal 64 or

the MAJLEN value.

For example, assume that you want to delete the major name MYPDS that
resides on volume VOL123. Specify VOL123MYPDS, padded with blanks as
required.

,MAJNUM=majnum
An optional halfword parameter that contains the number of major names in
the major name list. The default is 1.

,MAJLEN=majlen
An optional halfword parameter that contains the length of each input major
name. The default is 64.

Note: VLF uses the length you specify to scan the major name list. The length
of the significant part of the name (the part VLF uses to search its storage for
objects with that major name) depends on the value specified for the major
name on the COFDEFIN macro that defined the class. If the COFDEFIN length
is greater than the COFNOTIF length, VLF pads the name on the right with
blanks.

,MAJOR=major
Identifies the major name associated with the change to one or more minor
names. When you specify FUNC=DELMINOR, FUNC=ADDMINOR, or
FUNC=DELMINOR, you must specify MAJOR. If the length is not 64, you
must also specify MAJLEN.

Use the following structure to specify the major name for a PDS class:
v 6-character volume serial name (padded with blanks if necessary)
v PDS name (a maximum of 44 characters), padded with blanks to equal 64 or

the MAJLEN value.

For example, assume that you want to delete the major name MYPDS that
resides on volume VOL123. Specify VOL123MYPDS, padded with blanks as
required.

,MINLIST=minlist
Identifies the list of minor names with which the change is associated. When

COFNOTIF macro

220 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

you specify FUNC=DELMINOR, FUNC=ADDMINOR, or FUNC=UPDMINOR,
you must specify MINLIST. If the list contains more than one minor name, you
must also specify MINNUM. If the length is not 64, then you must also specify
MINLEN. Each name in the list must be the same length.

,MINNUM=minnum
An optional halfword parameter that contains the number of minor names in
the minor name list. The default is 1.

,MINLEN=minlen
An optional halfword parameter that contains the length of each name in the
input minor name list. The default is 64.

Note: VLF uses the length you specify to scan the minor name list. The length
of the significant part of the name (the part VLF uses to search its storage for
objects with that minor name) depends on the value specified for the minor
name on the COFDEFIN macro that defined the class. If the COFDEFIN length
is greater than the COFNOTIF length, VLF pads the name on the right with
blanks.

,VOLUME=volume
Specifies the volume serial number of a resource that was logically removed
from the system. Specifying VOLUME causes VLF to purge any objects related
to the resource identified.

Specify VOLUME only for objects with major names that correspond to PDS
names and only when you also specify FUNC=PURGEVOL.

,CLASS=class
Specifies a 7-byte field that identifies the name of the class associated with the
change. CLASS is an optional parameter. Specify CLASS only for a non-PDS
class. If you omit CLASS or specify a PDS class, VLF assumes that the change
being reported applies to all PDS classes.

,RETCODE=retcod
Specifies the location where the system is to store the return code. The return
code is also in general purpose register (GPR) 15. If you specify a storage
location, it must be on a fullword boundary.

,RSNCODE=rsncod
Specifies the location where the system is to store the reason code. The reason
code is also in GPR 0. If you specify a storage location, it must be on a
fullword boundary.

ABEND codes
None.

Return and reason codes
When the COFNOTIF macro returns control to your program, GPR 15 (and retcod,
if you coded RETCODE) contains one of the following hexadecimal return codes.
GPR 0 (and rsncod, if you coded RSNCODE) contains one of the following
hexadecimal reason codes.

COFNOTIF macro

Chapter 26. COFNOTIF — Notify VLF 221

Table 31. Return and Reason Codes for the COFNOTIF Macro

Hexadecimal
Return Code

Hexadecimal
Reason Code

Meaning and Action

00 00 Meaning: Successful completion. VLF now reflects the
indicated changes.

Action: None.

02 08 Meaning: No changes to VLF storage were necessary.

Action: None.

02 0C Meaning: The specified class was not defined to VLF. This
code is returned only for an input class that does not have
a major name to PDS correspondence. No changes to VLF
storage occurred.

Action: None.

02 10 Meaning: The specified class is not defined in the active
COFVLFxx parmlib member. No changes to VLF storage
occurred.

Action: None required.

18 00 Meaning: Program error. The parameter list ALET is either
a SASN ALET or is not on the caller's dispatchable unit
access list (DU-AL).

Action: Make necessary corrections to ensure that the
parameter list ALET is on the dispatchable unit access list
(DU-AL) and rerun the program.

18 08 Meaning: Program error. The input major name was
qualified using either a SASN ALET or an ALET not on the
caller's dispatchable unit access list (DU-AL).

Action: Make necessary corrections to ensure that the major
name ALET is on the dispatchable unit access list (DU-AL)
and rerun the program.

18 0C Meaning: Program error. The input minor name was
qualified using either a SASN ALET or an ALET not on the
caller's dispatchable unit access list (DU-AL).

Action: Make necessary corrections to ensure that the
minor name ALET is on the dispatchable unit access list
(DU-AL) and rerun the program.

1C nnnn Meaning: Program error. An error occurred while accessing
a major name in the input major name list; nnnn identifies
the list position of the major name that caused the error.
COFNOTIF processing terminates.

Action: Check parameters such as MAJNUM and MAJLEN
for accuracy. Make necessary corrections and rerun the
program.

20 nnnn Meaning: Program error. An error occurred while accessing
a minor name in the input minor name list; nnnn identifies
the list position of the minor name that caused the error.
COFNOTIF processing terminates.

Action: Check parameters such as MINNUM and MINLEN
for accuracy. Make necessary corrections and rerun the
program.

28 00 Meaning: Environmental error. VLF is not active.

Action: Issue the START VLF command and rerun the
program.

COFNOTIF macro

222 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Table 31. Return and Reason Codes for the COFNOTIF Macro (continued)

Hexadecimal
Return Code

Hexadecimal
Reason Code

Meaning and Action

2C nnnn Meaning: System error. There was an unexpected error in
VLF.

Action: Record the return and reason codes and supply
them to the appropriate IBM support personnel.

COFNOTIF - List form
Use the list form of the COFNOTIF macro together with the execute form of the
macro for applications that require reentrant code. The list form of the macro
defines an area of storage, which the execute form of the macro uses to store the
parameters.

Syntax
The list form of the COFNOTIF macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede COFNOTIF

COFNOTIF

� One or more blanks must follow COFNOTIF

MF=(L,mfctrl) mfctrl: Symbol.

MF=(L,mfctrl,mfattr) mfattr: 1- to 60-character input string. Default: 0D.

Parameters
The parameters are explained under the standard form of the COFNOTIF macro
with the following exception:

MF=(L,list addr)
MF=(L,list addr,attr)

Specifies the list form of the COFNOTIF macro.

list addr is the name of a storage area to contain the parameters. (If you specify
name on the macro, the system also equates the name you specify to the same
location counter value.)

attr is an optional 1- to 60-character input string, which can contain any value
that is valid on an assembler DS pseudo-op. You can use this parameter to
force boundary alignment of the parameter list. If you do not code attr, the
system provides a value of 0D, which forces the parameter list to a
doubleword boundary.

COFNOTIF macro

Chapter 26. COFNOTIF — Notify VLF 223

COFNOTIF - Execute form
Use the execute form of the COFNOTIF macro together with the list form of the
macro for applications that require reentrant code. The execute form of the macro
stores the parameters into the storage area defined by the list form.

Syntax
The execute form of the COFNOTIF macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede COFNOTIF

COFNOTIF

� One or more blanks must follow COFNOTIF

FUNC=DELMAJOR

FUNC=DELMINOR

FUNC=ADDMINOR

FUNC=UPDMINOR

FUNC=PURGEVOL

,MAJLIST=majlist majlist: RX-type address or register (2) - (12).

You must specify MAJLIST=majlist when you specify FUNC=DELMAJOR.

,MAJNUM=majnum majnum: RX-type address or register (2) - (12).

,MAJLEN=majlen majlen: RX-type address or register (2) - (12).

,MAJOR=major major. RX-type address or register (2) - (12).

You must specify MAJOR=major when you specify FUNC=DELMINOR,
FUNC=ADDMINOR, or FUNC=UPDMINOR.

,MINLIST=minlist minlist. RX-type address or register (2) - (12).

You must specify MINLIST=minlist when you specify FUNC=DELMINOR,
FUNC=ADDMINOR, or FUNC=UPDMINOR.

,MINNUM=minnum minnum: FIXED(15) field or register (2) - (12).

,MINLEN=minlen minlen: FIXED(15) field or register (2) - (12).

COFNOTIF macro

224 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Syntax Description

,VOLUME=volume volume: Rx-type address or register (2) - (12).

,CLASS=class class: Rx-type address or register (2) - (12).

,RETCODE=retcod retcod: Rx-type address or register (2) - (12).

,RSNCODE=rsncod rsncod: Rx-type address or register (2) - (12).

,MF=(E,list addr) list addr: Rx-type address or register (2) - (12).

Parameters
The parameters are explained under the standard form of the COFNOTIF macro,
with the following exceptions:

,MF=(E,list addr)
Specifies the execute form of the COFNOTIF macro.

list addr specifies the area that the system uses to store the parameters.

COFNOTIF macro

Chapter 26. COFNOTIF — Notify VLF 225

COFNOTIF macro

226 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Chapter 27. COFPURGE — Purge a VLF class

Description
The COFPURGE macro requests that VLF purge (delete) a class of VLF objects.
Before issuing COFPURGE, or any VLF macro, you need to understand the
information on using the virtual lookaside facility (VLF) that appears in z/OS MVS
Programming: Authorized Assembler Services Guide.

When you issue COFPURGE, VLF deletes the class immediately. Any transaction in
process for the purged class fails; VLF issues a failure return code that is
appropriate for the transaction. To reinstate the class, you must issue another
COFDEFIN for the class, which you can do at any time. Once you have reinstated
the class, you must identify the users of the class again.

Note that the system can also delete a class for control purposes even if no user
requests it. Your application learns that the system has purged a class when it
issues a COFIDENT, COFREMOV, COFCREAT, or COFRETRI macro specifying
that class. There are specific return and reason code combinations to distinguish a
class that is not defined from other error indicators.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Supervisor state, with PSW key 0-7
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 24- or 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Must be in the primary address space

Programming requirements
None.

Restrictions
None.

Input register information
Before issuing the COFPURGE macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output register information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register
Contents

© Copyright IBM Corp. 1988, 2013 227

0 Reason code

1 Used as a work register by the system

2-14 Unchanged

15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system

2-14 Unchanged

15 Used as a work register by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
The standard form of the COFPURGE macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede COFPURGE

COFPURGE

� One or more blanks must follow COFPURGE

CLASS=class class: RX-type address or register (2) - (12).

,RETCODE=retcod retcod: RX-type address or register (2) - (12).

,RSNCODE=rsncod retcod: RX-type address or register (2) - (12).

Parameters
The parameters of the standard form are as follows:

CLASS=class
Specifies the required name of the class of VLF objects to be deleted.

COFPURGE macro

228 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

,RETCODE=retcod
Specifies the location where the system is to store the return code. The return
code is also in general purpose register (GPR) 15. If you specify a storage
location, it must be on a fullword boundary.

,RSNCODE=rsncod
Specifies the location where the system is to store the reason code. The reason
code is also in GPR 0. If you specify a storage location, it must be on a
fullword boundary.

ABEND codes
None.

Return and reason codes
When the COFPURGE macro returns control to your program, GPR 15 (and retcod,
if you coded RETCODE) contains one of the following hexadecimal return codes.
GPR 0 (and rsncod, if you coded RSNCODE) contains one of the following
hexadecimal reason codes.

Table 32. Return and Reason Codes for the COFPURGE Macro

Hexadecimal
Return Code

Hexadecimal
Reason Code

Meaning and Action

00 00 Meaning: The purge was successful. The class is no longer
described to VLF.

Action: None.

02 04 Meaning: Program error. The specified class was not
described in the active COFVLFxx parmlib member.

Action: Check that the class specified in the macro
invocation matches a class specified in the SYS1.PARMLIB
member COFVLFxx.

28 00 Meaning: Environmental error. VLF is not active.

Action: Issue the START VLF command and rerun the
program.

COFPURGE - List form

Syntax
The list form of the COFPURGE macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede COFPURGE

COFPURGE

� One or more blanks must follow COFPURGE

COFPURGE macro

Chapter 27. COFPURGE — Purge a VLF class 229

Syntax Description

MF=(L,list addr list addr: Symbol.

MF=(L,list addr,attr) attr: 1- to 60- character input string. Default: 0D.

Parameters
The parameters of the list form are as follows:

MF=(L,list addr)
MF=(L,list addr,attr)

Specifies the list form of the COFPURGE macro.

list addr is the name of a storage area to contain the parameters. (If you specify
name on the macro, the system also equates the name you specify to the same
location counter value.)

attr is an optional 1- to 60-character input string, which can contain any value
that is valid on an assembler DS pseudo-op. You can use this parameter to
force boundary alignment of the parameter list. If you do not code attr, the
system provides a value of 0D, which forces the parameter list to a
doubleword boundary.

COFPURGE - Execute form

Syntax
The execute form of the COFPURGE macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede COFPURGE

COFPURGE

� One or more blanks must follow COFPURGE

CLASS=class class: RX-type address or register (2) - (12).

,RETCODE=retcode retcode: RX-type address or register (2) - (12).

,RSNCODE=rsncod rsncod: RX-type address or register (2) - (12).

,MF=(E,list addr) list addr: RX-type address or register (2) - (12).

COFPURGE macro

230 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Parameters
The parameters are explained under the standard form of the COFPURGE macro,
with the following exceptions:

,MF=(E,list addr)
Specifies the execute form of the COFPURGE macro.

list addr specifies the area that the system uses to store the parameters.

COFPURGE macro

Chapter 27. COFPURGE — Purge a VLF class 231

COFPURGE macro

232 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Chapter 28. COFREMOV — Remove a VLF user

Description
COFREMOV terminates an end user's access to the class of VLF objects associated
with the specified user token (UTOKEN). Before issuing COFREMOV, or any VLF
macro, you need to understand the information on using the virtual lookaside
facility (VLF) that appears in z/OS MVS Programming: Authorized Assembler Services
Guide.

You issue COFREMOV when your program determines that an end user should no
longer have access to the class of VLF objects. You must supply the same user
token (UTOKEN) on COFREMOV that VLF returned on the COFIDENT macro that
identified the user. You must issue COFREMOV from a task that has the same
home ASID as the task that issued the COFIDENT to identify the user.

After you have removed the user, VLF rejects, with a reason code that indicates an
unknown UTOKEN, any subsequent VLF requests that specify the UTOKEN.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Supervisor state, with PSW key 0-7
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 24- or 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Must be in the primary address space

Programming requirements
None.

Restrictions
None.

Input register information
Before issuing the COFREMOV macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output register information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register
Contents

0 Reason code

© Copyright IBM Corp. 1988, 2013 233

1 Used as a work register by the system

2-14 Unchanged

15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system

2-14 Unchanged

15 Used as a work register by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
The standard form of the COFREMOV macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede COFREMOV

COFREMOV

� One or more blanks must follow COFREMOV

UTOKEN=utoken utoken: Rx-type address or register (2) - (12).

,RETCODE=retcod retcod: Rx-type address or register (2) - (12).

,RSNCODE=rsncod rsncod: Rx-type address or register (2) - (12).

Parameters
The parameters of the standard form are explained as follows:

UTOKEN=utoken
Specifies a required 16-character input parameter that contains the user token
value (obtained from the COFIDENT macro) for the user you are removing
from VLF.

COFREMOV macro

234 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

,RETCODE=retcod
Specifies the location where the system is to store the return code. The return
code is also in general purpose register (GPR) 15. If you specify a storage
location, it must be on a fullword boundary.

,RSNCODE=rsncod
Specifies the location where the system is to store the reason code. The reason
code is also in GPR 0. If you specify a storage location, it must be on a
fullword boundary.

ABEND codes
None.

Return and reason codes
When the COFREMOV macro returns control to your program, GPR 15 (and retcod,
if you coded RETCODE) contains one of the following hexadecimal return codes.
GPR 0 (and rsncod, if you coded RSNCODE) contains one of the following
hexadecimal reason codes.

Table 33. Return and Reason Codes for the COFREMOV Macro

Hexadecimal
Return Code

Hexadecimal
Reason Code

Meaning and Action

00 00 Meaning: Successful completion. The record of the
identified user corresponding to the input UTOKEN has
been removed. Subsequent requests for access to VLF
objects with this UTOKEN will fail.

Action: None.

02 10 Meaning: Program error. An unknown UTOKEN was
specified.

Action: Ensure that the user token specified was one
received when the user was identified through the
COFIDENT macro. Make corrections and rerun the
program.

18 00 Meaning: Program error. The ALET of the input parameter
is not valid.

Action: Make necessary corrections to ensure that the
parameter list ALET is on the dispatchable unit access list
(DU-AL) and rerun the program.

28 00 Meaning: Environmental error. VLF is not active.

Action: Issue the START VLF command and rerun the
program.

2C nnnn Meaning: System error. There was an unexpected error in
VLF. nnnn is the reason code.

Action: Record the return and reason codes and supply
them to the appropriate IBM support personnel.

COFREMOV macro

Chapter 28. COFREMOV — Remove a VLF user 235

COFREMOV - List form

Syntax
The list form of the COFREMOV macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede COFREMOV

COFREMOV

� One or more blanks must follow COFREMOV

MF=(L,mfctrl mfctrl: Symbol.

MF=(L,mfctrl,mfattr) mfattr: 1- to 60-character input string. Default: 0D.

Parameters
The parameters of the list form are explained as follows:

MF=(L,list addr)
MF=(L,list addr,attr)

Specifies the list form of the COFREMOV macro.

list addr is the name of a storage area to contain the parameters. (If you specify
name on the macro, the system also equates the name you specify to the same
location counter value.)

attr is an optional 1- to 60-character input string, which can contain any value
that is valid on an assembler DS pseudo-op. You can use this parameter to
force boundary alignment of the parameter list. If you do not code attr, the
system provides a value of 0D, which forces the parameter list to a
doubleword boundary.

COFREMOV - Execute form

Syntax
The execute form of the COFREMOV macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede COFREMOV

COFREMOV

COFREMOV macro

236 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Syntax Description

� One or more blanks must follow COFREMOV

,UTOKEN=utoken utoken: Rx-type address or register (2) - (12).

,RETCODE=retcod retcod: Rx-type address or register (2) - (12).

,RSNCODE=rsncod retcod: Rx-type address or register (2) - (12).

,MF=(E,list addr) list addr: Rx-type address or register (2) - (12).

Parameters
The parameters are explained under the standard form of the COFREMOV macro,
with the following exceptions:

,MF=(E,list addr)
Specifies the execute form of the COFREMOV macro.

list addr specifies the area that the system uses to store the parameters.

COFREMOV macro

Chapter 28. COFREMOV — Remove a VLF user 237

COFREMOV macro

238 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Chapter 29. COFRETRI — Retrieve a VLF object

Description
The COFRETRI macro enables an application using VLF to obtain a copy of a VLF
object on behalf of an end user. Before issuing COFRETRI, or any VLF macro, you
need to understand the information on using the virtual lookaside facility (VLF)
that appears in z/OS MVS Programming: Authorized Assembler Services Guide.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Supervisor state, with PSW key 0-7
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 24- or 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Must be in the primary address space

Programming requirements
Before you issue COFRETRI to retrieve an object on behalf of a user, you must
issue COFIDENT to identify the user. COFIDENT relates to COFRETRI in the
following ways:
v COFIDENT returns the user token you must supply on COFRETRI.
v COFIDENT establishes the major-name search order for this user.
v COFIDENT defines whether COFRETRI must be issued under a task with a

home ASID that matches the home ASID of the issuer of COFIDENT
(COFIDENT was issued with SCOPE=HOME), or whether the task invoking
COFRETRI can have a different home ASID (COFIDENT was issued with
SCOPE=SYSTEM).

Restrictions
None.

Input register information
Before issuing the COFRETRI macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output register information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register
Contents

0 Reason code

1 Used as a work register by the system

© Copyright IBM Corp. 1988, 2013 239

2-14 Unchanged

15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system

2-14 Unchanged

15 Used as a work register by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
The standard form of the COFRETRI macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede COFRETRI

COFRETRI

� One or more blanks must follow COFRETRI

MINOR=minor minor: Rx-type address or register (2) - (12).

,UTOKEN=utoken utoken: Rx-type address or register (2) - (12).

,TLIST=tlist tlist: Rx-type address or register (2) - (12).

,TLSIZE=tlsize tlsize: Rx-type address or register (2) - (12).

,OBJSIZE=objsize objsize: Rx-type address or register (2) - (12).

,CINDEX=cindex cindex: Rx-type address or register (2) - (12).

,RETCODE=retcod retcod: Rx-type address or register (2) - (12).

COFRETRI macro

240 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Syntax Description

,RSNCODE=rsncod rsncod: Rx-type address or register (2) - (12).

Parameters
The parameters of the standard form are explained as follows:

MINOR=minor
Is a required parameter that identifies the minor name of the object. VLF
assumes that the length of the minor name is the same as that specified on the
MINLEN parameter when the COFDEFIN macro was issued to define the
class. If the class of objects was defined with major name to PDS name
correspondence, then the minor name length is 8.

,UTOKEN=utoken
Is the required 16-character user token that identifies the user for whom you
are retrieving a VLF object. VLF returned the user token when you issued the
COFIDENT macro to identify the user to VLF.

,TLIST=tlist
Is a required parameter that defines the target area list. The target area list
describes target areas into which consecutive areas of the object are to be
stored. The target area list consists of a fullword containing the number of
target areas, followed by three words for each area:
1. A fullword that contains the ALET that currently addresses the target area.

An ALET of 1, referencing the SASN of the caller, or ALETs referencing
entries on the PASN access list of the caller, are not allowed.

2. A fullword that contains the 31-bit address of the data for the target area.
3. A fullword that contains the length of the target area.

An address of 0 signifies that VLF is to ignore the specified length; that is, VLF
is not to retrieve that part of the object. The maximum number of parts is 16.

,TLSIZE=tlsize
Is a required parameter, a fullword that contains the size (in bytes) of the
target area list.

,OBJSIZE=objsize
Is a required parameter, a fullword that VLF is to use to return the size (in
bytes) of the object it retrieves.

,CINDEX=cindex
Is a required parameter, a one-byte field that VLF is to use to return the
concatenation index of the major name associated with the object it retrieves.
The index is the zero-origin relative number of the major name for the object in
the major name list of the user retrieving the object. This list is the one that
was supplied when the COFIDENT macro identified the user to VLF.

For concatenated partitioned data sets, the CINDEX value is the same as the
“K” (concatenation index) value returned when a BLDL macro is issued to
locate a member.

,RETCODE=retcod
Specifies the location where the system is to store the return code. The return
code is also in general purpose register (GPR) 15. If you specify a storage
location, it must be on a fullword boundary.

COFRETRI macro

Chapter 29. COFRETRI — Retrieve a VLF object 241

,RSNCODE=rsncod
Specifies the location where the system is to store the reason code. The reason
code is also in GPR 0. If you specify a storage location, it must be on a
fullword boundary.

ABEND codes
None.

Return and reason codes
When the COFRETRI macro returns control to your program, GPR 15 (and retcod,
if you coded RETCODE) contains one of the following hexadecimal return codes.
When the COFRETRI macro returns control to your program, GPR 0 (and rsncod, if
you coded RSNCODE) contains one of the following hexadecimal reason codes.

Table 34. Return and Reason Codes for the COFRETRI Macro

Hexadecimal
Return Code

Hexadecimal
Reason Code

Meaning and Action

00 00 Meaning: The VLF object was successfully retrieved.
OBJSIZE contains the size of the VLF object. CINDEX
contains the zero-origin concatenation index number for
the object (the zero-origin relative entry number in the
major name list supplied on the COFIDENT macro).

Action: None.

02 00 Meaning: Program error. A VLF object has been retrieved
that might be the correct object for the user, but the object
might also exist in earlier major names in the user's major
name list. OBJSIZE contains the size of the VLF object.
CINDEX contains the zero-origin concatenation index
number for the object (the zero-origin relative entry
number in the major name list supplied on the COFIDENT
macro).

Action: Issue the BLDL macro to determine whether the
object returned by VLF is the correct object based on the
user's major name search order. If the object does exist on
DASD in an earlier name in the user's major name search
order, then take two steps:

v Use the alternate method to acquire the object for the
user

v Issue the COFCREAT macro to create the VLF object.

04 00 Meaning: Program error. The VLF object was retrieved, but
the target areas did not receive the entire object. OBJSIZE
contains the size of the VLF object. CINDEX contains the
zero-origin concatenation index number for the object (the
zero-origin relative entry number in the major name list
supplied on the COFIDENT service).

Action: Increase the size of the target area, then issue
COFRETRI again.

COFRETRI macro

242 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Table 34. Return and Reason Codes for the COFRETRI Macro (continued)

Hexadecimal
Return Code

Hexadecimal
Reason Code

Meaning and Action

06 00 Meaning: Program error. A VLF object has been retrieved
that might be the correct object for the user, but the object
might also exist in earlier major names in the user's major
name list. Additionally, the target areas did not receive the
entire object. OBJSIZE contains the size of the VLF object.
CINDEX contains the zero-origin concatenation index
number for the object (the zero-origin relative entry
number in the major name list supplied on the COFIDENT
service).

Action: Use the same steps as for return code 02 to
determine if the object is the correct one. If it is, increase
the size of the target area, then issue COFRETRI again.

08 00 Meaning: Program error. VLF could not find a matching
object to retrieve.

Action: Use an alternate method to acquire the object for
the user. Then issue COFCREAT to create the VLF object.

08 04 Meaning: Program error. A retrieve was attempted for a
major name that has changed or been deleted.

Action: Use an alternate method to acquire the object for
the user. Then issue COFCREAT to create the VLF object.

0A 00 Meaning: Program error. The parameter list cannot be
accessed.

Action: Make necessary corrections to ensure that the
parameter list ALET is on the dispatchable unit access list
(DU-AL) and rerun the program.

0C 00 Meaning: Program error. The class to which the user is
identified is not currently defined.

Action: Define the class with COFDEFIN and retry the
operation.

0E 00 Meaning: Program error. The user has insufficient
authorization. To retrieve an object for the class, the caller
must be a task running in supervisor state or with PKM
allowing key 0-7.

Action: Use an alternate method to acquire the object for
the user.

10 00 Meaning: Program error. An unknown user token was
specified. The most likely reason for this is that the user
has been removed from VLF identification because the
user's major name list has changed. It is also possible you
have not supplied the correct token.

Action: In either case, you must issue the COFIDENT
macro; you must reidentify the user to VLF before you can
retrieve objects for the user. Also, ensure that the UTOKEN
passed to the COFRETRI macro is valid.

14 00 Meaning: Environmental error. VLF incurred a program
check when it tried to access the TLIST. You might, for
example, have specified a larger target area to VLF than
was actually available or specified a target area the user
had no authority to modify.

Action: Rerun the program. If the problem persists, specify
a smaller TLSIZE parameter for the TLIST.

COFRETRI macro

Chapter 29. COFRETRI — Retrieve a VLF object 243

Table 34. Return and Reason Codes for the COFRETRI Macro (continued)

Hexadecimal
Return Code

Hexadecimal
Reason Code

Meaning and Action

18 00 Meaning: Program error.

Action: Ensure that all parameters passed to the
COFRETRI macro contain valid data. Make necessary
corrections in the application, and rerun the program.

18 02 Meaning: Program error. TLSIZE is greater than the
maximum allowable size, or the number of target areas is
greater than 16.

Action: Ensure that the first word of the TLIST, which
contains the number of target areas, is not greater than 16.
Make corrections and rerun the program.

18 0B Meaning: Program error. The object specified on MINOR
cannot be accessed using the specified ALET. The ALET is
a SASN ALET, or the ALET is not on the dispatchable unit
access list (DU-AL).

Action: Make necessary corrections to ensure that the
MINOR ALET is on the dispatchable unit access list
(DU-AL) and rerun the program.

18 0C Meaning: Program error. TLIST cannot be accessed using
the specified ALET. The ALET is a SASN ALET, or the
ALET is not on the dispatchable unit access list (DU-AL).

Action: Make necessary corrections to ensure that the
TLIST ALET is on the dispatchable unit access list (DU-AL)
and rerun the program.

18 0D Meaning: Program error. A target area in the target list
cannot be accessed using the specified ALET. The ALET is
a SASN ALET, or the ALET is not on the dispatchable unit
access list (DU-AL).

Action: Make necessary corrections to ensure that the
target area ALET is on the dispatchable unit access list
(DU-AL) and rerun the program.

28 00 Meaning: Environmental error.

Action: Record the return and reason codes and supply
them to the appropriate IBM support personnel.

2C nnnn Meaning: System error. nnnn is the reason code.

Action: Record the return and reason codes and supply
them to the appropriate IBM support personnel.

COFRETRI - List form

Syntax
The list form of the COFRETRI macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede COFRETRI

COFRETRI macro

244 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Syntax Description

COFRETRI

� One or more blanks must follow COFRETRI

MF=(L,mfctrl) mfctrl: Symbol.

MF=(L,mfctrl,mfattr) mfattr: 1- to 60-character input string. Default: 0D.

Parameters
The parameters of the list form are explained as follows:

MF=(L,list addr)
MF=(L,list addr,attr)

Specifies the list form of the COFRETRI macro.

list addr is the name of a storage area to contain the parameters. (If you specify
name on the macro, the system also equates the name you specify to the same
location counter value.)

attr is an optional 1- to 60-character input string, which can contain any value
that is valid on an assembler DS pseudo-op. You can use this parameter to
force boundary alignment of the parameter list. If you do not code attr, the
system provides a value of 0D, which forces the parameter list to a
doubleword boundary.

COFRETRI - Execute form

Syntax
The execute form of the COFRETRI macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede COFRETRI

COFRETRI

� One or more blanks must follow COFRETRI

MINOR=minor minor: Rx-type address or register (2) - (12).

,UTOKEN=utoken utoken: Rx-type address or register (2) - (12).

,TLIST=tlist tlist: Rx-type address or register (2) - (12).

COFRETRI macro

Chapter 29. COFRETRI — Retrieve a VLF object 245

Syntax Description

,TLSIZE=tlsize tlsize: Rx-type address or register (2) - (12).

,OBJSIZE=objsize objsize: Rx-type address or register (2) - (12).

,CINDEX=cindex cindex: Rx-type address or register (2) - (12).

,RETCODE=retcod retcod: Rx-type address or register (2) - (12).

,RSNCODE=rsncod rsncod: Rx-type address or register (2) - (12).

,MF=(E,list addr) list addr: Rx-type address or register (2) - (12).

Parameters
The parameters are explained under the standard form of the COFRETRI macro,
with the following exceptions:

,MF=(E,list addr)
Specifies the execute form of the COFRETRI macro.

list addr specifies the area that the system uses to store the parameters.

COFRETRI macro

246 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Chapter 30. COFSDONO — Delete a DLF (data lookaside
facility) object

Description
Use the COFSDONO macro to cause DLF to delete a DLF object that is no longer
needed.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Supervisor state or with PKM allowing key 0-7
Dispatchable unit mode: Task
Cross memory mode: PASN=HASN
AMODE: 31-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Must be in the primary address space

Programming requirements
Use of Hiperbatch requires real storage.

Restrictions
None.

Input register information
Upon invocation, general purpose registers (GPRs) must contain:

Register
Contents

1 Address of parameter list

13 Address of caller's save area

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0 Reason code

1 Used as a work register by the system

2-14 Unchanged

15 Return code

When control returns to the caller, the access registers (ARs) contain:

© Copyright IBM Corp. 1988, 2013 247

Register
Contents

0-1 Used as work registers by the system

2-14 Unchanged

15 Used as a work register by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
DLF objects that are no longer needed occupy system resources and should be
deleted.

Syntax
The standard form of the COFSDONO macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede COFSDONO.

COFSDONO

� One or more blanks must follow COFSDONO.

OBJNAME=name addr name addr: RX-type address or register (2) - (12).

,RETCODE=ret addr ret addr: RX-type address or register (2) - (12).

,RSNCODE=rsn addr rsn addr: RX-type address or register (2) - (12).

,MF=S

Parameters
The parameters are explained as follows:

OBJNAME=name addr
The 64-character name of the DLF object. The name is a 6-character volume
serial number followed by 1 to 44-character data set name, left-justified. Pad
the 64-character field on the right with blanks (X'40').

,RETCODE=ret addr
Specifies the location where the system is to store the return code. The return

COFSDONO macro

248 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

code is also in general purpose register (GPR) 15. If you specify a storage
location, it must be on a fullword boundary.

,RSNCODE=rsn addr
Specifies the location where the system is to store the reason code. The reason
code is also in GPR 0. If you specify a storage location, it must be on a
fullword boundary.

,MF=S
Specifies the standard form of the macro. The standard form generates code to
put the parameters into an in-line parameter list and invoke the desired
service.

ABEND codes
None.

Return and reason codes
When the COFSDONO macro returns control to your program, GPR 15 (and ret
addr, if you coded RETCODE) contains one of the following hexadecimal return
codes. GPR 0 (and rsn addr, if you coded RSNCODE) contains one of the following
hexadecimal reason codes.

Table 35. Return and Reason Codes for the COFSDONO Macro

Hexadecimal
Return Code

Hexadecimal
Reason Code

Meaning and Action

00 00 Meaning: Successful completion. The DLF object has been
deleted.

Action: None.

02 00 Meaning: The object did not exist in DLF.

Action: Check to see whether the object name is correct.

02 02 Meaning: The specified object does not exist in DLF. It has
been logically deleted by another routine, or is in the
process of being connected or deleted.

Action: None required.

28 00 Meaning: Environmental error. DLF is not active.

Action: Issue the START DLF command and rerun the job.

2C nnnn Meaning: System error. There was an unexpected error in
DLF. nnnn is the reason code.

Action: Record the return and reason codes and supply
them to the appropriate IBM support personnel.

COFSDONO - List form

Syntax
The list form of the COFSDONO macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

COFSDONO macro

Chapter 30. COFSDONO — Delete a DLF (data lookaside facility) object 249

Syntax Description

� One or more blanks must precede COFSDONO

COFSDONO

� One or more blanks must follow COFSDONO

MF=(L,mfctrl) mfctrl: Symbol.

MF=(L,mfctrl,mfattr) mfattr: 1- to 60-character input string. Default: 0D.

Parameters
The parameters of the list form are explained as follows:

MF=(L,list addr)
MF=(L,list addr,attr)

Specifies the list form of the COFSDONO macro.

list addr is the name of a storage area to contain the parameters. (If you specify
name on the macro, the system also equates the name you specify to the same
location counter value.)

attr is an optional 1- to 60-character input string, which can contain any value
that is valid on an assembler DS pseudo-op. You can use this parameter to
force boundary alignment of the parameter list. If you do not code attr, the
system provides a value of 0D, which forces the parameter list to a
doubleword boundary.

COFSDONO - Execute form

Syntax
The execute form of the COFSDONO macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede COFSDONO.

COFSDONO

� One or more blanks must follow COFSDONO.

OBJNAME=name addr name addr: RX-type address or register (2) - (12).

,RETCODE=ret addr ret addr: RX-type address or register (2) - (12).

COFSDONO macro

250 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Syntax Description

,RSNCODE=rsn addr rsn addr: RX-type address or register (2) - (12).

,MF=(E,ctrl addr) ctrl addr: RX-type address or register (2) - (12).

Parameters
Parameters for the execute form of COFSDONO are described in the standard form
of the macro with the following exceptions:

,MF=(E,list addr)
Specifies the execute form of the COFSDONO macro.

list addr specifies the area that the system uses to store the parameters.

COFSDONO macro

Chapter 30. COFSDONO — Delete a DLF (data lookaside facility) object 251

COFSDONO macro

252 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Chapter 31. CONFCHG — Request notification of I/O
configuration changes

Description
Use the CONFCHG macro to request notification about dynamic changes in the
I/O configuration in your installation. When you invoke CONFCHG with the
NOTIFY parameter, you specify whether you want to be notified about one of the
following:
v A requested or rejected configuration change that involves deleting a device or

deleting a path to a device (CHGREQ parameter)

Note: IBM recommends that you use the ENFREQ macro (event code 31)
instead of CONFCHG.

v A successful configuration change (CHGCOMPL parameter).

Note: IBM recommends that you use the ENFREQ macro (event code 32)
instead of CONFCHG.

When you invoke CONFCHG with the CANCEL parameter, you specify that you
no longer want to be notified of changes. You must cancel your NOTIFY request
when you no longer want to receive notification.

When you invoke CONFCHG with NOTIFY, you must specify a user-written
configuration change exit routine (EXIT parameter). To determine when the exit
routine will receive control, you code either the CHGREQ or CHGCOMPL
parameter. When an ACTIVATE command is issued, the system ensures that the
devices to be deleted are off-line and unallocated. If the activate request has passed
this validation step and an authorized program issues CONFCHG CHGREQ, the
system passes control to the exit routine. When a requested activation change is
rejected, the system also passes control to the exit routine.

If the program issues CONFCHG CHGCOMPL, the system passes control to the
exit routine when a dynamic I/O configuration change completes successfully.

When the configuration change exit routine receives control, general purpose
register (GPR) 1 contains the address of a parameter list. The parameter list
contains information about the change that occurred, such as the specific device
that is being added, modified, or deleted. See z/OS MVS Programming: Authorized
Assembler Services Guide for complete information on coding the configuration
change exit routine.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Supervisor state, with any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 31-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts

© Copyright IBM Corp. 1988, 2013 253

Environmental factor Requirement
Locks: No locks held
Control parameters: Must be in the primary address space

Restrictions
None.

Register information
After the caller issues the macro, the system might use some registers as work
registers or might change the contents of some registers. When the system returns
control to the caller, the contents of these registers are not the same as they were
before the macro was issued. Therefore, if the caller depends on these registers
containing the same value before and after issuing the macro, the caller must save
these registers before issuing the macro and restore them after the system returns
control.

When control returns to the caller, the general purpose registers (GPRs) contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Programming requirements
The caller of CONFCHG must ensure that the configuration change exit routine
resides in common storage. Before coding CONFCHG with the EXIT parameter, the
caller must set to 1 the high-order bit of the exit routine's address.

Performance implications
None.

Syntax
The standard form of the CONFCHG macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

CONFCHG macro

254 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Syntax Description

� One or more blanks must precede CONFCHG

CONFCHG

� One or more blanks must follow CONFCHG

NOTIFY

CANCEL

,CHGREQ

,CHGCOMPL

,TOKEN=token addr token addr: RS-type address or register (2) - (12). Required with NOTIFY only
if you plan to cancel the request upon completion. Required with CANCEL.

,EXIT=exitrtn addr exitrtn addr: RS-type address or register (2) - (12). Required only with
NOTIFY. Not valid with CANCEL.

,RETCODE=rc addr rc addr: RX-type address or register (2) - (12).

,MF=S

Parameters
The parameters are explained as follows:

NOTIFY
CANCEL

The required parameter that requests:
v Notification of I/O configuration changes (NOTIFY), or
v Cancellation of a previous notification request (CANCEL).

,CHGREQ
,CHGCOMPL

The required parameter that specifies whether the caller wants notification of:
v Requested or rejected I/O configuration changes that involve deleting a

device or deleting a path to a device (CHGREQ)
v I/O configuration changes that completed successfully (CHGCOMPL).

,TOKEN=token addr
For NOTIFY, specifies a 4-character output field into which the system returns
a token to identify the request. TOKEN is required with NOTIFY only if you
plan to cancel your notification request when completed.

For CANCEL, specifies the 4-character token returned by NOTIFY to cancel a
specific notification request. TOKEN is required with CANCEL.

,EXIT=exitrtn addr
The required parameter (for NOTIFY) that specifies the address of the
configuration change exit routine to receive control. The exit routine must

CONFCHG macro

Chapter 31. CONFCHG — Request notification of I/O configuration changes 255

reside in common storage, and the high-order bit of the routine's address must
be set to 1. Do not code this parameter with CANCEL.

,RETCODE=rc addr
Specifies the location where the system is to store the return code. The return
code is also in GPR 15.

,MF=S
An optional parameter that specifies the standard form of the macro. The
standard form places the parameters into an in-line parameter list and invokes
the service. The system checks for required parameters and supplies optional
parameters that are not specified. MF=S is the default.

Return codes
When control returns from CONFCHG, GPR 15 (and rc addr, if you coded
RETCODE) contains one of the following return codes:

Table 36. Return Codes for the CONFCHG Macro

Hexadecimal Return
Code

Meaning

00 Meaning: CONFCHG processing completed successfully.

04 Meaning: Duplicate CONFCHG NOTIFY request.

08 Meaning: Error in the control parameter list.

10 Meaning: Error in CONFCHG processing.

14 Meaning: System is not able to process request.

18 Meaning: System cannot obtain storage for the request.

1C Meaning: Token for CANCEL request is not valid.

Example 1
Issue the CONFCHG macro so that the user exit, CHGEXIT, gets control when a
configuration change completes.
CONFCHG NOTIFY,CHGCOMPL,EXIT=EXIT_ADD,TOKEN=TOKEN

Example 2
Use the CONFCHG macro to indicate the user exit, CHGEXIT, should not be called
after configuration changes.
CONFCHG CANCEL,CHGCOMPL,TOKEN=TOKEN

CONFCHG - List form
This macro is an alternative list form macro, and requires a different technique for
using the list form as compared to the conventional list form macros.

Use the list form of the CONFCHG macro together with the execute form of the
macro for applications that require reentrant code. The list form of the macro
defines an area of storage, which the execute form of the macro uses to store the
parameters.

CONFCHG macro

256 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Syntax
The list form of the CONFCHG macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede CONFCHG.

CONFCHG

� One or more blanks must follow CONFCHG.

MF=(L,list addr) list addr: Symbol.

MF=(L,list addr,attr) mfattr: 1- to 60-character input string.

MF=(L,list addr,0D) Default: 0D

Parameters
The parameter is explained as follows:

MF=(L,list addr)
MF=(L,list addr,attr)
MF=(L,list addr,0D)

Specifies the list form of the CONFCHG macro.

list addr is the name of a storage area to contain the parameters.

attr is an optional 1- to 60-character input string, which can contain any value
that is valid on an assembler DS pseudo-op. You can use this parameter to
force boundary alignment of the parameter list. If you do not code attr, the
system provides a value of 0D, which forces the parameter list to a
doubleword boundary.

CONFCHG - Execute form
Use the execute form of the CONFCHG macro together with the list form of the
macro for applications that require reentrant code. The execute form of the macro
stores the parameters into the storage area defined by the list form.

Syntax
The execute form of the CONFCHG macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede CONFCHG.

CONFCHG macro

Chapter 31. CONFCHG — Request notification of I/O configuration changes 257

Syntax Description

CONFCHG

� One or more blanks must follow CONFCHG.

NOTIFY

CANCEL

,CHGREQ

,CHGCOMPL

,TOKEN=token addr token addr: RX-type address or register (2) - (12). Required with NOTIFY
only if you plan to cancel the request upon completion. Required with
CANCEL.

,EXIT=exitrtn addr exitrtn addr: RX-type address or register (2) - (12). Required only with
NOTIFY. Not valid with CANCEL.

,RETCODE=rc addr rc addr: RX-type address or register (2) - (12).

,MF=(E,list addr) list addr: RX-type address or register (2) - (12).

,MF=(E,list addr,COMPLETE) Default: COMPLETE

Parameters
The parameters are explained under the standard form of the CONFCHG macro
with the following exception:

,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

Specifies the execute form of the CONFCHG macro.

list addr specifies the area that the system uses to store the parameters.

COMPLETE, which is the default, specifies that the system is to check for
required parameters and supply optional parameters that are not specified.

CONFCHG macro

258 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Chapter 32. CPF — Manage a command prefix

Description
The CPF (command prefix facility) macro allows you to manage command
prefixes. A command prefix enables an operator to enter a command from a system
in a sysplex, and route that command to the appropriate subsystem for execution.
The CPF macro allows an application to use command prefixes to associate an
operator command with a “target” system. The command prefixes are available to
any system in the sysplex.

Use the CPF macro to:
v Define a new command prefix
v Delete an existing command prefix
v Redefine an existing command prefix for a system or owner name.

The macro has a list and an execute form, but no standard form. The parameters
are explained in detail on the execute form of the macro.

For more information on the CPF macro, see z/OS MVS Programming: Authorized
Assembler Services Guide.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: One of the following:

v Supervisor state

v APF-authorized

v PSW keys 0-7
Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 24- or 31-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Must be in the primary address space

Programming requirements
None.

Restrictions
Prefixes cannot be supersets or subsets of existing prefixes. See z/OS MVS
Programming: Authorized Assembler Services Guide for details about defining valid
prefixes.

Input register information
Before issuing the CPF macro, the caller must ensure that the following general
purpose register (GPR) contains the specified information:

© Copyright IBM Corp. 1988, 2013 259

Register
Contents

13 The address of an 18-word save area

Output register information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register
Contents

0 Reason code, unless you receive return code X'0C'. In this case, register 0
contains a system completion code or zero.

1 Used as a work register by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

CPF - List form
Use the list form of the CPF macro together with the execute form of the macro for
applications that require reentrant code. The list form of the macro defines an area
of storage, which the execute form of the macro uses to store the parameters.

Syntax
The list form of the CPF macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede CPF.

CPF

CPF macro

260 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Syntax Description

� One or more blanks must follow CPF.

MF=(L,list addr) list addr: RX-type address or register 2-12.

The parameters are explained as follows:

MF=(L,list addr)
Specifies the list form of the CPF macro.

list addr is the name of the storage area to contain the parameters.

CPF - Execute form
Use the execute form of the CPF macro together with the list form of the macro for
applications that require reentrant code. The execute form of the macro stores the
parameters into the storage area defined by the list form.

Syntax
The execute form of the CPF macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede CPF.

CPF

� One or more blanks must follow CPF.

Valid parameters (Required parameters are underlined):

REQUEST=DEFINE PREFIX, OWNER, SCOPE, FAILDISP, REMOVE

REQUEST=DELETE PREFIX, CURSYS

REQUEST=REDEFINE PREFIX, OWNER, CURSYS, NEWSYS

,PREFIX=prefix addr prefix addr: RX-type address or register 2-12.

,OWNER=owner addr owner addr: RX-type address or register 2-12.

,SCOPE=SYSPLEX Default: SCOPE=SYSPLEX

,SCOPE=SYSTEM

,FAILDISP=PURGE Default: FAILDISP=PURGE

CPF macro

Chapter 32. CPF — Manage a command prefix 261

Syntax Description

,FAILDISP=SYSPURGE

,FAILDISP=RETAIN

,REMOVE=NO Default: REMOVE=NO

,REMOVE=YES

,CURSYS=sys name sys name: RX-type address or register 2-12.

,NEWSYS=sys addr sys addr: RX-type address or register 2-12.

,MF=(E, list addr) list addr: RX-type address or register 2-12

The parameters are explained as follows:

REQUEST=DEFINE
REQUEST=DELETE
REQUEST=REDEFINE

Specifies the desired command prefix facility function to be performed. You
can specify only one function at a time. The three functions are:

DEFINE
Creates the definition for a new command prefix.

DELETE
Deletes an existing command prefix.

REDEFINE
Defines a new receiving system for a given prefix, and a new owner
name, if needed.

,PREFIX=prefix addr
Specifies the address of a required 8-byte field containing the command prefix.
If the prefix is less than 8 characters, it must be left-justified and padded with
blanks.

,OWNER=owner addr
Specifies the address of an 8-byte field containing a name that identifies the
subsystem owning the command prefix (for example, JES2, JES3, IMS™). If the
name is less than 8 characters, it must be left-justified and padded with blanks.

,SCOPE=SYSPLEX
,SCOPE=SYSTEM

Specifies the range of systems to which a command with this prefix can be
routed for execution. The values are:

SYSPLEX
The command issued can be routed to another system in the sysplex
for execution. If SCOPE is not specified, this is the default.

Note: If the installation has defined the security profile
MVS.CPF.ROUTE.CHECK in the OPERCMDS class, the issuer of the

CPF macro

262 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

command requires sufficient authority to the
MVS.ROUTE.CMD.system to route the command to a different system
in the sysplex.

SYSTEM
The command issued will execute in the system on which the
command is entered.

,FAILDISP=PURGE
,FAILDISP=SYSPURGE
,FAILDISP=RETAIN

Specifies the failure disposition of the prefix being defined. Any one of the
following can be specified:

PURGE
The command prefix is automatically deleted when the receiving
system is removed from the sysplex, or the defining address space
terminates. If the FAILDISP is not specified, this value is the default.

SYSPURGE
The command prefix is automatically deleted when the receiving
system is removed from the sysplex, but not when the defining
address space terminates.

RETAIN
The command prefix will persist even if a system is removed or the
address space of the routine processing the command terminated. In
this case, the owning subsystem is responsible for redefining the
command prefix for another system or deleting the command prefix,
respectively.

,REMOVE=YES
,REMOVE=NO

Specifies whether the command prefix is removed from the command text
prior to being executed on the receiving system. REMOVE=NO indicates the
command prefix and the command are presented to the receiving system. If
the REMOVE parameter is not specified, this is the default. REMOVE=YES
indicates the command prefix is removed from the command before it is
presented to the receiving system.

,CURSYS=sys name
Specifies the address of an 8-byte field containing the name of the system for
which the prefix was defined. The system is the system on which the
command will be processed. Issue the DISPLAY XCF command to obtain a list
of the names of systems in the sysplex. If the system name is less than 8 bytes,
it must be left-justified and padded on the right with blanks. The default is the
name of the system on which the CPF macro is invoked.

,NEWSYS=sys addr
Specifies the address of an 8-byte field containing the name of the new system
to which commands with this prefix should be routed in the event that the
system specified on CURSYS fails. If the system name is less than 8 bytes, it
must be left-justified and padded on the right with blanks. The default is the
name of the system on which the CPF macro is invoked.

,MF=(E,list addr)
Specifies the execute form of CPF.

list addr specifies the area that the system uses to store the parameters.

CPF macro

Chapter 32. CPF — Manage a command prefix 263

ABEND codes
None.

Return and reason codes
When the CPF macro with REQUEST=DEFINE returns control to your program,
GPR 15 contains a hexadecimal return code and GPR 0 contains a hexadecimal
reason code.

Table 37. Return and Reason Codes for the CPF Macro with REQUEST=DEFINE

Hexadecimal
Return Code

Hexadecimal
Reason Code

Meaning and Action

00 00 Meaning: CPF completed successfully.

Action: None.

00 04 Meaning: Environmental error. You specified DEFINE with
SCOPE=SYSPLEX, but the system was in XCF-local mode.

Action: Ensure that you are running in a sysplex, or
change the SCOPE parameter. Retry the request.

04 04 Meaning: Program error. The prefix contains characters not
in the range of X'41' to X'FE'.

Action: Correct the prefix and retry the request.

04 08 Meaning: Program error. The OWNER parameter on the
DEFINE request contained characters not in the range of
X'41' to X'FE'.

Action: Correct the OWNER parameter and retry the
request.

08 08 Meaning: Program error. You specified DEFINE for a prefix
that already exists. CPF internally issues the DISPLAY
OPDATA command which displays the command prefixes
defined for subsystems in the sysplex.

Action: If you specified the wrong prefix, correct the
problem and retry the request.

08 0C Meaning: Program error. You specified DEFINE with a
prefix that is a subset of an existing prefix. CPF internally
issues the DISPLAY OPDATA command which displays the
command prefixes defined for subsystems in the sysplex.

Action: Refer to prefix subset requirements. Correct the
problem and retry the request.

08 10 Meaning: Program error. You specified DEFINE with a
prefix that was a superset of an existing prefix. CPF
internally issues the DISPLAY OPDATA command which
displays the command prefixes defined for subsystems in
the sysplex.

Action: Refer to prefix subset requirements. Correct the
problem and retry the request.

0C None. Meaning: System error. A broadcast of an updated CPF
table failed, or an abend occurred.

Action: If an abend occurred, register 0 contains the abend
code. Record the return code and supply it to the
appropriate IBM support personnel.

When the CPF macro with REQUEST=DELETE returns control to your program,
GPR 15 contains a hexadecimal return code and GPR 0 contains a hexadecimal
reason code.

CPF macro

264 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Table 38. Return and Reason Codes for the CPF Macro with REQUEST=DELETE

Hexadecimal
Return Code

Hexadecimal
Reason Code

Meaning and Action

00 00 Meaning: CPF completed successfully.

Action: None.

04 04 Meaning: Program error. The prefix contained characters
not in the range of X'41' to X'FE'.

Action: Correct the prefix and retry the request.

08 04 Meaning: Environmental error. You specified DELETE, but
the prefix was not found in the CPF table. CPF internally
issues the DISPLAY OPDATA command which displays the
command prefixes defined for subsystems in the sysplex.

Action: Correct the problem and retry the request.

08 1C Meaning: Program error. You specified DELETE, but no
CPF table exists. CPF internally issues the DISPLAY
OPDATA command which displays the command prefixes
defined for subsystems in the sysplex.

Action: Determine whether the CPF table should exist.

0C None. Meaning: System error. A broadcast of an updated CPF
table failed, or an abend occurred.

Action: If an abend occurred, register 0 contains the abend
code. Record the return code and supply it to the
appropriate IBM support personnel.

When the CPF macro with REQUEST=REDEFINE returns control to your program,
GPR 15 contains a hexadecimal return code and GPR 0 contains a hexadecimal
reason code.

Table 39. Return and Reason Codes for the CPF Macro with REQUEST=REDEFINE

Hexadecimal
Return Code

Hexadecimal
Reason Code

Meaning and Action

00 00 Meaning: CPF completed successfully.

Action: None.

04 04 Meaning: Program error. The prefix contained characters
not in the range of X'41' to X'FE'.

Action: Correct the prefix and retry the request.

04 08 Meaning: Program error. The OWNER parameter on the
DEFINE request contained characters not in the range of
X'41' to X'FE'.

Action: Correct the OWNER parameter and retry the
request.

04 0C Meaning: Program error. You specified REDEFINE for a
prefix that was defined with FAILDISP=PURGE. CPF
internally issues the DISPLAY OPDATA command which
displays the command prefixes defined for subsystems in
the sysplex.

Action: Correct the problem and retry the request.

CPF macro

Chapter 32. CPF — Manage a command prefix 265

Table 39. Return and Reason Codes for the CPF Macro with
REQUEST=REDEFINE (continued)

Hexadecimal
Return Code

Hexadecimal
Reason Code

Meaning and Action

08 04 Meaning: Environmental error. You specified REDEFINE,
but the prefix was not found in the CPF table. CPF
internally issues the DISPLAY OPDATA command which
displays the command prefixes defined for subsystems in
the sysplex.

Action: Correct the problem and retry the request.

08 14 Meaning: Program or environmental error. You specified
REDEFINE, but the NEWSYS parameter specified a system
not in the sysplex. CPF internally issues the DISPLAY
OPDATA command which displays the command prefixes
defined for subsystems in the sysplex.

Action: Wait for the specified system to join the sysplex, or
determine if you specified an incorrect system name. Make
any necessary corrections and retry the request.

08 18 Meaning: Program error. You redefined a prefix and
targeted it for another system in the sysplex. However, that
system had the same prefix already defined. CPF internally
issues the DISPLAY OPDATA command which displays the
command prefixes defined for subsystems in the sysplex.

Action: Correct the problem and retry the request.

08 1C Meaning: Program error. You specified REDEFINE, but no
CPF table exists. CPF internally issues the DISPLAY
OPDATA command which displays the command prefixes
defined for subsystems in the sysplex.

Action: Determine whether the CPF table should exist.

0C None. Meaning: System error. A broadcast of an updated CPF
table failed, or an abend occurred.

Action: If an abend occurred, register 0 contains the abend
code. Record the return code and supply it to the
appropriate IBM support personnel.

Example
Define a prefix that causes all commands issued with that prefix to be sent to
system cvtsname for processing.
CPF MF=(L,CPFLIST)

.

.

.
CPF REQUEST=DEFINE,

PREFIX=CVTSNAME,
OWNER=OWNER,
SCOPE=SYSPLEX,
FAILDISP=PURGE,
REMOVE=YES,
MF=(E,CPFLIST)
.
.
.
OWNER DC CL8’CONSOLE ’
.
.
.

CPF macro

266 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Chapter 33. CPOOL — Perform cell pool services

Description
The CPOOL macro performs the following functions:
v Creates a cell pool (BUILD)
v Obtains a cell from the pool (GET, COND)
v Returns a cell to the cell pool (FREE)
v Deletes a previously built cell pool (DELETE)
v Places the starting and ending addresses of the cell pool extents in a buffer

(LIST).

The CPOOL macro is also described in z/OS MVS Programming: Assembler Services
Reference ABE-HSP with the exception of the TCB, LINKAGE, OWNER, and
VERIFY parameters.

Before obtaining storage, be sure to read the information on subpools in “Virtual
Storage Management” in z/OS MVS Programming: Authorized Assembler Services
Guide.

Environment
Requirements for the caller are:

Environmental factor Requirement
Minimum authorization: v For subpools 0-127, problem state and PSW key 8-15.

v For subpools 131 and 132, one or more of the following:

– Supervisor state

– PSW key 0-7

– APF-authorization.

– PSW key mask (PKM) that allows the calling program
to switch its PSW key to match the key of the storage
to be obtained or released.

v For other subpools, the TCB parameter, and the
MULTIHDR=YES parameter, one or more of the
following:

– Supervisor state

– PSW key 0-7, PSW key 0 for TCB parameter

– APF-authorization.

v For LINKAGE=BRANCH, supervisor state and key 0.

v For the VERIFY parameter, supervisor state.
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN.
AMODE: For GET with MULTIHDR=YES and FREE with

MULTIHDR=YES, 31-bit. Otherwise, 24- or 31-bit.
ASC mode: Primary. For LIST requests and LINKAGE=BRANCH,

primary or secondary.

© Copyright IBM Corp. 1988, 2013 267

Environmental factor Requirement
Interrupt status: v For private (local) and pageable common (global) storage

requests, the caller must be enabled for I/O and external
interrupts.

v For GET,UNCOND requests, the caller must not be
disabled when the specified cell pool is in a disabled
reference (DREF) subpool.

v For all other requests, enabled or disabled for I/O and
external interrupts.

Locks: The following locks must be held by the caller or must be
obtainable by CPOOL:

v For private storage or for pageable common:

– If the caller is not running in cross-memory mode, the
LOCAL lock of the currently addressable address
space.

– If the caller is running in cross-memory mode, the
CML lock of the currently addressable address space.

– CMS lock.

v For other storage (DREF or fixed common), the caller may
hold locks, but is not required to hold any.

Control parameters: Must reside in the caller's primary address space. Except for
TCB, parameters can reside in storage above 16 megabytes if
the caller is in 31-bit addressing mode.

Programming requirements
None.

Restrictions
None.

Input register information
The CPOOL macro is sensitive to the SYSSTATE macro with the OSREL=ZOSV1R6
parameter
v If the caller has issued the SYSSTATE macro with the OSREL=ZOSV1R6

parameter (Version 1 Release 6 of z/OS or later) before issuing the CPOOL
macro with the BUILD, DELETE, LIST, or REGS=SAVE parameters, the caller
does not have to place any information into any general purpose register (GPR)
unless using it in register notation for a particular parameter, or using it as a
base register.

v If the caller has not issued the SYSSTATE macro with the OSREL=ZOSV1R6
parameter before issuing the CPOOL macro with the BUILD, DELETE, LIST, or
REGS=SAVE parameters, the caller must ensure that the following general
purpose register (GPR) contains the specified information:

Register
Contents

13 The address of an 72-byte save area

Before issuing the CPOOL macro with the GET, FREE, or REGS=USE parameters,
the caller is not required to place any information into any register unless using it
in register notation for a particular parameter, or using it as a base register.

CPOOL macro

268 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Output register information
When control returns to the caller from CPOOL BUILD, the GPRs contain:

Register
Contents

0 Contains the cell pool ID.

1 Used as a work register by the system.

2-13 Unchanged.

14-15 Used as work registers by the system.

When control returns to the caller from CPOOL GET, the GPRs contain:

Register
Contents

0 Used as work registers by the system.

1 For an UNCOND request or a successful COND request, contains the
address of the obtained cell. For an unsuccessful COND request, contains a
zero.

2-4 If REGS=SAVE is specified, unchanged. Otherwise, used as work registers
by the system.

5-13 If LINKAGE=SYSTEM, REGS=SAVE, COND REGS=USE, or
MULTIHDR=YES is specified, unchanged. Otherwise, used as work
registers by the system.

14-15 Used as work registers by the system.

When control returns to the caller from CPOOL FREE, the GPRs contain:

Register
Contents

0-1 Used as work registers by the system.

2-3 If REGS=SAVE is specified, unchanged. Otherwise, used as work registers
by the system.

4-13 Unchanged.

14-15 Used as work registers by the system.

When control returns to the caller from CPOOL DELETE, the GPRs contain:

Register
Contents

0-1 Used as work registers by the system.

2-13 Unchanged.

14-15 Used as work registers by the system.

When control returns to the caller from CPOOL LIST, the GPRs contain:

Register
Contents

0-1 Used as work registers by the system.

2-13 Unchanged.

CPOOL macro

Chapter 33. CPOOL — Perform cell pool services 269

14-15 Used as work registers by the system.

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system.

2-13 Unchanged.

14-15 Used as work registers by the system.

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the service returns control.

Performance implications
The CPOOL macro offers better performance than GETMAIN–FREEMAIN and
STORAGE for obtaining and releasing many identically sized storage areas.

Syntax
The CPOOL macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede CPOOL.

CPOOL

� One or more blanks must follow CPOOL.

Valid parameters (Required parameters are underlined)

BUILD PCELLCT,SCELLCT,CSIZE,SP,BNDRY,LOC,CPID,
KEY,TCB,HDR,LINKAGE,OWNER,MULTIHDR
,MAXCELLS,CELLSPERCPU,CELLSHARE

GET UNCOND,COND,CPID,CELL,REGS,LINKAGE,MULTIHDR

FREE CPID,CELL,REGS,MULTIHDR

DELETE CPID,LINKAGE

LIST CPID,WORKAREA,VERIFY

,UNCOND Default: UNCOND

,U

,COND

,C

CPOOL macro

270 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Syntax Description

,PCELLCT=primary cell count cell count: Symbol, decimal number, or register (0), (2) - (12).

,SCELLCT=secondary cell count Default: PCELLCT

,CSIZE=cell size cell size: Symbol, decimal number, or register (0), (2) - (12).

,SP=subpool number subpool number: Symbol, decimal number, or register (0), (2) - (12).

Default: SP=0

,BNDRY=DWORD Default: BNDRY=DWORD

The default value depends on the specified CSIZE value. If CSIZE is a
multiple of 8, cells reside on double boundaries (BNDRY=DWORD). If
CSIZE is multiple of 4, cells reside on word boundaries. If CSIZE is not a
multiple of 4 or 8, cells do not reside on a particular boundary.

,BNDRY=QWORD

,LOC=24 Default: LOC=RES

,LOC=31

,LOC=(31,31)

,LOC=(31,64)

,LOC=(31,PAGEFRAMESIZE1MB)

,LOC=RES

,LOC=(RES,31)

,LOC=(RES,64)

,CPID=pool id pool id: RX-type address or register (0), (2) - (12).

,CELL=cell addr cell addr: RX-type address or register (0), (2) - (12).

,KEY=key number key number: Decimal numbers 0-15 or register (0), (2) - (12).

Default: The default depends on which subpool you specify. See the list of
subpool characteristics in z/OS MVS Programming: Authorized Assembler
Services Guide for information on storage keys for specific subpools.

,TCB=tcb addr tcb addr: RX-type address or register (0), (2) - (12).

Default: TCB address in PSATOLD.

,HDR=hdr hdr: Character string enclosed in single quotation marks, RX-type address,
or register (0), (2) - (12).

Default: ‘CPOOL CELL POOL’.

,LINKAGE=SYSTEM Default: LINKAGE=SYSTEM

CPOOL macro

Chapter 33. CPOOL — Perform cell pool services 271

Syntax Description

,LINKAGE=BRANCH Note: Do not specify LINKAGE with FREE or LIST requests or the GET
request with the COND parameter.

,REGS=SAVE Default: REGS=SAVE

,REGS=USE

,WORKAREA=(workarea,length) workarea: Symbol, RX-type address, or register (0), (2) - (12).

length: Symbol or decimal number.

,VERIFY=NO Default: VERIFY=NO.

,VERIFY=YES

,OWNER=HOME Default: OWNER=HOME

,OWNER=PRIMARY

,OWNER=SYSTEM

,MULTIHDR=NO Default: MULTIHDR=NO

,MULTIHDR=YES

,MAXCELLS=MMMM

,CELLSPERCPU=NNNN

,CELLSHARE=NO Default: CELLSHARE=NO

,CELLSHARE=YES

Parameters
The parameters are explained as follows:

BUILD
GET
FREE
DELETE
LIST

Specifies the cell pool service to be performed.

BUILD creates a cell pool in a specified subpool by allocating storage and
chaining the cells together.

GET attempts to obtain a cell from the previously built cell pool. This request
can be conditional or unconditional as described under the UNCOND/COND
keyword.

FREE returns a cell to the cell pool.

DELETE deletes a previously built cell pool and frees storage for the initial
extent, all secondary extents, and all pool control blocks.

CPOOL macro

272 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

LIST places the beginning and ending addresses of the extents of a cell pool in
a work area provided by the caller.

,UNCOND
,U
,COND
,C

When used with GET specifies whether the request for a cell is conditional or
unconditional.

If you specify COND or C and no more free cells are available in the cell pool,
the CPOOL service routine returns to the caller without a cell. The CPOOL
service routine places a zero in the field that contains the address of the newly
obtained cell.

If you specify UNCOND or U and no more free cells are available in the cell
pool, the CPOOL service routine obtains more storage for the cell pool. CPOOL
then obtains a new cell for the caller. An unconditional CPOOL GET request
fails only if enough storage is not available to extend the cell pool.

,PCELLCT=primary cell count
Specifies the number of cells expected to be needed in the initial extent of the
cell pool.

,SCELLCT=secondary cell count
Specifies the number of cells expected to be in each secondary or noninitial
extent of the cell pool.

,CSIZE=cell size
Specifies the number of bytes in each cell of the cell pool. If CSIZE is a
multiple of 8, the cell resides on doubleword boundaries. If CSIZE is a
multiple of 4, the cell resides on word boundaries. The minimum value of
CSIZE is 4 bytes.

When the specified cell size is less than 256 bytes, the number of elements
allocated to an extent may be more than what is expected. The extent might
also hold more elements than would have fit in an extent of the specified size.
This occurs because each extent is allocated to have a length that is a multiple
of 256 bytes.

,SP=subpool number
Specifies the subpool from which the cell pool is to be obtained. If a register or
variable is specified, the subpool number is taken from bits 24-31. See the list
of subpool characteristics in z/OS MVS Programming: Authorized Assembler
Services Guide for information on authorization requirements pertaining to
specific subpools.

,BNDRY=DWORD
,BNDRY=QWORD

Specifies whether each cell must be on at least a doubleword boundary
(DWORD) or a quadword (16-byte) boundary (QWORD). The default depends
on the value that is specified for CSIZE.

Note:

1. When BNDRY=DWORD is explicitly specified, a CSIZE value that is
multiple of 8 must also be specified to ensure that each cell is on at least a
doubleword boundary.

2. When BNDRY=QWORD is explicitly specified, a CSIZE value that is
multiple of 16 must also be specified to ensure that each cell is on at least a
quadword boundary.

CPOOL macro

Chapter 33. CPOOL — Perform cell pool services 273

,LOC=24
,LOC=31
,LOC=(31,31)
,LOC=(31,64)
,LOC=(31,PAGEFRAMESIZE1MB)
,LOC=RES
,LOC=(RES,31)
,LOC=(RES,64)

Specifies the location of virtual storage and central storage for the cell pool.
The location of central storage using this parameter is guaranteed only after
the storage is fixed.

LOC=24 indicates that central and virtual storage are to be located below 16
megabytes. LOC=24 must not be used to allocate disabled reference (DREF)
storage.

Note: Specifying LOC=BELOW is the same as specifying LOC=24.
LOC=BELOW is still supported, but IBM recommends using LOC=24 instead.

LOC=31 and LOC=(31,31) indicate that virtual and central storage can be
located anywhere below 2 gigabytes.

Note: Specifying LOC=ANY or LOC=(ANY,ANY) is the same as specifying
LOC =31 or LOC=(31,31). LOC=ANY and LOC=(ANY,ANY) are still
supported, but IBM recommends using LOC=31 or LOC=(31,31) instead.

LOC=(31,64) indicates that virtual storage is to be located below 2 gigabytes
and central storage can be located anywhere in 64-bit storage.

LOC=(31,PAGEFRAMESIZE1MB) indicates that virtual storage is to be located
below 2 gigabytes and central storage can be backed anywhere in 64-bit
storage, preferably by 1 megabyte page frames. When specifying
LOC=(31,PAGEFRAMESIZE1MB) during CPOOL BUILD:
v The only xx sub-parameter value that can be validly specified in

combination with the PAGEFRAMESIZE1MB yy sub-parameter on the LOC
statement of the CPOOL BUILD macro is 31:
LOC=(31,PAGEFRAMESIZE1MB)

v PAGEFRAMESIZE1MB indicates that the preferred page frame size for the
CPOOL virtual storage range is 1 MB.
Attention: PAGEFRAMESIZE1MB is a page size preference only; it does
not guarantee that the virtual storage range will be backed by large pages.

v There are no requirements that the 31-bit virtual storage obtained be large
page aligned or that it be a multiple of the specified large page size.

v The LOC(31,PAGEFRAMESIZE1MB) parameter has no effect on other
parameters that can be specified on CPOOL BUILD requests.

v Subpools that support backing by 1 megabyte page frames are identified in
Table 8-1 in z/OS MVS Diagnosis: Reference.

LOC=RES indicates that the location of virtual and central storage depends on
the location of the caller. If the caller resides below 16 megabytes, virtual and
central storage are to be allocated below 16 megabytes; if the issuer resides
above 16 megabytes, virtual and central storage can be located anywhere.

LOC=(RES,31) indicates that the location of virtual storage depends upon the
location of the caller. If the caller resides below 16 megabytes, virtual storage is
to be located below 16 megabytes; if the caller resides above 16 megabytes,

CPOOL macro

274 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

virtual storage can be located anywhere below 2 gigabytes. In either case,
central storage can be located anywhere below 2 gigabytes.

Note: Specifying LOC=(RES,ANY) is the same as specifying LOC=(RES,31).
LOC=(RES,ANY) is still supported, but IBM recommends using LOC=(RES,31)
instead.

LOC=(RES,64) indicates that the location of virtual storage depends upon the
location of the caller. If the caller resides below 16 megabytes, virtual storage is
to be located below 16 megabytes; if the caller resides above 16 megabytes,
virtual storage can be located anywhere in 64-bit storage. In either case, central
storage can be located anywhere in 64-bit storage.

Note: Callers executing in 24-bit addressing mode could perform BUILD
request services for cell pools located in storage above 16 megabytes but below
2 gigabytes by specifying LOC=31 or LOC=(31,31).

,CPID=pool id
Specifies the 4-byte address or register that is to contain (BUILD request) or
contains (DELETE, FREE, GET, and LIST requests) a cell pool identifier. The
system returns this identifier to the caller after the issuer creates the cell pool
using CPOOL BUILD. The issuer must specify the same CPID on subsequent
DELETE, FREE, GET, and LIST requests.

,CELL=cell addr
Specifies the 4-byte address or register that is to contain (GET request) or
contains (FREE request) the cell pool address.

,KEY=key number
Specifies the storage key in which storage is to be obtained. If a register is
specified, the storage key is taken from bits 28-31. This parameter is valid for
subpools 129-132, 227-231, 241, and 249.

,TCB=tcb addr
Specifies the address of the input TCB, which the system uses to assign
ownership of private storage. The TCB must be within the currently
addressable address space. If the caller specifies zero as the TCB address, the
CPOOL service routine uses the TCB address in ASCBXTCB. If the CPOOL
request is for private storage and the caller does not specify TCB, the default is
the TCB address in PSATOLD.

For an explanation of the term input TCB, and to determine the
system-assigned defaults for ownership of private storage, see the topic on
selecting the subpool for your virtual storage request in z/OS MVS
Programming: Authorized Assembler Services Guide.

Note: The TCB resides in storage below 16 megabytes.

,HDR=hdr
Specifies a 24-byte header, which is placed in the header of each initial and
secondary extent. The header can contain user-supplied information that
would be useful in a dump.

,LINKAGE=SYSTEM
,LINKAGE=BRANCH

Specifies the type of linkage used in CPOOL processing:

LINKAGE=SYSTEM
The linkage uses a non-SVC-entry.

CPOOL macro

Chapter 33. CPOOL — Perform cell pool services 275

LINKAGE=BRANCH
The linkage uses branch entry.

,REGS=SAVE
,REGS=USE

Indicates whether or not registers 2-12 are to be saved for a GET or FREE
request. If REGS=SAVE is specified, the registers are saved in the 72-byte
user-supplied save area pointed to by register 13.

,WORKAREA=(workarea,length)
Specifies the address of a pointer to the work area (not the address of the
work area) and also specifies the length of that area. The length must be at
least 1024 bytes. The system places the beginning and ending addresses of the
extents of the cell pool in this work area. WORKAREA applies only to the LIST
request and is required.

CPOOL LIST might not be able to return all of the beginning address/ending
address pairs at once, depending on how many address pairs there are and
how large the work area is. Thus, to complete a CPOOL LIST request, your
program might have to issue CPOOL LIST more than once. If CPOOL LIST
uses up all the space in the work area, but still has more information to return,
it indicates (with a return code) that there are more address pairs. Your
program can then reissue CPOOL LIST to get more information, and keep
reissuing CPOOL LIST until all of the information is returned.

CPOOL LIST must be able to tell the difference between the beginning of a
request (that is, the first time your program issues CPOOL LIST to get some
information about a cell pool) and the continuation of a request (that is, when
your program issues CPOOL LIST to get more information). Your program tells
CPOOL LIST that it is beginning a new request by setting the first bit of word
0 in the work area to 1.

Until your program has obtained all the information about a cell pool that it
needs from CPOOL LIST, it should not change the setting of that bit, nor
should it issue a GET, FREE, or DELETE request for that cell pool. (If your
program does issue a GET or FREE request before it has obtained all of the
information it needs from CPOOL LIST, it must begin a new CPOOL LIST
request; that is, set the first bit of word 0 to 1 and start all over again. If your
program deletes the cell pool, it can no longer issue the CPOOL LIST for that
cell pool.)

CPOOL LIST uses the second through fourth words (words 1-3) in the work
area to return information to your program:
v Word 1 contains the return code. See “Return codes” on page 278
v Word 2 contains a pointer to the first starting address/ending address pair

in the list of address pairs.
v Word 3 contains the number of address pairs in the list.

VERIFY=NO
VERIFY=YES

To make sure the virtual storage control blocks are backed by central storage
and accessible, specify VERIFY=YES. The default is VERIFY=NO.

,OWNER=HOME
,OWNER=PRIMARY
,OWNER=SYSTEM

Specifies the entity to which the system will assign ownership of requested
CSA, ECSA, SQA, and ESQA storage. The system uses this ownership

CPOOL macro

276 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

information to track the use of CSA, ECSA, SQA and ESQA storage. This
parameter can have one of the following values:

HOME
The home address space.

PRIMARY
The primary address space.

SYSTEM
The system (the storage is not associated with an address space);
specify this value if you expect the requested storage to remain
allocated after termination of the job that obtained the storage.

The default value is OWNER=HOME. The system ignores the OWNER
keyword unless you specify a CSA, ECSA, SQA or ESQA subpool on the SP
parameter.

Storage tracking is available as of MVS/SP Release 4.3. Programs that issue the
CPOOL macro with the OWNER=PRIMARY or OWNER=SYSTEM parameter
must run on MVS/SP 4.3 or later. However, programs that issue the CPOOL
macro with the OWNER=HOME parameter can run on any system.

Note: For CPOOL GET, the system determines the owning address space at
the time of the GET request, even if you specify the address space when you
issue CPOOL BUILD. For example, if CPOOL BUILD specifies
OWNER=HOME with PASN=HASN=5, and CPOOL GET is issued with
HASN=8 and PASN=5, the owner for the GET is address space 8. Therefore, if
your cross-memory environment is different for CPOOL GET and CPOOL
BUILD, you should ensure that the correct owning address space is specified.

,MULTIHDR=NO
,MULTIHDR=YES

When specified on CPOOL BUILD, it indicates that a cell pool with multiple
headers is to be created. Only authorized callers are supported (System Key,
Supervisor State or APF Authorized). A header is created for each CPU up to
the maximum number of CPUs that are supported on the system
(CVTMAXMP+1). These headers are contiguous in storage. Each header is the
same size as a CPU cache line as specified in ECVTCACHELINESIZE.

PCELLCT and SCELLCT are not supported with MULTIHDR=YES.
Additionally, MULTIHDR=YES is not supported on a GET request when
LINKAGE=BRANCH is specified

When specified on a GET REQUEST, LINKAGE= is not supported. Each
MULTIHDR=YES allocated cell has a 16 byte prefix area that is reserved by the
system for internal system usage. A GET or FREE MULTIHDR=YES invocation
is only supported for 31-bit Amode callers.

,MAXCELLS=MMMM
When specified on a BUILD,MULTIHDR=YES request, this parameter specifies
the maximum number of cells that are to be allocated to the cell pool. If this
keyword is not specified, the default value of 0 is used, which indicates that no
maximum exists for the cellpool. The syntax for MAXCELLS= is identical to
that of SCELLCT=. A negative value will result in a C78-20 abend, similar to
what occurs for PCELLCT and SCELLCT.

This parameter is applicable only if the caller subsequently does a conditional
GET request specifying MULTIHDR=YES. The GET processing expands the cell
pool conditionally based on the value of MAXCELLs. An 0 cell address is
returned if the allocated cells in the cell pool have reached this maximum

CPOOL macro

Chapter 33. CPOOL — Perform cell pool services 277

value and no cells are available. If the value of MAXCELLS is not specified,
GET,COND will function identically to GET,UNCOND and will pool.

The maximum number of cells allocated to a cell pool can be exceeded by up
to CELLSPERCPU-1 cells if MAXCELLS is not a multiple of CELLSPERCPU.

,CELLSPERCPU=NNNN
When specified on a BUILD,MULTIHDR=YES request, this parameter specifies
the number of cells to be allocated in a CPU extent. The syntax for
CELLSPERCPU= is identical to that of SCELLCT=. A negative value will result
in a C78-20 abend. A value that results in a too large extent value will result in
a C78-A4 abend. This is similar to what occurs for SCELLCT and PCELLCT.
The value specified is the number of cells to be allocated in the CPU extent for
the CPU requesting the cell when GET expands the cell pool. If this is not
specified, the default value of one is used for the cells to be allocated a CPU
extent.

If MAXCELLS is specified and is not a multiple of CELLSPERCPU, then the
maximum number of allocated cells in a cell pool can be exceeded by up to
CELLSPERCPU-1 cells.

,CELLSHARE=NO
,CELLSHARE=YES

When specified on a BUILD,MULTIHDR=YES request, specify this parameter
to allow free cells from a cell pool with multiple headers to be shared by CPUs
that are requesting for free cells. Note that a free cell might be accessible by
only some of the CPUs.

When CELLSHARE=YES is specified, note that:
v Using CELLSHARE to share free cells between CPUs can help balance CPUs.

Some CPUs, for example, might accumulate excessive cells because of a
spike in usage. Other CPUs can use some of the accumulated excessive cells
to expand their pool of available cells without having to issue a GETMAIN
request.

v If you specified MAXCELLS for a cell pool with multiple headers and the
MAXCELLS limit on the number of cells allocated for a cell pool has been
reached, sharing of free cells between neighboring CPUs occurs
automatically, regardless of what you specify for CELLSHARE.

v Any cell pool with multiple headers can benefit from cell sharing. However,
the cell pools that benefit the most are the ones that are expected to use a
great many cells and do not have the maximum cell number limit specified
by the MAXCELLS parameter. This is because MAXCELLS caps the number
of cells a cell pool can use.

ABEND codes
The CPOOL macro issues abend code X'C78'. See z/OS MVS System Codes for an
explanation and possible responses.

Return codes
CPOOL BUILD, DELETE, FREE, and GET,UNCOND have no return codes. If any
of these requests fail, CPOOL issues an abend.

CPOOL GET,COND returns a return code in register 1. See “Output register
information” on page 269 for specific information.

CPOOL LIST returns a hexadecimal return code in word 1 (bytes 4 through 7) of
the work area used to return information to the calling program.

CPOOL macro

278 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Table 40. Return Codes for the CPOOL LIST Macro

Hexadecimal Return
Code

Meaning and Action

00 Meaning: Successful completion.

Action: None.

01 Meaning: The work area holds all the information that fits but more
information remains to be returned.

Action: Reissue the CPOOL LIST request to receive more information. Do
not set the first bit of word 0 in the work area to 1 before reissuing the
CPOOL LIST request.

02 Meaning: Program error. At least one parameter passed in the CPOOL LIST
request was not valid.

Action: Verify that you have coded the CPOOL LIST parameters correctly.
Ensure that the work area is at least 1024 bytes.

03 Meaning: Program or system error. The system found a cell pool control
block that was either inaccessible or not valid. The work area contains the
information CPOOL LIST gathered before encountering the problem.

Action: Verify that the affected cell pool has not been deleted. If the cell
pool exists, ask the system programmer to request a dump to get more
information for IBM support personnel.

Example 1
Create a cell pool containing 40-byte cells from subpool 2. Allow for 10 cells in the
initial extent and 20 cells in all subsequent extents of the cell pool.
CPOOL BUILD,PCELLCT=10,SCELLCT=20,CSIZE=40,SP=2

Example 2
Create a cell pool containing 40-byte cells from subpool 231 (CSA). Allow for 10
cells in the initial extent and 20 cells in all subsequent extents of the cell pool.
Indicate that the system is to assign the storage to the primary address space.
CPOOL BUILD,PCELLCT=10,SCELLCT=20,CSIZE=40,SP=231,OWNER=PRIMARY

Example 3
Unconditionally obtain a cell pool, specifying the pool ID in register 2. Use a PC
instruction for linkage and do not save the registers.
CPOOL GET,U,CPID=(2),REGS=USE,LINKAGE=SYSTEM

Example 4
Free a cell specifying the pool ID in register 2 and the cell address in register 3.
CPOOL FREE,CPID=(2),CELL=(3)

Example 5
Delete a cell pool, specifying the pool ID in register 2. Use a PC instruction for
linkage.
CPOOL DELETE,CPID=(2),LINKAGE=SYSTEM

Example 6
Request that the system place the starting and ending addresses of a cell pool in a
buffer. Assume that the cell pool ID has been saved in POOLID.

CPOOL macro

Chapter 33. CPOOL — Perform cell pool services 279

LA 1,WKAREA Get the address of the work area
ST 1,WKPTR And save it (to pass to CPOOL LIST)

*
* (Note that the first parameter passed with WORKAREA
* is a pointer to the work area, not the work area itself.)
*

OI FLAGBYTE,X’80’ Turn on the "first call" flag
LOOP LA 13,SAVEAREA Get address of save area in reg 13

CPOOL LIST,WORKAREA=(WKPTR,1050),CPID=POOLID
LA 15,2 Get a return code value
C 15,RCODE Check the return code
BE USRERROR Branch if there was a user error

*
* If the return code does not indicate a user error,
* some information was returned in the work area. Note
* that if CPOOL LIST found that the first extent it looked
* at was invalid, the buffer may not actually contain any
* address pairs (i.e. ENTRIES may contain 0).
*

BAL 14,PROCESS Process the information returned
* by CPOOL LIST

LA 15,1 Get a return code value
C 15,RCODE If CPOOL LIST could not return all

* the information at once,
BE LOOP Call it again to get more information

* Data declarations
*
WKAREA DS 0CL1050 Work area/buffer for CPOOL LIST
FLAGBYTE DS CL1 Byte containing first call flag

DS CL3
RCODE DS F CPOOL LIST return code
BUFPTR DS F Pointer to output buffer
ENTRIES DS F Number of address pairs in buffer

DS CL1034 Control info and address pairs
WKPTR DS F Pointer to the work area
POOLID DS F Cell pool ID
SAVEAREA DS CL72 Register save area for CPOOL LIST

CPOOL - List form
The list form of the CPOOL macro builds a nonexecutable parameter list that can
be referred to by the execute form of the CPOOL macro.

Syntax
The list form of the CPOOL macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede CPOOL.

CPOOL

� One or more blanks must follow CPOOL.

BUILD

CPOOL macro

280 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Syntax Description

,PCELLCT=primary cell count cell count: Symbol, decimal.

Note: PCELLCT must be specified on either the list or the execute form of
the macro.

,SCELLCT=secondary cell count Default: PCELLCT

,CSIZE=cell size cell size: Symbol, decimal number.

Note: CSIZE must be specified on either the list or the execute form of the
macro.

,SP=subpool number subpool number: Symbol, decimal number.

Default: SP=0

,BNDRY=DWORD Default: BNDRY=DWORD

The default value depends on the specified CSIZE value. If CSIZE is a
multiple of 8, cells reside on double boundaries (BNDRY=DWORD). If
CSIZE is multiple of 4, cells reside on word boundaries. If CSIZE is not a
multiple of 4 or 8, cells do not reside on a particular boundary.

,BNDRY=QWORD

,LOC=24 Default: LOC=RES

,LOC=31

,LOC=(31,31)

,LOC=(31,64)

,LOC=(31,PAGEFRAMESIZE1MB)

,LOC=RES

,LOC=(RES,31)

,LOC=(RES,64)

,KEY=key number Default: The default depends on which subpool you specify. See the list of
subpool characteristics in z/OS MVS Programming: Authorized Assembler
Services Guide for information on storage keys for specific subpools.

,TCB=tcb addr tcb addr: A-type address.

Default: TCB address in PSATOLD.

,HDR=hdr hdr: Character string enclosed in single quotation marks, A-type address.

,OWNER=HOME Default: OWNER=HOME

,OWNER=PRIMARY

,OWNER=SYSTEM

CPOOL macro

Chapter 33. CPOOL — Perform cell pool services 281

Syntax Description

,MULTIHDR=NO Default: MULTIHDR=NO

,MULTIHDR=YES

,MAXCELLS=MMMM

,CELLSPERCPU=NNNN

,CELLSHARE=NO Default: CELLSHARE=NO

,CELLSHARE=YES

,MF=L

Parameters
The parameters are explained under the standard form of the CPOOL macro with
the following exception:

,MF=L
Specifies the list form of the CPOOL macro.

CPOOL - Execute form

Syntax
The execute form of the CPOOL macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede CPOOL.

CPOOL

� One or more blanks must follow CPOOL.

BUILD

,PCELLCT=primary cell count cell count: Symbol, decimal number, or register (0), (2) - (12).

Note: PCELLCT must be specified on either the list or the execute format of
the macro.

,SCELLCT=secondary cell count Default: PCELLCT

,CSIZE=cell size cell size: Symbol, decimal number, or register (0), (2) - (12).

CPOOL macro

282 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Syntax Description

Note: CSIZE must be specified on either the list or the execute form of the
macro.

,SP=subpool number subpool number: Symbol, decimal number, or register (0), (2) - (12).

Default: SP=0

,BNDRY=DWORD Default: BNDRY=DWORD

The default value depends on the specified CSIZE value. If CSIZE is a
multiple of 8, cells reside on double boundaries (BNDRY=DWORD). If
CSIZE is multiple of 4, cells reside on word boundaries. If CSIZE is not a
multiple of 4 or 8, cells do not reside on a particular boundary.

,BNDRY=QWORD

,LOC=24 Default: LOC=RES

,LOC=31

,LOC=(31,31)

,LOC=(31,64)

,LOC=(31,PAGEFRAMESIZE1MB)

,LOC=RES

,LOC=(RES,31)

,LOC=(RES,64)

,CPID=pool id pool id: RX-type address or register (0), (2) - (12).

,KEY=key number Default: The default depends on which subpool you specify. See the list of
subpool characteristics in z/OS MVS Programming: Authorized Assembler
Services Guide for information on storage keys for specific subpools.

,TCB=tcb addr tcb addr: RX-type address or register (0), (2) - (12).

Default: TCB address in PSATOLD.

,HDR=hdr hdr: character string enclosed in single quotation marks, RX-type address, or
register (0), (2) - (12).

,LINKAGE=SYSTEM Default: LINKAGE=SYSTEM

,LINKAGE=BRANCH

,OWNER=HOME Default: OWNER=HOME

,OWNER=PRIMARY

,OWNER=SYSTEM

,MULTIHDR=NO Default: MULTIHDR=NO

CPOOL macro

Chapter 33. CPOOL — Perform cell pool services 283

Syntax Description

,MULTIHDR=YES

,MAXCELLS=MMMM

,CELLSPERCPU=NNNN

,CELLSHARE=NO Default: CELLSHARE=NO

,CELLSHARE=YES

,MF=(E,list addr) list addr: RX-type address or register (0) - (12).

Parameters
The parameters are explained under the standard form of the CPOOL macro with
the following exception:

,MF=(E,list addr)
Specifies the execute form of the CPOOL macro.

CPOOL macro

284 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Chapter 34. CSRSI — System information service

Description
Use the CSRSI service to retrieve system information. You can request information
about the machine itself, the logical partition (LPAR) in which the machine is
running, or the virtual machine hypervisor (VM) under which the system is
running. The returned information is mapped by DSECTs in macro CSRSIIDF (for
assembler language callers) or structures in header file CSRSIC (for C language
callers).

The information available depends upon the availability of the Store System
Information (STSI) instruction. When the STSI instruction is not available (which
would be indicated by receiving the return code 4 (equate symbol
CSRSI_STSINOTAVAILABLE), only the SI00PCCACPID, SI00PCCACPUA, and
SI00PCCACAFM fields within the returned infoarea are valid. When the STSI
instruction is available, the validity of the returned infoarea depends upon the
system:
v If the system is running neither under LPAR nor VM, then only the

CSRSI_Request_V1CPC_Machine data are valid.
v If the system is running under a logical partition (LPAR), then both the

CSRSI_Request_V1CPC_Machine data and CSRSI_Request_V2CPC_LPAR data
are valid.

v If the system is running under a virtual machine hypervisor (VM), then all of
the data (CSRSI_Request_V1CPC_Machine, CSRSI_Request_V2CPC_LPAR, and
CSRSI_Request_V3CPC_VM) are valid.

You can request any or all of the information regardless of your system, and
validity bits will indicate which returned areas are valid.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state, key 8-15
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 24- or 31-bit when using the CALL CSRSI form (or csrsi in

C), 31-bit when using an alternate form
ASC mode: Primary
Interrupt status: Enabled or disabled for I/O and external interrupts.
Locks: The caller may hold a LOCAL lock, the CMS lock, or the

CPU lock, but is not required to hold any locks.

Programming requirements
The caller should include the CSRSIIDF macro to map the returned information
and to provide equates for the service.

Restrictions
None.

© Copyright IBM Corp. 1988, 2013 285

Input register information
The caller is not required to set up any registers.

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Performance implications
None.

Syntax

Syntax Description

CALL CSRSI

(Request
,Infoarealen
,Infoarea
,Returncode)

In C: the syntax is similar. You can use either of the following techniques to invoke
the service:
1. CSRSI (Request,...Returncode);

v When you use this technique, you must link edit your program with a
linkage-assist routine (also called a stub) in SYS1.CSSLIB.

2. CSRSI_byaddr (Request,...Returncode);

v Both of these techniques require AMODE=31. If you use the second technique,
before you issue the CALL, you must verify that the CSRSI service is available
(in the CVT, both CVTOSEXT and CVTCSRSI bits are set on).

In Assembler: Link edit your program with a linkage-assist routine (also called a
stub) in SYS1.CSSLIB unless you use either of the following techniques as an
alternative to CALL CSRSI:
1. LOAD EP=CSRSI

Save the entry point address
...
Put the saved entry point address into R15
Issue CALL (15),...

2. L 15,X’10’ Get CVT
L 15,X’220’(,15)
L 15,X’30’(,15) Get address of CSRSI
CALL (15),(...)

v Both of these techniques require AMODE=31. If you use the second technique,
before you issue the CALL, you must verify that the CSRSI service is available
(in the CVT, both CVTOSEXT and CVTCSRSI bits are set on).

CSRSI callable service

286 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Parameters
The parameters are explained as follows:

(Request
Supplied parameter:
v Type: Integer
v Length: Full word

Request identifies the type of system information to be returned. The field
must contain a value that represents one or more of the possible request types.
You add the values to create the full word. Do not specify a request type more
than once. The possible request types, and their meanings, are:

CSRSI_Request_V1CPC_Machine
The system is to return information about the machine.

CSRSI_Request_V2CPC_LPAR
The system is to return information about the logical partition (LPAR).

CSRSI_Request_V3CPC_VM
The system is to return information about the virtual machine (VM).

,Infoarealen
Supplied parameter:
v Type: Integer
v Range: X'1040', X'2040', X'3040', X'4040'
v Length: Full word

Infoarealen specifies the length of the infoarea parameter.

,Infoarea
Returned parameter:
v Type: Character
v Length: X'1040', X'2040', X'3040', X'4040' bytes

Infoarea is to contain the retrieved system information. (Infoarealen specifies
the length of the provided area.) The infoarea must be of the proper length to
hold the requested information. This length depends on the value of the
Request parameter.
v When the Request parameter is CSRSI_Request_V1CPC_Machine, the

returned infoarea is mapped by SIV1 and the infoarealen parameter must be
X'2040'.

v When the Request parameter is CSRSI_Request_V1CPC_Machine plus
CSRSI_Request_V2CPC_LPAR, the returned infoarea is mapped by SIV1V2
and the infoarealen parameter must be X'3040'.

v When the Request parameter is CSRSI_Request_V1CPC_Machine plus
CSRSI_Request_V2CPC_LPAR plus CSRSI_Request_V3CPC_VM, the
returned infoarea is mapped by SIV1V2V3 and the infoarealen parameter
must be X'4040'.

v When the Request parameter is CSRSI_Request_V1CPC_Machine plus
CSRSI_Request_V3CPC_VM, the returned infoarea is mapped by SIV1V3
and the infoarealen parameter must be X'3040'.

v When the Request parameter is CSRSI_Request_V2CPC_LPAR, the returned
infoarea is mapped by SIV2 and the infoarealen parameter must be X'1040'.

v When the Request parameter is CSRSI_Request_V2CPC_LPAR plus
CSRSI_Request_V3CPC_VM, the returned infoarea is mapped by SIV2V3
and the infoarealen parameter must be X'2040'.

CSRSI callable service

Chapter 34. CSRSI — System information service 287

v When the Request parameter is CSRSI_Request_V3CPC_VM, the returned
infoarea is mapped by SIV3 and the infoarealen parameter must be X'1040'.

,Returncode)
Returned parameter:
v Type: Integer
v Length: Full word

Returncode contains the return code from the CSRSI service.

Return codes
When the CSRSI service returns control to the caller, Returncode contains the
return code. To obtain the equates for the return codes:
v If you are coding in assembler, include mapping macro CSRSIIDF, described in

z/OS MVS Data Areas in z/OS Internet Library at http://www.ibm.com/
systems/z/os/zos/bkserv/.

v If you are coding in C, use include file CSRSIC.

The following table describes the return codes, shown in decimal.

Return Code
(decimal) Equate Symbol Meaning and Action

00 Equate Symbol: CSRSI_SUCCESS

Meaning: The CSRSI service completed successfully. All information
requested was returned.

Action: Check the si00validityflags field to determine the validity of
each returned area.

04 Equate Symbol: CSRSI_STSINOTAVAILABLE

Meaning: The CSRSI service completed successfully, but since the Store
System Information (STSI) instruction was not available, only the
SI00PCCACPID, SI00PCCACPUA, and SI00PCCACAFM fields are
valid.

Action: None required.

08 Equate Symbol: CSRSI_SERVICENOTAVAILABLE

Meaning: Environmental error: The CSRSI service is not available on
this system.

Action: Avoid calling the CSRSI service unless running on a system on
which it is available.

12 Equate Symbol: CSRSI_BADREQUEST

Meaning: User error: The request parameter did not specify a word
formed from any combination of CSRSI_Request_V1CPC_Machine,
CSRSI_Request_V2CPC_LPAR, and CSRSI_Request_V3CPC_VM.

Action: Correct the parameter.

16 Equate Symbol: CSRSI_BADINFOAREALEN

Meaning: User error: The Infoarealen parameter did not match the
length of the area required to return the requested information.

Action: Correct the parameter.

CSRSI callable service

288 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

Return Code
(decimal) Equate Symbol Meaning and Action

20 Equate Symbol: CSRSI_BADLOCK

Meaning: User error: The service was called while holding a system
lock other than CPU. LOCAL/CML, or CMS.

Action: Avoid calling in this environment.

CSRSIC C/370 header file
For a C programmer, include file CSRSIC provides equates for return codes and
data constants, such as Register service request types. To use CSRSIC, copy the file
from SYS1.SAMPLIB to the appropriate local C library. The contents of the file are:
#ifndef __CSRSI

#define __CSRSI

/***
* Type Definitions for User Specified Parameters *
***/

/* Type for Request operand of CSRSI */
typedef int CSRSIRequest;

/* Type for InfoAreaLen operand of CSRSI */
typedef int CSRSIInfoAreaLen;

/* Type for Return Code */
typedef int CSRSIReturnCode;

/***
* Function Prototypes for Service Routines *
***/

#ifdef __cplusplus
extern "OS" ??&>

#else
#pragma linkage(CSRSI_calltype,OS)

#endif
typedef void CSRSI_calltype(

CSRSIRequest __REQUEST, /* Input - request type */
CSRSIInfoAreaLen __INFOAREALEN, /* Input - length of infoarea */
void *__INFOAREA, /* Input - info area */
CSRSIReturnCode *__RC); /* Output - return code */

extern CSRSI_calltype csrsi;

#ifdef __cplusplus
??>

#endif

#ifndef __cplusplus
#define csrsi_byaddr(Request, Flen, Fptr, Rcptr) \
??&> \
struct CSRSI_PSA* CSRSI_pagezero = 0; \

CSRSI_pagezero->CSRSI_cvt->CSRSI_cvtcsrt->CSRSI_addr \
(Request,Flen,Fptr,Rcptr); \

??>;
#endif

CSRSI callable service

Chapter 34. CSRSI — System information service 289

??>;
struct CSRSI_CSRT ??&>

unsigned char CSRSI_csrt_filler1 ??(48??);
CSRSI_calltype* CSRSI_addr;

struct CSRSI_CVT ??&>
unsigned char CSRSI_cvt_filler1 ??(116??);
struct ??&>

int CSRSI_cvtdcb_rsvd1 : 4; /* Not needed */
int CSRSI_cvtosext : 1; /* If on, indicates that the

CVTOSLVL fields are valid */
int CSRSI_cvtdcb_rsvd2 : 3; /* Not needed */

??> CSRSI_cvtdcb;
unsigned char CSRSI_cvt_filler2 ??(427??);
struct CSRSI_CSRT * CSRSI_cvtcsrt;
unsigned char CSRSI_cvt_filler3 ??(716??);
unsigned char CSRSI_cvtoslv0;
unsigned char CSRSI_cvtoslv1;
unsigned char CSRSI_cvtoslv2;
unsigned char CSRSI_cvtoslv3;
struct ??&>

int CSRSI_cvtcsrsi : 1; /* If on, indicates that the
CSRSI service is available */

int CSRSI_cvtoslv1_rsvd1 : 7; /* Not needed */
??> CSRSI_cvtoslv4;

unsigned char CSRSI_cvt_filler4 ??(11??); /* */
??>;

struct CSRSI_PSA ??&>
char CSRSI_psa_filler??(16??);
struct CSRSI_CVT* CSRSI_cvt;

??>;

/* End of CSRSI Header */

#endif

/***/
/* si11v1 represents the output for a V1 CPC when general CPC */
/* information is requested */
/***/

typedef struct ??&>
unsigned char _filler1??(32??); /* Reserved */
unsigned char si11v1cpcmanufacturer??(16??); /*

The 16-character (0-9
or uppercase A-Z) EBCDIC name
of the manufacturer of the V1
CPC. The name is
left-justified with trailing
blank characters if necessary.

*/
unsigned char si11v1cpctype??(4??); /* The 4-character (0-9) EBCDIC

type identifier of the V1 CPC.
*/

unsigned char _filler2??(12??); /* Reserved */

unsigned char si11v1cpcmodel??(16??); /* The 16-character (0-9 or
uppercase A-Z) EBCDIC model
identifier of the V1 CPC. The
identifier is left-justified
with trailing blank characters
if necessary. */

unsigned char si11v1cpcsequencecode??(16??); /*
The 16-character (0-9
or uppercase A-Z) EBCDIC
sequence code of the V1 CPC.

CSRSI callable service

290 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

The sequence code is
right-justified with leading
EBCDIC zeroes if necessary.

*/
unsigned char si11v1cpcplantofmanufacture??(4??); /* The 4-character

(0-9 or uppercase A-Z) EBCDIC
plant code that identifies the
plant of manufacture for the
V1 CPC. The plant code is
left-justified with trailing
blank characters if necessary.

*/
unsigned char _filler3??(3996??); /* Reserved */

??> si11v1;

/***/
/* si22v1 represents the output for a V1 CPC when information */
/* is requested about the set of CPUs */
/***/

typedef struct ??&>
unsigned char _filler1??(32??); /* Reserved */
unsigned char si22v1cpucapability??(4??); /*

An unsigned binary integer
that specifies the capability
of one of the CPUs contained
in the V1 CPC. It is used as
an indication of the
capability of the CPU relative
to the capability of other CPU
models. */

unsigned int si22v1totalcpucount : 16; /* A 2-byte
unsigned integer
that specifies the
total number of CPUs contained
in the V1 CPC. This number
includes all CPUs in the
configured state, the standby
state, and the reserved state.

*/

unsigned int si22v1configuredcpucount : 16; /* A 2-byte
unsigned binary
integer that specifies
the total number of CPUs that
are in the configured state. A
CPU is in the configured state
when it is described in the
V1-CPC configuration
definition and is available to
be used to execute programs.

*/
unsigned int si22v1standbycpucount : 16; /* A 2-byte

unsigned integer
that specifies the
total number of CPUs that are
in the standby state. A CPU is
in the standby state when it
is described in the V1-CPC
configuration definition, is
not available to be used to
execute programs, but can be
used to execute programs by
issuing instructions to place
it in the configured state.

*/
unsigned int si22v1reservedcpucount : 16; /* A 2-byte

unsigned binary

CSRSI callable service

Chapter 34. CSRSI — System information service 291

integer that specifies
the total number of CPUs that
are in the reserved state. A
CPU is in the reserved state
when it is described in the
V1-CPC configuration
definition, is not available
to be used to execute
programs, and cannot be made
available to be used to
execute programs by issuing
instructions to place it in
the configured state, but it
may be possible to place it in
the standby or configured
state through manually
initiated actions */

struct ??&>
unsigned char _si22v1mpcpucapaf??(2??); /* Each individual

adjustment factor. */
unsigned char _filler2??(4050??);

??> si22v1mpcpucapafs;
??> si22v1;

#define si22v1mpcpucapaf si22v1mpcpucapafs._si22v1mpcpucapaf

/***/
/* si22v2 represents the output for a V2 CPC when information */
/* is requested about the set of CPUs */
/***/

typedef struct ??&>
unsigned char _filler1??(32??); /* Reserved */
unsigned int si22v2cpcnumber : 16; /* A 2-byte

unsigned integer
which is the number of
this V2 CPC. This number
distinguishes this V2 CPC from
all other V2 CPCs provided by
the same logical-partition
hypervisor */

unsigned char _filler2; /* Reserved */
struct ??&>

unsigned int _si22v2lcpudedicated : 1; /*
When one, indicates that
one or more of the logical
CPUs for this V2 CPC are
provided using V1 CPUs that
are dedicated to this V2 CPC
and are not used to provide
logical CPUs for any other V2
CPCs. The number of logical
CPUs that are provided using
dedicated V1 CPUs is specified
by the dedicated-LCPU-count
value. When zero, bit 0
indicates that none of the
logical CPUs for this V2 CPC
are provided using V1 CPUs
that are dedicated to this V2
CPC. */

unsigned int _si22v2lcpushared : 1; /*
When one, indicates that
or more of the logical CPUs
for this V2 CPC are provided
using V1 CPUs that can be used
to provide logical CPUs for
other V2 CPCs. The number of
logical CPUs that are provided

CSRSI callable service

292 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

using shared V1 CPUs is
specified by the
shared-LCPU-count value. When
zero, it indicates that none
of the logical CPUs for this
V2 CPC are provided using
shared V1 CPUs. */

unsigned int _si22v2lcpuulimit : 1; /*
Utilization limit. When one,
indicates that the amount of
use of the V1-CPC CPUs that
are used to provide the
logical CPUs for this V2 CPC
is limited. When zero, it
indicates that the amount of
use of the V1-CPC CPUs that
are used to provide the
logical CPUs for this V2 CPC
is unlimited. */

unsigned int _filler3 : 5; /* Reserved
*/

??> si22v2lcpuc; /* Characteristics */
unsigned int si22v2totallcpucount : 16; /*

A 2-byte unsigned
integer that specifies the
total number of logical CPUs
that are provided for this V2
CPC. This number includes all
of the logical CPUs that are
in the configured state, the
standby state, and the
reserved state. */

unsigned int si22v2configuredlcpucount : 16; /*
A 2-byte unsigned
binary integer that specifies
the total number of logical
CPUs for this V2 CPC that are
in the configured state. A
logical CPU is in the
configured state when it is
described in the V2-CPC
configuration definition and
is available to be used to
execute programs. */

unsigned int si22v2standbylcpucount : 16; /*
A 2-byte unsigned
binary integer that specifies
the total number of logical
CPUs that are in the standby
state. A logical CPU is in the
standby state when it is
described in the V2-CPC
configuration definition, is
not available to be used to
execute programs, but can be
used to execute programs by
issuing instructions to place
it in the configured state.

*/

unsigned int si22v2reservedlcpucount : 16; /*
A 2-byte unsigned
binary integer that specifies
the total number of logical
CPUs that are in the reserved
state. A logical CPU is in the
reserved state when it is

CSRSI callable service

Chapter 34. CSRSI — System information service 293

described in the V2-CPC
configuration definition, is
not available to be used to
execute programs, and cannot
be made available to be used
to execute programs by issuing
instructions to place it in
the configured state, but it
may be possible to place it in
the standby or configured
state through manually
initiated actions */

unsigned char si22v2cpcname??(16??); /*
The 8-character EBCDIC name of
this V2 CPC. The name is
left-justified with trailing
blank characters if necessary.

*/
unsigned char si22v2cpccapabilityaf??(4??); /* Capability Adjustment

Factor (CAF). An unsigned
binary integer of 1000 or
less. The adjustment factor
specifies the amount of the
V1-CPC capability that is
allowed to be used for this V2
CPC by the logical-partition
hypervisor. The fraction of
V1-CPC capability is
determined by dividing the CAF
value by 1000. */

unsigned char _filler4??(16??); /* Reserved */
unsigned int si22v2dedicatedlcpucount : 16; /*

A 2-byte unsigned
binary integer that specifies
the number of configured-state
logical CPUs for this V2 CPC
that are provided using
dedicated V1 CPUs. (See the
description of bit
si22v2lcpudedicated.) */

unsigned int si22v2sharedlcpucount : 16; /*
A 2-byte unsigned
integer that specifies the
number of configured-state
logical CPUs for this V2 CPC
that are provided using shared
V1 CPUs. (See the description
of bit si22v2lcpushared.)

*/
unsigned char _filler5??(4012??); /* Reserved */
??> si22v2;

#define si22v2lcpudedicated si22v2lcpuc._si22v2lcpudedicated
#define si22v2lcpushared si22v2lcpuc._si22v2lcpushared
#define si22v2lcpuulimit si22v2lcpuc._si22v2lcpuulimit

/***/
/* si22v3db is a description block that comprises part of the */
/* si22v3 data. */
/***/

typedef struct ??&>
unsigned char _filler1??(4??); /* Reserved */
unsigned int si22v3dbtotallcpucount : 16; /*

A 2-byte unsigned
binary integer that specifies
the total number of logical

CSRSI callable service

294 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

CPUs that are provided for
this V3 CPC. This number
includes all of the logical
CPUs that are in the
configured state, the standby
state, and the reserved state.

*/
unsigned int si22v3dbconfiguredlcpucount : 16; /*

A 2-byte unsigned
binary integer that specifies
the number of logical CPUs for
this V3 CPC that are in the
configured state. A logical
CPU is in the configured state
when it is described in the
V3-CPC configuration
definition and is available to
be used to execute programs.

*/

unsigned int si22v3dbstandbylcpucount : 16; /*
A 2-byte unsigned
binary integer that specifies
the number of logical CPUs for
this V3 CPC that are in the
standby state. A logical CPU
is in the standby state when
it is described in the V3-CPC
configuration definition, is
not available to be used to
execute programs, but can be
used to execute programs by
issuing instructions to place
it in the configured state.

*/
unsigned int si22v3dbreservedlcpucount : 16; /*

A 2-byte unsigned
binary integer that specifies
the number of logical CPUs for
this V3 CPC that are in the
reserved state. A logical CPU
is in the reserved state when
it is described in the V2-CPC
configuration definition, is
not available to be used to
execute programs, and cannot
be made available to be used
to execute programs by issuing
instructions to place it in
the configured state, but it
may be possible to place it in
the standby or configured
state through manually
initiated actions */

unsigned char si22v3dbcpcname??(8??); /* The 8-character EBCDIC name
of this V3 CPC. The name is
left-justified with trailing
blank characters if necessary.

*/
unsigned char si22v3dbcpccaf??(4??); /* A 4-byte unsigned binary

integer that specifies an
adjustment factor. The
adjustment factor specifies
the amount of the V1-CPC or
V2-CPC capability that is
allowed to be used for this V3

CSRSI callable service

Chapter 34. CSRSI — System information service 295

CPC by the
virtual-machine-hypervisor
program. */

unsigned char si22v3dbvmhpidentifier??(16??); /* The 16-character
EBCDIC identifier of the
virtual-machine-hypervisor
program that provides this V3
CPC. (This identifier may
include qualifiers such as
version number and release
level). The identifier is
left-justified with trailing
blank characters if necessary.

*/
unsigned char _filler2??(24??); /* Reserved */

??> si22v3db;
/***/
/* si22v3 represents the output for a V3 CPC when information */
/* is requested about the set of CPUs */
/***/

typedef struct ??&>
unsigned char _filler1??(28??); /* Reserved */
unsigned char _filler2??(3??); /* Reserved */
struct ??&>

unsigned int _filler3 : 4; /* Reserved
*/

unsigned int _si22v3dbcount : 4; /*
Description Block Count. A
4-bit unsigned binary integer
that indicates the number (up
to 8) of V3-CPC description
blocks that are stored in the
si22v3dbe array. */

??> si22v3dbcountfield; /* */
si22v3db si22v3dbe??(8??); /* Array of entries. Only the number

indicated by si22v3dbcount
are valid */

unsigned char _filler5??(3552??); /* Reserved */
??> si22v3;

#define si22v3dbcount si22v3dbcountfield._si22v3dbcount

/***/
/* SI00 represents the "starter" information. This structure is */
/* part of the information returned on every CSRSI request. */
/***/

typedef struct ??&>
char si00cpcvariety; /* SI00CPCVariety_V1CPC_MACHINE,

SI00CPCVariety_V2CPC_LPAR, or
SI00CPCVariety_V3CPC_VM */

struct ??&>
int _si00validsi11v1 : 1; /* si11v1 was requested and

the information returned is valid
*/

int _si00validsi22v1 : 1; /* si22v2 was requested and
the information returned is valid

*/
int _si00validsi22v2 : 1; /* si22v2 was requested and

the information returned is valid
*/

int _si00validsi22v3 : 1; /* si22v3 was requested and
the information returned is valid

*/
int _filler1 : 4; /* Reserved */

CSRSI callable service

296 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

??> si00validityflags;
unsigned char _filler2??(2??); /* Reserved */
unsigned char si00pccacpid??(12??); /* PCCACPID value for this CPU

*/
unsigned char si00pccacpua??(2??); /* PCCACPUA value for this CPU

*/
unsigned char si00pccacafm??(2??); /* PCCACAFM value for this CPU

*/
unsigned char _filler3??(4??); /* Reserved */
unsigned char si00lastupdatetimestamp??(8??); /* Time of last STSI

update, via STCK */
unsigned char _filler4??(32??); /* Reserved */
??> si00;

#define si00validsi11v1 si00validityflags._si00validsi11v1
#define si00validsi22v1 si00validityflags._si00validsi22v1
#define si00validsi22v2 si00validityflags._si00validsi22v2
#define si00validsi22v3 si00validityflags._si00validsi22v3

/***/
/* siv1 represents the information returned when V1CPC_MACHINE */
/* data is requested */
/***/

typedef struct ??&>
si00 siv1si00; /* Area mapped by

struct si00 */
si11v1 siv1si11v1; /* Area

mapped by struct si11v1 */
si22v1 siv1si22v1; /* Area

mapped by struct si22v1 */
??> siv1;

/***/
/* siv1v2 represents the information returned when V1CPC_MACHINE */
/* data and V2CPC_LPAR data is requested */
/***/

typedef struct ??&>
si00 siv1v2si00; /* Area mapped by

by struct si00 */
si11v1 siv1v2si11v1; /* Area

mapped by struct si11v1 */
si22v1 siv1v2si22v1; /* Area

mapped by struct si22v2 */
si22v2 siv1v2si22v2; /* Area

mapped by struct si22v2 */
??> siv1v2;

/***/
/* siv1v2v3 represents the information returned when V1CPC_MACHINE */
/* data, V2CPC_LPAR data and V3CPC_VM data is requested */
/***/

typedef struct ??&>
si00 siv1v2v3si00; /* Area

mapped by struct si00 */
si11v1 siv1v2v3si11v1; /* Area

mapped by struct si11v1 */
si22v1 siv1v2v3si22v1; /* Area

mapped by struct si22v1 */
si22v2 siv1v2v3si22v2; /* Area

mapped by struct si22v2 */
si22v3 siv1v2v3si22v3; /* Area

mapped by struct si22v3 */
??> siv1v2v3;

CSRSI callable service

Chapter 34. CSRSI — System information service 297

/***/
/* siv1v3 represents the information returned when V1CPC_MACHINE */
/* data and V3CPC_VM data is requested */
/***/

typedef struct ??&>
si00 siv1v3si00; /* Area mapped

by struct si00 */
si11v1 siv1v3si11v1; /* Area

mapped by struct si11v1 */
si22v1 siv1v3si22v1; /* Area

mapped by struct si22v1 */
si22v3 siv1v3si22v3; /* Area

mapped by struct si22v3 */
??> siv1v3;

/***/
/* siv2 represents the information returned when V2CPC_LPAR */
/* data is requested */
/***/

typedef struct ??&>
si00 siv2si00; /* Area mapped by

struct si00 */
si22v2 siv2si22v2; /* Area

mapped by struct si22v2 */
??> siv2;

/***/
/* siv2v3 represents the information returned when V2CPC_LPAR */
/* and V3CPC_VM data is requested */
/***/

typedef struct ??&>
si00 siv2v3si00; /* Area mapped

by struct si00 */
si22v2 siv2v3si22v2; /* Area

mapped by struct si22v2 */
si22v3 siv2v3si22v3; /* Area

mapped by struct si22v3 */
??> siv2v3;

/***/
/* siv3 represents the information returned when V3CPC_VM */
/* data is requested */
/***/

typedef struct ??&>
si00 siv3si00; /* Area mapped by

struct si00 */
si22v3 siv3si22v3; /* Area

mapped by struct si22v3 */
??> siv3;

/***/
/* Fixed Service Parameter and Return Code Defines */
/***/

/* SI00 Constants */

#define SI00CPCVARIETY_V1CPC_MACHINE 1
#define SI00CPCVARIETY_V2CPC_LPAR 2
#define SI00CPCVARIETY_V3CPC_VM 3

/* CSRSI Constants */

CSRSI callable service

298 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

#define CSRSI_REQUEST_V1CPC_MACHINE 1
#define CSRSI_REQUEST_V2CPC_LPAR 2
#define CSRSI_REQUEST_V3CPC_VM 4

/* CSRSI Return codes */

#define CSRSI_SUCCESS 0
#define CSRSI_STSINOTAVAILABLE 4
#define CSRSI_SERVICENOTAVAILABLE 8
#define CSRSI_BADREQUEST 12
#define CSRSI_BADINFOAREALEN 16
#define CSRSI_BADLOCK 20

CSRSI callable service

Chapter 34. CSRSI — System information service 299

CSRSI callable service

300 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Chapter 35. CSRUNIC — Unicode instruction services

Description
CSRUNIC allows you to request processing of a group of instructions related to
Unicode data. Unicode data uses the binary codes of the Unicode Worldwide
Character Standard; these codes support the characters of most of the world's
written languages. For details about the Unicode instructions, see z/Architecture
Principles of Operations, SA22-7832. The CSRUNIC macro invokes the requested
instructions by name, if the Unicode hardware is present. If the hardware is not
present, the macro simulates the requested instructions.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state and PSW key 8-15
Dispatchable unit mode: Task
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled or disabled for I/O and external interrupts
Locks: The caller is not required to hold any locks on entry. The

caller may hold the local, CMS, or CPU lock.
Control parameters: None.

Programming requirements
The caller must include the CSRYUNIC macro to get a mapping for the parameter
block for the requested function. The CSRYUNIC macro also includes symbolic
equates for the return codes from the service.

Restrictions
None.

Input register information
Before issuing the CSRUNIC macro, the caller must ensure that the following
general purpose registers (GPRs) contain the specified information:

Register
Contents

13 Address of standard 72-byte save area. When not in AR-ASC mode, the
area must be in the primary address space. When in AR-ASC mode, it
must be in the space addressed via the ALET in access register 13.

Before issuing the CSRUNIC macro in AR-ASC mode, the caller must ensure that
the following access registers (ARs) contain the specified information:

Register
Contents

13 ALET of the 72-byte save area pointed to by GPR 13.

© Copyright IBM Corp. 1988, 2013 301

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
The CSRUNIC macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede CSRUNIC.

CSRUNIC

� One or more blanks must follow CSRUNIC.

FUNCTION=MVCLU

FUNCTION=CLCLU

FUNCTION=TP

FUNCTION=PKA

FUNCTION=PKU

FUNCTION=UNPKA

FUNCTION=UNPKU

302 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Syntax Description

FUNCTION=TRTT

FUNCTION=TRTO

FUNCTION=TROT

FUNCTION=TROO

FUNCTION=TRE

FUNCTION=CUUTF

FUNCTION=CUTFU

,PBLOCK=pblock pblock: RX-type address or address in register (2) - (12).

,RETCODE=retcode retcode: RS-type address or register (2) - (12).

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the CSRUNIC
macro invocation. The name must conform to the rules for an ordinary
assembler language symbol.

FUNCTION=MVCLU
FUNCTION=CLCLU
FUNCTION=TP
FUNCTION=PKA
FUNCTION=PKU
FUNCTION=UNPKA
FUNCTION=UNPKU
FUNCTION=TRTT
FUNCTION=TRTO
FUNCTION=TROT
FUNCTION=TROO
FUNCTION=TRE
FUNCTION=CUUTF
FUNCTION=CUTFU

A required parameter that designates the function to be performed.

FUNCTION=MVCLU
indicates to process an MVCLU operation.

FUNCTION=CLCLU
indicates to process a CLCLU operation.

FUNCTION=TP
indicates to process a TP operation.

FUNCTION=PKA
indicates to process a PKA operation.

FUNCTION=PKU
indicates to process a PKU operation.

Chapter 35. CSRUNIC — Unicode instruction services 303

FUNCTION=UNPKA
indicates to process an UNPKA operation.

FUNCTION=UNPKU
indicates to process an UNPKU operation.

FUNCTION=TRTT
indicates to process a TRTT operation.

FUNCTION=TRTO
indicates to process a TRTO operation.

FUNCTION=TROT
indicates to process a TROT operation.

FUNCTION=TROO
indicates to process a TROO operation.

FUNCTION=TRE
indicates to process a TRE operation.

FUNCTION=CUUTF
indicates to process a CUUTF operation.

FUNCTION=CUTFU
indicates to process a CUTFU operation.

,PBLOCK=pblock
A required input parameter, area that is mapped by DSECTs in macro
CSRYUNIC that correlate to the function requested. The area provides the
information needed by, and provided on return by, the CSRUNIC service. It
should begin on a fullword boundary.

The name of the DSECT is "UNIC_" followed by the requested function (for
example, UNIC_MVCLU for the MVCLU function).

To code: Specify the RX-type address, or address in register (2) - (12), of a
36-character field.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from
GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2) - (12).

ABEND codes
0C4 The user may get this completion code if a user-provided data area is not

accessible.

0C6 The user may get this completion code if the instruction has been executed
in the hardware and the provided data does not meet the requirements for
that instruction.
v For MVCLU, either the source length or target length was not even.
v For CLCLU, either the source length or target length was not even.
v For PKA, the source length exceeded 31.
v For PKU, the source length exceeded 64 or was not even (that is, the

LengthMinusOne was not odd).
v For UNPKA, the target length exceeded 31.
v For UNPKU, the target length exceeded 64 or was not even (that is, the

LengthMinusOne was not odd).

304 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

v For TRTT, the length was not even.
v For TRTO, the length was not even.
v For CUTFU, a bad UTF-8 character was encountered.

The user may get this completion code if the work area was not on a
doubleword boundary.

Return codes
When the CSRUNIC macro returns control to your program, GPR 15 (and retcode,
when you code RETCODE) contains a return code.

Return code constants are defined in macro CSRYUNIC.

The following table identifies the hexadecimal return and reason codes and the
equate symbol associated with each reason code.

Table 41. Return Codes for the CSRUNIC Macro

Return Code Equate Symbol Meaning and Action

0 UNIC_MVCLU_RC_OpLengthsEqual Meaning: The operand lengths were the same.

Action: None required.

4 UNIC_MVCLU_RC_TargetLengthShorter Meaning: The target operand was shorter than
the source operand.

Action: None required.

8 UNIC_MVCLU_RC_TargetLengthLonger Meaning: The target operand was longer than
the source operand.

Action: None required.

10 UNIC_MVCLU_RC_TargetLengthNotEven Meaning: The target operand was not an even
number of bytes.

Action: Only call CSRUNIC
FUNCTION=MVCLU when the target operand
is an even number of bytes (that is, a whole
number of unicode characters).

14 UNIC_MVCLU_RC_SourceLengthNotEven Meaning: The source operand was not an even
number of bytes.

Action: Only call CSRUNIC
FUNCTION=MVCLU when the source operand
is an even number of bytes (that is, a whole
number of unicode characters).

1C UNIC_MVCLU_RC_WorkareaNotAligned Meaning: The workarea provided was not on a
doubleword boundary.

Action: Make sure that the workarea is on a
doubleword boundary.

0 UNIC_CLCLU_RC_OperandsEqual Meaning: the two operands were equal.

Action: None required.

4 UNIC_CLCLU_RC_LeftOpLessThanRight Meaning: The left operand was less than the
right operand.

Action: None required.

Chapter 35. CSRUNIC — Unicode instruction services 305

Table 41. Return Codes for the CSRUNIC Macro (continued)

Return Code Equate Symbol Meaning and Action

8 UNIC_CLCLU_RC_RightOpLessThanLeft Meaning: The right operand was less than the
left operand.

Action: None required.

10 UNIC_CLCLU_RC_LeftOpLengthNotEven Meaning: The left operand was not an even
number of bytes.

Action: Only call CSRUNIC
FUNCTION=CLCLU when the left operand is
an even number of bytes (that is, a whole
number of unicode characters).

14 UNIC_CLCLU_RC_RightOpLengthNotEven Meaning: The right operand was not an even
number of bytes.

Action: Only call CSRUNIC
FUNCTION=CLCLU when the right operand is
an even number of bytes (that is, a whole
number of unicode characters).

1C UNIC_CLCLU_RC_WorkareaNotAligned Meaning: The workarea provided was not on a
doubleword boundary.

Action: Make sure that the workarea is on a
doubleword boundary.

0 UNIC_TP_RC_Valid Meaning: the operand is a valid packed
number.

Action: None required.

4 UNIC_TP_RC_SignNotValid Meaning: The sign of the operand was not
valid. All the digits were valid.

Action: None required.

8 UNIC_TP_RC_DigitNotValid Meaning: One or more digits of the operand
were not valid. The sign was valid.

Action: None required.

0C UNIC_TP_RC_SignDigitNotValid Meaning: The sign and one or more digits of
the operand were not valid.

Action: None required.

1C UNIC_TP_RC_WorkareaNotAligned Meaning: The workarea provided was not on a
doubleword boundary.

Action: Make sure that the workarea is on a
doubleword boundary.

0 UNIC_PKA_RC_OK Meaning: The pack operation completed
successfully.

Action: None required.

14 UNIC_PKA_RC_SourceLengthNotValid Meaning: The length of the source operand
exceeded 32 bytes (that is, the LengthMinusOne
exceeded 31).

Action: Avoid calling CSRUNIC
REQUEST=PKA for an operand longer than 32
bytes.

306 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Table 41. Return Codes for the CSRUNIC Macro (continued)

Return Code Equate Symbol Meaning and Action

1C UNIC_PKA_RC_WorkareaNotAligned Meaning: The workarea provided was not on a
doubleword boundary.

Action: Make sure that the workarea is on a
doubleword boundary.

0 UNIC_PKU_RC_OK Meaning: The pack operation completed
successfully.

Action: None required.

14 UNIC_PKU_RC_SourceLengthNotValid Meaning: The length of the source operand
exceeded 64 bytes (that is, the LengthMinusOne
exceeded 63).

Action: Avoid calling CSRUNIC
REQUEST=PKU for an operand longer than 64
bytes.

24 UNIC_PKU_RC_SourceLengthNotEven Meaning: The source operand was not an even
number of bytes.

Action: Only call CSRUNIC FUNCTION=PKU
when the source operand is an even number of
bytes (that is, a whole number of unicode
characters).

1C UNIC_PKU_RC_WorkareaNotAligned Meaning: The workarea provided was not on a
doubleword boundary.

Action: Make sure that the workarea is on a
doubleword boundary.

0 UNIC_UNPKA_RC_Positive Meaning: The operand represented a positive
number.

Action: None required.

4 UNIC_UNPKA_RC_Negative Meaning: The operand represented a negative
number.

Action: None required.

0C UNIC_UNPKA_RC_BadSign Meaning: The operand did not have a valid
sign.

Action: None required.

14 UNIC_UNPKA_RC_TargetLengthNotValid Meaning: The length of the target operand
exceeded 32 bytes (that is, the LengthMinusOne
exceeded 31).

Action: Avoid calling CSRUNIC
REQUEST=PKA for an operand longer than 32
bytes.

1C UNIC_UNPKA_RC_WorkareaNotAligned Meaning: The workarea provided was not on a
doubleword boundary.

Action: Make sure that the workarea is on a
doubleword boundary.

Chapter 35. CSRUNIC — Unicode instruction services 307

Table 41. Return Codes for the CSRUNIC Macro (continued)

Return Code Equate Symbol Meaning and Action

0 UNIC_UNPKU_RC_Positive Meaning: The operand represented a positive
number.

Action: None required.

4 UNIC_UNPKU_RC_Negative Meaning: The operand represented a negative
number.

Action: None required.

0C UNIC_UNPKU_RC_BadSign Meaning: The operand did not have a valid
sign.

Action: None required.

14 UNIC_UNPKU_RC_TargetLengthNotValid Meaning: The length of the target operand
exceeded 64 bytes (that is, the LengthMinusOne
exceeded 63).

Action: Avoid calling CSRUNIC
REQUEST=PKU for an operand longer than 64
bytes.

24 UNIC_UNPKU_RC_TargetLengthNotEven Meaning: The target operand was not an even
number of bytes.

Action: Only call CSRUNIC
FUNCTION=UNPKU when the target operand
is an even number of bytes (that is, a whole
number of unicode characters).

1C UNIC_UNPKU_RC_WorkareaNotAligned Meaning: The workarea provided was not on a
doubleword boundary.

Action: Make sure that the workarea is on a
doubleword boundary.

0 UNIC_TRTT_RC_TestCharNotFound Meaning: The translation completed. The test
character was not found.

Action: None required.

4 UNIC_TRTT_RC_TestCharFound Meaning: The test character was found. The
operation ended at that point.

Action: None required.

10 UNIC_TRTT_RC_LengthNotEven Meaning: The operand was not an even number
of bytes.

Action: Only call CSRUNIC FUNCTION=TRTT
when the operand is an even number of bytes
(that is, a whole number of unicode characters).

1C UNIC_TRTT_RC_WorkareaNotAligned Meaning: The workarea provided was not on a
doubleword boundary.

Action: Make sure that the workarea is on a
doubleword boundary.

0 UNIC_TRTO_RC_TestCharNotFound Meaning: The translation completed. The test
character was not found.

Action: None required.

308 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Table 41. Return Codes for the CSRUNIC Macro (continued)

Return Code Equate Symbol Meaning and Action

4 UNIC_TRTO_RC_TestCharFound Meaning: The test character was found. The
operation ended at that point.

Action: None required.

10 UNIC_TRTO_RC_LengthNotEven Meaning: The operand was not an even number
of bytes.

Action: Only call CSRUNIC FUNCTION=TRTO
when the operand is an even number of bytes
(that is, a whole number of unicode characters).

1C UNIC_TRTO_RC_WorkareaNotAligned Meaning: The workarea provided was not on a
doubleword boundary.

Action: Make sure that the workarea is on a
doubleword boundary.

0 UNIC_TROT_RC_TestCharNotFound Meaning: The translation completed. The test
character was not found.

Action: None required.

4 UNIC_TROT_RC_TestCharFound Meaning: The test character was found. The
operation ended at that point.

Action: None required.

1C UNIC_TROT_RC_WorkareaNotAligned Meaning: The workarea provided was not on a
doubleword boundary.

Action: Make sure that the workarea is on a
doubleword boundary.

0 UNIC_TROO_RC_TestCharNotFound Meaning: The translation completed. The test
character was not found.

Action: None required.

4 UNIC_TROO_RC_TestCharFound Meaning: The test character was found. The
operation ended at that point.

Action: None required.

1C UNIC_TROO_RC_WorkareaNotAligned Meaning: The workarea provided was not on a
doubleword boundary.

Action: Make sure that the workarea is on a
doubleword boundary.

0 UNIC_TRE_RC_TestCharNotFound Meaning: The translation completed. The test
character was not found.

Action: None required.

4 UNIC_TRE_RC_TestCharFound Meaning: The test character was found. The
operation ended at that point.

Action: None required.

1C UNIC_TRE_RC_WorkareaNotAligned Meaning: The workarea provided was not on a
doubleword boundary.

Action: Make sure that the workarea is on a
doubleword boundary.

Chapter 35. CSRUNIC — Unicode instruction services 309

Table 41. Return Codes for the CSRUNIC Macro (continued)

Return Code Equate Symbol Meaning and Action

0 UNIC_CUUTF_RC_SourceExhausted Meaning: All unicode characters in the source
were converted to their UTF-8 equivalents.

Action: None required.

4 UNIC_CUUTF_RC_TargetExhausted Meaning: The target operand did not have
enough room to hold the UTF-8 equivalents of
all of the source unicode characters.

Action: Provide a larger target area.

1C UNIC_CUUTF_RC_WorkareaNotAligned Meaning: The workarea provided was not on a
doubleword boundary.

Action: Make sure that the workarea is on a
doubleword boundary.

0 UNIC_CUTFU_RC_SourceExhausted Meaning: All UTF-8 characters in the source
were converted to their unicode equivalents.

Action: None required.

4 UNIC_CUTFU_RC_TargetExhausted Meaning: The target operand did not have
enough room to hold the unicode equivalents of
all of the source UTF-8 characters.

Action: Provide a larger target area.

8 UNIC_CUTFU_RC_BadUtf8Char Meaning: A character in the source operand was
not a valid UTF-8 character.

Action: Make sure that the source operand
contains only valid UTF-8 characters.

1C UNIC_CUTFU_RC_WorkareaNotAligned Meaning: The workarea provided was not on a
doubleword boundary.

Action: Make sure that the workarea is on a
doubleword boundary.

Examples

Operation:
Execute a MVCLU operation.

The code is as follows.
LA 2,MYPBLOCK Get address of parm
USING UNIC_MVCLU,2
XC UNIC_MVCLU(UNIC_MVCLU_LEN),UNIC_MVCLU Clear block

* Also includes ALETs
MVC UNIC_MVCLU_TARGETADDR,TARGADDR Set target area
MVC UNIC_MVCLU_TARGETLEN,TARGLEN Set target length
MVC UNIC_MVCLU_SOURCEADDR,SOURCEADDR Set source area
MVC UNIC_MVCLU_SOURCELEN,SOURCELEN Set source length
MVC UNIC_MVCLU_PAD,PADCHAR Set pad char
LA 3,WORKAREA
ST 3,UNIC_MVCLU_WORKAREAADDR Set workarea address
CSRUNIC FUNCTION=MVCLU,PBLOCK=UNIC_MVCLU
DROP 2

.

.
DS 0F Align parameter on word boundary

310 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

MYPBLOCK DS (UNIC_MVCLU_LEN)CL1 PBLOCK parameter
TARGADDR DS A Output target area
TARGLEN DS F Length of target area
SOURCEADDR DS A Input source area
SOURCELEN DS F Length of source area
PADCHAR DC XL2’4040’ Pad with X’4040’

DS 0D Doubleword align workarea
WORKAREA DS CL512 Work area

Chapter 35. CSRUNIC — Unicode instruction services 311

312 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Chapter 36. CSVAPF — Control the list of APF-authorized
libraries

Description
The CSVAPF macro allows you to determine the format and contents of the
APF-authorized library list. You can issue CSVAPF to:
v Change the format of the APF list (from dynamic to static, and vice versa)
v Add or delete the library entries in a dynamic APF list (without having to reIPL

the system)
v Determine whether or not a library is in the APF list
v Obtain a list of all library entries in the APF list
v Determine the current format (dynamic or static) of the APF list.

The CSVAPF macro is also described in the z/OS MVS Programming: Assembler
Services Reference ABE-HSP, with the exception of the REQUEST=ADD,
REQUEST=DELETE, and REQUEST=DYNFORMAT parameters.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state and any PSW key. For the ADD, DELETE

requests: RACF UPDATE authority to the FACILITY class
entity CSVAPF.libname. For a DYNFORMAT request: RACF
authority to the FACILITY class entity
CSVAPF.MVS.SETPROG.FORMAT.DYNAMIC. If no RACF
profile is defined or RACF is not available, one of the
following:

v Supervisor state

v PSW key 0-7

v PKM allowing key 0-7

v APF-authorized
Dispatchable unit mode: For the ADD, DELETE, and DYNFORMAT requests, task

mode. For the QUERY, QUERYFORMAT, and LIST requests,
task or SRB mode.

Cross memory mode: For the ADD, DELETE, and DYNFORMAT requests, PASN
= HASN = SASN. For the QUERY, QUERYFORMAT, and
LIST requests, any PASN, any HASN, any SASN.

AMODE: For a QUERY or QUERYFORMAT request, 31-bit. For all
other requests, 24- or 31-bit.

ASC mode: For a QUERY request, primary. For all other requests,
primary or access register (AR).

Interrupt status: Enabled for I/O and external interrupts
Locks: For the QUERY, QUERYFORMAT, and LIST requests, the

local and CMS locks may be held, but are not required. For
all other requests, no locks may be held.

Control parameters: Control parameters must be in the primary address space or,
for AR-mode callers, must be in an address/data space that
is addressable through a public entry on the caller's
dispatchable unit access list (DU-AL).

© Copyright IBM Corp. 1988, 2013 313

Programming requirements
If you code the LIST option on the REQUEST parameter, you must include the
CSVAPFAA mapping macro (see z/OS MVS Data Areas in z/OS Internet Library at
http://www.ibm.com/systems/z/os/zos/bkserv/). For all other requests, you can
optionally include the CSVAPFAA mapping macro to define variables and values
for:
v Return and reason codes returned by CSVAPF
v The APF list format, which is returned by CSVAPF when you specify

REQUEST=QUERYFORMAT.

Restrictions
None.

Input register information
Before issuing the CSVAPF macro, the caller must ensure that the following general
purpose registers (GPRs) contain the specified information:

Register
Contents

13 For a QUERY request, the address of a standard 72-byte save area

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0 If REQUEST=QUERYFORMAT is not specified, and the value in register 15
is not 0, reason code; otherwise, used as a work register by the system

1 Used as a work register by the system

2-13 Unchanged

14 Used as a work register by the system

15 For a QUERYFORMAT request, used as a work register by the system; for
all other requests, return code

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as a work register by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

CSVAPF macro

314 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

http://www.ibm.com/systems/z/os/zos/bkserv/

Syntax
The standard form of the CSVAPF macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede CSVAPF.

CSVAPF

� One or more blanks must follow CSVAPF.

Valid parameters (Required parameters are underlined):

REQUEST=QUERY DSNAME, VOLTYPE, VOLUME, RETCODE, RSNCODE

REQUEST=QUERYFORMAT FORMAT

REQUEST=ADD DSNAME, VOLTYPE, VOLUME, RETCODE, RSNCODE

REQUEST=DELETE DSNAME, VOLTYPE, VOLUME, RETCODE, RSNCODE

REQUEST=DYNFORMAT RETCODE, RSNCODE

REQUEST=LIST ANSAREA, ANSLEN, RETCODE, RSNCODE

,DSNAME=libname libname: RS-type address or address in register (2) - (12).

,VOLTYPE=SMS Default: VOLTYPE=SMS

,VOLTYPE=ANY, VOLUME is required with VOLTYPE=ANY.

VOLUME=volume volume: RS-type or address in register (2) - (12).

,FORMAT=format format: RS-type address or address in register (2) - (12).

,ANSAREA=ansarea ansarea: RS-type address or address in register (2) - (12).

,ANSLEN=anslen anslen: RS-type address or address in register (2) - (12).

,RETCODE=retcode retcode: RS-type address or register (2) - (12).

,RSNCODE=rsncode rsncode: RS-type address or register (2) - (12).

,MF=S

CSVAPF macro

Chapter 36. CSVAPF — Control the list of APF-authorized libraries 315

Parameters
The parameters are explained as follows:

REQUEST=QUERY
REQUEST=QUERYFORMAT
REQUEST=ADD
REQUEST=DELETE
REQUEST=LIST
REQUEST=DYNFORMAT

Specifies the type of service to be performed on the list of APF-authorized
program libraries. Specify one of the following:

QUERY
Determine if a particular library is in the APF list.

QUERYFORMAT
Determine the current format (dynamic or static) of the APF list. The
system returns information to the one byte field specified on the
FORMAT parameter. If the output is 00, the list is static; if the output
is 01, the list is dynamic. When you specify this parameter, you cannot
specify the RETCODE, RSNCODE, and MF parameters. The system
does not provide return and reason codes for a QUERYFORMAT
request.

ADD Add a library to the dynamic APF list. To use this parameter, the
format of the APF list must be dynamic.

DELETE
Delete a library from the dynamic APF list. To use this parameter, the
format of the APF list must be dynamic.

LIST Request a list of the libraries in the APF list. The system returns the list
to the area specified by the ANSAREA parameter. See the description
of the ANSAREA parameter for information on how to read the entries
in the list.

Note: The list will include those libraries that are defined or defaulted
to be APF-authorized. The definition could be via IEAAPFxx or
PROGxx parmlib members, the CSVAPF macro, or the SETPROG APF
system command. Note that programs that are marked as coming from
an authorized library could have come from one of these libraries or
from the link pack area.

DYNFORMAT
Change the format of the APF list from static to dynamic. Before you
make the change, contact the system programmer to validate that all
programs and vendor products are converted to use dynamic APF
services and that the proper program products are installed.

,DSNAME=libname
Specifies a field (or a register containing the address of a field) containing a
44-character name of an APF-authorized library. If the library name is less than
44 characters, it must be left-justified in a 44-character field and padded with
blanks.

You can specify an alias of an APF authorized library instead of the actual
library name. However, the CSVAPF service considers an alias to be
APF-authorized only when it is defined in the APF list.

Note:

CSVAPF macro

316 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

1. Usually, you do not need to define the alias of an APF-authorized library in
the APF list. IBM's data management services (for example, OPEN
processing) map an alias to the actual library name, and therefore does not
require the alias to be defined in the APF list. An alias must be defined in
the APF list only when the alias is to be used as input to the CSVAPF
QUERY macro request, or on the SETPROG APF or DISPLAY PROG,APF
operator commands.

2. Defining only the alias data set does not authorize either the real or the
alias data set. A real data set name must be specified.

,VOLTYPE=SMS
,VOLTYPE=ANY,VOLUME=volume

Specifies the status of the library specified on the DSNAME parameter, which
is one of the following:

SMS The library is managed by the storage management subsystem (SMS).

ANY The library may or may not be SMS-managed. The library is located on
volume volume, which specifies the address of a 6-character volume
serial number; for an ADD request, you can also specify ****** (six
asterisks) to indicate the current sysres volume, or *MCAT* to indicate
the volume on which the master catalog resides. If volume is all zeros,
the system assumes that the library is SMS-managed.

,FORMAT=format
Specifies a 1-byte field (or a register containing the address of a field) for
output that the system is to use to indicate the current format of the APF list.

,ANSAREA=ansarea
Specifies an area (or a register containing the address of an area) where the
system is to store the current list of APF-authorized libraries. Use the
CSVAPFAA mapping macro to map this area. Specify the length of this area on
the ANSLEN parameter.

The system returns a header that indicates the total number of libraries in the
list and the offset to the first library entry. To find the next entry, add the value
in the length field (APFELEN) to the address of the current entry.

For each library entry, the volume identifier in field APFEVOLUME is valid
only when the library is not SMS-managed (the bit APFESMS in field
APFEFLAGS is off). If the library is SMS-managed, field APFEVOLUME
contains “*SMS* ”.

,ANSLEN=anslen
Specifies a fullword (or a register containing the address of a fullword) that
contains the length of the area where the system is to return the current APF
list. This value must be equal to or greater than the length of the APFHDR
structure in the CSVAPFAA mapping macro.

If the area is not long enough to contain the entire APF list, the system returns
as many entries as it can provide. The system indicates the length that is
currently required to contain all the information in field APFHTLEN in the
CSVAPFAA mapping macro.

,RETCODE=retcode
Specifies a fullword (or a register) where the system is to store the return code.
The return code is also in general purpose register (GPR) 15. Do not specify
this parameter on a QUERYFORMAT request.

,RSNCODE=rsncode
Specifies a fullword (or a register) where the system is to store the reason code.

CSVAPF macro

Chapter 36. CSVAPF — Control the list of APF-authorized libraries 317

The reason code is also in general purpose register (GPR) 0. Do not specify this
parameter on a QUERYFORMAT request.

,MF=S
Specifies the standard form of the CSVAPF macro. Do not specify this
parameter on a QUERYFORMAT request.

ABEND codes
None.

Return and reason codes
When the CSVAPF macro returns control to your program, GPR 15 (and retcode)
contains a return code. When the value in GPR 15 is not zero, GPR 0 (and rsncode)
contains a reason code. xxxx indicates internal information. If you specified the
QUERYFORMAT option, CSVAPF does not return any return or reason code to
your program.

Table 42. Return and Reason Codes for the CSVAPF Macro

Hexadecimal
Return Code

Hexadecimal
Reason Code

Meaning and Action

00 — Meaning: The CSVAPF request completed
successfully. The result depends on the option:

v QUERY - The system found the library in the APF
list.

v ADD - The system added the specified library to
the APF list.

v DELETE - The system deleted the specified library
from the APF list.

v LIST - The system returned a list of all the
libraries in the APF list.

v DYNFORMAT - The format of the APF list is
changed (from static to dynamic).

Action: None.

04 xxxx0401 Meaning: The CSVAPF request completed
successfully. The result depends on the option:

v For a QUERY request, the library is in the APF
list, and is SMS-managed.

v For an ADD request, the library is already in the
APF list.

Action: None.

04 xxxx0402 Meaning: One of the following:

v For a QUERY request, the library is not in the APF
list

v For a DELETE request, the library is not in the
APF list.

Action: None.

CSVAPF macro

318 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Table 42. Return and Reason Codes for the CSVAPF Macro (continued)

Hexadecimal
Return Code

Hexadecimal
Reason Code

Meaning and Action

04 xxxx0403 Meaning: Program error. For a LIST request, the
value specified on the ANSLEN parameter is not
large enough to contain the entire list of
APF-authorized libraries.

Action: Check the answer area field APFHTLEN in
the CSVAPFAA mapping macro to see how much
space is required to return the APF list. Issue the
CSVAPF macro again, specifying, on the ANSLEN
parameter, a fullword containing a value large
enough to contain the entire APF list.

08 xxxx0801 Meaning: Program error. The system could not
access the parameter list that the CSVAPFAA macro
created.

Action: Ensure that the parameter list is addressable.

08 xxxx0802 Meaning: Program error. A program running in SRB
mode entered a request that required task mode.

Action: For the specified request, avoid issuing the
CSVAPF macro while running in SRB mode.

08 xxxx0803 Meaning: Program error. A program issued the
CSVAPF macro while running disabled for I/O and
external interrupts.

Action: Issue the CSVAPF macro while running
enabled for I/O and external interrupts.

08 xxxx0804 Meaning: Program error. The caller is not authorized
to issue the CSVAPF macro for the specified request.

Action: See the authorization requirements described
in “Environment” on page 313 for this macro.

08 xxxx0805 Meaning: Program error. The system could not
perform the function because the home address
space is different from the primary address space.

Action: For the specified request, do not issue the
CSVAPF macro while running in cross memory
mode.

08 xxxx0806 Meaning: Program error. The ALET of the area
specified on the ANSAREA parameter is not correct.

Action: Ensure that the ALET is 0, or that the ALET
represents a valid entry on the DU-AL. If you
specified register notation “(n),” make sure that the
ALET in register n is correct.

08 xxxx0807 Meaning: Program error. The system found an error
when accessing the answer area specified on the
ANSAREA parameter.

Action: Ensure that the answer area address
specified on the ANSAREA parameter is valid.

CSVAPF macro

Chapter 36. CSVAPF — Control the list of APF-authorized libraries 319

Table 42. Return and Reason Codes for the CSVAPF Macro (continued)

Hexadecimal
Return Code

Hexadecimal
Reason Code

Meaning and Action

08 xxxx0808 Meaning: Program error. For a QUERY request, the
length of the answer area specified on the ANSLEN
parameter is not equal to or greater than the length
of the APFHDR structure in the CSVAPFAA
mapping macro.

Action: On the ANSLEN parameter, specify a
fullword containing a value that is equal to or
greater than the length of the APFHDR structure in
the CSVAPFAA mapping macro.

08 xxxx0809 Meaning: Program error. The request type is not
valid.

Action: Check for a possible overlay in the
parameter list that the CSVAPFAA mapping macro
created.

08 xxxx080A Meaning: Program error. The CSVAPF macro could
not establish an ESTAEX recovery routine. xxxx is
the return code from the ESTAEX service.

Action: See the description of the ESTAEX macro for
the action associated with the xxxx return code.

08 xxxx080B Meaning: Program error. A reserved field is not zero
in the parameter list that the CSVAPFAA macro
created.

Action: Check for a possible overlay in the
parameter list that the CSVAPFAA macro created.

08 xxxx080C Meaning: Program error. The library name specified
on the DSNAME parameter is not valid. The first
character is blank.

Action: On the DSNAME parameter, specify a
library name that does not include a blank as the
first character.

08 xxxx080D Meaning: Program error: The system found an error
in the access list entry token (ALET) for the
parameter list that the CSVAPFAA macro created.

Action: Ensure that the ALET is 0 or that the ALET
represents a valid entry on the DU-AL.

08 xxxx080E Meaning: Program error. The system found an
incorrect version number in the parameter list that
the CSVAPF macro created.

Action: Verify that your program is not overwriting
the parameter list, and that the execute form of the
macro correctly addresses the parameter list. If you
are using the modify form of the macro, make sure
that you specified the COMPLETE option on at least
one invocation.

CSVAPF macro

320 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Table 42. Return and Reason Codes for the CSVAPF Macro (continued)

Hexadecimal
Return Code

Hexadecimal
Reason Code

Meaning and Action

08 xxxx080F Meaning: Program error. For an ADD, DELETE, or
DYNFORMAT request, the caller holds a lock.

Action: Release any held locks before issuing
CSVAPF with the specified request.

0C xxxx0C01 Meaning: Environmental error. The function is not
available. The APF list format is static.

Action: If desired, issue the CSVAPF macro with the
REQUEST=DYNFORMAT parameter to change the
format of the APF list to dynamic (contact the
system programmer to ensure that all the required
software products are updated and all vendor
products are converted). Then try the function again.

0C xxxx0C02 Meaning: Environmental error. The function is not
available. DFSMS/MVS 1.1 is not installed.

Action: Contact the system programmer. Provide the
return code, the reason code, and the explanation of
the error.

10 xxxx1001 Meaning: System error. An internal error occurred.

Action: Contact the system programmer. Provide the
return code, the reason code, and the explanation of
the error.

Example 1
Add SMS-managed library MY.LIBRARY.NAME to the list of APF-authorized
libraries:

CSVAPF REQUEST=ADD,DSNAME=MYLIB,VOLTYPE=SMS,
RETCODE=LRETCODE,RSNCODE=LRSNCODE

.

.
MYLIB DC CL44’MY.LIBRARY.NAME’
LRETCODE DS F Return code
LRSNCODE DS F Reason code

CSVAPFAA , Include CSVAPFAA mapping macro

Example 2
Add library MY.LIBRARY.NAME on volume 861234 to the list of APF=authorized
libraries,

CSVAPF REQUEST=ADD,DSNAME=MYLIB,VOLUME=MYVOL,VOLTYPE=ANY,
RETCODE=LRETCODE,RSNCODE=LRSNCODE

.

.
MYLIB DC CL44’MY.LIBRARY.NAME’
MYVOL DC CL6’861234’
LRETCODE DS F Return code
LRSNCODE DS F Reason code

CSVAPFAA , Include CSVAPFAA mapping macro

Example 3
Change the format of the APF list from static to dynamic:

CSVAPF macro

Chapter 36. CSVAPF — Control the list of APF-authorized libraries 321

CSVAPF REQUEST=DYNFORMAT,RETCODE=LRETCODE,RSNCODE=LRSNCODE
.
.

LRETCODE DS F Return code
LRSNCODE DS F Reason code

CSVAPFAA , Include CSVAPFAA mapping

Example 4
Determine the current format of the APF list:

CSVAPF REQUEST=QUERYFORMAT,FORMAT=LFORMAT
CLI LFORMAT,CSVAPFFORMATDYNAMIC
BE LAB1

* Format is static
.
.

LAB1 DS 0H Format is dynamic
.
.

LFORMAT DS X Output Format
CSVAPFAA , Include CSVAPFAA mapping

Example 5
Change a program to use the CSVAPF macro to access the APF list (this program
uses the LIST function as an example of one way to access the APF list):

L 15,X’10’ Get CVT address
TM CVTDCB-CVTMAP(15),CVTOSEXT OS Extension present
BZ OLDLIST No, old (static) list
TM CVTOSLV1-CVTMAP(15),CVTDYAPF Is dynamic APF present?
BZ OLDLIST No, old (static) list
MVC APAALEN,=AL4(4096) Assume length is 4K
L 2,APAALEN Get length
GETMAIN RU,LV=(2) Get storage for answer area
ST 1,APAA@ Save answer area address

LAB1 DS 0H
L 4,APAA@ Get answer area address
CSVAPF REQUEST=LIST,ANSAREA=(4),ANSLEN=APAALEN, *

RETCODE=LRETCODE,RSNCODE=LRSNCODE
CLC LRETCODE,=AL4(CSVAPFRC_OK) Success?
BE LAB3 Yes, process data
CLC LRETCODE,=AL4(CSVAPFRC_WARN) Warning?
BNE LAB2 No, Process other return codes
NC LRSNCODE,=AL4(CSVAPFRSNCODEMASK) Clear high order bits
CLC LRSNCODE,=AL4(CSVAPFRSNNOTALLDATARETURNED) More data?
BNE LAB2 No, Process other return codes
L 3,APAALEN Get current length
L 2,APFHTLEN-APFHDR(4) Get required length
ST 2,APAALEN Save total required length
FREEMAIN RU,LV=(3),A=(4) Free previous area
GETMAIN RU,LV=(2) Get storage for answer area
ST 1,APAA@ Save answer area address
B LAB1 Re-do LIST request

LAB2 DS 0H Process other return codes
.
.

OLDLIST DS 0H
* Current code to process static format APF list

.

.
B LAB9

LAB3 DS 0H

* New code to scan return information from CSVAPF
.
.

CSVAPF macro

322 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

L 4,APAA@
L 3,APAALEN
FREEMAIN RU,LV=(3),A=(4) Release APAA

LAB9 DS 0H End of processing
.
.

APAA@ DS A Address of APF answer area
APAALEN DS F Length of APF answer area
LRETCODE DS F Return code
LRSNCODE DS F Reason code

CSVAPFAA , Include CSVAPFAA mapping

CSVAPF - List form
Use the list form of the CSVAPF macro together with the execute form of the
macro for applications that require reentrant code. The list form of the macro
defines an area of storage, which the execute form of the macro uses to store the
parameters.

The list form of the CSVAPF macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede CSVAPF.

CSVAPF

� One or more blanks must follow CSVAPF.

MF=(L,list addr) list addr: symbol.

MF=(L,list addr,attr) attr: 1- to 60-character input string.

MF=(L,list addr,0D) Default: 0D

Parameters
The parameters are explained under the standard form of the CSVAPF macro with
the following exception:

MF=(L,list addr)
MF=(L,list addr,attr)
MF=(L,list addr,0D)

Specifies the list form of the CSVAPF macro.

list addr is the name of a storage area to contain the parameters.

attr is an optional 1- to 60-character input string, which can contain any value
that is valid on an assembler DS pseudo-op. You can use this parameter to
force boundary alignment of the parameter list. If you do not code attr, the
system provides a value of 0D, which forces the parameter list to a
doubleword boundary.

CSVAPF macro

Chapter 36. CSVAPF — Control the list of APF-authorized libraries 323

CSVAPF - Execute form
Use the execute form of the CSVAPF macro together with the list form of the
macro for applications that require reentrant code. The execute form of the macro
stores the parameters into the storage area defined by the list form.

The execute form of the CSVAPF macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede CSVAPF.

CSVAPF

� One or more blanks must follow CSVAPF.

Valid parameters (Required parameters are underlined):

REQUEST=QUERY DSNAME, VOLTYPE, VOLUME, RETCODE, RSNCODE

REQUEST=ADD DSNAME, VOLTYPE, VOLUME, RETCODE, RSNCODE

REQUEST=DELETE DSNAME, VOLTYPE, VOLUME, RETCODE, RSNCODE

REQUEST=DYNFORMAT RETCODE, RSNCODE

REQUEST=LIST ANSAREA, ANSLEN, RETCODE, RSNCODE

,DSNAME=dsname dsname: RS-type address or register (2) - (12).

,VOLTYPE=SMS Default: VOLTYPE=SMS

,VOLTYPE=ANY, VOLUME is required with VOLTYPE=ANY.

VOLUME=volume volume: RS-type or register (2) - (12).

,FORMAT=format format: RS-type address, or register (2) - (12).

,ANSAREA=ansarea ansarea: A-type address, or register (2) - (12).

,ANSLEN=anslen anslen: A-type address, or register (2) - (12).

,RETCODE=retcode retcode: RS-type address or register (2) - (12).

,RSNCODE=rsncode rsncode: RS-type address or register (2) - (12).

,MF=(E,list addr) list addr:RS-type address, or register (2) - (12).

,MF=(E,list addr,COMPLETE) Default: COMPLETE

CSVAPF macro

324 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Parameters
The parameters are explained under the standard form of the CSVAPF macro with
the following exceptions:

,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

Specifies the execute form of the CSVAPF macro.

list addr specifies the area that the system uses to store the parameters.

COMPLETE, which is the default, specifies that the system is to check for
required parameters and supply optional parameters that you did not specify.

CSVAPF macro

Chapter 36. CSVAPF — Control the list of APF-authorized libraries 325

CSVAPF macro

326 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Chapter 37. CSVDYLPA — Provide dynamic LPA services

Description
CSVDYLPA allows you to request dynamic LPA services. Be aware, however, that
changes to LPA itself are not actually done. This set of services truly only lets you
add modules to, and delete modules from, common storage. When searching by
module name, the system will locate the copy of a module added by dynamic LPA
services even if it was present in PLPA, MLPA, or FLPA.

With CSVDYLPA, you can request services to:
v Add one or more modules to common storage (REQUEST=ADD).
v Delete one or more modules that were previously added using dynamic LPA

services (REQUEST=DELETE).
v Request that your program wait until processing of LPA statements in the

IPL-time PROGxx parmlib members complete (REQUEST=DEFLPAWAIT).
v Query information about support for LPA services (REQUEST=QUERYDYN).
v Query whether processing of LPA statements in the IPL-time PROGxx parmlib

members is complete (REQUEST=QUERYDEFLPA).

Following the descriptions of the requests are:
v The return and reason codes, “Return and reason codes”
v Examples of using CSVDYLPA, “Example 1” on page 334

Return and reason codes
When the CSVDYLPA macro returns control to your program:
v GPR 15 (and retcode, when you code RETCODE) contains a return code.
v When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code

RSNCODE) contains a reason code.

Macro CSVLPRET provides equate symbols for the return and reason codes.

The following table identifies the hexadecimal return and reason codes and the
equate symbol associated with each reason code. IBM support personnel may
request the entire reason code, including the xxxx value.

© Copyright IBM Corp. 1988, 2013 327

Table 43. Return and Reason Codes for the CSVDYLPA Macro

Return Code Reason Code Equate Symbol
Meaning and Action

0 — Equate Symbol: CsvdylpaRc_OK

Meaning: CSVDYLPA request successful.

Action: None required.

ADD Meaning: All modules successfully added to
LPA.

Action: None required.

DELETE
Meaning: All modules removed from LPA.

Action: None required.

DEFLPAWAIT
Meaning: Deferred LPA processing has
completed.

Action: The application may use LPA modules
that were to be added by deferred LPA
processing.

4 — Equate Symbol: CsvdylpaRc_Warn

Meaning: Warning

Action: Refer to the action provided with the specific
reason code.

4 xxxx0401 Equate Symbol: CsvdylpaRsnNotAllSuccessful

Meaning: For ADD and DELETE request, at least one input
module could not be processed successfully. Information
about the problem is contained within the MODINFO entry
for that module, in field LpmeaOutputFlags (for ADD) or
field LpmedOutputFlags (for DELETE). The system
continued to process entries after the one for which the
problem occurred.

Action: Fix the problem before requesting the function
again.

8 — Equate Symbol: CsvdylpaRc_InvParm

Meaning: CSVDYLPA request specifies parameters that are
not valid. For ADD and DELETE, when the problem
occurred while processing a particular MODINFO entry,
the system will not process any additional MODINFO
entries.

Action: Refer to the action provided with the specific
reason code.

8 xxxx0801 Equate Symbol: CsvdylpaRsnBadParmlist

Meaning: Unable to access parameter list.

Action: Check for possible storage overlay.

8 xxxx0802 Equate Symbol: CsvdylpaRsnSrbMode

Meaning: SRB mode.

Action: Avoid requesting this function in SRB mode.

CSVDYLPA macro

328 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Table 43. Return and Reason Codes for the CSVDYLPA Macro (continued)

Return Code Reason Code Equate Symbol
Meaning and Action

8 xxxx0803 Equate Symbol: CsvdylpaRsnNotEnabled

Meaning: Not Enabled.

Action: Avoid requesting this function while not enabled.

8 xxxx0805 Equate Symbol: CsvdylpaRsnHomeNotPrimary

Meaning: Home address space different from primary
address space.

Action: Avoid requesting this function in this environment.

8 xxxx0809 Equate Symbol: CsvdylpaRsnBadRequestType

Meaning: Request type is not valid.

Action: Check for possible storage overlay of the parameter
list.

8 xxxx080A Equate Symbol: CsvdylpaRsnBadEstaex

Meaning: Unable to establish ESTAEX. "xxxx" contains the
ESTAEX return code. There could be an FRR established.

Action: Refer to documentation for ESTAEX return code
"xxxx".

8 xxxx080B Equate Symbol: CsvdylpaRsnReservedNot0

Meaning: Reserved field not 0.

Action: Check for possible storage overlay of the parameter
list.

8 xxxx080D Equate Symbol: CsvdylpaRsnBadParmlistALET

Meaning: Unable to use ALET of parameter list.

Action: Make sure that the ALET of the parameter list is
valid. The access register might not have been set up
correctly.

8 xxxx080E Equate Symbol: CsvdylpaRsnBadVersion

Meaning: Bad version number.

Action: Check for possible storage overlay of the parameter
list.

8 xxxx080F Equate Symbol: CsvdylpaRsnLocked

Meaning: Locked

Action: Avoid requesting this function in this environment.

8 xxxx0815 Equate Symbol: CsvdylpaRsnBadDsnameArea

Meaning: Unable to access data set name.

Action: Make sure that the DSNAME area is valid.

8 xxxx0816 Equate Symbol: CsvdylpaRsnBadModinfoArea

Meaning: Unable to access MODINFO area.

Action: Make sure that the MODINFO area is valid.

CSVDYLPA macro

Chapter 37. CSVDYLPA — Provide dynamic LPA services 329

Table 43. Return and Reason Codes for the CSVDYLPA Macro (continued)

Return Code Reason Code Equate Symbol
Meaning and Action

8 xxxx0817 Equate Symbol: CsvdylpaRsnBadModinfoALET

Meaning: Unable to use ALET of MODINFO area.

Action: Make sure that the ALET of the MODINFO area is
valid. The access register might not have been set up
correctly.

8 xxxx0818 Equate Symbol: CsvdylpaRsnBadOpen

Meaning: Unable to open specified data set.

Action: Make sure that you specified the proper data set,
that it is a PDS or PDSE program library, and that it can be
located by the system.

8 xxxx081D Equate Symbol: CsvdylpaRsnBadNumMod

Meaning: The value provided by the NUMMOD parameter
is 0 or exceeds 256.

Action: Specify a non-zero NUMMOD parameter value.
Instead of providing more than 256 entries in a single call,
use multiple calls each of which provides no more than 256
entries.

8 xxxx0820 Equate Symbol: CsvdylpaRsnBadDsnameALET

Meaning: Bad dsname ALET.

Action: Make sure that the ALET of the DSNAME area is
valid. The access register might not have been set up
correctly.

8 xxxx0822 Equate Symbol: CsvdylpaRsnBadModuleName

Meaning: Bad modulename - first character is 0 or blank.

Action: Provide a valid module name.

8 xxxx0823 Equate Symbol: CsvdylpaRsnBadDsname

Meaning: Bad DSNAME - first character is 0 or blank.

Action: Provide a valid data set name.

8 xxxx0829 Equate Symbol: CsvdylpaRsnBadAlloc

Meaning: Unable to allocate data set.

Action: Make sure that you specified the proper data set,
that it is a PDS or PDSE program library, and that it can be
located by the system.

8 xxxx082B Equate Symbol: CsvdylpaRsnFunctionNotAvailable

Meaning: Required DFSMS function or dynamic allocation
is not available.

Action: Make sure that the required DFSMS support is
installed. Avoid requesting the function in an environment
where dynamic allocation is not available.

CSVDYLPA macro

330 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Table 43. Return and Reason Codes for the CSVDYLPA Macro (continued)

Return Code Reason Code Equate Symbol
Meaning and Action

8 xxxx082C Equate Symbol: CsvdylpaRsnNotAuthDCB

Meaning: Not authorized to use DCB option. Must be
supervisor state, PKM allowing key 0-7, PSW key 0-7, or
APF authorized.

Action: Avoid using the DCB option unless you have the
required authorization.

8 xxxx082D Equate Symbol: CsvdylpaRsnNotAuthConcat

Meaning: If not supervisor state, PKM allowing key 0-7,
PSW key 0-7, or APF authorized, or if APFREQUIRED=YES
is specified or defaulted, the concatenation represented by
the input DDNAME or DCB must be APF authorized.

Action: Avoid using a non-APF authorized concatenation
unless you have the required authorization.

8 xxxx082E Equate Symbol: CsvdylpaRsnNotAuthMemberMask

Meaning: Not authorized to use MemberMask option.
Must be supervisor state, PKM allowing key 0-7, PSW key
0-7, or APF authorized.

Action: Avoid using the MODINFOTYPE=MEMBERMASK
function unless you have the required authorization.

8 xxxx0830 Equate Symbol: CsvdylpaRsnBadModinfoxArea

Meaning: Unable to access MODINFOX area.

Action: Make sure that the MODINFOX area is valid.

8 xxxx0831 Equate Symbol: CsvdylpaRsnBadModinfoxALET

Meaning: Unable to use ALET of MODINFOX area.

Action: Make sure that the ALET of the MODINFOX area
is valid. The access register might not have been set up
correctly.

8 xxxx0833 Equate Symbol: CsvdylpaRsnNotESVC

Meaning: An extended SVC was selected, but the specified
SVC number is not an extended SVC.

Action: Correct the SVC number.

8 xxxx0834 Equate Symbol: CsvdylpaRsnBadESvcrnum

Meaning: The routing number for the selected extended
SVC exceeded the number of entries for that extended SVC
that were defined at IPL

Action: Correct the extended SVC routine number.

8 xxxx083C Equate Symbol: CsvdylpaRsnNotPartitioned

Meaning: For ADD request, the data set is not partitioned.

Action: Make sure that you specified the proper data set
and that it is a PDS or PDSE program library.

CSVDYLPA macro

Chapter 37. CSVDYLPA — Provide dynamic LPA services 331

Table 43. Return and Reason Codes for the CSVDYLPA Macro (continued)

Return Code Reason Code Equate Symbol
Meaning and Action

8 xxxx083D Equate Symbol: CsvdylpaRsnBadByaddrInfo

Meaning: For ADD request with BYADDR=YES, the
module information is incorrect.

Action: Make sure that the entry point and load point
addresses represent common area storage. Make sure that
the entry point lies within the primary load segment.

8 xxxx083E Equate Symbol: CsvdylpaRsnNotAuthByaddr

Meaning: Not authorized to use BYADDR=YES option.
Must be supervisor state, PKM allowing key 0-7, PSW key
0-7, or APF authorized.

Action: Avoid using BYADDR=YES unless you have the
required authorization.

8 xxxx083F Equate Symbol: CsvdylpaRsnBadDcbArea

Meaning: Unable to access the opened DCB.

Action: Make sure that the DCB has been opened.

8 xxxx0840 Equate Symbol: CsvdylpaRsnEnqHeldShared

Meaning: The ENQ resource with QNAME SYSZCSV and
RNAME CSVDYLPA was held in the shared state on entry
to dynamic LPA services.

Action: Avoid holding the ENQ shared when using
dynamic LPA services.

8 xxxx0841 Equate Symbol: CsvdylpaRsnBadLPMEAQArea

Meaning: Unable to access LPMEAQ area.

Action: Make sure that the LPMEAQ area is valid.

8 xxxx0842 Equate Symbol: CsvdylpaRsnBadLPMEAQALET

Meaning: Unable to use ALET of LPMEAQ area.

Action: Make sure that the ALET of the LPMEAQ area is
valid. The access register might not have been set up
correctly.

8 xxxx0843 Equate Symbol: CsvdylpaRsnNotAuthAddAlias

Meaning: Not authorized to use the ADDALIAS=YES
function. Must be supervisor state, PKM allowing key 0-7,
PSW key 0-7, or APF authorized.

Action: Do not use the ADDALIAS=YES function unless
you have the required authorization.

8 xxxx0844 Equate Symbol: CsvdylpaRsnBadPathnameLen

Meaning: The PATHNAMELEN parameter value is not in
the range 1-1023.

Action: Provide a valid PATHNAMELEN parameter value.

8 xxxx0845 Equate Symbol: CsvdylpaRsnBadPathnameArea

Meaning: Unable to access the path name.

Action: Make sure that the PATHNAME area is valid.

CSVDYLPA macro

332 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Table 43. Return and Reason Codes for the CSVDYLPA Macro (continued)

Return Code Reason Code Equate Symbol
Meaning and Action

8 xxxx0846 Equate Symbol: CsvdylpaRsnBadPathnameALET

Meaning: Unable to use ALET of PATHNAME area.

Action: Make sure that the ALET of the PATHNAME area
is valid. The access register might not have been set up
correctly.

8 xxxx0847 Equate Symbol: CsvdylpaRsnBadPathnameNumMod

Meaning: PATHNAME was specified and the value
provided by the NUMMOD parameter is not 1.

Action: Provide only one entry for each call.

8 xxxx0848 Equate Symbol: CsvdylpaRsnNotAuthDEFLPAWAIT

Meaning: Not authorized to use REQUEST=DEFLPAWAIT.
Must be supervisor state, PKM allowing key 0-7, PSW key
0-7, or APF authorized.

Action: Do not use the REQUEST=DEFLPAWAIT function
unless you have the required authorization.

C — Equate Symbol: CsvdylpaRc_Env

Meaning: Environmental error

Action: Refer to the action provided with the specific
reason code.

C xxxx0C02 Equate Symbol: CsvdylpaRsnNoStorage

Meaning: There is not sufficient storage to complete the
request.

Action: Contact your system programmer. There is a
shortage of common storage.

C xxxx0C04 Equate Symbol: CsvdylpaRsnBadDirectory

Meaning: When using the MemberMask option, the data
set directory was in error. Either an I/O error occurred
accessing the directory, or the format of a directory entry
was incorrect.

Action: Fix the data set directory. Make sure that the data
set is a PDS or PDSE program library.

C xxxx0C05 Equate Symbol: CsvdylpaRsnStoragelimExceeded

Meaning: For ADD request, the amount of module storage
needed for the request would have caused the amount of
CSA or ECSA remaining to fall below the threshold
specified by the system programmer using the LPA
CSAMIN statement of PROGxx, the SETPROG
LPA,CSAMIN system command, or CSA/ECSA specified in
IEASYSxx.

Action: Specify that fewer modules be added, or have the
system programmer reduce the CSAMIN amounts.

10 — Equate Symbol: CsvdylpaRC_CompError

Meaning: Unexpected failure.

Action: Refer to the action provided with the specific
reason code.

CSVDYLPA macro

Chapter 37. CSVDYLPA — Provide dynamic LPA services 333

Table 43. Return and Reason Codes for the CSVDYLPA Macro (continued)

Return Code Reason Code Equate Symbol
Meaning and Action

10 xxxx1001 Equate Symbol: CsvdylpaRsnCompError

Meaning: Unexpected failure. The state of the request is
unpredictable.

Action: Contact your system programmer.

Examples

Example 1

Operation::

1. Add a module to LPA
2. Delete a module from LPA

The code is as follows:

* Set up MODINFO area, for module "MYMODULE", indicating *
* that the module is to be page-fixed. *
* Add the module to LPA, locating the module using *
* data set ’SYS1.MYDS’. *

LA 2,ADDINFO
USING LPMEA,2
XC ADDINFO(LPMEA_LEN),ADDINFO
MVC LPMEANAME,=CL8’MYMODULE’
OI LPMEAINPUTFLAGS0,LPMEAFIXED
DROP 2
CSVDYLPA REQUEST=ADD,MODINFOTYPE=MEMBERLIST, *

MODINFO=(2),NUMMOD=LMODN, *
DSNAME=LDS1, *
REQUESTOR=LREQ, *
RETCODE=LRETCODE,RSNCODE=LRSNCODE, *
MF=(E,DYLPAL)

*
* Place code to check return/reason codes here
*
... processing code here ...
*

* Set up MODINFO area, for module "MYMODULE", using the *
* token returned on REQUEST=ADD. *
* Delete the module from LPA. *

LA 3,ADDINFO
USING LPMEA,3
LA 2,DELINFO
USING LPMED,2
XC DELINFO(LPMED_LEN),DELINFO
MVC LPMEDNAME,LPMEANAME
MVC LPMEDDELETETOKEN,LPMEADELETETOKEN
DROP 2,3
CSVDYLPA REQUEST=DELETE,MODINFO=(2),NUMMOD=LMODN, *

RETCODE=LRETCODE,RSNCODE=LRSNCODE, *
MF=(E,DYLPAL)

*
* Place code to check return/reason codes here.
*
LMODN DC F’1’

CSVDYLPA macro

334 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

LDS1 DC CL44’SYS1.MYDS’
LREQ DC CL16’CSVDYLPA EXAMPLE’

CSVLPRET Return code information
DYNAREA DSECT
ADDINFO DS 0D

ORG ADDINFO+LPMEA_LEN
DELINFO DS 0D

ORG DELINFO+LPMED_LEN
LRETCODE DS F
LRSNCODE DS F

CSVDYLPA MF=(L,DYLPAL)

Example 2

Operation::

1. Determine if deferred LPA processing is complete.
2. Wait for the completion of deferred LPA processing, if needed.

The code is as follows:
CSVDYLPA REQUEST=QUERYDEFLPA, *

DEFLPASTATE=LDEFLPASTATE
CLI LDEFLPASTATE,CsvdylpaDefLPAState_Complete
JE DEFLPA_COMPLETE
CSVDYLPA REQUEST=DEFLPAWAIT, *

RETCODE=LRETCODE,RSNCODE=LRSNCODE, *
MF=(E,DYLPAL)

*
* Place code to check return/reason codes here
*
DEFLPA_COMPLETE DS 0H
... processing code here ...
DYNAREA DSECT
LRETCODE DS F
LRSNCODE DS F

CSVDYLPA MF=(L,DYLPAL)
LDEFLPASTATE DS X

CSVLPRET

REQUEST=ADD option of CSVDYLPA
REQUEST=ADD allows you to add one or more modules or aliases to LPA.

CSVDYLPA macro

Chapter 37. CSVDYLPA — Provide dynamic LPA services 335

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Any of the following:

v Supervisor state

v PKM 0-7

v PSW key 0-7

v APF authorized

v In addition to any of the above, if SECMODCHECK=YES
is specified or defaulted to, issuer must be authorized for
UPDATE to the RACF FACILITY class resource
CSVDYLPA.ADD.modname

Users of MODINFOTYPE=MEMBERMASK and
ADDALIAS=YES require any of the following:

v Supervisor state

v PKM 0-7

v PSW key 0-7

v APF authorized

Users of DCB, DCBPTR, MASKDCB, or MASKDCBPTR
require any of the following:

v Supervisor state

v PKM 0-7

v PSW key 0-7

v APF authorized
Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: The caller must not be locked.
Control parameters: Control parameters must be in the primary address space or,

for AR-mode callers, must be in an address/data space that
is addressable through a public entry on the caller's
dispatchable unit access list (DU-AL).

The user-provided data set name via the DSNAME
parameter has the same requirements and restrictions as the
control parameters.

The user-provided information via the MODINFO parameter
has the same requirements and restrictions as the control
parameters.

The user-provided information through the PATHNAME
parameter has the same requirements and restrictions as the
control parameters.

Programming requirements
The caller should include the CSVLPRET macro to get equate symbols for the
return and reason codes.

CSVDYLPA macro

336 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

The caller must include the CSVLPRET macro to get a mapping of the
input/output area provided via the MODINFO

The caller may hold the system ENQ resource with QNAME SYSZCSV and
RNAME CSVDYLPA in the exclusive state. While this ENQ resource is held, any
other requests to use the CSVDYLPA services to ADD or DELETE will be delayed.
The ENQ resource must not be held in the shared state when using CSVDYLPA
services parameter.

Restrictions
The caller must not have functional recovery routines (FRRs) established.

Input register information
Before issuing the CSVDYLPA macro, the caller does not need to place any
information into any general purpose register (GPR) or access register (AR) unless
using it in register notation for a particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0 Reason code if GPR15 is not 0

1 Used as a work register by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
The CSVDYLPA macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

CSVDYLPA macro

Chapter 37. CSVDYLPA — Provide dynamic LPA services 337

Syntax Description

� One or more blanks must precede CSVDYLPA.

CSVDYLPA

� One or more blanks must follow CSVDYLPA.

REQUEST=ADD

,MODINFOTYPE=MEMBERLIST

,MODINFOTYPE=MEMBERMASK

,MODINFO=modinfo modinfo: RS-type address or address in register (2) - (12)

,NUMMOD=nummod nummod: RS-type address or address in register (2) - (12)

,BYADDR=NO Default: BYADDR=NO

,BYADDR=YES

,BYPATH=NO Default: BYPATH=NO

,BYPATH=YES

,PATHNAMELEN=pathnamelen pathnamelen: RS-type address or address in register (2) - (12)

,PATHNAME=pathname pathname: RS-type address or address in register (2) - (12)

,UCBADDR=NO_UCBADDR Default: UCBADDR=NO_UCBADDR

,UCBADDR=ucbaddr ucbaddr: RS-type address or address in register (2) - (12)

,CCHH=NO_CCHH Default: CCHH=NO_CCHH

,CCHH=cchh cchh: RS-type address or address in register (2) - (12)

,DSNAME=dsname dsname: RS-type address or address in register (2) - (12)

,DDNAME=ddname ddname: RS-type address or address in register (2) - (12)

,DCB=dcb dcb: RS-type address or address in register (2) - (12)

,DCBPTR=dcbptr dcbptr: RS-type address or address in register (2) - (12)

,PATHNAME=pathname pathname: RS-type address or address in register (2) - (12)

,MODINFO=modinfo modinfo: RS-type address or address in register (2) - (12)

,MODINFOX=modinfox modinfox: RS-type address or address in register (2) - (12)

,MODINFOX=NO_MODINFOX Default: MODINFOX=NO_MODINFOX

CSVDYLPA macro

338 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Syntax Description

,MASKDSNAME=maskdsname maskdsname: RS-type address or address in register (2) - (12)

,MASKDDNAME=maskddname maskddname: RS-type address or address in register (2) - (12)

,MASKDCB=maskdcb maskdcb: RS-type address or address in register (2) - (12)

,MASKDCBPTR=maskdcbptr maskdcbptr: RS-type address or address in register (2) - (12)

,OUTAREAPTR=outareaptr outareaptr: RS-type address or address in register (2) - (12)

,OUTAREALEN=outarealen outarealen: RS-type address or address in register (2) - (12)

,OUTAREANUM=outareanum outareanum: RS-type address or address in register (2) - (12)

,OUTAREASP=outareasp outareasp: RS-type address or address in register (2) - (12)

,APFREQUIRED=YES Default: APFREQUIRED=YES

,APFREQUIRED=NO

,SECMODCHECK=YES Default: SECMODCHECK=YES

,SECMODCHECK=NO

,REQUESTOR=requestor requestor: RS-type address or address in register (2) - (12)

,MODPROB=CONTINUE Default: MODPROB=CONTINUE

,MODPROB=STOP

,ERRORDATA=errordata errordata: RS-type address or address in register (2) - (12)

,ADDALIAS=NO Default: ADDALIAS=NO

,ADDALIAS=YES

,QUERYONLY=NO Default: QUERYONLY=NO

,QUERYONLY=YES

,LPMEAQ=lpmeaq lpmeaq: RS-type address or register (2) - (12).

,RETCODE=retcode retcode: RS-type address or register (2) - (12).

,RSNCODE=rsncode rsncode: RS-type address or register (2) - (12).

,PLISTVER=IMPLIED_VERSION Default: PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

CSVDYLPA macro

Chapter 37. CSVDYLPA — Provide dynamic LPA services 339

Syntax Description

,PLISTVER=0

,MF=S Default: MF=S

,MF=(L,list addr) list addr: RS-type address or register (1) - (12)

,MF=(L,list addr,attr)

,MF=(L,list addr,0D)

,MF=(E,list addr)

,MF=(E,list addr,COMPLETE)

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the CSVDYLPA
macro invocation. The name must conform to the rules for an ordinary
assembler language symbol.

REQUEST=ADD
A required parameter. REQUEST=ADD indicates to add one or more modules
to LPA. Note that if the module already exists within LPA, the request is still
processed. The original copy of the module is not deleted. A new copy of the
module is created, and subsequent searches of LPA will only find that new
copy. A token is returned for each load module. The token must be used on the
DELETE request unless using the TYPE=CURRENT or TYPE=OLDEST option
of REQUEST=DELETE. This token is in the LPMEA area.

Modules added to the system via dynamic LPA processing are placed into CSA
or ECSA storage. Therefore, it is important to ensure that the system CSA and
ECSA sizes are adequately defined to handle the additional consumption of
CSA storage resulting from the issuance of the dynamic LPA request.

,MODINFOTYPE=MEMBERLIST
,MODINFOTYPE=MEMBERMASK

A required parameter that indicates the type of MODINFO area provided. In
all cases, the MODINFO area contains entries mapped by DSECT LPMEA in
macro CSVLPRET. Each entry contains a flag area which should be cleared
before calling the CSVDYLPA service.

You can indicate that
v the module is to be placed into fixed storage (as opposed to pageable),
v only the whole pages within the module are to be placed into

page-protected storage,
v the storage acquired for the module is to be OWNER=SYSTEM (as opposed

to OWNER=HOME).

,MODINFOTYPE=MEMBERLIST
indicates that the area contains the list of modules to be processed.

,MODINFOTYPE=MEMBERMASK
indicates that the area is input/output, and contains only 1 entry. The
module name in that entry is treated as a "mask". All members in the data
set represented by the input (data set, DCB, or DDNAME) that match the

CSVDYLPA macro

340 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

input mask (the mask may contain wildcard characters "*" and "?" and a
wildcard match will be done) are processed. The system first creates a list
of the members that are to be processed and then continues in the same
manner as for MODINFOTYPE=MEMBERLIST.

,MODINFO=modinfo
When MODINFOTYPE=MEMBERLIST is specified, a required input/output
parameter that specifies an area that contains contiguous entries. Each entry
contains a module (or alias) name and status flags. Each name in the area must
be unique. If a module has aliases, the module name and all associated aliases
must be specified. The system processes more efficiently if the names in the
area are in ascending EBCDIC order (e.g., "A", then "B", then "C"). The number
of entries must match the value provided via the nummod parameter.

On output, among other possibilities, the status area might indicate:
v the module could not be located.
v an error occurred processing the input data set (in which case no further

processing of additional modules is done).
v you are not authorized to process the particular module.

For a complete list of the possible problem types, refer to the equate symbols
beginning with LpmeaModprob in the CSVLPRET data area.

If you specify an alias for an existing load module, the processing will not
simply add that alias. Rather, it will create a new copy of the load module that
is associated with that alias.

Within each LPMEA, the module name should be left-justified padded on the
right with EBCDIC blanks if less than 8 characters long. There should be no
embedded blanks.

To code: Specify the RS-type address, or address in register (2)-(12), of a
character field.

,NUMMOD=nummod
When MODINFOTYPE=MEMBERLIST is specified, a required input parameter
that contains the number of entries in the area specified by the MODINFO
parameter and in the area specified by the MODINFOX parameter. If
PATHNAME is specified, NUMMOD must be one.If PATHNAME is not
specified, NUMMOD must be in the range 1-256.

To code: Specify the RS-type address, or address in register (2)-(12), of a
fullword field, or specify a literal decimal value.

,BYADDR=NO
,BYADDR=YES

When MODINFOTYPE=MEMBERLIST is specified, an optional parameter that
indicates whether the modules have already been fetched into storage. The
default is BYADDR=NO.

,BYADDR=NO
indicates that the modules need to be fetched.

,BYADDR=YES
Indicates that the modules have already been fetched and are linkedited as
authorized (with AC=1). In this case, the MODINFO area must be present
not only with the module names but also with the following LPMEA fields
set for each module:
v LpmeaEntryPointAddr - the entry point address (with bit 0 of that

address being on if the entry is to receive control in AMODE 31).

CSVDYLPA macro

Chapter 37. CSVDYLPA — Provide dynamic LPA services 341

v LpmeaLoadPointAddr - the load point address (the start) of the primary
segment.

v LpmeaModlen - the length of that load segment.
v LpmeaLoadPointAddr2 - if the load module represents a split RMODE

load module, the load point address of the secondary segment;
otherwise 0.

v LpmeaModlen2 - if the load module represents a split RMODE load
module, the length of that secondary load segment; otherwise 0.

All addresses must be in common storage, and the entry point address
must be within the primary segment. It is up to the caller to page fix and
page protect the storage as needed.

,BYPATH=NO
,BYPATH=YES

When BYADDR=YES and MODINFOTYPE=MEMBERLIST are specified, an
optional input parameter that indicates whether the module was fetched from
a z/OS UNIX executable file that is specified as a fully qualified path name.
The default is BYPATH=NO.

,BYPATH=NO
Indicates that the modules were not fetched from a z/OS UNIX executable
file specified as a fully qualified path name.

,BYPATH=YES
Indicates that the module is fetched from a z/OS UNIX executable file
specified as a fully qualified path name.

Note: The NUMMOD parameter must specify a value of one when using
this option.

,UCBADDR=NO_UCBADDR
,UCBADDR=ucbaddr

When BYPATH=NO, BYADDR=YES and MODINFOTYPE=MEMBERLIST are
specified, an optional input parameter that specifies the UCB address for the
volume on which the first extent of the data set that contains the module
exists. The UCB address is found from the DEBUCBA field. The DEBUCBA
field is mapped by IEZDEB in the DEB associated with the open DCB that is
used to load the module. You can use the UCB in either of the following ways:
v Pass the address from the DEBUCBA field into the IOSCAPF service, and

use the output from the IOSCAPF service for the CSVDYLPA UCBADDR
parameter.

v Use the address from the DEBUCBA field directly.

Default: NO_UCBADDR

To code: Specify the RS-type address, or register (2)-(12), of a pointer field.

,CCHH=NO_CCHH
,CCHH=cchh

When UCBADDR=ucbaddr, BYPATH=NO, BYADDR=YES and
MODINFOTYPE=MEMBERLIST are specified, a required input parameter that
contains the CC and HH values associated with the first extent of the data set
that contains the module. The CCHH value comes from the DEBSTRCC and
DEBSTRHH fields. These two fields are mapped by IEZDEB in the DEB
associated with the open DCB that is used to load the module. The DEB entry
corresponds to the UCB address that is provided by the UCBADDR parameter.

CSVDYLPA macro

342 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

The CCHH parameter denotes a 32–bit track address consisting of a cylinder
number and a track number. The exact number of bits that represent the
cylinder number and track number is device dependent. The format of the
fields is not relevant to the specification of the CCHH parameter.

Default: NO_CCHH

To code: Specify the RS-type address, or register (2)-(12), of a 4–character field.

PATHNAMELEN=pathnamelen
When PATHNAME=pathname, BYADDR=NO and
MODINFOTYPE=MEMBERLIST are specified, a required input parameter that
is the length of the path name provided by the PATHNAME parameter.

Value range: 1 to 1023

To code: Specify the RS-type address, or register (2)-(12), of a fullword field or
specify a literal decimal value.

PATHNAMELEN=pathnamelen
When BYPATH=YES, BYADDR=YES and MODINFOTYPE=MEMBERLIST are
specified, a required input parameter that is the length of the path name
provided by the PATHNAME parameter.

Value range: 1 to 1023

To code: Specify the RS-type address, or register (2)-(12), of a fullword field or
specify a literal decimal value.

PATHNAME=pathname
When BYPATH=YES, BYADDR=YES and MODINFOTYPE=MEMBERLIST are
specified, a required input parameter that is the fully qualified path name of
the file from which the module was fetched. It cannot be a relative path name.
The length of the path name should be in the range of 1 to 1023.

To code: Specify the RS-type address, or register (2)-(12), of a character field.

,DSNAME=dsname
,DDNAME=ddname
,DCB=dcb
,DCBPTR=dcbptr
,PATHNAME=pathname

When BYADDR=NO and MODINFOTYPE=MEMBERLIST are specified, a
required input parameter.

,DSNAME=dsname
A parameter that contains the name of the data set/library from which all
the input modules are to be loaded. The data set must be cataloged. It may
be allocated as a PDS or PDSE program library.

Note that if the data set is migrated, the issuer's unit of work will wait
until the data set is retrieved before continuing.

If the caller is authorized only by the RACF FACILITY class resource (is
not supervisor state, system key, system PKM, or APF authorized), then the
data set must be APF authorized. Similarly, if the caller is supervisor state,
system key, or system PKM, or APF authorized, the data set need not be
APF authorized.

To code: Specify the RS-type address, or address in register (2)-(12), of a
44-character field.

,DDNAME=ddname
A parameter that contains the DDNAME of the data set/library (or

CSVDYLPA macro

Chapter 37. CSVDYLPA — Provide dynamic LPA services 343

concatenation of libraries) from which all the input modules are to be
loaded. The system will open the DDNAME for input.

If the caller is authorized only by the RACF FACILITY class resource (is
not supervisor state, system key, system PKM, or APF authorized), then the
concatenation must be APF authorized.

To code: Specify the RS-type address, or address in register (2)-(12), of an
8-character field.

,DCB=dcb
A parameter that contains the opened DCB representing the data
set/library (or concatenation of libraries) from which all the input modules
are to be loaded. The DCB must be opened for input.

The caller must be either supervisor state, system key, system PKM, or APF
authorized to use this option.

To code: Specify the RS-type address, or address in register (2)-(12), of a
character field.

,DCBPTR=dcbptr
A parameter that contains the address of the opened DCB representing the
data set/library (or concatenation of libraries) from which all the input
modules are to be loaded. The DCB must be opened for input. You can
specify DCBPTR=CVTLINK to request that the LNKLST be used as the
library concatenation (you must have an assembler USING established on
the CVT data area in order to use this).

The caller must be either supervisor state, system key, system PKM, or APF
authorized to use this option.

To code: Specify the RS-type address, or address in register (2)-(12), of a
pointer field.

PATHNAME=pathname
A parameter that is the file name from which the module is to be fetched.
This parameter must be a fully qualified path name, which includes the
file name. This parameter cannot be a relative path name. The file must be
marked as an authorized program.

Note: NUMMOD must be one.

To code: Specify the RS-type address, or register (2)-(12), of a character
field.

,MODINFO=modinfo
When MODINFOTYPE=MEMBERMASK is specified, a required input/output
parameter that specifies an area that contains a single entry. The entry contains
a member name mask and status flags.

Within the LPMEA, the module name field represents a member name mask.
All members that match this mask (using wildcard matching with "*"
representing 0 or more characters, and "?" representing exactly one character)
will be processed. The member name mask should be left-justified within the
8-byte field and padded on the right with EBCDIC blanks if less than 8
characters long. There should be no embedded blanks.

To code: Specify the RS-type address, or address in register (2)-(12), of a
character field.

,MODINFOX=modinfox
When MODINFOTYPE=MEMBERLIST is specified, an optional input

CSVDYLPA macro

344 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

parameter that specifies an area that contains contiguous entries. Each entry
contains additional information that is used when processing the information
in the corresponding entry in the MODINFO area. MODINFOX is mapped by
DSECT LPMEAX in macro CSVLPRET.

For a given entry name, you can specify that an SVC table entry be updated by
the system. To do this, you must specify the SVC number (and, if appropriate,
the extended SVC routing number). The system performs an SVCUPDTE
function to update SVC processing so that it gives control to the newly added
LPA routine when that particular SVC is issued.

If the request indicates an extended SVC but the actual SVC is not an extended
SVC, an error return results.

If an extended SVC routing code exceeds the value that the system can handle,
an error return results. For SVC 109, any value is valid. For SVCs 116, 122, and
137 the value is release-dependent.

The area specified by MODINFOX must contain the number of entries
indicated by the NUMMOD parameter.

The default value is NO_MODINFOX.

To code: Specify the RS-type address, or address in register (2)-(12), of a
character field.

,MASKDSNAME=maskdsname
,MASKDDNAME=maskddname
,MASKDCB=maskdcb
,MASKDCBPTR=maskdcbptr

When MODINFOTYPE=MEMBERMASK is specified, a required input
parameter.

,MASKDSNAME=maskdsname
A parameter that contains the name of the data set/library from which all
the input modules are to be loaded. The data set must be cataloged. It may
be allocated as a PDS or PDSE program library.

Note that if the data set is migrated, the issuer's unit of work will wait
until the data set is retrieved before continuing.

If the caller is authorized only by the RACF FACILITY class resource (is
not supervisor state, system key, system PKM, or APF authorized), then the
data set must be APF authorized. Similarly, if the caller is supervisor state,
system key, or system PKM, or APF authorized, the data set need not be
APF authorized.

To code: Specify the RS-type address, or address in register (2)-(12), of a
44-character field.

,MASKDDNAME=maskddname
A parameter that contains the DDNAME of the data set/library (or
concatenation of libraries) from which all the input modules are to be
loaded. The system will open the DDNAME for input.

If the caller is authorized only by the RACF FACILITY class resource (is
not supervisor state, system key, system PKM, or APF authorized), then the
concatenation must be APF authorized.

To code: Specify the RS-type address, or address in register (2)-(12), of an
8-character field.

CSVDYLPA macro

Chapter 37. CSVDYLPA — Provide dynamic LPA services 345

,MASKDCB=maskdcb
A parameter that contains the opened DCB representing the data
set/library (or concatenation of libraries) from which all the input modules
are to be loaded. The DCB must be opened for input.

The caller must be either supervisor state, system key, system PKM, or APF
authorized to use this option.

To code: Specify the RS-type address, or address in register (2)-(12), of a
character field.

,MASKDCBPTR=maskdcbptr
A parameter that contains the address of the opened DCB representing the
data set/library (or concatenation of libraries) from which all the input
modules are to be loaded. The DCB must be opened for input. You can
specify MASKDCBPTR=CVTLINK to request that the LNKLST be used as
the library concatenation (you must have an assembler USING established
on the CVT data area in order to use this).

The caller must be either supervisor state, system key, system PKM, or APF
authorized to use this option, unless CVTLINK was specified.

To code: Specify the RS-type address, or address in register (2)-(12), of a
pointer field.

,OUTAREAPTR=outareaptr
When MODINFOTYPE=MEMBERMASK is specified, a required output
parameter that is to contain the address of an area obtained by the system. The
area contains information about each member processed. It consists of
contiguous entries, each mapped by DSECT LPMEA within macro CSVLPRET.

Note: If QUERYONLY=YES is specified, the output information never
indicates "LpmeaSuccess" because the data returned for each matching member
only provides information about requests that do not successfully complete.

It is expected that the caller will free this area, using either FREEMAIN or
STORAGE RELEASE, after processing it. The area is in the key of the caller of
CSVDYLPA. Its length is contained in the output field specified by the
OutAreaLen parameter. Its subpool is contained in the output field specified by
the OutAreaSP parameter.

This area will be obtained on behalf of the caller, and so must be freed,
whenever the return code is less than 8 (CsvdylpaRc_InvParm) and when the
output field specified by the OutAreaNum parameter is non-zero.

Assuming that the caller is still running with the PSW key current when
CSVDYLPA was issued, and specified OUTAREALEN=AREALEN,
OUTAREASP=AREASP, and OUTAREAPTR=AREAPTR when issuing
CSVDYLPA, the following can be used to free the area:

ICM 1,15,AREAPTR
BZ NO_FREE
FREEMAIN RU,A=(1),LV=AREALEN,SP=AREASP

NO_FREE DS 0H

To code: Specify the RS-type address, or address in register (2)-(12), of a
pointer field.

,OUTAREALEN=outarealen
When MODINFOTYPE=MEMBERMASK is specified, a required output
parameter that is to contain the length of the output area.

CSVDYLPA macro

346 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

To code: Specify the RS-type address, or address in register (2)-(12), of a
fullword field.

,OUTAREANUM=outareanum
When MODINFOTYPE=MEMBERMASK is specified, a required output
parameter that is to contain the number of entries in the output area.

To code: Specify the RS-type address, or address in register (2)-(12), of a
fullword field.

,OUTAREASP=outareasp
When MODINFOTYPE=MEMBERMASK is specified, a required input/output
parameter that on input contains the subpool to use for the output area. If the
value is zero or specifies an unauthorized subpool, the system will use subpool
230. Since the storage obtained is expected to be in the key of the CSVDYLPA
caller, the subpool must either be one that is key-specifiable or one that is only
in the key of the CSVDYLPA caller. If it is not, the system will use subpool 230.
On output, the field contains the subpool that was actually used.

To code: Specify the RS-type address, or address in register (2)-(12), of an
one-byte field.

,APFREQUIRED=YES
,APFREQUIRED=NO

An optional parameter that indicates whether or not the input data set or data
set concatenation (specified by data set name, DCB, or DDNAME) must be
APF authorized. This keyword is ignored unless the caller is supervisor state,
system key, system PKM, or APF authorized. In all other cases,
APFREQUIRED=YES is used. The default is APFREQUIRED=YES.

,APFREQUIRED=YES
indicates that the input data set or data set concatenation must be APF
authorized.

,APFREQUIRED=NO
indicates that the input data set or data set concatenation need not be APF
authorized.

,SECMODCHECK=YES
,SECMODCHECK=NO

An optional parameter that indicates whether or not the RACF FACILITY class
check should be done for the module or alias being added. This keyword is
ignored unless the caller is supervisor state, system key, system PKM, or APF
authorized. In all other cases, SECMODCHECK=YES is used. The default is
SECMODCHECK=YES.

,SECMODCHECK=YES
indicates to do the RACF FACILITY class check. For a caller in supervisor
state, system key, system PKM, or APF authorized, the operation is
allowed when the check results either in "success" or "no matching profile
exists." For unauthorized callers, the operation is allowed only when the
check results in "success".

,SECMODCHECK=NO
indicates not to do the RACF FACILITY class check.

,REQUESTOR=requestor
A required input parameter that identifies the requestor. This string is only
used for helping to identify in a dump which requestor caused the particular
module to be added to LPA. Thus it is important that requesting products

CSVDYLPA macro

Chapter 37. CSVDYLPA — Provide dynamic LPA services 347

specify a value that does not match the value specified by another product.
IBM requestors should begin the string with their component prefix.

To code: Specify the RS-type address, or address in register (2)-(12), of a
16-character field.

,MODPROB=CONTINUE
,MODPROB=STOP

An optional parameter that indicates the action to be taken by the system if it
encounters a problem processing an individual module entry (a condition that
will not result in a return code greater than 4). This includes, but is not limited
to, such cases as:
v The system could not locate the specified module or alias;
v The system could not allocate all the required storage; and
v The system could not load the module indicated by the directory entry.

The equate symbols with names beginning with "LpmeaModprob", in macro
CSVLPRET, describe the full set of conditions.

When any such problem, or a situation resulting in a return code of at least 8,
is encountered, no modules are added to LPA. The default is
MODPROB=CONTINUE.

,MODPROB=CONTINUE
indicates to continue processing subsequent members in order to detect
problems associated with those subsequent members. Any entry not
successfully processed will have the LpmeaModprob bit on, with
additional information as indicated by the LpmeaModprobFunction field.

,MODPROB=STOP
indicates to stop processing. The entry not successfully processed will have
the LpmeaModprob bit on, with additional information as indicated by the
LpmeaModprobFunction field.

,ERRORDATA=errordata
An optional output parameter that contains additional diagnostic data for
certain cases. In particular,
v For return code 8 (symbol CsvdylpaRc_InvParm) with reason code

X'xxyy0829' (symbol CsvdylpaRsnBadAlloc), bytes 0-1 are the error reason
code from the DYNALLOC service, bytes 2-3 are the information reason
code from the DYNALLOC service, and bytes 4-7 are the SMS reason code
from the DYNALLOC service (which is only relevant when the error reason
code is of the form X'97xx').

To code: Specify the RS-type address, or address in register (2)-(12), of an
8-character field.

,ADDALIAS=NO
,ADDALIAS=YES

When BYADDR=NO and MODINFOTYPE=MEMBERLIST are specified,
ADDALIAS is an optional parameter that indicates whether to add aliases of
the input names.

The default is ADDALIAS=NO.

,ADDALIAS=NO
Indicates not to add aliases, but only process the input names provided.

,ADDALIAS=YES
Indicates to add aliases of the input names to the list to process.

CSVDYLPA macro

348 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Note: When adding is being done from a z/OS UNIX file, which is
indicated by the PATHNAME keyword, ADDALIAS=YES is supported but
cannot find aliases because this construct does not exist for z/OS UNIX
files.

,OUTAREAPTR=outareaptr
When ADDALIAS=YES, BYADDR=NO and MODINFOTYPE=MEMBERLIST
are specified, OUTAREAPTR is a required output parameter that is to contain
the address of an area obtained by the system. This area contains information
about each member that is processed. These members include the members
and aliases of the members specified by the MODINFO, MODINFOX, and
NUMMOD parameters. The area consists of contiguous entries each mapped
by DSECT LPMEA in the CSVLPRET macro.

The caller must use the FREEMAIN or STORAGE RELEASE macro to free the
area after processing it.

The area is in the key of the caller of CSVDYLPA. The length of the area is
contained in the output field specified by the OUTAREALEN parameter. The
subpool of the area is contained in the output field specified by the
OUTAREASP parameter.

If the return code is 8 (CsvdylpaRc_InvParm) or less, and the output field
specified by the OUTAREANUM parameter is not zero, the area is obtained on
behalf of the caller and must be freed.

If the caller is running with the PSW key when CSVDYLPA was issued, and
specified OUTAREALEN=AREALEN, OUTAREASP=AREASP, and
OUTAREAPTR=AREAPTR, the following example shows how the area can be
freed:

ICM 1,15,AREAPTR
BZ NO_FREE
FREEMAIN RU,A=(1),LV=AREALEN,SP=AREASP

NO_FREE DS 0H

To code: Specify the RS-type address, or address in register (2)-(12), of a
pointer field.

,OUTAREALEN=outarealen
When ADDALIAS=YES, BYADDR=NO, and MODINFOTYPE=MEMBERLIST
are specified, OUTAREALEN is a required output parameter that contains the
length of the output area.

To code: Specify the RS-type address, or address in register (2)-(12), of a
fullword field.

,OUTAREANUM=outareanum
When ADDALIAS=YES, BYADDR=NO, and MODINFOTYPE=MEMBERLIST
are specified, OUTAREANUM is a required output parameter that contains the
number of entries in the output area.

To code: Specify the RS-type address, or address in register (2)-(12), of a
fullword field.

,OUTAREASP=outareasp
When ADDALIAS=YES, BYADDR=NO, and MODINFOTYPE=MEMBERLIST
are specified, OUTAREASP is a required input/output parameter that on input
contains the subpool to use for the output area.

If the value of OUTAREASP is zero or specifies an unauthorized subpool, the
system uses subpool 230.

CSVDYLPA macro

Chapter 37. CSVDYLPA — Provide dynamic LPA services 349

The storage obtained must be in the key of the CSVDYLPA caller. Therefore,
the subpool must be key-specifiable or only in the key of the CSVDYLPA
caller. If the subpool is not in the key of the CSVDYLPA caller, the system uses
subpool 230.

On output, the OUTAREASP parameter contains the subpool that is used.

To code: Specify the RS-type address, or address in register (2)-(12), of an
one-byte field.

,ADDALIAS=NO
,ADDALIAS=YES

When MODINFOTYPE=MEMBERMASK is specified, ADDALIAS is an
optional parameter that indicates whether to add aliases of the input names.

The default is ADDALIAS=NO.

,ADDALIAS=NO
Indicates not to add aliases, but only process the input names provided.

,ADDALIAS=YES
Indicates to add aliases of the input names to the list to process.

,QUERYONLY=NO
,QUERYONLY=YES

When MODINFOTYPE=MEMBERMASK is specified, QUERYONLY is an
optional parameter that indicates whether to do the ADD operation or query
the storage requirements of (E)CSA and (E)SQA.

The default is QUERYONLY=NO.

,QUERYONLY=NO
Indicates to do the ADD operation.

,QUERYONLY=YES
Indicates to do the QUERY operation only.

,LPMEAQ=lpmeaq
When QUERYONLY=YES and MODINFOTYPE=MEMBERMASK are specified,
LPMEAQ is a required input parameter that specifies an area to contain the
output information. The area is mapped by DSECT LPMEAQ in macro
CSVLPRET.

To code: Specify the RS-type address, or address in register (2)-(12), of a
character field.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from
GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from
GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an
optional input parameter on all forms of the macro, including the list form.

CSVDYLPA macro

350 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

When using PLISTVER, specify it on all macro forms used for a request and
with the same value on all of the macro forms. The values are:
v IMPLIED_VERSION, which is the lowest version that allows all parameters

specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.
If you can tolerate the size change, IBM recommends that you always
specify PLISTVER=MAX on the list form of the macro. Specifying MAX
ensures that the list-form parameter list is always long enough to hold all
the parameters you might specify on the execute form, when both are
assembled with the same level of the system. In this way, MAX ensures that
the parameter list does not overwrite nearby storage.

v 0, if you use the currently available parameters.

To code: Specify one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 0

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline
parameter list and generates the macro invocation to transfer control to the
service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with
the execute form of the macro for applications that require reentrant code. The
list form defines an area of storage that the execute form uses to store the
parameters. Only the PLISTVER parameter may be coded with the list form of
the macro.

Use MF=E to specify the execute form of the macro. Use the execute form
together with the list form of the macro for applications that require reentrant
code. The execute form of the macro stores the parameters into the storage area
defined by the list form, and generates the macro invocation to transfer control
to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and
MF=E, this can be an RS-type address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary
alignment of the parameter list. Use a value of 0F to force the parameter
list to a word boundary, or 0D to force the parameter list to a doubleword
boundary. If you do not code attr, the system provides a value of 0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply
defaults for omitted optional parameters.

CSVDYLPA macro

Chapter 37. CSVDYLPA — Provide dynamic LPA services 351

ABEND codes
None.

Return and reason codes
See “Return and reason codes” on page 327 for the return and reason codes.

Example
See “Example 1” on page 334 for an example.

REQUEST=DELETE option of CSVDYLPA
REQUEST=DELETE allows you to remove from LPA one or more modules or
aliases that had previously been added by dynamic LPA services.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Any of the following:

v Supervisor state

v PKM 0-7

v PSW key 0-7

v APF authorized

v In addition to any of the above, if SECMODCHECK=YES
is specified or defaulted to, issuer must be authorized for
UPDATE to the RACF FACILITY class resource
CSVDYLPA.DELETE.modname

Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: The caller must not be locked.
Control parameters: Control parameters must be in the primary address space or,

for AR-mode callers, must be in an address/data space that
is addressable through a public entry on the caller's
dispatchable unit access list (DU-AL).

The user-provided data set name through the DSNAME
parameter has the same requirements and restrictions as the
control parameters.

The user-provided information through the MODINFO
parameter has the same requirements and restrictions as the
control parameters.

Programming requirements
The caller should include the CSVLPRET macro to get equate symbols for the
return and reason codes.

The caller must include the CSVLPRET macro to get a mapping of the
input/output area provided via the MODINFO

CSVDYLPA macro

352 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

The caller may hold the system ENQ resource with QNAME SYSZCSV and
RNAME CSVDYLPA in the exclusive state. While this ENQ resource is held, any
other requests to use the CSVDYLPA services to ADD or DELETE will be delayed.
The ENQ resource must not be held in the shared state when using CSVDYLPA
services. parameter.

Restrictions
The caller must not have functional recovery routines (FRRs) established.

Input register information
Before issuing the CSVDYLPA macro, the caller does not need to place any
information into any general purpose register (GPR) or access register (AR) unless
using it in register notation for a particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0 Reason code if GPR15 is not 0

1 Used as a work register by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
The CSVDYLPA macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede CSVDYLPA.

CSVDYLPA macro

Chapter 37. CSVDYLPA — Provide dynamic LPA services 353

Syntax Description

CSVDYLPA

� One or more blanks must follow CSVDYLPA.

REQUEST=DELETE

,MODINFO=modinfo modinfo: RS-type address or address in register (2) - (12)

,NUMMOD=nummod nummod: RS-type address or address in register (2) - (12)

,TYPE=BYTOKEN Default: TYPE=BYTOKEN

,TYPE=CURRENT

,TYPE=OLDEST

,TYPE=VALUE

,TYPEVALUE=typevalue typevalue: RS-type address or register (2) - (12).

,SECMODCHECK=YES Default: SECMODCHECK=YES

,SECMODCHECK=NO

,RETCODE=retcode retcode: RS-type address or register (2) - (12).

,RSNCODE=rsncode rsncode: RS-type address or register (2) - (12).

,PLISTVER=IMPLIED_VERSION Default: PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0

,MF=S Default: MF=S

,MF=(L,list addr) list addr: RS-type address or register (1) - (12)

,MF=(L,list addr,attr)

,MF=(L,list addr,0D)

,MF=(E,list addr)

,MF=(E,list addr,COMPLETE)

Parameters
The parameters are explained as follows:

CSVDYLPA macro

354 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

name
An optional symbol, starting in column 1, that is the name on the CSVDYLPA
macro invocation. The name must conform to the rules for an ordinary
assembler language symbol.

REQUEST=DELETE
A required parameter. REQUEST=DELETE indicates to remove one or more
modules from LPA. You can only remove a module that has been added to
LPA using dynamic LPA services. You cannot remove a module that was built
into LPA during IPL.

REQUEST=DELETE must be used with extreme caution, as the system does
not keep track of whether or not any code is currently running within the code
that is to be deleted. It is up to the caller to request deletion at an appropriate
point.

If the module was added with BYADDR=YES, the system will not free the
storage for the module. Otherwise, the system will free the storage for the
module when there are no longer any major names or aliases associated with
that storage.

,MODINFO=modinfo
A required input/output parameter that specifies an area that contains
contiguous entries. Each entry contains a module name, a delete token (when
TYPE=BYTOKEN is specified or defaulted), and status flags. Each entry is
mapped by DSECT LPMED in macro CSVLPRET. The number of entries must
match the value provided via the nummod parameter. The flags area in each
entry should be cleared before calling the CSVDYLPA service.

When deleting a module using TYPE=BYTOKEN, you use the token returned
by CSVDYLPA REQUEST=ADD for that module (placing it in the
LpmedDeleteToken field of the LPMED DSECT).

On output, among other possibilities, the status area might indicate:
v The module had not been added using dynamic LPA services;
v You are not authorized to process the particular module.

For a complete list of the possible problem types, refer to the equate symbols
beginning with LpmedModprob in the CSVLPRET data area.

Within each LPMED, the module name should be left-justified padded on the
right with EBCDIC blanks if less than 8 characters long. There should be no
embedded blanks.

To code: Specify the RS-type address, or address in register (2)-(12), of a
character field.

,NUMMOD=nummod
A required input parameter that contains the number of entries in the area
specified by the modinfo parameter. Nummod must be in the range 1-256.

To code: Specify the RS-type address, or address in register (2)-(12), of a
fullword field, or specify a literal decimal value.

,TYPE=BYTOKEN
,TYPE=CURRENT
,TYPE=OLDEST
,TYPE=VALUE

An optional parameter that indicates the type of deletion requested. The
default is TYPE=BYTOKEN.

CSVDYLPA macro

Chapter 37. CSVDYLPA — Provide dynamic LPA services 355

,TYPE=BYTOKEN
indicates that the delete token is provided, and identifies the instance of
the module to delete.

,TYPE=CURRENT
indicates that the most current instance of the module that was added by
dynamic LPA services is to be deleted.

,TYPE=OLDEST
indicates that the oldest instance of the module that was added by
dynamic LPA services, other than the current one, is to be deleted.

,TYPE=VALUE
indicates that the processing depends on the value provided by the
TYPEVALUE parameter.

,TYPEVALUE=typevalue
When TYPE=VALUE, a required input parameter that contains the TYPE value.
You can get equates to use when setting typevalue by using the list form of the
CSVDYLPA macro. For example, an invocation of CSVDYLPA MF=(L,LNAME)
produces equates LNAME_XTYPE_BYTOKEN, LNAME_XTYPE_CURRENT,
and LNAME_XTYPE_OLDEST.

To code: Specify the RS-type address, or address in register (2)-(12), of a byte
field.

,SECMODCHECK=YES
,SECMODCHECK=NO

An optional parameter that indicates whether or not the RACF FACILITY class
check should be done for the module or alias being deleted. This keyword is
ignored unless the caller is supervisor state, system key, system PKM, or APF
authorized. In all other cases, SECMODCHECK=YES is used. The default is
SECMODCHECK=YES.

,SECMODCHECK=YES
indicates to do the RACF FACILITY class check. For a caller in supervisor
state, system key, system PKM, or APF authorized, the operation is
allowed when the check results either in "success" or "no matching profile
exists." For unauthorized callers, the operation is allowed only when the
check results in "success".

,SECMODCHECK=NO
indicates not to do the RACF FACILITY class check.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from
GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from
GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2)-(12).

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an
optional input parameter on all forms of the macro, including the list form.

CSVDYLPA macro

356 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

When using PLISTVER, specify it on all macro forms used for a request and
with the same value on all of the macro forms. The values are:
v IMPLIED_VERSION, which is the lowest version that allows all parameters

specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.
If you can tolerate the size change, IBM recommends that you always
specify PLISTVER=MAX on the list form of the macro. Specifying MAX
ensures that the list-form parameter list is always long enough to hold all
the parameters you might specify on the execute form, when both are
assembled with the same level of the system. In this way, MAX ensures that
the parameter list does not overwrite nearby storage.

v 0, if you use the currently available parameters.

To code: Specify one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 0

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline
parameter list and generates the macro invocation to transfer control to the
service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with
the execute form of the macro for applications that require reentrant code. The
list form defines an area of storage that the execute form uses to store the
parameters. Only the PLISTVER parameter may be coded with the list form of
the macro.

Use MF=E to specify the execute form of the macro. Use the execute form
together with the list form of the macro for applications that require reentrant
code. The execute form of the macro stores the parameters into the storage area
defined by the list form, and generates the macro invocation to transfer control
to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and
MF=E, this can be an RS-type address or an address in register (1)-(12).

,attr
An optional 1- to 60-character input string that you use to force boundary
alignment of the parameter list. Use a value of 0F to force the parameter
list to a word boundary, or 0D to force the parameter list to a doubleword
boundary. If you do not code attr, the system provides a value of 0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply
defaults for omitted optional parameters.

CSVDYLPA macro

Chapter 37. CSVDYLPA — Provide dynamic LPA services 357

ABEND codes
None.

Return and reason codes
See “Return and reason codes” on page 327 for the return and reason codes.

Example
See “Example 1” on page 334 for an example.

REQUEST=DEFLPAWAIT option of CSVDYLPA
REQUEST=DEFLPAWAIT allows you to request that your work unit wait until
processing of LPA statements in the IPL-time PROGxx parmlib members (deferred
LPA) complete.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Any of the following:

v Supervisor state

v PKM 0-7

v PSW key 0-7

v APF authorized
Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: The caller must not be locked.
Control parameters: Control parameters must be in the primary address space or,

for AR-mode callers, must be in an address space or data
space that is addressable through a public entry on the
caller's dispatchable unit access list (DU-AL).

Programming requirements

Restrictions
The caller must not have functional recovery routines (FRRs) established.

Input register information
Before issuing the CSVDYLPA macro, the caller does not need to place any
information into any general purpose register (GPR) or access register (AR) unless
using it in register notation for a particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0 Reason code if GPR15 is not 0

CSVDYLPA macro

358 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

1 Used as a work register by the system

2–13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
The CSVDYLPA macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede CSVDYLPA.

CSVDYLPA

� One or more blanks must follow CSVDYLPA.

REQUEST=DEFLPAWAIT

,RETCODE=retcode retcode: RS-type address or address in register (2) - (12) or (15), (GPR15)

,RSNCODE=rsncode rsncode: RS-type address or address in register (0) or (2) - (12), (00), (GPR)

,PLISTVER=IMPLIED_VERSION Default: PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0

,MF=S Default: MF=S

CSVDYLPA macro

Chapter 37. CSVDYLPA — Provide dynamic LPA services 359

Syntax Description

,MF=(L,list addr) list addr: RS-type address or register (1) - (12)

,MF=(L,list addr,attr)

,MF=(L,list addr,0D)

,MF=(E,list addr)

,MF=(E,list addr,COMPLETE)

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the CSVDYLPA
macro invocation. The name must conform to the rules for an ordinary
assembler language symbol.

REQUEST=DEFLPAWAIT
A required parameter. REQUEST=DEFLPAWAIT indicates to wait for
processing of LPA statements in the IPL-time PROGxx parmlib members
(deferred LPA) to complete. If deferred LPA is complete, the system returns
control immediately. You can use the QUERYDEFLPA request to query whether
this call is required.

,RETCODE=retcode
An optional output parameter that stores the return code copied from GPR 15.
If you specify 15, GPR15, REG15, or R15 (within or without parentheses), the
value remains in GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2) - (12) or
(15), (GPR15), (REG15), or (R15).

,RSNCODE=rsncode
An optional output parameter that stores the return code copied from GPR 0.
If you specify 0, 00, GPR0, GPR00, REG0, REG00, or R0 (within or without
parentheses), the value remains in GPR 0.

To code: Specify the RS-type address of a fullword field, or register (0) or (2) -
(12), (00), (GPR0), (GPR00), (REG0), (REG00), or (R0).

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an
optional input parameter on all forms of the macro, including the list form.
When using PLISTVER, specify it on all macro forms used for a request and
with the same value on all of the macro forms. The values are:
v IMPLIED_VERSION, is the lowest version that allows all parameters

specified on the request to be processed. If the PLISTVER parameter is
omitted, IMPLIED_VERSION is the default.

v MAX, allows the parameter list to be the largest size possible. This size
might increase in future releases and affect the amount of storage that your
program needs.
You can specify PLISTVER=MAX on the list form of the macro to ensure
that the list form parameter list can hold all the parameters you might

CSVDYLPA macro

360 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

specify on the execute form, when both are assembled with the same level of
the system. Specifying PLISTVER=MAX ensures that the parameter list does
not overwrite nearby storage.

v 0, if you use the available parameters.

To code: Specify one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 0

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline
parameter list and generates the macro invocation to transfer control to the
service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with
the execute form of the macro for applications that require reentrant code. The
list form defines an area of storage that the execute form uses to store the
parameters. Only the PLISTVER parameter can be coded with the list form of
the macro.

Use MF=E to specify the execute form of the macro. Use the execute form
together with the list form of the macro for applications that require reentrant
code. The execute form of the macro stores the parameters into the storage area
defined by the list form, and generates the macro invocation to transfer control
to the service.

,list addr
The name of a storage area to contain the parameters. For MF=S and
MF=E, this can be an RS-type address or an address in register (1) - (12).

,attr
An optional 1 - 60 character input string that you can use to force
boundary alignment of the parameter list. Use a value of 0F to force the
parameter list to a word boundary, or 0D to force the parameter list to a
doubleword boundary. If you do not code attr, the system provides a value
of 0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply
defaults for omitted optional parameters.

ABEND codes
None.

Return codes
See “Return and reason codes” on page 327 for the return and reason codes.

Examples
See “Example 2” on page 335 for an example.

CSVDYLPA macro

Chapter 37. CSVDYLPA — Provide dynamic LPA services 361

REQUEST=QUERYDYN option of CSVDYLPA
REQUEST=QUERYDYN allows you to query whether the ADD and DELETE
functions are available.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state and PSW key 8-15
Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: The caller must not be locked.
Control parameters: Control parameters must be in the primary address space or,

for AR-mode callers, must be in an address/data space that
is addressable through a public entry on the caller's
dispatchable unit access list (DU-AL).

Programming requirements
The caller must include the CSVLPRET macro to get equates for the information
returned via the DYNFUNC parameter.

Restrictions
The caller must not have functional recovery routines (FRRs) established.

Input register information
Before issuing the CSVDYLPA macro, the caller does not need to place any
information into any general purpose register (GPR) or access register (AR) unless
using it in register notation for a particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

CSVDYLPA macro

362 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
The CSVDYLPA macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede CSVDYLPA.

CSVDYLPA

� One or more blanks must follow CSVDYLPA.

REQUEST=QUERYDYN

,DYNFUNC=dynfunc dynfunc: RS-type address or address in register (2) - (12)

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the CSVDYLPA
macro invocation. The name must conform to the rules for an ordinary
assembler language symbol.

REQUEST=QUERYDYN
A required parameter. REQUEST=QUERYDYN indicates to return an indication
of whether modules can be added to or deleted from LPA.

,DYNFUNC=dynfunc
A required output parameter that will contain the availability of the ADD and
DELETE functions. If 0 (symbol CsvdylpaDynNotAvailable in macro
CSVLPRET) the functions are not available. If 1 (symbol
CsvdylpaDynAvailable) the functions are available.

To code: Specify the RS-type address, or address in register (2)-(12), of an
one-byte field.

ABEND codes
None.

CSVDYLPA macro

Chapter 37. CSVDYLPA — Provide dynamic LPA services 363

Return codes
None.

Examples
None.

REQUEST=QUERYDEFLPA option of CSVDYLPA
REQUEST=DEFLPAWAIT allows you to query whether processing of LPA
statements in the IPL-time PROGxx parmlib members (deferred LPA) is complete.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state and PSW key 8 - 15
Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: The caller must not be locked.
Control parameters: Control parameters must be in the primary address space or,

for AR-mode callers, must be in an address space or data
space that is addressable through a public entry on the
caller's dispatchable unit access list (DU-AL).

Programming requirements
The caller must include the CSVLPRET macro to get equates for the information
returned by the DEFLPASTATE parameter.

Restrictions
The caller must not have functional recovery routines (FRRs) established.

Input register information
Before issuing the CSVDYLPA macro, the caller does not need to place any
information into any general purpose register (GPR) or access register (AR) unless
using it in register notation for a particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0–1 Used as work registers by the system

2–13 Unchanged

14–15 Used as work registers by the system

When control returns to the caller, the ARs contain:

Register
Contents

CSVDYLPA macro

364 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
The CSVDYLPA macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede CSVDYLPA.

CSVDYLPA

� One or more blanks must follow CSVDYLPA.

REQUEST=QUERYDEFLPA

,DEFLPASTATE=deflpastate deflpastate: RS-type address or address in register (2) - (12)

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the CSVDYLPA
macro invocation. The name must conform to the rules for an ordinary
assembler language symbol.

REQUEST=QUERYDEFLPA
A required parameter. REQUEST=QUERYDEFLPA indicates whether
processing of LPA statements in the IPL-time PROGxx parmlib members
(deferred LPA) is complete.

,DEFLPASTATE=deflpastate
A required output parameter that is to contain the deferred LPA completion
state.

If the value of DEFLPASTATE is 0 (symbol CsvdylpaDefLPA_INCOMPLETE in
macro CSVLPRET), processing is not complete. You can issue CSVDYLPA

CSVDYLPA macro

Chapter 37. CSVDYLPA — Provide dynamic LPA services 365

REQUEST=DEFLPAWAIT to wait for completion. If you are not authorized to
issue CSVDYLPA REQUEST=DEFLPAWAIT, you can use the CSVDLPAW
routine.

If the value of DEFLPASTATE is 1 (symbol CsvdylpaDefLPA_COMPLETE in
macro CSVLPRET), processing is complete. In this case, you do not have to
issue CSVDYLPA REQUEST=DEFLPAWAIT or use the CSVDLPAW routine.

From a program, you can issue LINK EP=CSVDLPAW to wait for completion.
You can also have a JCL step with EXEC PGM=CSVDLPAW prior to the step
with your program, and then when your program gets control, deferred LPA
processing will be complete.

To code: Specify the RS-type address, or register (2) - (12) of a one-byte field.

ABEND codes
None.

Return codes
None.

Examples
See “Example 2” on page 335 for an example.

CSVDYLPA macro

366 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Chapter 38. CSVDYNEX — Provide dynamic exits services

Description
The CSVDYNEX macro defines exits. It also controls their use and associates exit
routines with those exits. You might be familiar with system installation exits that
offer an installation an opportunity to modify the system's own processing.
CSVDYNEX allows you to offer exits within your own programs. Additionally, the
CSVDYNEX macro allows you to associate exit routines with system exits, such as
the SMF and allocation exits.

As used here, an exit point is a location in a program's processing where the
system transfers control to (or calls) another piece of code, known as an exit
routine. An exit routine can give information to the caller that allows the caller to
do additional processing. An exit is simply a set of information that includes:
v Criteria for exit routines that are to get control at the exit point
v Directions for how the system is to transfer control to an exit routine, process

the exit routine, and handle recovery.

There are ten CSVDYNEX requests, issued through the REQUEST parameter on
CSVDYNEX; for example, you issue the LIST request by specifying CSVDYNEX
REQUEST=LIST with appropriate parameters.

Through the DEFINE request, you define an exit; that is, you give the exit a unique
name and specify its characteristics. Through the ADD request, you add or
associate an exit routine with an exit. More than one exit routine can be associated
with an exit. The location of the exit point (the point at which control passes to the
exit routine) is determined by the placement of the CALL request. The CALL
request names the exit; the system finds the set of information known as the exit,
and finds the exit routine or routines that are associated with the exit. The system
then passes control to those exit routines; it processes them, handles any recovery,
and returns control to the caller. It performs these actions according to information
you provide on the DEFINE, ADD, and CALL requests.

The MODIFY and ATTRIB requests make certain changes to the exit routines and
the exits.

The DELETE request deletes or disassociates an exit routine from an exit. The
UNDEFINE request removes the exit from the system.

The LIST and QUERY requests return information about exits and exit routines.

The RECOVER request provides recovery for an exit routine that is called with
FASTPATH processing in effect.

For ease of use, the standard form of the macro is shown for each CSVDYNEX
request. The ten requests are described on the following pages, with the standard
form syntax diagrams, descriptions of the parameters, environment, programming
requirements, and restrictions:
v Defining an exit, in “Define an exit” on page 369
v Adding an exit routine to an exit, in “Add an exit routine to an exit” on page

376

© Copyright IBM Corp. 1988, 2013 367

v Changing the state of an exit routine, in “Change the state of an exit routine” on
page 383

v Deleting an exit routine from an exit, in “Delete an exit routine from an exit” on
page 386

v Removing the definition of an exit, in “Remove the definition of an exit” on
page 389

v Changing the attributes of an exit, in “Change the attributes of an exit” on page
391

v Listing information about one or more exits, in “List information about one or
more exits” on page 395

v Calling one or more exit routines at an exit, in “Call one or more exit routines at
an exit” on page 398

v Providing recovery for an exit routine that has abnormally ended, in “Provide
recovery for an exit routine that abnormally ended” on page 404

v Determining whether an exit routine exists for an exit, in “Determine whether an
exit routine exists for an exit” on page 407.

Following the descriptions of the standard forms of all requests are:
v The return and reason codes, in “Return and reason codes” on page 415
v Examples of using CSVDYNEX, in “Examples of the CSVDYNEX macro” on

page 424
v The list form, in “CSVDYNEX - List form” on page 434
v The modify form, in “CSVDYNEX - Modify form” on page 434
v The execute form, in “CSVDYNEX - Execute form” on page 436.

Input register information for CSVDYNEX
With the exception of the CSVDYNEX QUERY request and the CSVDYNEX CALL
request with FASTPATH=YES, the caller does not have to place any information
into any general purpose register (GPR) or access register (AR) unless using it in
register notation for a particular parameter, or using it as a base register.

Before issuing the CSVDYNEX QUERY request or the CSVDYNEX CALL request
with FASTPATH=YES, the caller must ensure that the following GPR contains the
specified information:

Register
Contents

13 Address of a standard 72-byte save area in the primary address space. You
can use this same address for GPR 13 in the register update block (RUB).
For more information about the RUB, see the description of the RUB
parameter on the CSVDYNEX CALL request.

Output register information for CSVDYNEX
When control returns to the caller, the GPRs contain:

Register
Contents

0 Reason code, if GPR 15 is not zero

1 Used as a work register by the system

2-13 Unchanged

CSVDYNEX macro

368 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

14 Used as a work register by the system

15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as a work register by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
using a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before calling the service, and restore them
after the system returns control.

Performance implications
None.

Define an exit
The CSVDYNEX DEFINE request provides the set of information known as the
exit. To define an exit, you:
v Give the exit a name (EXITNAME parameter)
v Establish the persistence of the exit (PERSIST parameter)
v Set defaults for how the system is to handle the abnormal ending of an exit

routine (ABENDNUM and ABENDCONSEC parameters)
v Establish how the system processes exit routines (FASTPATH, KEY, and

ANYKEY parameters)
v Specify how the system is to handle the return codes from exit routines

(RCFROM, RCCOMPARE, RCTO, RCCVAL, and CALLSTOPRC parameters)
v Establish some requirements for the exit routine or routines that the system

invokes at the exit:
– Addressing mode (AMODE parameter)
– Reentrancy (REENTRANT parameter)

The CSVDYNEX UNDEFINE request removes the definition that is established by
the DEFINE request.

Note: You define an exit implicitly when you:
v Add exit routines to an exit before the exit has been defined
v Set attributes for an exit using the ATTRIB parameter before the exit has been

defined.

CSVDYNEX macro

Chapter 38. CSVDYNEX — Provide dynamic exits services 369

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: One of the following:

v Supervisor state

v PSW key 0-7

v PKM allowing key 0-7

v APF-authorized

v SAF UPDATE authority to FACILITY class entity
CSVDYNEX.exitname.DEFINE.

Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 24- or 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks may be held.
Control parameters: Control parameters must be in the primary address space or,

for AR-mode callers, must be in an address space or data
space that is addressable through a public entry on the
caller's dispatchable unit access list (DU-AL).

Programming requirements
Include the CSVEXRET mapping macro to define symbolic names and values for
return and reason codes returned by CSVDYNEX. (See z/OS MVS Data Areas in
z/OS Internet Library at http://www.ibm.com/systems/z/os/zos/bkserv/.)

Restrictions
The caller must not have functional recovery routines (FRRs) established.

Input register information
See “Input register information for CSVDYNEX” on page 368 for input register
information for the CSVDYNEX DEFINE request.

Output register information
See “Output register information for CSVDYNEX” on page 368 for output register
information for the CSVDYNEX DEFINE request.

Syntax
The standard form of the DEFINE request on the CSVDYNEX macro is written as
follows:

Syntax Description

name name: symbol. Begin name in column
1.

� One or more blanks must precede
CSVDYNEX.

CSVDYNEX macro

370 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

http://www.ibm.com/systems/z/os/zos/bkserv/

Syntax Description

CSVDYNEX

� One or more blanks must follow
CSVDYNEX.

REQUEST=DEFINE

,EXITNAME=exitname exitname: RS-type address or address
in register (2) - (12).

,AMODE=31 Default: AMODE=31

,AMODE=24

,AMODE=DEFINED

,REENTRANT=OPT Default: REENTRANT=OPT

,REENTRANT=REQ

,PERSIST=TASK Default: PERSIST=TASK

,PERSIST=ADDRESSSPACE

,PERSIST=IPL

,ABENDNUM=abendnum abendnum: RS-type address or address
in register (2) - (12).

,ABENDCONSEC=NO Default: ABENDCONSEC=NO

,ABENDCONSEC=YES

,FASTPATH=NO,KEY=ZERO

Default: FASTPATH=NO,KEY=ZERO

,FASTPATH=NO,KEY=key key: RS-type address or address in
register (2) - (12).

,FASTPATH=NO

,FASTPATH=YES,KEY=key

,FASTPATH=YES,ANYKEY=NO,KEY=key

,FASTPATH=YES,ANYKEY=YES

,LOADAPF=NO Default: LOADAPF=NO

,LOADAPF=Yes

,RCFROM=rcfrom,RCCOMPARE=option,

RCTO=rcto

,RCFROM=rcfrom,RCCOMPARE=VALUE,

CSVDYNEX macro

Chapter 38. CSVDYNEX — Provide dynamic exits services 371

Syntax Description

RCCVAL=rccval,RCTO=rcto

rcfrom: RS-type address or address in
register (2) - (12).

option: See the RCCOMPARE
parameter description.

rcto: RS-type address or address in
register (2) - (12).

rccval: RS-type address or address in
register (2) - (12).

,CALLSTOPRC=callstoprc callstoprc: RS-type address or address
in register (2) - (12).

EXITTYPE=UNSPECIFIED Default: EXITTYPE=UNSPECIFIED

EXITTYPE=INSTALLATION

EXITTYPE=PROGRAM

,RETCODE=retcode retcode: RS-type address or register (2)
- (12).

,RSNCODE=rsncode rsncode: RS-type address or register (2)
- (12).

,MF=S

Parameters
The parameters are explained as follows:

REQUEST=DEFINE
Defines an exit.

,EXITNAME=exitname
Specifies a 16-byte field (or a register containing the address of a 16-byte field)
containing the 16-character name of an exit. Names of fewer than 16 characters
must be left-justified in the 16-character field and padded with blanks.

Names must be unique within the system. To avoid the names the system uses,
begin the name with the letters J through Z (but never with the character
string “SYS”). Other rules are:
v You can use alphanumerics, underscores, and periods.
v Do not use imbedded blanks.
v Do not begin with X'00' or a blank.

IBM recommends that you specify exit names using upper case; the EXIT
statement of the PROGxx parmlib member and the commands (SETPROG, SET
PROG=, and DISPLAY PROG) used to control dynamic exits require upper
case.

,AMODE=31

CSVDYNEX macro

372 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

,AMODE=24
,AMODE=DEFINED

Specifies the addressing mode of exit routines that the exit point is to invoke.
AMODE=31, the default, specifies that the exit routines must have an AMODE
of 31-bit. AMODE=24 specifies that the AMODE must be 24-bit.
AMODE=DEFINED indicates that the exit routine takes control in the AMODE
that was defined for the exit routine's load module at the time of the linkedit
(for example, by a LOAD action).

Note that if you use AMODE=24 or AMODE=DEFINED, you cannot specify
GPR 2 in the register update block (RUB) on the CSVDYNEX CALL request.

,REENTRANT=OPT
,REENTRANT=REQ

Specifies whether exit routines to be added to the exit can optionally be
reentrant or are required to be reentrant. The default is REENTRANT=OPT. If
you specify REENTRANT=REQ, the CSVDYNEX service verifies that exit
routines added with the CSVDYNEX ADD request have been linkedited with
the RENT attribute.

If you specify REENTRANT=OPT, you cannot specify ANYKEY=YES.

,PERSIST=TASK
,PERSIST=ADDRESSSPACE
,PERSIST=IPL

Specifies the persistence of the exit in relationship to the issuer of the
CSVDYNEX DEFINE request that defines the exit. PERSIST indicates the
following:
v PERSIST=TASK, the default, indicates that the exit exists only as long as the

task of the issuer.
v PERSIST=ADDRESSSPACE indicates that the exit exists only as long as the

address space of the issuer.
v PERSIST=IPL indicates that the exit exists for the duration of the IPL.

,ABENDNUM=abendnum
ABENDNUM specifies a fullword area (or a register containing the address of
a fullword area) that contains the number of abnormal endings an exit routine
can have before it becomes inactive. An inactive exit routine is one that is
associated with an exit, but will not be called. For example, if you specify the
value n, the exit routine becomes inactive when the nth abnormal ending
occurs. The value you specify for ABENDNUM is interpreted as a signed,
31-bit number.

If you omit ABENDNUM or specify a value of 0 or 1, the exit routine becomes
inactive the first time it abnormally ends. Use the ABENDCONSEC parameter
to establish whether n means consecutive abnormal endings or cumulative
abnormal endings.

The ADDABENDNUM parameter on the CSVDYNEX ADD request overrides
ABENDNUM.

Use the CSVDYNEX MODIFY request to change the state of the exit routine
from inactive to active.

,ABENDCONSEC=NO
,ABENDCONSEC=YES

Specifies whether the number of total abnormal endings you specify on
ABENDNUM is to be cumulative or consecutive.

CSVDYNEX macro

Chapter 38. CSVDYNEX — Provide dynamic exits services 373

v ABENDCONSEC=NO means that after the specified number of accumulated
abnormal endings, the exit routine becomes inactive.

v ABENDCONSEC=YES means that after the specified number of consecutive
abnormal endings, the exit routine becomes inactive. An exit that is defined
as FASTPATH=YES and ABENDCONSEC=YES cannot be defined with either
PSW key 8 to 15, or with ANYKEY=YES.

,FASTPATH=NO,KEY=ZERO
,FASTPATH=NO,KEY=key
,FASTPATH=NO
,FASTPATH=YES,KEY=key
,FASTPATH=YES,ANYKEY=NO,KEY=key
,FASTPATH=YES,ANYKEY=YES

Specifies how the system is to process the CALL request. On the CSVDYNEX
DEFINE request, the FASTPATH keyword enables the FASTPATH function. On
the CSVDYNEX CALL request, it specifies whether or not to use the function.
With FASTPATH=YES, processing is faster because:
v The system does not provide normal recovery for the exit routine and does

no SAF authorization checking.
v The exit routine runs in the PSW key and with the authorization (problem

state or supervisor state) of the caller.
v In its processing of the CALL request, the system uses a work area obtained

by the issuer of the CALL or RECOVER request, instead of obtaining and
releasing one. (See the WORKAREA parameter on the CSVDYNEX CALL
and RECOVER requests.)

FASTPATH=NO, the default, specifies that FASTPATH processing does not
apply to the exit. If you specify FASTPATH=NO on the DEFINE request, all
subsequent CALL requests must also specify FASTPATH=NO.

The KEY=ZERO or KEY=key parameter specifies the storage key in which the
system is to place the exit routine. KEY=key specifies a fullword (or a register
containing the address of a fullword). The KEY parameter with
FASTPATH=NO applies to non-reentrant exit routines only. The system places
reentrant routines in storage key zero.

The KEY parameter is required with FASTPATH=YES, unless ANYKEY=YES is
specified. The value must be 0 through 15. On a CSVDYNEX CALL request
that specifies FASTPATH=YES and the KEY parameter, the PSW key of the
caller must be the same as the value specified on the KEY parameter or must
be 0.

ANYKEY=YES specifies that the exit routine may be called in any PSW key.
The following restrictions apply when using ANYKEY=YES:
v You must specify REENTRANT=REQ
v You cannot specify ABENDCONSEC=YES
v You must specify FORCE=YES to delete an exit routine associated with an

exit that has been defined with ANYKEY=YES.

LOADAPF=NO
LOADAPF=YES

This optional keyword specifies if every routine for the exit needs to come
from an APF-authorized library when the routine is not found in LPA or
IEANUC01.

Note: This keyword is only for users who issue CSVDYNEX
REQUEST=DEFINE or CSVDYNEX REQUEST=ADD with either supervisor

CSVDYNEX macro

374 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

state and system key, or with APF-authorization. For other callers, the routine
must come from an APF-authorized library.
v LOADAPF=NO means that the module can come from a

non-APF-authorized library if the module is not found in LPA or
IEANUC01.

v LOADAPF=YES means that the module must come from an APF-authorized
library if the module is not found in LPA or IEANUC01.

The default is LOADAPF=NO.

,RCFROM=rcfrom,RCCOMPARE=option,RCTO=rcto
,RCFROM=rcfrom,RCCOMPARE=VALUE,RCCVAL=rccval,RCTO=rcto

Specifies how the system is to process return codes from the exit routines that
are associated with the exit.

RCFROM=rcfrom specifies a fullword (or a register containing the address of a
fullword) that contains the value known as the RCFROM return code. The
system compares the return code from each module called for this exit to the
RCFROM return code, using the comparison designated by RCCOMPARE.

RCCOMPARE=option indicates the type of comparison the system is to make.
The options on RCCOMPARE are:
v EQ - equal
v NE - not equal
v GT - greater than
v LT - less than
v GE - greater than or equal to
v LE - less than or equal to
v VALUE - the type of comparison is specified on the RCCVAL parameter.

RCTO=rcto specifies a fullword (or a register containing the address of a
fullword) that contains a value that the system will substitute for the actual
return code if the comparison is favorable.

RCCVAL specifies a one-byte field (or a register containing the address of a
one-byte field) that contains the value that indicates the type of comparison the
system is to do when comparing the actual return code with the value
provided in RCFROM. The constants produced by the list form of the macro
can be used. For example, CSVDYNEX MF=(L,MYLIST) would produce such
equate symbols as MYLIST_XRCCOMPARE_EQ and
MYLIST_XRCCOMPARE_GT.

RCCVAL applies only to RCCOMPARE=VALUE, and is required with that
parameter.

The default for the RCFROM parameter and related parameters is that the
system does no matching or substituting of the return code.

,CALLSTOPRC=callstoprc
Specifies a fullword (or a register containing the address of a fullword) that
contains a value that the system is to compare with an exit routine's return
code. If the exit routine's return code matches the value you specify on
CALLSTOPRC, no more exit routines will be called at that exit for the life of
this CALL request.

The default for CALLSTOPRC is that the system does no return code
comparison.

,EXITTYPE=UNSPECIFIED

CSVDYNEX macro

Chapter 38. CSVDYNEX — Provide dynamic exits services 375

,EXITTYPE=INSTALLATION
,EXITTYPE=PROGRAM

When REQUEST=DEFINE is specified, EXITTYPE is an optional parameter that
indicates the type of exit.

No enforcement is made with respect to the specified exit type, but the
DISPLAY PROG,EXIT command allows you to request to limit the display to
exits of a particular type.

The default is EXITTYPE=UNSPECIFIED

EXITTYPE=UNSPECIFIED indicates that the exit type is unspecified.

EXITTYPE=INSTALLATION indicates that this is an installation exit to be
managed in part by the SETPROG or PROGxx parmlib member.

EXITTYPE=PROGRAM indicates that this is a program exit to be managed by
the CSVDYNEX macro.

,RETCODE=retcode
Specifies a fullword (or a register) where the system is to store the CSVDYNEX
return code. The return code is also in GPR 15.

,RSNCODE=rsncode
Specifies a fullword (or a register) where the system is to store the CSVDYNEX
reason code. The reason code is also in GPR 0.

,MF=S
Specifies the standard form of the CSVDYNEX macro.

ABEND codes
None.

Return and reason codes
See “Return and reason codes” on page 415 for the return and reason codes for the
CSVDYNEX DEFINE request.

Example
For an example of how to define an exit, see “Example 1” on page 424.

Add an exit routine to an exit
Adding an exit routine to an exit means associating an exit routine with an exit
that has already been defined or, in some cases, has not yet been defined. On the
CSVDYNEX ADD request, you:
v Name the exit that the exit routine is to be associated with (EXITNAME

parameter)
v Tell the system where to find the exit routine (MODNAME, DSNAME, and

MODADDR parameters)
v Request that the system send a message to the operator if the system encounters

certain error conditions when processing the exit routine (MESSAGE parameter)
v Define the initial state of the exit routine as active or inactive (STATE parameter)
v Specify a condition under which the exit routine is to get control: a particular job

must be running (JOBNAME parameter), or a particular address space must be
the primary address space (STOKEN parameter)

v Specify how many times an exit routine can abnormally end before it becomes
inactive (ADDABENDNUM and ABENDCONSEC parameters)

CSVDYNEX macro

376 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

v Control the order in which the new exit routine is called (POS parameter)
v Associate an exit routine with an existing system exit that is defined to the

dynamic exits facility (see z/OS MVS Installation Exits for a list of the dynamic
exits).

The CSVDYNEX DELETE request deletes an exit routine that was added to an exit
by the CSVDYNEX ADD request.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: One of the following:

v Supervisor state

v PSW key 0-7

v PKM allowing key 0-7

v APF-authorized

v SAF UPDATE authority to FACILITY class entity
CSVDYNEX.exitname.modname.

Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 24- or 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks may be held.
Control parameters: Control parameters and the area that contains the data set

name (specified on DSNAME) must be in the primary
address space or, for AR-mode callers, must be in an
address space or data space that is addressable through a
public entry on the caller's dispatchable unit access list
(DU-AL).

Programming requirements
Include the CSVEXRET mapping macro to define symbolic names and values for
return and reason codes returned by CSVDYNEX. (See z/OS MVS Data Areas in
z/OS Internet Library at http://www.ibm.com/systems/z/os/zos/bkserv/.)

Restrictions
The caller must not have functional recovery routines (FRRs) established.

Input register information
See “Input register information for CSVDYNEX” on page 368 for input register
information for the CSVDYNEX ADD request.

Output register information
See “Output register information for CSVDYNEX” on page 368 for output register
information for the CSVDYNEX ADD request.

Syntax
The standard form of the ADD request on the CSVDYNEX macro is written as
follows:

CSVDYNEX macro

Chapter 38. CSVDYNEX — Provide dynamic exits services 377

http://www.ibm.com/systems/z/os/zos/bkserv/

Syntax Description

name name: symbol. Begin name in column
1.

� One or more blanks must precede
CSVDYNEX.

CSVDYNEX

� One or more blanks must follow
CSVDYNEX.

REQUEST=ADD

,EXITNAME=exitname exitname: RS-type address or register
(2) - (12).

,MODNAME=modname modname: RS-type address or register
(2) - (12).

,STATE=ACTIVE Default: STATE=ACTIVE

,STATE=INACTIVE

,MESSAGE=NO Default: MESSAGE=NO

,MESSAGE=ERROR

,MESSAGE=FOUNDBUTERROR

,DSNAME=dsname dsname: RS-type address or register (2)
- (12).

,MODADDR=modaddr modaddr: RS-type address or register
(2) - (12).

,JOBNAME=ANY Default: JOBNAME=ANY

,JOBNAME=jobname jobname: RS-type address or register
(2) - (12).

,STOKEN=stoken stoken: RS-type address or register (2)
- (12).

,ADDABENDNUM=UNCHANGED

,ADDABENDNUM=addabendnum

Default:
ADDABENDNUM=UNCHANGED

addabendnum: RS-type address or
register (2) - (12).

CSVDYNEX macro

378 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Syntax Description

,ABENDCONSEC=NO Default: ABENDCONSEC=NO

,ABENDCONSEC=YES

,POS=SYSTEM Default: POS=SYSTEM

,POS=FIRST

,POS=LAST

PARAM=param param: RS-type address or register (2)
- (12).

PARAM=NO_PARAM Default: PARAM=NO_PARAM

,RETCODE=retcode retcode: RS-type address or register (2)
- (12).

,RSNCODE=rsncode rsncode: RS-type address or register (2)
- (12).

,MF=S

Parameters
The parameters are explained as follows:

REQUEST=ADD
Adds an exit routine to an exit.

,EXITNAME=exitname
Specifies a 16-byte field (or a register containing the address of a 16-byte field)
containing the 16-character name of an exit that has been defined to the
dynamic exits facility. If the name has fewer than 16 characters, left-justify the
name and pad the field with blanks.

,MODNAME=modname
Specifies an 8-byte field (or a register containing the address of an 8-byte field)
containing the name of an exit routine to be added to the exit. The first
character must not be X'00' or blank. (If you specify MODADDR, modname is
the name of the exit routine. If you do not specify MODADDR, modname
designates a load module or alias, whose entry point is the starting address of
the exit routine.) Names of fewer than 8 characters must be left-justified in the
8-byte field and padded with blanks.

,STATE=ACTIVE
,STATE=INACTIVE

Specifies the state you want the exit routine to have. An active exit routine is
associated with an exit and will be called if the exit is invoked. An inactive exit
routine is associated with an exit, but will not be called. To change the state of
an exit routine, use the CSVDYNEX MODIFY request. The default is
STATE=ACTIVE.

CSVDYNEX macro

Chapter 38. CSVDYNEX — Provide dynamic exits services 379

,MESSAGE=NO
,MESSAGE=ERROR
,MESSAGE=FOUNDBUTERROR

Specifies whether the system is to send message CSV431I to the operator if the
system encounters certain errors when processing the exit routine.
v MESSAGE=NO, the default, requests that the system send the return and

reason codes only.
v MESSAGE=ERROR requests that the system send the message if it

encounters any of the following:
– The exit requires reentrancy; the exit routine is not reentrant.
– The exit requires AMODE=31, but the exit routine is AMODE=24; or the

exit requires AMODE=24, but the exit routine is AMODE=31.
– The exit allows only one exit routine; one routine is already associated

with this exit.
– The exit routine could not be located.
– A CSVDYNEX ADD request specified ABENDCONSEC=YES, but the exit

is defined with FASTPATH=YES and KEY=key, where KEY is in the range
8 to 15, or with FASTPATH=YES and ANYKEY=YES.

– A CSVDYNEX ADD request specified that the exit routine should be
loaded from a particular data set, but that data set is not APF-authorized,
and the caller is in problem state, with PSW key 8-15, and is not
APF-authorized.

v MESSAGE=FOUNDBUTERROR requests that the system send message
CSV431I if it encounters any of the circumstances covered by
MESSAGE=ERROR, except the following circumstance:
– The exit routine could not be located.

,DSNAME=dsname
,MODADDR=modaddr

Tells the system how to locate the exit routine to be added. If you specify
neither DSNAME nor MODADDR, the system will try to locate the module
using LPA, the LNKLST concatenation, and the nucleus.

DSNAME specifies a field (or a register containing the address of a field)
containing the 44-character name of a data set or library from which the
module is to be obtained. Some rules for specifying DSNAME are:
v You can allocate the data set as a PDS or a PDSE.
v If the library name contains fewer than 44 characters, left-justify the name in

a 44-character field and pad it with blanks.
v If you specify a data set name that begins with a blank or X'00', the system

responds as if you had specified no data set.
v Specify DSNAME only if dynamic allocations are enabled within the caller's

primary address space.
v If the caller is in problem state with PSW key 8 to 15, and is not

APF-authorized, the data set must be APF-authorized. Otherwise, the data
set does not need to be APF-authorized.

v The data set must be cataloged.

If the data set has been migrated, your program will have to wait for the
system to retrieve it.

MODADDR specifies a fullword (or a register containing the address of a
fullword) that contains the address of the exit routine to be added. If the exit

CSVDYNEX macro

380 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

routine is to get control in 31-bit mode, bit 0 should be on; if in 24-bit mode,
bit 0 should be off. The system assumes that the designated exit routine is
reentrant.

MODADDR cannot be used if the caller is in problem state with PSW key 8 to
15 and is not APF-authorized.

If you specify MODADDR, make sure the subpool and the key in which the
exit routine resides are appropriate for the address spaces and keys in which
the exit routine can get control. For example, if you specify STOKEN, the exit
routine can reside in the private area of the address space designated by
STOKEN. If you do not specify STOKEN, and the exit routine can be called
from other address spaces, make sure the exit routine resides in the common
area.

If the storage is fetch-protected, the storage key must not conflict with the PSW
key on entry to the exit routine. To prevent accidental modification by
unauthorized users, the storage for exit routines that get control in system key
must not be PSW key 8-15.

,JOBNAME=ANY
,JOBNAME=jobname
,STOKEN=stoken

Specifies a condition under which the exit routine is to get control. You can
require that the exit routine take control:
v During the execution of a specific job, or jobs
v While a specific address space is the primary address space.

JOBNAME specifies an area (or a register containing the address of an area)
that contains the 8-character name of the job that must be running at the time
the exit routine is to get control. If the name has fewer than 8 characters,
left-justify the name and pad the field with blanks. To indicate the name of
more than one job, use an asterisk for the last non-blank character. A matching
jobname is one that matches all the characters preceding the asterisk. The
default is JOBNAME=ANY.

To indicate that the exit routine is not to be restricted to a particular job,
specify a jobname of C'* '. To leave the jobname unchanged, specify a
jobname with the first character X'00' or blank.

STOKEN specifies an area (or a register containing the address of an area) that
contains the 8-character STOKEN of the address space that must be the
primary address space at the time the exit routine receives control.

If you specify a jobname of C'* ', a jobname with the first character
X'00', or JOBNAME=ANY, you are requesting that the system not check for the
jobname or the STOKEN value.

,ADDABENDNUM=UNCHANGED
,ADDABENDNUM=addabendnum

Specifies how many times an exit routine can abnormally end before it
becomes inactive. ADDABENDNUM=UNCHANGED, the default, specifies
that the system will use the value specified on the ABENDNUM parameter on
the CSVDYNEX DEFINE request that defines the exit, or the default value.

ADDABENDNUM=addabendnum specifies an area (or a register containing the
address of an area) that contains the number of times an exit routine can end
abnormally before it becomes inactive. For example, if you specify the value n,
the exit routine becomes inactive when the nth abnormal ending occurs.

CSVDYNEX macro

Chapter 38. CSVDYNEX — Provide dynamic exits services 381

If you omit ADDABENDNUM or specify a value of 0, the exit routine becomes
inactive on the basis of the ABENDNUM value specified on the CSVDYNEX
DEFINE request. Use the ABENDCONSEC parameter to establish whether n
means consecutive abnormal endings or cumulative abnormal endings.

The value you specify for ADDABENDNUM is interpreted as a signed, 31-bit
number.

,ABENDCONSEC=NO
,ABENDCONSEC=YES

Specifies whether the number of abnormal endings you specify on
ADDABENDNUM is to be cumulative or consecutive. The ABENDCONSEC
parameter can be specified only if ADDABENDNUM is specified on this
request. It will be ignored if the value you specify for ADDABENDNUM is 0.
v ABENDCONSEC=NO means that after the specified number of accumulated

abnormal endings of the exit routine, the exit routine becomes inactive.
v ABENDCONSEC=YES means that after the specified number of consecutive

abnormal endings of the exit routine, the exit routine becomes inactive. You
cannot specify ABENDCONSEC=YES when adding an exit routine to an exit
that is defined with PSW key 8 to 15 or ANYKEY=YES.

Note that the default is ABENDCONSEC=NO, which will override what was
specified for ABENDCONSEC on the DEFINE request for this exit.

You can only specify the ABENDCONSEC parameter if you specify the
ADDABENDNUM parameter.

,POS=SYSTEM
,POS=FIRST
,POS=LAST

Specifies the order in which the system calls the exit routine.
v POS=SYSTEM, the default, specifies that the exit routine may be called in

any order relative to other routines associated with this exit.
v POS=FIRST specifies that the system should call the exit routine before any

other routines associated with this exit, unless another exit routine, added
after it, also specifies FIRST.

v POS=LAST specifies that the system should call the exit routine after any
routines associated with this exit, unless other exit routines are added after
it.

,PARAM=param
,PARAM=NO_PARAM

When REQUEST=ADD is specified, PARAM is an optional input parameter
that specifies parameter information to be passed to the exit routine.

The first four bytes of the area are passed to the exit routine in access register
0. The second four bytes are passed to the exit routine in access register 1. If
PARAM is not provided, zeroes are placed into the access registers.

The value is displayed using DISPLAY PROG,EXIT with the DIAG option. The
display treats the 8 byte value as any other printable string so it is suggested
that the 8 bytes be printable characters. If they are not, the only ramification is
that they might not be visible via that display command.

The default is NO_PARAM.

To code: Specify the RS-type address, or register (2) - (12) of an 8-character
field.

CSVDYNEX macro

382 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

,RETCODE=retcode
Specifies a fullword (or a register) where the system is to store the CSVDYNEX
return code. The return code is also in GPR 15.

,RSNCODE=rsncode
Specifies a fullword (or a register) where the system is to store the CSVDYNEX
reason code. The reason code is also in GPR 0.

,MF=S
Specifies the standard form of the CSVDYNEX macro.

ABEND codes
None.

Return and reason codes
See “Return and reason codes” on page 415 for the return and reason codes for the
CSVDYNEX ADD request.

Example
For an example of how to associate an exit routine with an exit, see “Example 2”
on page 425.

Change the state of an exit routine
The state of an exit routine is active or inactive. An active exit routine is associated
with an exit and will be called if the exit is called. An inactive exit routine is
associated with an exit, but will not be called if the exit is called. The CSVDYNEX
MODIFY request changes the state of an exit routine and, additionally, asks the
system to check one of two conditions before it calls an exit routine. On the
CSVDYNEX MODIFY request, you:
v Identify the exit (EXITNAME parameter) and the exit routine (MODNAME

parameter)
v Specify the state you want to change to (STATE parameter)
v Specify the condition under which the exit routine is to get control (JOBNAME

or STOKEN parameters).

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: One of the following:

v Supervisor state

v PSW key 0-7

v PKM allowing key 0-7

v APF-authorized

v SAF UPDATE authority to FACILITY class entity
CSVDYNEX.exitname.modname.

Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 24- or 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks may be held.

CSVDYNEX macro

Chapter 38. CSVDYNEX — Provide dynamic exits services 383

Environmental factor Requirement
Control parameters: Control parameters must be in the primary address space or,

for AR-mode callers, must be in an address space or data
space that is addressable through a public entry on the
caller's dispatchable unit access list (DU-AL).

Programming requirements
Include the CSVEXRET mapping macro to define symbolic names and values for
return and reason codes returned by CSVDYNEX. (See z/OS MVS Data Areas in
z/OS Internet Library at http://www.ibm.com/systems/z/os/zos/bkserv/.)

Restrictions
The caller must not have functional recovery routines (FRRs) established.

Input register information
See “Input register information for CSVDYNEX” on page 368 for input register
information for the CSVDYNEX MODIFY request.

Output register information
See “Output register information for CSVDYNEX” on page 368 for output register
information for the CSVDYNEX MODIFY request.

Syntax
The standard form of the MODIFY request on the CSVDYNEX macro is written as
follows:

Syntax Description

name name: symbol. Begin name in column
1.

� One or more blanks must precede
CSVDYNEX.

CSVDYNEX

� One or more blanks must follow
CSVDYNEX.

REQUEST=MODIFY

,EXITNAME=exitname exitname: RS-type address or address
in register (2) - (12).

,MODNAME=modname modname: RS-type address or address
in register (2) - (12).

,STATE=UNCHANGED

CSVDYNEX macro

384 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

http://www.ibm.com/systems/z/os/zos/bkserv/

Syntax Description

,STATE=ACTIVE

,STATE=INACTIVE

,JOBNAME=jobname jobname: RS-type address or address
in register (2) - (12).

,STOKEN=stoken stoken: RS-type address or address in
register (2) - (12).

,RETCODE=retcode retcode: RS-type address or register (2)
- (12).

,RSNCODE=rsncode rsncode: RS-type address or register (2)
- (12).

,MF=S

Parameters
The parameters are explained as follows:

REQUEST=MODIFY
Changes the state of an exit routine.

,EXITNAME=exitname
Specifies a 16-byte field (or a register containing the address of a 16-byte field)
containing the 16-character name of an exit that has been defined to the
dynamic exits facility. If the name contains fewer than 16 characters, left-justify
the name and pad the field with blanks.

,MODNAME=modname
Specifies an 8-byte field (or a register containing the address of an 8-byte field)
that contains the 8-character name of the exit routine whose state you want to
change. The first character must not be X'00' or blank. modname designates a
load module or alias, whose entry point is the starting address of the exit
routine.

,STATE=UNCHANGED
,STATE=ACTIVE
,STATE=INACTIVE

Specifies that you want the state of the exit routine to be unchanged or that
you want to change the state to active or inactive.
v An active exit routine is associated with an exit and will be called when the

exit is called.
v An inactive exit routine is associated with an exit, but will not be called

when the exit is called.

,JOBNAME=jobname
,STOKEN=stoken

Specifies a condition under which the exit routine is to get control. You can
require that the exit routine take control:
v During the execution of a specific job, or jobs

CSVDYNEX macro

Chapter 38. CSVDYNEX — Provide dynamic exits services 385

v While a specific address space is the primary address space.

JOBNAME specifies an area (or a register containing the address of an area)
that contains the 8-character name of the job that must be running at the time
the exit routine is to get control. To indicate the name of more than one job,
use an asterisk for the last non-blank character. A matching jobname is one that
matches all the characters preceding the asterisk.

To indicate that the exit routine is not to be restricted to a particular job,
specify a jobname of C'* '. To leave the jobname unchanged, specify a
jobname with the first character X'00' or blank. If STOKEN was specified when
the module was added or modified, and the jobname does not indicate
“unchanged,” this jobname will be used instead.

Note: JOBNAME=ANY, which is value for REQUEST=ADD, is not valid for
REQUEST=MODIFY.

STOKEN specifies an area (or a register containing the address of an area) that
contains the 8-character STOKEN of the address space that must be the
primary address space at the time the exit routine receives control. If
JOBNAME was specified when the module was added, this STOKEN will be
used instead.

,RETCODE=retcode
Specifies a fullword (or a register) where the system is to store the CSVDYNEX
return code. The return code is also in GPR 15.

,RSNCODE=rsncode
Specifies a fullword (or a register) where the system is to store the CSVDYNEX
reason code. The reason code is also in GPR 0.

,MF=S
Specifies the standard form of the CSVDYNEX macro.

ABEND codes
None.

Return and reason codes
See “Return and reason codes” on page 415 for the return and reason codes for the
CSVDYNEX MODIFY request.

Example
For an example of how to change the state of an exit routine, see “Example 2” on
page 425.

Delete an exit routine from an exit
The CSVDYNEX DELETE request deletes an exit routine that was added by a
CSVDYNEX ADD request to an exit that has been defined to the dynamic exits
facility. On the CSVDYNEX DELETE request, you:
v Identify the exit (EXITNAME parameter) and the exit routine (MODNAME

parameter)
v Tell the system whether or not to free the storage for the exit routine

immediately (FORCE parameter).

CSVDYNEX macro

386 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: One of the following:

v Supervisor state

v PSW key 0-7

v PKM allowing key 0-7

v APF-authorized

v SAF UPDATE authority to FACILITY class entity
CSVDYNEX.exitname.modname.

Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 24- or 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks may be held.
Control parameters: Control parameters must be in the primary address space or,

for AR-mode callers, must be in an address space or data
space that is addressable through a public entry on the
caller's dispatchable unit access list (DU-AL).

Programming requirements
Include the CSVEXRET mapping macro to define symbolic names and values for
return and reason codes returned by CSVDYNEX. (See z/OS MVS Data Areas in
z/OS Internet Library at http://www.ibm.com/systems/z/os/zos/bkserv/.)

Restrictions
The caller must not have functional recovery routines (FRRs) established.

Input register information
See “Input register information for CSVDYNEX” on page 368 for input register
information for the CSVDYNEX DELETE request.

Output register information
See “Output register information for CSVDYNEX” on page 368 for output register
information for the CSVDYNEX DELETE request.

Syntax
The standard form of the DELETE request on the CSVDYNEX macro is written as
follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede CSVDYNEX.

CSVDYNEX

CSVDYNEX macro

Chapter 38. CSVDYNEX — Provide dynamic exits services 387

http://www.ibm.com/systems/z/os/zos/bkserv/

Syntax Description

� One or more blanks must follow CSVDYNEX.

REQUEST=DELETE

,EXITNAME=exitname exitname: RS-type address or address in register (2) - (12).

,MODNAME=modname modname: RS-type address or address in register (2) - (12).

,FORCE=NO Default: FORCE=NO

,FORCE=YES

,RETCODE=retcode retcode: RS-type address or register (2) - (12).

,RSNCODE=rsncode rsncode: RS-type address or register (2) - (12).

,MF=S

Parameters
The parameters are explained as follows:

REQUEST=DELETE
Deletes an exit routine from an exit.

,EXITNAME=exitname
Specifies a 16-byte field (or a register containing the address of a 16-byte field)
containing the 16-character name of an exit associated with the exit routine you
want to delete. If the name contains fewer than 16 characters, left-justify the
name and pad the field with blanks.

,MODNAME=modname
Specifies an 8-byte field (or a register containing the address of an 8-byte field)
that contains the 8-character name of the exit routine that you want to delete.
The first character must not be X'00' or blank. Names of fewer than 8
characters must be left-justified and padded with blanks.

,FORCE=NO
,FORCE=YES

Indicates whether the system is to force the freeing of the storage for the exit
routine when the routine is deleted. Specify FORCE=YES for an exit that has
FASTPATH processing in effect, and either a PSW key 8 to 15 or ANYKEY
processing in effect. For those exits, the system relies on you to tell it when to
delete the storage. Assuming the exit has FASTPATH processing in effect, and
the PSW key is 8 to 15 or ANYKEY processing is in effect:
v FORCE=NO, the default, tells the system to change the state of the exit

routine to inactive. The system does not free the storage.

CSVDYNEX macro

388 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

v FORCE=YES tells the system to free the storage of the exit routine
immediately. Use FORCE=YES only if you are sure that this exit routine is
not associated with any other exit.

For exits that are not FASTPATH or whose PSW key is 0 to 7 and that are not
ANYKEY, the system frees the storage when no other exits are using the exit
routine.

,RETCODE=retcode
Specifies a fullword (or a register) where the system is to store the CSVDYNEX
return code. The return code is also in GPR 15.

,RSNCODE=rsncode
Specifies a fullword (or a register) where the system is to store the CSVDYNEX
reason code. The reason code is also in GPR 0.

,MF=S
Specifies the standard form of the CSVDYNEX macro.

ABEND codes
None.

Return and reason codes
See “Return and reason codes” on page 415 for the return and reason codes for the
CSVDYNEX DELETE request.

Example
For an example of how to delete an exit routine from an exit, see “Example 9” on
page 433.

Remove the definition of an exit
The CSVDYNEX UNDEFINE request removes the definition of an exit that was
established by the DEFINE request. The EXITNAME parameter identifies the exit
whose definition is to be removed.

Any exit routines associated with the exit whose definition is removed remain
associated with the exit, and the exit is said to be implicitly defined.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: One of the following:

v Supervisor state

v PSW key 0-7

v PKM allowing key 0-7

v APF-authorized

v SAF UPDATE authority to FACILITY class entity
CSVDYNEX.exitname.UNDEFINE.

Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 24- or 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts

CSVDYNEX macro

Chapter 38. CSVDYNEX — Provide dynamic exits services 389

Environmental factor Requirement
Locks: No locks may be held.
Control parameters: Control parameters must be in the primary address space or,

for AR-mode callers, must be in an address space or data
space that is addressable through a public entry on the
caller's dispatchable unit access list (DU-AL).

Programming requirements
Include the CSVEXRET mapping macro to define symbolic names and values for
return and reason codes returned by CSVDYNEX. (See z/OS MVS Data Areas in
z/OS Internet Library at http://www.ibm.com/systems/z/os/zos/bkserv/.)

Restrictions
The caller must not have functional recovery routines (FRRs) established.

Input register information
See “Input register information for CSVDYNEX” on page 368 for input register
information for the CSVDYNEX UNDEFINE request.

Output register information
See “Output register information for CSVDYNEX” on page 368 for output register
information for the CSVDYNEX UNDEFINE request.

Syntax
The standard form of the UNDEFINE request on the CSVDYNEX macro is written
as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede CSVDYNEX.

CSVDYNEX

� One or more blanks must follow CSVDYNEX.

REQUEST=UNDEFINE

,EXITNAME=exitname exitname: RS-type address or address in register (2) - (12).

,RETCODE=retcode retcode: RS-type address or register (2) - (12).

,RSNCODE=rsncode rsncode: RS-type address or register (2) - (12).

,MF=S

CSVDYNEX macro

390 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

http://www.ibm.com/systems/z/os/zos/bkserv/

Syntax Description

Parameters
The parameters are explained as follows:

REQUEST=UNDEFINE
Removes the definition of the exit. This exit was defined through a
CSVDYNEX DEFINE request.

,EXITNAME=exitname
Specifies a 16-byte field (or a register containing the address of a 16-byte field)
containing the 16-character name of an exit that has been defined to the
dynamic exits facility. If the name has fewer than 16 characters, left-justify the
name and pad the field with blanks.

,RETCODE=retcode
Specifies a fullword (or a register) where the system is to store the CSVDYNEX
return code. The return code is also in GPR 15.

,RSNCODE=rsncode
Specifies a fullword (or a register) where the system is to store the CSVDYNEX
reason code. The reason code is also in GPR 0.

,MF=S
Specifies the standard form of the CSVDYNEX macro.

ABEND codes
None.

Return and reason codes
See “Return and reason codes” on page 415 for the return and reason codes for the
CSVDYNEX UNDEFINE request.

Example
For an example of how to remove the definition of an exit, see “Example 10” on
page 433.

Change the attributes of an exit
The CSVDYNEX ATTRIB request tells the system how to handle return code
information that is returned from the call of multiple exit routines at an exit. On
the RETINFO parameter of the CSVDYNEX CALL request, you tell the system
what information to return to the issuer of the CALL request. Unless
RETINFO=ALL was specified, you can use the CSVDYNEX ATTRIB request to
override the RETINFO parameter specified on the CALL request.

On the CSVDYNEX ATTRIB request, you:
v Identify the exit (EXITNAME parameter)
v Identify how the system is to handle the return information from exit routines

associated with the exit (KEEPRC, KEEPRCCOMP, and KEEPRCCVAL
parameters).

CSVDYNEX macro

Chapter 38. CSVDYNEX — Provide dynamic exits services 391

If you use the CSVDYNEX ATTRIB request to specify return code processing for an
exit that has not been defined, that exit is said to be implicitly defined.

Note: To control the handling of return code information from multiple exit
routines, an installation can either write a program that uses CSVDYNEX
REQUEST=ATTRIB, or use the SETPROG and SET PROG=xx commands.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: One of the following:

v Supervisor state

v PSW key 0-7

v PKM allowing key 0-7

v APF-authorized

v SAF UPDATE authority to FACILITY class entity
CSVDYNEX.exitname.ATTRIB.

Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 24- or 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks may be held.
Control parameters: Control parameters must be in the primary address space or,

for AR-mode callers, must be in an address space or data
space that is addressable through a public entry on the
caller's dispatchable unit access list (DU-AL).

Programming requirements
Include the CSVEXRET mapping macro to define symbolic names and values for
return and reason codes returned by CSVDYNEX. (See z/OS MVS Data Areas in
z/OS Internet Library at http://www.ibm.com/systems/z/os/zos/bkserv/.)

Restrictions
The caller must not have functional recovery routines (FRRs) established.

Input register information
See “Input register information for CSVDYNEX” on page 368 for input register
information for the CSVDYNEX ATTRIB request.

Output register information
See “Output register information for CSVDYNEX” on page 368 for output register
information for the CSVDYNEX ATTRIB request.

Syntax
The standard form of the ATTRIB request on the CSVDYNEX macro is written as
follows:

Syntax Description

CSVDYNEX macro

392 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

http://www.ibm.com/systems/z/os/zos/bkserv/

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede CSVDYNEX.

CSVDYNEX

� One or more blanks must follow CSVDYNEX.

REQUEST=ATTRIB

,EXITNAME=exitname exitname: RS-type address or register (2) - (12).

,KEEPRC=keeprc,KEEPRCCOMP=option

,KEEPRC=keeprc,KEEPRCCOMP=VALUE,

KEEPRCCVAL=keeprccval

keeprc: RS-type address or address in register (2) - (12).

option: See the KEEPRCCOMP parameter description

keeprccval: RS-type address or address in register (2) -
(12).

,RETCODE=retcode retcode: RS-type address or register (2) - (12).

,RSNCODE=rsncode rsncode: RS-type address or register (2) - (12).

,MF=S

Parameters
The parameters are explained as follows:

REQUEST=ATTRIB
Changes the attributes of an exit.

,EXITNAME=exitname
Specifies a 16-byte field (or a register containing the address of a 16-byte field)
containing the 16-character name of an exit that has been defined to the
dynamic exits facility and whose attributes are to change. If the name contains
fewer than 16 characters, left-justify the name and pad the field with blanks.

,KEEPRC=keeprc,KEEPRCCOMP=option

,KEEPRC=keeprc,KEEPRCCOMP=VALUE,KEEPRCCVAL=keeprccval
Specifies how the system is to process the return codes from exit routines
associated with an exit. If RETINFO=ALL is specified on the CALL request,
KEEPRC does not apply, because all information is returned. If
RETINFO=LOWEST, HIGHEST, or LAST was specified on the CALL request,
the KEEPRC parameter will override the RETINFO parameter.

CSVDYNEX macro

Chapter 38. CSVDYNEX — Provide dynamic exits services 393

KEEPRC=keeprc specifies a fullword (or a register containing the address of a
fullword) that contains a value known as the KEEPRC return code. The system
compares the return code from each exit routine called for this exit to the
KEEPRC return code, using the comparison designated by KEEPRCCOMP. If
the comparison is favorable, the system returns the values of registers 0, 1, and
15 to the issuer of the CSVDYNEX CALL request in the area specified on the
RETAREA parameter.

If the comparison is not favorable, the system returns the values for another
exit routine that is called, according to the values specified on the RETINFO
parameter on the CSVDYNEX CALL request. It applies the rules specified on
the RETINFO parameter unless it finds a match according to the rules specified
on the KEEPRC parameter.

KEEPRCCOMP specifies the type of comparison the system makes between the
KEEPRC value and the actual return code. The options on KEEPRCCOMP are:
v EQ - equal
v NE - not equal
v GT - greater than
v LT - less than
v GE - greater than or equal to
v LE - less than or equal to
v VALUE - the type of comparison is specified on the KEEPRCCVAL

parameter.

KEEPRCCVAL=keeprccval specifies a one-byte field (or a register containing the
address of a one-byte field) that contains the value that indicates the type of
comparison the system is to do when comparing the actual return code of the
exit routine with the value provided in KEEPRC. The constants produced by
the list form of the macro can be used. For example, CSVDYNEX
MF=(L,MYLIST) would produce such equate symbols as
MYLIST_XKEEPRCCOMP_EQ and MYLIST_XKEEPRCCOMP_GT.

KEEPRCCVAL applies only to KEEPRCCOMP=VALUE, and is required with
that parameter.

The default for the KEEPRC parameter and related parameters is that the
system does no matching of the return code.

,RETCODE=retcode
Specifies a fullword (or a register) where the system is to store the CSVDYNEX
return code. The return code is also in GPR 15.

,RSNCODE=rsncode
Specifies a fullword (or a register) where the system is to store the CSVDYNEX
reason code. The reason code is also in GPR 0.

,MF=S
Specifies the standard form of the CSVDYNEX macro.

ABEND codes
None.

Return and reason codes
See “Return and reason codes” on page 415 for the return and reason codes for the
CSVDYNEX ATTRIB request.

CSVDYNEX macro

394 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Example
For an example of how to change the attributes of an exit, see “Example 10” on
page 433.

List information about one or more exits
The CSVDYNEX LIST request returns information about all exits in the system that
have been defined to the dynamic exits facility, or about specific exits (EXITNAME
parameter). The information returned includes:
v The definition of the exit established on the DEFINE request, including:

– Addressing mode
– Reentrancy
– Whether FASTPATH processing applies to the exit
– Whether the exit has been explicitly or implicitly defined.

v Characteristics of the exit routines associated with the exit, as specified on the
ADD request:
– Name of the exit routine
– State of the exit routine
– Whether jobname filtering was requested
– Whether STOKEN filtering was requested
– The STOKEN and JOBNAME, if provided.

The system returns the information in an area you provide (ANSAREA and
ANSLEN parameters), which is mapped by the CSVEXAA mapping macro.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: One of the following:

v Supervisor state

v PSW key 0-7

v PKM allowing key 0-7

v APF-authorized

v SAF READ authority to FACILITY class entity
CSVDYNEX.LIST.

Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 24- or 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks may be held.
Control parameters: Control parameters and the area where the system places

the information obtained through the CSVDYNEX LIST
request (ANSAREA parameter) must be in the primary
address space or, for AR-mode callers, must be in an
address space or data space that is addressable through a
public entry on the caller's dispatchable unit access list
(DU-AL).

CSVDYNEX macro

Chapter 38. CSVDYNEX — Provide dynamic exits services 395

Programming requirements
Include the CSVEXRET mapping macro to define symbolic names and associated
values for return and reason codes returned by CSVDYNEX. Also include the
CSVEXAA mapping macro to get a mapping of the output area specified by the
ANSAREA parameter. (See z/OS MVS Data Areas in z/OS Internet Library at
http://www.ibm.com/systems/z/os/zos/bkserv/.)

Restrictions
The caller must not have functional recovery routines (FRRs) established.

Input register information
See “Input register information for CSVDYNEX” on page 368 for input register
information for the CSVDYNEX LIST request.

Output register information
See “Output register information for CSVDYNEX” on page 368 for output register
information for the CSVDYNEX LIST request.

Syntax
The standard form of the LIST request on the CSVDYNEX macro is written as
follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede CSVDYNEX.

CSVDYNEX

� One or more blanks must follow CSVDYNEX.

REQUEST=LIST

,EXITNAME=ALL_EXITS Default: EXITNAME=ALL_EXITS

,EXITNAME=exitname exitname: RS-type address or address in register (2) - (12).

,ANSAREA=ansarea ansarea: RS-type address or address in register (2) - (12).

,ANSLEN=anslen anslen: RS-type address or address in register (2) - (12).

,EXAAVER=0 Default: EXAAVER=0

,EXAAVER=1

,EXITTYPE=ANY Default: EXITTYPE=ANY

,EXITTYPE=INSTALLATION

CSVDYNEX macro

396 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

http://www.ibm.com/systems/z/os/zos/bkserv/

Syntax Description

,EXITTYPE=PROGRAM

,EXITTYPE=NOTPROGRAM

,RETCODE=retcode retcode: RS-type address or register (2) - (12).

,RSNCODE=rsncode rsncode: RS-type address or register (2) - (12).

,MF=S

Parameters
The parameters are explained as follows:

REQUEST=LIST
Lists information about one or more exits.

,EXITNAME=ALL_EXITS

,EXITNAME=exitname
EXITNAME=ALL_EXITS, the default, tells the system to list information about
all exits in the system that have been defined to the dynamic exits facility.

EXITNAME=exitname specifies a 16-byte field (or a register containing the
address of a 16-byte field) that contains the 16-character name of the exit. If the
name contains fewer than 16 characters, left-justify the name and pad the field
with blanks. To indicate the name of more than one exit, use an asterisk for the
last non-blank character. A matching exit name is one that matches all the
characters preceding the asterisk. If the first character of the name is X'00', the
system processes the request as if EXITNAME=ALL_EXITS has been specified.

,ANSAREA=ansarea
This parameter specifies an area (or a register containing the address of an
area) where the system is to store information associated with the exits. Use
the CSVEXAA mapping macro to map this area. (See z/OS MVS Data Areas in
z/OS Internet Library at http://www.ibm.com/systems/z/os/zos/bkserv/.)
Specify the length of this area on the ANSLEN parameter.

,ANSLEN=anslen
Specifies a fullword (or a register containing the address of a fullword) that
contains the length of the area where the system is to return the list. This value
must be equal to or greater than the length of the EXAAHDR structure in the
CSVEXAA mapping macro.

If the area is not long enough to contain all the information, the system returns
as many entries as it can. The system returns the length that is currently
required to contain all the information in the EXAAHTLEN field in the
CSVEXAA mapping macro, with return code CSVDYNEXRC_WARN (4) and
reason code CSVDYNEXRSNNOTALLDATARETURNED (X'xxxx0403').

,EXAAVER=0
,EXAAVER=1

Specifies the format of information to be returned, as mapped by DSECTs
within the CSVEXAA data area. EXAAVER=1 returns more information about

CSVDYNEX macro

Chapter 38. CSVDYNEX — Provide dynamic exits services 397

http://www.ibm.com/systems/z/os/zos/bkserv/

exit routines than EXAAVER=0. Both EXAAVER=1 and EXAAVER=0 return
header information mapped by the EXAAHDR DSECT, and exit information
mapped by the EXAAE DSECT.
v EXAAVER=0, the default, specifies that exit routine information is mapped

by the EXAAM DSECT.
v EXAAVER=1 specifies that exit routine information is mapped by the

EXAAM1 DSECT.

,EXITTYPE=ANY
,EXITTYPE=INSTALLATION
,EXITTYPE=PROGRAM
,EXITTYPE=NOTPROGRAM

When REQUEST=LIST is specified, EXITTYPE is an optional parameter that
indicates the type of exit about which to return data.

The default is EXITTYPE=ANY

EXITTYPE=ANY indicates that data is returned for any exit type.

EXITTYPE=INSTALLATION indicates that data is returned only if the exit is
marked as an installation exit.

EXITTYPE=PROGRAM indicates that data is returned only if the exit is
marked as a program exit.

EXITTYPE=NOTPROGRAM indicates that data is returned only if the exit is
not marked as a program exit.

,RETCODE=retcode
Specifies a fullword (or a register) where the system is to store the CSVDYNEX
return code. The return code is also in GPR 15.

,RSNCODE=rsncode
Specifies a fullword (or a register) where the system is to store the CSVDYNEX
reason code. The reason code is also in GPR 0.

,MF=S
Specifies the standard form of the CSVDYNEX macro.

ABEND codes
None.

Return and reason codes
See “Return and reason codes” on page 415 for the return and reason codes for the
CSVDYNEX LIST request.

Example
For an example of how to list information about exits, see “Example 6” on page
431.

Call one or more exit routines at an exit
The CSVDYNEX CALL request passes control to the exit routine or routines
associated with an exit that has been explicitly defined to the dynamic exits facility
(that is, that has been defined using the CSVDYNEX DEFINE request). The caller
can:
v Specify the information that the exit routine is to find in certain GPRs at entry

CSVDYNEX macro

398 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

v Receive information from the exit routines in the return area (RETAREA and
RETLEN parameters)

v Receive a token that identifies an exit routine that did not get control at the exit
(NEXTTOKEN).

Additionally, on the CSVDYNEX CALL request you can:
v Specify how the system is to handle the return codes from more than one exit

routine (RETINFO parameter)
v Specify that the exit is to have FASTPATH processing (FASTPATH parameter).

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: For CALL FASTPATH=YES requests, problem state and any

PSW key.

For CALL FASTPATH=NO requests, any of the following:

v Supervisor state

v PSW key 0-7

v PKM allowing key 0-7

v APF-authorized (not allowed in cross memory mode)

v SAF READ authority to FACILITY class entity
CSVDYNEX.exitname.CALL (not allowed in cross
memory mode)

Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: For CALL with FASTPATH=YES requests, 31-bit. For all

other requests, 24- or 31-bit.
ASC mode: For CALL,FASTPATH=YES, primary mode. For all other

requests, primary or AR mode.
Interrupt status: Enabled for I/O and external interrupts
Locks: The local and CMS locks may be held, but are not required.
Control parameters: Control parameters and the return area (through RETAREA)

must be in the primary address space or, for AR-mode
callers, must be in an address space or data space that is
addressable through a public entry on the caller's
dispatchable unit access list (DU-AL).

Programming requirements
Include the CSVEXRET mapping macro to get a mapping of the area provided
through the RETAREA parameter. This macro also defines variables and values for
return and reason codes returned by CSVDYNEX. (See z/OS MVS Data Areas in
z/OS Internet Library at http://www.ibm.com/systems/z/os/zos/bkserv/.)

Restrictions
1. The FASTPATH parameter is not valid on the modify form of CSVDYNEX

REQUEST=CALL.
2. If the caller uses FASTPATH=NO and is in cross memory mode, the exit routine

gets control with the secondary address space equal to the primary address
space of the caller.

3. If the caller uses FASTPATH=NO and is in problem state, the caller must not
have SPIE or ESPIE routines in effect.

CSVDYNEX macro

Chapter 38. CSVDYNEX — Provide dynamic exits services 399

http://www.ibm.com/systems/z/os/zos/bkserv/

4. FASTPATH=YES is valid on the CSVDYNEX CALL request only if the
CSVDYNEX DEFINE request was issued with FASTPATH=YES.

5. The PSW key of the caller must be the same as the value specified on the KEY
parameter of the DEFINE request, or must be 0.

Input register information
See “Input register information for CSVDYNEX” on page 368 for input register
information for the CSVDYNEX CALL request.

Output register information
See “Output register information for CSVDYNEX” on page 368 for output register
information for the CSVDYNEX CALL request.

Syntax
The standard form of the CALL request on the CSVDYNEX macro is written as
follows:

Syntax Description

name name: symbol. Begin name in column
1.

� One or more blanks must precede
CSVDYNEX.

CSVDYNEX

� One or more blanks must follow
CSVDYNEX.

REQUEST=CALL

,EXITNAME=exitname exitname: RS-type address or address
in register (2) - (12).

,RUB=rub rub: RS-type address or address in
register (2) - (12).

,RETAREA=retarea retarea: RS-type address or address in
register (2) - (12).

,RETLEN=retlen retlen: RS-type address or address in
register (2) - (12).

,RETINFO=LAST Default: RETINFO=LAST

,RETINFO=LOWEST

,RETINFO=HIGHEST

CSVDYNEX macro

400 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Syntax Description

,RETINFO=ALL

,NEXTTOKEN=nexttoken nexttoken: RS-type address or address
in register (2) - (12).

,FASTPATH=NO Default: FASTPATH=NO

,FASTPATH=YES,WORKAREA=workarea

workarea: RS-type address or address
in register (2) - (12).

,EXRETVER=0 Default: EXRETVER=0

,EXRETVER=1

,RETCODE=retcode retcode: RS-type address or register (2)
- (12).

,RSNCODE=rsncode rsncode: RS-type address or register (2)
- (12).

,MF=S

Parameters
The parameters are explained as follows:

REQUEST=CALL
Calls one or more exit routines at an exit.

,EXITNAME=exitname
Specifies a 16-byte field (or a register containing the address of a 16-byte field)
containing the 16-character name of an exit that is to invoke one or more exit
routines. If the name contains fewer than 16 characters, left-justify the name
and pad the field with blanks.

,RUB=rub
Specifies an area (or a register containing the address of an area) that is known
as the register update block (RUB). The RUB is a list of fullwords that contains
information to be placed in certain GPRs at entry to each exit routine that gets
control at an exit point. You must obtain storage for the RUB, and initialize it
as follows:
v The first two bytes in the first word identify which registers the system is to

load with the data; GPR 0 corresponds to bit 0, GPR 1 corresponds to bit 1,
and so on. The last two bytes should be 0. You indicate the registers by
setting the corresponding bits. For example, if you want the data in GPRs 0,
1, and 13, the first word is as follows:
– X'C0040000'

v The remaining words in the RUB contain the data that is to be in the
registers, in the order 0 through 15. To continue the example, the rest of the
list would be:

CSVDYNEX macro

Chapter 38. CSVDYNEX — Provide dynamic exits services 401

– Second word: xxxx — value in register 0
– Third word: yyyy — value in register 1
– Fourth word: zzzz — value in register 13.

Processing is most efficient when word 0 contains one of the following:
v X'40040000' - indicating registers 1 and 13, or
v X'FFFC0000' - indicating registers 0 through 13.

The RUB area need only be long enough to contain the necessary information.

If the exit is defined as AMODE=24 or AMODE=UNDEFINED, do not specify
GPR2 in the RUB.

,RETAREA=retarea
Specifies a field (or a register containing the address of a field) where the
system returns information from the exit routines that are called. The mapping
macro CSVEXRET maps this area. (See z/OS MVS Data Areas in z/OS Internet
Library at http://www.ibm.com/systems/z/os/zos/bkserv/.)

,RETLEN=retlen
Specifies a fullword field (or a register containing the address of a fullword
field) that tells the system the length of the RETAREA. The RETAREA must be
long enough to contain at least one return entry. The size of the RETAREA for
n entries is “L'EXRETHDR+n*L'EXRETINFO”.

,RETINFO=LAST
,RETINFO=LOWEST
,RETINFO=HIGHEST
,RETINFO=ALL

Tells the system how to handle return code information when the exit calls
more than one exit routine.
v RETINFO=LAST, the default, indicates that the return area contains the

information from the last exit routine called. If the last exit routine
abnormally ended, its information is placed in the return area only if it was
the only exit routine called. If it was not the only exit routine called, the
information from the most recent exit routine that did not end abnormally is
returned.

v RETINFO=LOWEST indicates that the return area contains the information
from the exit routine whose GPR15 return value was the lowest. (The system
considers the contents of GPR15 as a 4-byte unsigned quantity for the
purposes of this calculation.) If the exit routine abnormally ends, its
information is placed in the return area only if it was the first exit routine
called. That information will be overlaid by any other exit routine's return
information. If multiple exit routines return with the same lowest value, only
the return information from the first routine will be returned.

v RETINFO=HIGHEST indicates that the return area contains the information
from the exit routine for which the GPR15 return value was the greatest.
(The system considers the contents of GPR15 as a 4-byte unsigned quantity
for the purpose of this calculation.) If the exit routine abnormally ends, its
information is placed into the return area only if it was the first exit routine
called. That information will be overlaid by any other exit routine's return
information. If multiple exit routines return with the same highest value, the
return information from the first will be returned.

v RETINFO=ALL indicates that information from each exit routine is returned.
If the return area fills completely, the system stops calling exit routines at
that exit and control returns to the caller for analysis. To invoke the

CSVDYNEX macro

402 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

http://www.ibm.com/systems/z/os/zos/bkserv/

remaining exit routines, the caller can reissue the CSVDYNEX CALL request,
passing the NEXTTOKEN value that the system returned.

,NEXTTOKEN=nexttoken
Specifies a field (or a register containing the address of a field) that is both
input and output. The contents are an 8-character token that signifies whether
the exit routine has been called.
v If this is the first CALL request for this iteration of the exit, place zeroes in

the field.
v If the field contains a value other than zeroes, the token in the field signifies

that more exit routines remain to be processed at this exit. The system stores
the token in the field during CSVDYNEX CALL processing, when there is
not enough storage in RETAREA to hold all the information; or during
CSVDYNEX RECOVER processing.

,FASTPATH=NO
,FASTPATH=YES,WORKAREA=workarea

Specifies whether FASTPATH processing will occur for this CALL request. On
the CSVDYNEX DEFINE request, the FASTPATH keyword enables the
FASTPATH function. On the CSVDYNEX CALL request, it specifies whether or
not to use the function.
v FASTPATH=NO, the default, specifies that FASTPATH processing is not to

occur for this CALL request.
v FASTPATH=YES specifies that FASTPATH processing is to occur for this

CALL request. FASTPATH processing requires that you provide a recovery
routine to handle recovery for CSVDYNEX CALL processing, and that you
issue the CSVDYNEX RECOVER request within that recovery routine.
WORKAREA=workarea specifies a 512-character field (or a register containing
the address of a field) that is used by the system to handle recovery of the
exit routine. The WORKAREA parameter is required for FASTPATH
processing. The rules for specifying WORKAREA are:
– The work area should be aligned on a doubleword boundary.
– Before you issue the first CSVDYNEX CALL request, zero the first word

of the work area.

,EXRETVER=0
,EXRETVER=1

Specifies the format of information to be returned, as mapped by the DSECTs
within the CSVEXRET data area. EXRETVER=1 returns more information
about exit routines than EXRETVER=0.
v EXRETVER=0, the default, specifies that return information is mapped by

the EXRET DSECT.
v EXRETVER=1 specifies that return information is mapped by the EXRET1

DSECT.

,RETCODE=retcode
Specifies a fullword (or a register) where the system is to store the CSVDYNEX
return code. The return code is also in GPR 15.

,RSNCODE=rsncode
Specifies a fullword (or a register) where the system is to store the CSVDYNEX
reason code. The reason code is also in GPR 0.

,MF=S
Specifies the standard form of the CSVDYNEX macro.

CSVDYNEX macro

Chapter 38. CSVDYNEX — Provide dynamic exits services 403

ABEND codes
The CSVDYNEX CALL request with FASTPATH=YES might abnormally terminate
with abend code X'0C4' if you provide a field that is not accessible. See z/OS MVS
System Codes for an explanation and programmer response.

Return and reason codes
See “Return and reason codes” on page 415 for the return and reason codes for the
CSVDYNEX CALL request.

Example
See three examples of calling exit routines at an exit, in “Example 3” on page 425,
“Example 4” on page 426, and “Example 5” on page 428.

Provide recovery for an exit routine that abnormally ended
You use the CSVDYNEX RECOVER request within the recovery routine of the
program that issues a CSVDYNEX CALL request with FASTPATH processing. This
request is required for FASTPATH processing; without it, the system does not get
back control from the abnormally ending exit routine.

On the CSVDYNEX RECOVER request you:
v Identify the exit (EXITNAME parameter).
v Provide a work area for the system to use (WORKAREA parameter).
v Provide an area where the system returns information needed when not all the

exit routines at the exit point have gotten control at the time of recovery
processing. This allows processing to continue with the next routine
(NEXTTOKEN parameter).

v Provide an area where the system places information from the exit routine that
abnormally ended (RETAREA and RETLEN parameters).

v Give the system the address of the SDWA (SDWA parameter).

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Any of the following:

v Supervisor state

v PSW key 0-7

v PKM allowing key 0-7

v APF-authorized (not allowed for callers in cross memory
mode)

v SAF READ authority to FACILITY class entity
CSVDYNEX.exitname.RECOVER (not allowed for callers
in cross memory mode)

Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 24- or 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: Local and CMS locks may be held, but are not required.

CSVDYNEX macro

404 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Environmental factor Requirement
Control parameters: Control parameters and the return area (through RETAREA)

must be in the primary address space or, for AR-mode
callers, must be in an address space or data space that is
addressable through a public entry on the caller's
dispatchable unit access list (DU-AL).

Programming requirements
Include the CSVEXRET mapping macro to get a mapping of the area provided
through the RETAREA parameter. This macro also defines variables and values for
return and reason codes returned by CSVDYNEX. (See z/OS MVS Data Areas in
z/OS Internet Library at http://www.ibm.com/systems/z/os/zos/bkserv/.)

Restrictions
None.

Input register information
See “Input register information for CSVDYNEX” on page 368 for input register
information for the CSVDYNEX RECOVER request.

Output register information
See “Output register information for CSVDYNEX” on page 368 for output register
information for the CSVDYNEX RECOVER request.

Syntax
The standard form of the RECOVER request on the CSVDYNEX macro is written
as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede CSVDYNEX.

CSVDYNEX

� One or more blanks must follow CSVDYNEX.

REQUEST=RECOVER

,EXITNAME=exitname exitname: RS-type address or address in register (2) - (12).

,WORKAREA=workarea workarea: RS-type address or address in register (2) - (12).

,NEXTTOKEN=nexttoken nexttoken: RS-type address or address in register (2) - (12).

,RETAREA=retarea retarea: RS-type address or address in register (2) - (12).

CSVDYNEX macro

Chapter 38. CSVDYNEX — Provide dynamic exits services 405

http://www.ibm.com/systems/z/os/zos/bkserv/

Syntax Description

,RETLEN=retlen retlen: RS-type address or address in register (2) - (12).

,SDWA=sdwa sdwa: RS-type address or address in register (2) - (12).

,EXRETVER=0 Default: EXRETVER=0

,EXRETVER=1

,RETCODE=retcode retcode: RS-type address or register (2) - (12).

,RSNCODE=rsncode rsncode: RS-type address or register (2) - (12).

,MF=S

Parameters
The parameters are explained as follows:

REQUEST=RECOVER
Provides recovery for an exit routine that abnormally ended.

,EXITNAME=exitname
Specifies a 16-byte field (or a register containing the address of a 16-byte field)
containing the 16-character name of an exit that has been defined to the
dynamic exits facility. If the name contains fewer than 16 characters, left-justify
the name and pad the field with blanks.

,WORKAREA=workarea
Specifies a 512-character field (or a register containing the address of a field)
that the system uses while providing recovery for the exit routine. Align this
area on a doubleword boundary. The WORKAREA specified on the RECOVER
request must be the WORKAREA that was passed on the CALL request.

,NEXTTOKEN=nexttoken
Specifies a field (or a register containing the address of a field) where the
system places an 8-character token that identifies an exit routine that did not
get control. The next issuer of the CALL request passes it to the system
through the NEXTTOKEN= parameter of the CSVDYNEX CALL request. The
NEXTTOKEN specified on the next CALL request should be the NEXTTOKEN
specified on the RECOVER request.

,RETAREA=retarea
Specifies a field (or a register containing the address of a field) where the
system tells the caller where the error occurred. The mapping macro
CSVEXRET maps this area.

,RETLEN=retlen
Specifies a field (or a register containing the address of a field) that tells the
system the length of RETAREA. The RETAREA must be long enough to
contain at least one entry. The size of the RETAREA for n entries is
“L'EXRETHDR+n*L'EXRETINFO”.

CSVDYNEX macro

406 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

,SDWA=sdwa
Specifies a fullword address (or a register containing the address) of the SDWA
associated with an abnormal ending of an exit routine (found in GPR 1 on
entry to the recovery routine). If no SDWA was passed to the recovery routine,
set the fullword to zero.

,EXRETVER=0
,EXRETVER=1

Specifies the format of information to be returned, as mapped by DSECTs
within the CSVEXRET data area. EXRETVER=1 returns more information
about exit routines than EXRETVER=0.
v EXRETVER=0, the default, specifies that return information is mapped by

the EXRET DSECT.
v EXRETVER=1 specifies that return information is mapped by the EXRET1

DSECT.

,RETCODE=retcode
Specifies a fullword (or a register containing the address of a fullword) where
the system is to store the CSVDYNEX return code. The return code is also in
GPR 15.

,RSNCODE=rsncode
Specifies a fullword (or a register containing the address of a fullword) where
the system is to store the CSVDYNEX reason code. The reason code is also in
GPR 0.

,MF=S
Specifies the standard form of the CSVDYNEX macro.

ABEND codes
None.

Return and reason codes
See “Return and reason codes” on page 415 for the return and reason codes for the
CSVDYNEX RECOVER request.

Example
For an example of how to provide recovery for an exit routine that has abnormally
ended, see “Example 5” on page 428.

Determine whether an exit routine exists for an exit
The CSVDYNEX QUERY request returns information in a return code that tells you
whether there are any exit routines associated with an exit. You can then decide
whether to proceed with a CSVDYNEX CALL or ADD request (QTYPE=CALL or
QTYPE=ADD parameter). Examples of the use of this request are:
v If no exit routines are associated with the exit, you can omit the CSVDYNEX

CALL request.
v If no exit routines are associated with the exit through a parmlib member or a

SETPROG command, you can use the CSVDYNEX ADD request to add a default
exit routine.

If the exit has been defined implicitly, you will receive a warning return and
reason code.

CSVDYNEX macro

Chapter 38. CSVDYNEX — Provide dynamic exits services 407

On the CSVDYNEX QUERY request you identify the exit (EXITNAME parameter)
and provide an area for the system to use (WORKAREA parameter).

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state and any PSW key
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: The local and CMS locks may be held, but are not required.
Control parameters: Control parameters must be in the primary address space.

Programming requirements
Include the CSVEXRET mapping macro to define symbolic names and values for
return and reason codes returned by CSVDYNEX. (See z/OS MVS Data Areas in
z/OS Internet Library at http://www.ibm.com/systems/z/os/zos/bkserv/.)

Restrictions
None.

Input register information
See “Input register information for CSVDYNEX” on page 368 for input register
information for the CSVDYNEX QUERY request.

Output register information
See “Output register information for CSVDYNEX” on page 368 for output register
information for the CSVDYNEX QUERY request.

Syntax
The standard form of the QUERY request on the CSVDYNEX macro is written as
follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede CSVDYNEX.

CSVDYNEX

� One or more blanks must follow CSVDYNEX.

REQUEST=QUERY

CSVDYNEX macro

408 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

http://www.ibm.com/systems/z/os/zos/bkserv/

Syntax Description

,EXITNAME=exitname exitname: RS-type address or address in register (2) - (12).

,WORKAREA=workarea workarea: RS-type address or address in register (2) - (12).

,QTYPE=ADD

,QTYPE=CALL Default: QTYPE=CALL

,ADDRSPACE=PRIMARY Default: ADDRSPACE=PRIMARY

,ADDRSPACE=ANY

,RETCODE=retcode retcode: RS-type address or register (2) - (12).

,RSNCODE=rsncode rsncode: RS-type address or register (2) - (12).

,MF=S

Parameters
The parameters are explained as follows:

REQUEST=QUERY
Asks whether an exit routine exists for an exit.

,EXITNAME=exitname
Specifies a 16-byte field (or a register containing the address of a 16-byte field)
containing the 16-character name of an exit that has been defined to the
dynamic exits facility. The characters must be left-justified in a 16-character
field and padded with blanks.

,WORKAREA=workarea
Specifies a field (or a register containing the address of a field) that provides
the 512-character work area that the system uses. Align this area on a
doubleword boundary.

,QTYPE=ADD
,QTYPE=CALL

Indicates the type of QUERY request:
v QTYPE=ADD is issued before a CSVDYNEX ADD request. A return code of

X'00' indicates that at least one exit routine is associated with the exit. This
return code is issued for QTYPE=ADD even if all associated exit routines are
inactive, no matter the reason for the inactive state.

v QTYPE=CALL, the default, is issued before a CSVDYNEX CALL request. A
return code of X'00' indicates that an active exit routine was added. The
current JOBNAME and STOKEN of this exit routine match the JOBNAME
and STOKEN criteria specified when the exit routine was associated with the
exit. Note that it is not necessary to use this prior to using
CSVDYNEX=CALL. If you issue a CSVDYNEX CALL request and there are
no exit routines associated with the exit, the system returns with return code
CSVDYNEXRC_WARN (4) and reason code CSVDYNEXRSNNOMODULES
(X'xxxx0406').

CSVDYNEX macro

Chapter 38. CSVDYNEX — Provide dynamic exits services 409

,ADDRSPACE=PRIMARY
,ADDRSPACE=ANY

When QTYPE=CALL is specified, an optional parameter that indicates
the address space to check with respect to a subsequent
REQUEST=CALL. The default is ADDRSPACE=PRIMARY.
– ADDRSPACE=PRIMARY indicates to check for the case where the

QTYPE=CALL is for the primary address space.
– ADDRSPACE=ANY indicates to check for the case where the

QTYPE=CALL could be for any address space. An active exit routine
added with STOKEN or JOBNAME will match if this is specified,
even if the primary address space does not match the
STOKEN/JOBNAME.

,RETCODE=retcode
Specifies a fullword (or a register) where the system is to store the CSVDYNEX
return code. The return code is also in GPR 15.

,RSNCODE=rsncode
Specifies a fullword (or a register) where the system is to store the CSVDYNEX
reason code. The reason code is also in GPR 0.

,MF=S
Specifies the standard form of the CSVDYNEX macro.

ABEND codes
The CSVDYNEX QUERY request might abnormally terminate with abend code
X'0C4' if you provide a field that is not accessible. See z/OS MVS System Codes for
an explanation and programmer response.

Return and reason codes
See “Return and reason codes” on page 415 for the return and reason codes for the
CSVDYNEX QUERY request.

Example
For an example of how to identify whether an exit routine exists for an exit, see
“Example 7” on page 432.

Replace an exit routine for an exit
Replacing an exit routine for an exit means removing the association of an active
exit routine and replacing it with a newer version while making sure that either
the old or new version, but not both, gets control when the exit is called.

On the CSVDYNEX REPLACE request, you:
v Name the exit that the exit routine is to be associated with (EXITNAME

parameter)
v Identify where to find the exit routine (MODNAME, DSNAME, and MODADDR

parameters)
v Request that the system send a message to the operator if the system encounters

certain error conditions when processing the exit routine (MESSAGE parameter)

The CSVDYNEX DELETE request deletes an exit routine that was added to an exit
by the CSVDYNEX REPLACE request.

CSVDYNEX macro

410 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: One of the following:

v Supervisor state

v PSW key 0-7

v PKM allowing key 0-7

v APF-authorized

v SAF UPDATE authority to FACILITY class entity
CSVDYNEX.exitname.modname.

Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 24- or 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks to be held.
Control parameters: Control parameters and the area that contains the data set

name (specified on DSNAME) must be in the primary
address space or, for AR-mode callers, must be in an
address space or data space that is addressable through a
public entry on the caller's dispatchable unit access list
(DU-AL).

Programming requirements
Include the CSVEXRET mapping macro to define symbolic names and values for
return and reason codes returned by CSVDYNEX. See z/OS MVS Data Areas in
z/OS Internet Library at http://www.ibm.com/systems/z/os/zos/bkserv/ for
more information.

Restrictions
The caller must not have functional recovery routines (FRRs) established.

Input register information
See “Input register information for CSVDYNEX” on page 368 for input register
information for the CSVDYNEX REPLACE request.

Output register information
See “Output register information for CSVDYNEX” on page 368 for output register
information for the CSVDYNEX REPLACE request.

Syntax
The standard form of the REPLACE request on the CSVDYNEX macro is written
as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede CSVDYNEX.

CSVDYNEX macro

Chapter 38. CSVDYNEX — Provide dynamic exits services 411

http://www.ibm.com/systems/z/os/zos/bkserv/

Syntax Description

CSVDYNEX

� One or more blanks must follow CSVDYNEX.

REQUEST=REPLACE

,EXITNAME=exitname exitname: RS-type address or register (2) - (12).

,MODNAME=modname modname: RS-type address or register (2) - (12).

,MESSAGE=NO Default: MESSAGE=NO

,MESSAGE=ERROR

,MESSAGE=FOUNDBUTERROR

,DSNAME=dsname dsname: RS-type address or register (2) - (12).

,MODADDR=modaddr modaddr: RS-type address or register (2) - (12).

,STATE=UNCHANGED

,STATE=ACTIVE

,STATE=INACTIVE

,RETCODE=retcode retcode: RS-type address or register (2) - (12).

,RSNCODE=rsncode rsncode: RS-type address or register (2) - (12).

,MF=S

Parameters
The parameters are explained as follows:

REQUEST=REPLACE
Replaces an exit routine for an exit.

The following attributes of the added exit routine are maintained:
v the state (active or inactive)
v the jobname or STOKEN
v the ADDABENDNUM characteristic
v the ABENDCONSEC characteristic

The exit routine gets control in the same sequence of exit routines that the
replaced routine did.

CSVDYNEX macro

412 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

,EXITNAME=exitname
Specifies a 16-byte field (or a register containing the address of a 16-byte field)
containing the 16-character name of an exit that has been defined to the
dynamic exits facility.

If the name has fewer than 16 characters, you must left-justify the name and
pad the field with blanks.

,MODNAME=modname
Specifies an 8-byte field (or a register containing the address of an 8-byte field)
containing the name of an exit routine to be replaced for the exit.

The first character must not be X'00' or blank.

If you specify MODADDR, modname is the name of the exit routine.

If you do not specify MODADDR, modname designates a load module or alias.
The entry point of the load module or alias is the starting address of the exit
routine.

If the name has fewer than 8 characters, you must left-justify the name and
pad the field with blanks.

,MESSAGE=NO
,MESSAGE=ERROR
,MESSAGE=FOUNDBUTERROR

Specifies whether the system is to send message CSV431I to the operator if the
system encounters certain errors when processing the exit routine.
v MESSAGE=NO, the default, requests that the system send the return and

reason codes only.
v MESSAGE=ERROR requests that the system send message CSV431I if any

of the following situations are encountered:
– The exit requires reentrancy; the exit routine is not reentrant.
– The exit requires AMODE=31, but the exit routine is AMODE=24; or the

exit requires AMODE=24, but the exit routine is AMODE=31.
– The exit allows only one exit routine; one routine is already associated

with this exit.
– The exit routine could not be located.
– A CSVDYNEX REPLACE request specified that the exit routine must be

loaded from a particular data set, but that data set is not APF-authorized,
and the caller is in problem state, with PSW key 8-15, and is not
APF-authorized.

v MESSAGE=FOUNDBUTERROR requests that the system send message
CSV431I if it encounters any of the circumstances covered by
MESSAGE=ERROR, except the following circumstance:
– The exit routine could not be located.

,DSNAME=dsname
,MODADDR=modaddr

Tells the system how to find the exit routine to be added.

If neither DSNAME nor MODADDR are specified, the system attempts to find
the module using LPA, the LNKLST concatenation, and the nucleus.

DSNAME specifies a field (or a register containing the address of a field)
containing the 44-character name of a data set or library from which the
module is to be obtained. The following actions must be performed when
specifying DSNAME:

CSVDYNEX macro

Chapter 38. CSVDYNEX — Provide dynamic exits services 413

v Allocate the data set as a PDS or a PDSE.
v If the 44-character name has fewer than 44 characters, you must left-justify

the name and pad it with blanks.
v Do not specify the data set name beginning with a blank or X'00'. The

system responds as if you have specified no data set.
v If the caller is in problem state with PSW key 8 to 15, and is not

APF-authorized, the data set must be APF-authorized.
v The data set must be cataloged.

Note:

1. Specify DSNAME only if dynamic allocations are enabled within the caller's
primary address space.

2. If the data set has been migrated, your program waits for the system to
retrieve it.

MODADDR specifies a fullword (or a register containing the address of a
fullword) that contains the address of the exit routine to be added.

If the exit routine is to get control in 31-bit mode, bit 0 must be on. If the exit
routine is to get control in 24-bit mode, bit 0 must be off.

The system assumes that the designated exit routine is reentrant.

MODADDR cannot be used if the caller is in problem state with PSW key 8 to
15 and is not APF-authorized.

If you specify MODADDR, ensure that the subpool and the key where the exit
routine is stored are appropriate for the address spaces and keys in which the
exit routine can get control. For example, if you specify STOKEN, the exit
routine can be stored in the private area of the address space designated by
STOKEN. If you do not specify STOKEN, and the exit routine can be called
from other address spaces, ensure that the exit routine is stored in the common
area.

If the storage is fetch-protected, the storage key must not conflict with the PSW
key on entry to the exit routine. To prevent modification by unauthorized
users, the storage for exit routines that get control in system key must not be
PSW key 8-15.

,STATE=UNCHANGED
,STATE=ACTIVE
,STATE=INACTIVE

Specifies that you want the state of the exit routine to be unchanged or that
you want to change the state to active or inactive.

An active exit routine is associated with an exit and is called when the exit is
called.

An inactive exit routine is associated with an exit, but is not called when the
exit is called.

,RETCODE=retcode
Specifies a fullword (or a register) where the system is to store the CSVDYNEX
return code. The return code is also in GPR 15.

,RSNCODE=rsncode
Specifies a fullword (or a register) where the system is to store the CSVDYNEX
reason code. The reason code is also in GPR 0.

CSVDYNEX macro

414 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

,MF=S
Specifies the standard form of the CSVDYNEX macro.

ABEND codes
None.

Return and reason codes
See “Return and reason codes” for the return and reason codes for the CSVDYNEX
REPLACE request.

Example
None.

Return and reason codes
When the CSVDYNEX macro returns control to your program, GPR 15 (and retcode,
if you coded RETCODE) contains a return code. When the value in GPR 15 is not
zero, GPR 0 (and rsncode, if you coded RSNCODE) contains a reason code.

Macro CSVEXRET provides equate symbols for the return and reason codes. The
equate symbols associated with each return code are as follows:

0 CSVDYNEXRC_OK

4 CSVDYNEXRC_WARN

8 CSVDYNEXRC_INVPARM

C CSVDYNEXRC_ENV

10 CSVDYNEXRC_COMPERROR

The following table identifies the hexadecimal return and reason codes and the
equate symbol associated with each reason code. xxxx indicates information that
you might need to provide to IBM support personnel.

CSVDYNEX macro

Chapter 38. CSVDYNEX — Provide dynamic exits services 415

Table 44. Return and Reason Codes for the CSVDYNEX Macro

Return Code Reason Code Equate Symbol Meaning and Action

00 — Meaning: The CSVDYNEX request completed successfully.
The result depends on the request:

v DEFINE - An exit is defined.

v ADD - An exit routine is added.

v MODIFY - An exit routine is modified.

v REPLACE - An exit routine is replaced.

v DELETE - An exit routine is deleted.

v UNDEFINE - The definition of an exit is removed.

v ATTRIB - Attributes of an exit are changed.

v LIST - Information about exit routines is listed.

v CALL - An exit routine or exit routines are called.

v RECOVER - Recovery for an exit routine is completed;
there are no more exit routines to call.

v QUERY - For QTYPE=ADD, an exit routine that was
added through a PROG=xx system parameter or a
SETPROG or SET PROG=xx operator command is
associated with the exit. For QTYPE=CALL, an active
exit routine is associated with the exit. The current
JOBNAME and STOKEN of this exit routine match the
JOBNAME and STOKEN criteria specified when the exit
routine was associated with the exit.

Action: None.

04 xxxx0401 CSVDYNEXRSNALREADYEXISTS

Meaning: The request completed successfully. The result
depends on the request:

v For ADD: the exit routine was already associated with
the exit.

v For DEFINE: the exit already exists.

Action: Make sure you specified the correct exit or exit
routine name.

04 xxxx0402 CSVDYNEXRSNDOESNOTEXIST

Meaning: One of the following:

v For DELETE, MODIFY, or REPLACE: the exit routine is
not associated with the exit.

v For UNDEFINE: the exit is not defined.

Action: Make sure you specified the correct exit or exit
routine name.

04 xxxx0403 CSVDYNEXRSNNOTALLDATARETURNED

Meaning: For LIST: not all the data was returned because
the answer area is not large enough.

Action: Check the answer area field EXAAHTLEN in the
CSVEXAA mapping macro to see how much space is
required to return the information. Expand the ANSAREA
to hold all the information. Issue the CSVDYNEX macro
again, specifying, on the ANSLEN parameter, a fullword
containing a value large enough to contain the entire
answer area.

CSVDYNEX macro

416 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Table 44. Return and Reason Codes for the CSVDYNEX Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

04 xxxx0406 CSVDYNEXRSNNOMODULES

Meaning: For CALL: no active exit routines associated with
the exit match the current JOBNAME or STOKEN; that is,
no exit routines were invoked.

For QUERY (QTYPE=ADD), no exit routines (active or
inactive) are currently associated with the specified exit
through a PROG=xx parameter, SETPROG command, SET
PROG=xx command, or CSVDYNEX REQUEST=ADD
macro.

For QUERY (QTYPE=CALL), no active exit routines
associated with the exit match the current JOBNAME or
STOKEN; that is, no routines will be invoked by
CSYDYNEX REQUEST=CALL.

Action: None.

04 xxxx0407 CSVDYNEXRSNMOREMODULES

Meaning: One of the following:

v For a CALL request that specified RETINFO=ALL: there
are more exit routines to call.

v For a RECOVER request: there are more exit routines to
call.

Action: If you want the rest of the exit routines to be called
for this exit, issue the CALL request again, specifying the
NEXTTOKEN value returned from this request.

04 xxxx0408 CSVDYNEXRSNUSERKEYDELETENOFORCE

Meaning: A DELETE request was made for an exit that
was defined to be PSW key 8 or higher or ANYKEY=YES
with FASTPATH=YES. The request did not specify
FORCE=YES. The system changes the state of the exit
routine to inactive and does not free the storage for that
module.

Action: If you are sure that the exit routine can be deleted
from the system, reissue the DELETE request, specifying
FORCE=YES.

04 xxxx0409 CSVDYNEXRSNQUERYNOTFOUND

Meaning: A QUERY request was made for an exit that has
not been defined.

Action: Make sure you specified the correct exit name.

04 xxxx040A CSVDYNEXRSNIMPLICITLYDEFINED

Meaning: A QUERY request was made for an exit that has
been defined implicitly rather than explicitly. You define an
exit implicitly when:

v You add exit routines to an exit before the exit has been
defined

v You set attributes for an exit using the ATTRIB request
before the exit has been defined.

Action: Make sure you specified the correct exit name.

CSVDYNEX macro

Chapter 38. CSVDYNEX — Provide dynamic exits services 417

Table 44. Return and Reason Codes for the CSVDYNEX Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

08 xxxx0801 CSVDYNEXRSNBADPARMLIST

Meaning: Program error. The system is unable to access the
parameter list.

Action: Make sure the parameter list you passed is in the
correct PSW key.

08 xxxx0802 CSVDYNEXRSNSRBMODE

Meaning: Program error. A program running in SRB mode
entered a request that required task mode.

Action: For the specified request, do not issue the
CSVDYNEX macro while running in SRB mode.

08 xxxx0803 CSVDYNEXRSNNOTENABLED

Meaning: Program error. A program issued the
CSVDYNEX macro while running disabled for I/O or
external interrupts.

Action: Issue the CSVDYNEX macro while running
enabled for I/O or external interrupts.

08 xxxx0804 CSVDYNEXRSNNOTAUTHORIZED

Meaning: Program error. The caller is not authorized to
issue the CSVDYNEX macro for the specified request.

Action: See the authorization requirements described in the
standard syntax for the specific request you issued.

08 xxxx0805 CSVDYNEXRSNHOMENOTPRIMARY

Meaning: Program error. The system could not perform the
function because the home address space is different from
the primary address space.

Action: For the specified request, do not issue the
CSVDYNEX macro while running in cross memory mode.

08 xxxx0806 CSVDYNEXRSNBADANSAREAALET

Meaning: Program error. For LIST: the ALET of the area
specified on the ANSAREA parameter is incorrect.

Action: Ensure that the ALET is 0, or that the ALET
represents a valid entry on the DU-AL. If you specified
register notation “(n),” make sure that the ALET in register
n is correct.

08 xxxx0807 CSVDYNEXRSNBADANSAREA

Meaning: Program error. For LIST: the system found an
error when accessing the answer area specified on the
ANSAREA parameter.

Action: Ensure that the answer area address specified on
the ANSAREA parameter is valid.

CSVDYNEX macro

418 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Table 44. Return and Reason Codes for the CSVDYNEX Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

08 xxxx0808 CSVDYNEXRSNBADANSLEN

Meaning: Program error. For a LIST request: the length of
the answer area specified on the ANSLEN parameter is not
equal to or greater than the length of the EXAAHDR
structure in the CSVEXAA mapping macro.

Action: Expand the ANSAREA to a size large enough to
contain the information. On the ANSLEN parameter,
specify a fullword containing a value that is equal to or
greater than the length of the EXAAHDR structure in the
CSVEXAA mapping macro.

08 xxxx0809 CSVDYNEXRSNBADREQUESTTYPE

Meaning: Program error. The system found an incorrect
request type in the parameter list created by the
CSVDYNEX macro.

Action: Verify that your program is not overwriting the
parameter list, and that the execute form of the macro
correctly addresses the parameter list. If you are using the
modify form of the macro, make sure you specified the
COMPLETE option on at least one invocation.

08 xxxx080A CSVDYNEXRSNBADESTAE

Meaning: Program error. The CSVDYNEX macro could not
establish an ESTAEX recovery routine. xxxx is the return
code from the ESTAEX service.

Action: See the description of the ESTAEX macro for the
action associated with the xxxx return code.

08 xxxx080B CSVDYNEXRSNRESERVEDNOT0

Meaning: Program error. The system found a non-zero
reserved field in the parameter list that the CSVDYNEX
macro created.

Action: Verify that your program is not overwriting the
parameter list, and that the execute form of the macro
correctly addresses the parameter list. If you are using the
modify form of the macro, make sure you specified the
COMPLETE option on at least one invocation.

08 xxxx080D CSVDYNEXRSNBADPARMLISTALET

Meaning: Program error. The system found an error in the
ALET for the parameter list mapped by the CSVEXAA
macro.

Action: Ensure that the ALET is 0 or that the ALET
represents a valid entry on the DU-AL.

08 xxxx080E CSVDYNEXRSNBADVERSION

Meaning: Program error. The system found an incorrect
version number in the parameter list that the CSVDYNEX
macro created.

Action: Verify that your program is not overwriting the
parameter list, and that the execute form of the macro
correctly addresses the parameter list. If you are using the
modify form of the macro, make sure you specified the
COMPLETE option on at least one invocation.

CSVDYNEX macro

Chapter 38. CSVDYNEX — Provide dynamic exits services 419

Table 44. Return and Reason Codes for the CSVDYNEX Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

08 xxxx080F CSVDYNEXRSNLOCKED

Meaning: Program error. For DEFINE, ADD, MODIFY,
REPLACE, DELETE, UNDEFINE, ATTRIB and LIST
requests: the caller holds a lock.

Action: Before you issue CSVDYNEX with the specified
request, release any locks held.

08 xxxx0814 CSVDYNEXRSNNOFASTPATH

Meaning: Program error. The CALL request with
FASTPATH=YES is not valid for this exit.

Action: Redefine the exit to allow FASTPATH processing,
or specify FASTPATH=NO on the CALL request.

08 xxxx0815 CSVDYNEXRSNBADDSNAREA

Meaning: Program error. The system cannot access the data
set name.

Action: Make sure you specify the DSNAME parameter
with the correct field.

08 xxxx0816 CSVDYNEXRSNBADRETAREA

Meaning: Program error. The system cannot access the
return area.

Action: Make sure you specify the RETAREA parameter
with the correct field.

08 xxxx0817 CSVDYNEXRSNBADWORKAREA

Meaning: Program error. The system cannot access the
work area.

Action: Make sure you specify the WORKAREA parameter
with the correct field.

08 xxxx0818 CSVDYNEXRSNBADOPEN

Meaning: Program error. The system is unable to open the
specified data set.

Action: Ensure that:

v You specified the DSNAME parameter correctly

v The data set is partitioned

v The system can locate the data set.

08 xxxx0819 CSVDYNEXRSNEXITNAMENOTFOUND

Meaning: Program error. For MODIFY, REPLACE,
DELETE, CALL, and RECOVER: the system cannot locate
the exit name.

Action: Make sure you specify the correct exit name on the
EXITNAME parameter.

CSVDYNEX macro

420 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Table 44. Return and Reason Codes for the CSVDYNEX Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

08 xxxx081A CSVDYNEXRSNBADRETLEN

Meaning: Program error. For a CALL or RECOVER
request: the return area is not large enough for even one
entry.

Action: Provide a large enough return area on the
RETAREA parameter. The minimum area size can be
calculated using the assembler expression
L'EXRETHDR+L'EXRETINFO.

08 xxxx081B CSVDYNEXRSNREG2INRUB

Meaning: Program error. For a CALL request: an exit
routine is called for an exit that is defined AMODE=24 or
AMODE=DEFINED. The call specifies a register update
block (RUB) that uses register 2.

Action: Do not specify in the RUB that GPR2 is to be
passed to the exit routine.

08 xxxx081C CSVDYNEXRSNMODULENOTFOUND

Meaning: Program error. For an ADD, MODIFY, or
REPLACE request: the system could not locate the exit
routine.

Action: Make sure you specified the MODNAME
parameter correctly.

08 xxyy081D CSVDYNEXRSNNORESMGR

Meaning: Program error. The system was unable to
establish a resource manager for the exit routine. yy
contains the return code from RESMGR.

Action: See the return codes from the RESMGR macro.

08 xxxx081E CSVDYNEXRSNBADNEXTTOKEN

Meaning: Program error. For a CALL request: the value
you specified on NEXTTOKEN is not valid.

Action: Make sure the field you specified on the
NEXTTOKEN parameter is not overlaid.

08 xxxx081F CSVDYNEXRSNWORKAREABADDATA

Meaning: Program error. For a RECOVER request: the
work area contains bad data.

Action: Make sure that:

v The field you specified on the WORKAREA parameter
field is not overlaid

v The work area parameter field is the same one that was
specified on the CALL request

v The work area parameter field was not changed between
the CALL request and the RECOVER request

v You zeroed the first word of the work area before issuing
the CALL request.

CSVDYNEX macro

Chapter 38. CSVDYNEX — Provide dynamic exits services 421

Table 44. Return and Reason Codes for the CSVDYNEX Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

08 xxxx0820 CSVDYNEXRSNBADDSNAMEALET

Meaning: Program error. The system found an error in the
ALET that qualifies the data set name area you specified
on the DSNAME parameter.

Action: Make sure you specified the ALET correctly. If you
specified DSNAME=(n), you might not have set up ARn
correctly.

08 xxxx0821 CSVDYNEXRSNBADRETAREAALET

Meaning: Program error. For a CALL request: the system
found an error in the ALET that qualifies the return area
you specified on the RETAREA parameter.

Action: Make sure you specified the ALET correctly. If you
specified RETAREA=(n), you might not have set up ARn
correctly.

08 xxxx0822 CSVDYNEXRSNBADEXITNAME

Meaning: Program error. For a DEFINE, ADD, MODIFY,
REPLACE, DELETE, UNDEFINE, ATTRIB, CALL or
RECOVER request: you specified an incorrect exit name on
the EXITNAME parameter. The first character is either 0 or
blank.

Action: Correct the exit name.

08 xxxx0823 CSVDYNEXRSNBADMODNAME

Meaning: Program error. For an ADD, MODIFY, or
REPLACE request: you specified an incorrect exit routine
name on the MODNAME parameter. The first character is
either 0 or blank.

Action: Correct the exit name.

08 xxxx0824 CSVDYNEXRSNBADRUB

Meaning: Program error. For a CALL request: the system
encountered an error while accessing the RUB.

Action: Make sure the RUB area is valid.

08 xxxx0825 CSVDYNEXRSNBADRUBALET

Meaning: Program error. For a CALL request: the system
found an error in the ALET that qualifies the RUB area you
specified on the RUB parameter.

Action: Make sure you specified the ALET correctly. If you
specified RETAREA=(n), you might not have set up ARn
correctly.

08 xxxx0826 CSVDYNEXRSNBADSDWA

Meaning: Program error. For a RECOVER request: the
system encountered an error while accessing the SDWA
passed as a parameter on the RECOVER request.

Action: Make sure the SDWA address you provided on the
SDWA parameter is the one the system provided to the
recovery routine.

CSVDYNEX macro

422 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Table 44. Return and Reason Codes for the CSVDYNEX Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

08 xxxx0827 CSVDYNEXRSNBADAMODE

Meaning: Program error. For an ADD, MODIFY, or
REPLACE request: one of the following occurred:

v An exit routine with AMODE=31 is being added to an
exit that requires that its exit routines have AMODE=24.

v An exit routine with AMODE=24 is being added to an
exit that requires that its exit routines have AMODE=31.

Action: Make sure the AMODE attributes of the exit
routine to be added conform to the exit definition.

08 xxxx0828 CSVDYNEXRSNBADKEY

Meaning: Program error. One of the following:

v For DEFINE: the input key you specified on the KEY
parameter is not valid.

v For CALL FASTPATH=YES: the caller's key does not
match the key that the exit requires, according to its
definition.

Action: One of the following:

v For DEFINE: specify a valid key.

v For CALL FASTPATH=YES: change your key using the
MODESET macro to match the key that the exit requires,
according to its definition. Or redefine the key
requirement for the exit.

08 xxxx0829 CSVDYNEXRSNBADALLOC

Meaning: Program error. For an ADD, MODIFY, or
REPLACE request: the system is unable to allocate the data
set you specified on the DSNAME parameter.

Action: Ensure that:

v You specified the proper data set

v The data set is partitioned

v The data set can be located by the system.

08 xxxx082A CSVDYNEXRSNNOTREENTRANT

Meaning: Program error. For an ADD, MODIFY, or
REPLACE request: an exit routine that is not reentrant is
being added to an exit that requires that its exit routines be
reentrant.

Action: Do not add a non-reentrant exit routine to an exit
that is defined to call only reentrant routines.

08 xxxx082C CSVDYNEXRSNBADABENDCONSEC

Meaning: Program error. For a DEFINE request, an exit
that is defined as FASTPATH=YES and
ABENDCONSEC=YES does not accept a PSW key value
that is 8 or higher, or ANYKEY=YES.

Action: Correct your REQUEST=DEFINE request.

08 xxxx082D CSVDYNEXRSNBADESPIE

Meaning: Program error. A problem state caller issuing the
CALL request with FASTPATH=NO cannot have SPIE or
ESPIE routines in effect.

Action: Do not issue the CALL request when you have
SPIE or ESPIE routines in effect.

CSVDYNEX macro

Chapter 38. CSVDYNEX — Provide dynamic exits services 423

Table 44. Return and Reason Codes for the CSVDYNEX Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

08 xxxx082E CSVDYNEXRSNNOTAPFAUTHORIZED

Meaning: Program error. For an ADD, MODIFY, or
REPLACE request, the system cannot load the exit routine
from the data set you specified on the DSNAME parameter.
The data set is not APF-authorized.

Action: Specify a data set that is APF-authorized.

08 xxxx0830 CSVDYNEXRSNBADEXAAVER

Meaning: For the LIST request, an incorrect EXAAVER
value was provided to the system.

Action: Check for possible storage overlay.

08 xxxx0831 CSVDYNEXRSNANYKEYNOTRENT

Meaning: For the DEFINE request, ANYKEY=YES was
specified without REENTRANT=REQ specified.

Action: Correct your REQUEST=DEFINE request.

08 xxxx0832 CSVDYNEXRSNBADPOS

Meaning: For the ADD request, an incorrect POS value
was provided to the system.

Action: Check for possible storage overlay.

08 xxxx0833 CSVDYNEXRSNBADEXRETVER

Meaning: For the CALL or RECOVER request, an incorrect
EXRETVER value was provided to the system.

Action: Check for possible storage overlay.

0C xxxx0C02 CSVDYNEXRSNNOSTORAGE

Meaning: Environmental error. The system does not have
the storage to complete the request.

Action: Contact the system programmer. There is a
common storage shortage.

10 xxxx1001 CSVDYNEXRSNCOMPERROR

Meaning: System error.

Action: Record the return and reason codes and contact the
appropriate IBM support personnel.

Examples of the CSVDYNEX macro

Note: Of the following examples, numbers 1, 2, 8, 9, and 10 are reentrant. The
others can be made reentrant using similar constructs.

Example 1
Define an exit named MYEXIT with the following characteristics:
v Exit routines are to get control in AMODE 31
v FASTPATH=YES is allowed on REQUEST=CALL
v All CALL FASTPATH=YES requests will be in PSW key 2 (or key 0, which is

allowed regardless of the value specified via KEY).

CSVDYNEX macro

424 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

...
CSVDYNEX REQUEST=DEFINE,EXITNAME=LEX,

AMODE=31,FASTPATH=YES,KEY=2,
RETCODE=LRETCODE,RSNCODE=LRSNCODE,MF=(E,DYNEXL)

*
* Place code to check return/reason codes here......
* Data Declarations
LEX DC CL16’MYEXIT’
LMOD DC CL8’MYMOD’

CSVEXAA LIST answer area
CSVEXRET Return code information

DYNAREA DSECT
LRETCODE DS F
LRSNCODE DS F

CSVDYNEX MF=(L,DYNEXL)...

Example 2
Associate exit routine named MYMOD with exit MYEXIT. Make the routine
inactive. The load module is in data set 'MY.DSN'. When you want the exit routine
to get control, make the routine active.

CSVDYNEX REQUEST=ADD,EXITNAME=LEX,
MODNAME=LMOD,STATE=INACTIVE,DSNAME=LDSN,
RETCODE=LRETCODE,RSNCODE=LRSNCODE,MF=(E,DYNEXL)

*
* Place code to check return/reason codes here......
* Change MYMOD to be active. Leave its jobname filtering unchanged. *

CSVDYNEX REQUEST=MODIFY,EXITNAME=LEX,
MODNAME=LMOD,STATE=ACTIVE,JOBNAME=LJOB,
RETCODE=LRETCODE,RSNCODE=LRSNCODE,MF=(E,DYNEXL)

*
* Place code to check return/reason codes here...
* Data Declarations
LEX DC CL16’MYEXIT’
LMOD DC CL8’MYMOD’
LJOB DC XL8’0000000000000000’ Jobname is to be unchanged
LDSN DC CL44’MY.DSN’

CSVEXAA LIST answer area
CSVEXRET Return code information

DYNAREA DSECT
LRETCODE DS F
LRSNCODE DS F

CSVDYNEX MF=(L,DYNEXL)

Example 3
Issue the CSVDYNEX CALL request with FASTPATH=NO processing. Ask the
system to return information from the exit routine that has the highest return code.
Assume that:
v MYEXIT has been defined to be FASTPATH=NO and AMODE=31
v MYMOD has been associated with exit MYEXIT.
...

MVC LRUBBITS,=X’40040000’ Indicate regs 1,13 for exit rtn
LA 1,LPARMLIST Address of parameter list for routine.

* The parameter list must be set up
* prior to the CSVDYNEX invocation

CSVDYNEX macro

Chapter 38. CSVDYNEX — Provide dynamic exits services 425

ST 1,LRUBR1 Save in RUB register 1 slot
LA 1,LSAVEAREA Address of save area
ST 1,LRUBR13 Save in RUB register 13 slot
XC LNEXTTOKEN,LNEXTTOKEN Initialize next token

*
CSVDYNEX REQUEST=CALL,EXITNAME=LEX,

FASTPATH=NO,NEXTTOKEN=LNEXTTOKEN,
RUB=LRUB,RETINFO=HIGHEST,
RETAREA=LRETAREA,RETLEN==AL4(RETALEN),
RETCODE=LRETCODE,RSNCODE=LRSNCODE

*
NC LRSNCODE,=AL4(CSVDYNEXRSNCODEMASK) And off extra bits
CLC LRETCODE,=AL4(CSVDYNEXRC_WARN) Was there an error
BH ERROR1 Yes, process error
BL OK RC=0, have information
CLC LRSNCODE,=AL4(CSVDYNEXRSNNOMODULES) Any routines?
BE DEFAULT No routines, do default processing

OK DS 0H Process return information
LA 2,LRETAREA Get address of return area
USING EXRET,2 Return information header

* Place code to process return information here. Because the *
* request was RETINFO=HIGHEST, only one set of information is *
* returned. You can look at EXRETABEND to tell if the routine abended.*
* If it abended, EXRETABENDCODE and EXRETABENDRSNCODE are set. *
* If it did not abend, EXRETCODE, EXRETRSN, and EXRETR1 are set. *

DROP 2 Release using
DEFAULT DS 0H Process default
* Place code to process default here...
ERROR1 DS 0H Process error

* Place code to process error here...
RETALEN EQU L’EXRETHDR+L’EXRETINFO Size of return area
* This is an area big enough for one
* entry which is all that is needed since
* RETINFO=HIGHEST is specified.
LRETAREA DS (RETALEN)CL1 Return area
LEX DC CL16’MYEXIT’ Name of exit
LNEXTTOKEN DS D Next Token
LRETCODE DS F Return code
LRSNCODE DS F Reason code
LRUB DS 0XL12 RUB area
LRUBBITS DS BL.32 Register bits
LRUBR1 DS A Register 1 for exit routine
LRUBR13 DS A Register 13 for exit routine
LSAVEAREA DS 18F Standard save area
LPARMLIST DS A Parameter list

CSVEXRET Return code information

Example 4
Issue the CSVDYNEX CALL request with FASTPATH=NO processing. Ask the
system to return all information from the exit routines, limited by the space
provided in the area specified on the RETAREA keyword.
...

MVC LRUBBITS,=X’40040000’ Indicate regs 1,13 for exit rtn
LA 1,LPARMLIST Address of parameter list for routine.

* The parameter list must be set up
* prior to the CSVDYNEX invocation

ST 1,LRUBR1 Save in RUB register 1 slot
LA 1,LSAVEAREA Address of save area
ST 1,LRUBR13 Save in RUB register 13 slot
XC LNEXTTOKEN,LNEXTTOKEN Initialize next token

CSVDYNEX macro

426 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

LAB0 DS 0H
*

CSVDYNEX REQUEST=CALL,EXITNAME=LEX,
FASTPATH=NO,NEXTTOKEN=LNEXTTOKEN,
RUB=LRUB,RETINFO=ALL,
RETAREA=LRETAREA,RETLEN==AL4(RETALEN),
RETCODE=LRETCODE,RSNCODE=LRSNCODE

*
NC LRSNCODE,=AL4(CSVDYNEXRSNCODEMASK) And off extra bits
CLC LRETCODE,=AL4(CSVDYNEXRC_WARN) Was there an error
BH ERROR1 Yes, process error
BL OK RC=0, have information
CLC LRSNCODE,=AL4(CSVDYNEXRSNNOMODULES) Any routines?
BE DEFAULT No routines, do default processing

OK DS 0H Process return information
LA 2,LRETAREA Get address of return area
USING EXRET,2 Return information header
L 3,EXRET#RET Number of entries in area

* There will be 1 or 2 entries in the return information area due *
* to the request for RETINFO=ALL (if there were 0, the reason code *
* of CSVDYNEXRSNNOMODULES would have been returned, and that was *
* processed earlier). If you were dynamically allocating the return *
* information area, you could use field EXRET#REM to indicate how *
* many more entries remain so that you could allocate an area large *
* enough so that all the remaining exit routines would be called on *
* the next REQUEST=CALL. *

...
PROCENT DS 0H Process an entry

* Place code to process a return information entry here. *
* You can look at EXRETABEND to tell if the routine abended. *
* If it abended, EXRETABENDCODE and EXRETABENDRSNCODE are set. *
* If it did not abend, EXRETCODE, EXRETRSN, and EXRETR1 are set. *

LA 2,L’EXRETINFO(2) Move to next entry. Note that once
this is done, you can no longer reference the
fields in area EXRETHDR.

DROP 2 Release using
BCT 3,PROCENT If more entries, continue
CLC LRETCODE,=AL4(CSVDYNEXRC_WARN)
BNE LAB2 No more exits, done
CLC LRSNCODE,=AL4(CSVDYNEXRSNMOREMODULES)
BE LAB0 More exits, continue

LAB2 DS 0H No more exits
* Place code to process no-more-exits here...
DEFAULT DS 0H Process default
* Place code to process default here...
ERROR1 DS 0H Error
* Place code to process errors here...
* Data Declarations

RETALEN EQU L’EXRETHDR+2*L’EXRETINFO Size of return area
* Room for 2 routines’ information
* is provided
LRETAREA DS (RETALEN)CL1 Return area
LEX DC CL16’MYEXIT’ Name of exit
LNEXTTOKEN DS F Next Token
LRETCODE DS F Return code
LRSNCODE DS F Reason code
LRUB DS 0XL12 RUB area
LRUBBITS DS BL.32 Register bits

CSVDYNEX macro

Chapter 38. CSVDYNEX — Provide dynamic exits services 427

LRUBR1 DS A Register 1 for exit routine
LRUBR13 DS A Register 13 for exit routine
LSAVEAREA DS 18F Standard save area
LPARMLIST DS A Parameter list

CSVEXRET Return code information...

Example 5
Issue the CSVDYNEX CALL request with FASTPATH processing. Ask the system
to return all information from the exit routines, limited by the space provided in
the area specified on the RETAREA keyword. Provide the CSVDYNEX RECOVER
request within the recovery code you provide for an abnormally ending exit
routine.
...
* Establish recovery for the exit routine *

ST 12,MYBASEREG Save basereg for ESTAEX routine
XC FOOTPRINT,FOOTPRINT Clear footprints
ESTAEX MYESTAEX,CT,PARAM=MYPARAM...

* *
* Set up for fast-path call. Note that it is necessary to *
* clear the NextToken area (LNEXTTOKEN) prior to the first *
* REQUEST=CALL and it is necessary to clear the first *
* four bytes of the workarea prior to each REQUEST=CALL. *
* *

MVC LRUBBITS,=X’40040000’ Indicate regs 1,13 for exit rtn
LA 1,LPARMLIST Address of parameter list for routine.

* The parameter list must be set up
* prior to the CSVDYNEX invocation

ST 1,LRUBR1 Save in RUB register 1 slot
LA 1,LSAVEAREA Address of save area
ST 1,LRUBR13 Save in RUB register 13 slot
XC LNEXTTOKEN,LNEXTTOKEN Clear token

CALLEXIT DS 0H Retry label from recovery
XC LWORKAREA(4),LWORKAREA Clear first 4 bytes

* Issue REQUEST=CALL, specifying FASTPATH processing, and *
* RETINFO=ALL, meaning information about all exit routines called *
* will be returned to the RETAREA. *

LA 2,LRETAREA Return area
USING EXRET,2
XC EXRET#RET,EXRET#RET Clear the field. This ensures that

* if recovery is entered, the return area can be
* examined. See comment in REQUEST=RECOVER processing.

DROP 2
OI FOOTPRINT,INCSVDYNEX Set footprint for recovery
CSVDYNEX REQUEST=CALL,EXITNAME=LEX,

FASTPATH=YES,NEXTTOKEN=LNEXTTOKEN,
WORKAREA=LWORKAREA,RUB=LRUB,RETINFO=ALL,
RETAREA=LRETAREA,RETLEN==AL4(RETALEN),
RETCODE=LRETCODE,RSNCODE=LRSNCODE

NI FOOTPRINT,X’FF’-INCSVDYNEX Reset footprint for recovery
NC LRSNCODE,=AL4(CSVDYNEXRSNCODEMASK) And off extra bits
CLC LRETCODE,=AL4(CSVDYNEXRC_WARN) Was there an error
BH ERROR1 Yes, process error
BL OK RC=0, have information
CLC LRSNCODE,=AL4(CSVDYNEXRSNNOMODULES) Any routines?
BE DEFAULT No routines, do default processing

OK DS 0H Process return information
* Place code to process return information here...

CLC LRETCODE,=AL4(CSVDYNEXRC_WARN) Check return code
BL LAB2 Must be RC=0, no more exits, done

CSVDYNEX macro

428 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

CLC LRSNCODE,=AL4(CSVDYNEXRSNMOREMODULES) Check reason code
BE CALLEXIT More exits, continue

LAB2 DS 0H No more exits

* Place code to process no-more-exits here...
B ENDCALL Join common path

DEFAULT DS 0H Default
* Place code to process default here...

B ENDCALL Join common path
ERROR1 DS 0H Error
* Place code to process error here...

B ENDCALL Join common path
ENDCALL DS 0H Common path

ESTAEX 0 Remove recovery routine...

DS 0D Doubleword align
LWORKAREA DS CL512 Work area
RETALEN EQU L’EXRETHDR+2*L’EXRETINFO Size of return area. Room for
* 2 routines’ information is provided.
LRETAREA DS (RETALEN)CL1 Return area
LEX DC CL16’MYEXIT’ Name of exit
LNEXTTOKEN DS D Next Token
LRETCODE DS F Return code
LRSNCODE DS F Reason code
LRUB DS 0XL12 RUB area
LRUBBITS DS BL.32 Register bits
LRUBR1 DS A Register 1 for exit routine
LRUBR13 DS A Register 13 for exit routine
LSAVEAREA DS 18F Standard save area
LPARMLIST DS A Parameter list
MYPARAM DS 0F ESTAEX parameter area
MYBASEREG DS F Base register
FOOTPRINT DS X Footprint byte
INCSVDYNEX EQU X’80’ Bit 0 of footprint...
* ESTAEX routine *

MYESTAEX DS 0H
* ESTAEX routine entry linkage *

PUSH USING
DROP , Avoid using mainline’s regs yet
USING *,15 Temporary addressability
LA 3,12 No-SDWA constant
CR 0,3 Is SDWA provided
BE RLAB1 No, branch
LR 3,1 Save address of SDWA
L 2,0(1) Get address of user parameter
L 2,0(2) Get address of MYPARAM
B RLAB2 Skip No-SDWA path

RLAB1 DS 0H No SDWA
SLR 3,3 Set 0 for SDWA address

* Reg 2 has address of user parameter
RLAB2 DS 0H

* ESTABLISH addressability to mainline information *
L 12,MYBASEREG-MYPARAM(2) Get basereg
POP USING
ST 14,SAVER14 Save return address
TM FOOTPRINT,INCSVDYNEX Were we within CSVDYNEX?
BZ RLAB3 No, skip this
NI FOOTPRINT,X’FF’-INCSVDYNEX Turn off footprint

* Issue REQUEST=RECOVER. Note that this simplified example does not *
* examine return information from CSVDYNEX CALL to determine where *

CSVDYNEX macro

Chapter 38. CSVDYNEX — Provide dynamic exits services 429

* the error occurred. *
* *
* The NEXTTOKEN returned should be used on the next REQUEST=CALL *
* when the return and reason codes indicated that there were *
* more routines to call. *
* The return information (RETAREA) does not indicate (in field *
* EXRET#REM) how many more routines remain to be called. *
* The RETAREA field passed on REQUEST=CALL might have information in *
* it as well. If you zeroed the EXRET#RET field prior to the call,the *
* return area can be examined (except for EXRET#REM) as can be done *
* for REQUEST=CALL - i.e., using the EXRET#RET value to indicate *
* the number of return information entries that are present *
* (when REQUEST=CALL specified RETINFO=ALL) or the number of *
* exit routines called (when REQUEST=CALL specified HIGHEST, LOWEST *
* *
* Information is returned for each routine called, limited by amount *
* of space provided in the area specified on the RETAREA keyword. *

CSVDYNEX REQUEST=RECOVER,EXITNAME=LEX,
NEXTTOKEN=LNEXTTOKEN,WORKAREA=LWORKAREA,
RETAREA=RRETAREA,RETLEN==AL4(RRETALEN),SDWA=0(3),
RETCODE=LRETCODE,RSNCODE=LRSNCODE

NC LRSNCODE,=AL4(CSVDYNEXRSNCODEMASK) Clear unused bits
CLC LRETCODE,=AL4(CSVDYNEXRC_WARN)
BH RERROR1 RC>4 => error, stop calling
BL RLAB3 RC=0 => no more routines, CALL is done
CLC LRSNCODE,=AL4(CSVDYNEXRSNMOREMODULES) Check reason code
BNE RLAB3 No more routines, done with REQUEST=CALL
LA 15,CALLEXIT Retry label
ST 15,RETADDR Save it
B PROCREC Join common recovery

RLAB3 DS 0H No REQUEST=RECOVER needed
LA 15,ENDCALL Retry label
ST 15,RETADDR Save it

PROCREC DS 0H Process REQUEST=RECOVER return info
LA 2,RRETAREA Get address of return area
USING EXRET,2 Return information header

* Place code to process return information here. *
* There will be only one set of information returned. *
* You can look at EXRETRECOVERFLAGS to tell what happened. *
* Those flags can indicate whether there was a problem with the *
* exit routine or with the interface information that you provided. *

DROP 2 Release using
B COMMON Join common code

RERROR1 DS 0H Error case
* Put code here to process error case *...

LA 15,ENDCALL Retry label
ST 15,RETADDR Save it

COMMON DS 0H No REQUEST=RECOVER needed

* Put code here to process the rest of the recovery *...

EXIT DS 0H Exit from recovery
L 4,RETADDR Get retry address
LTR 3,3 See if SDWA exists
BZ RLAB6 No SDWA, branch
SETRP WKAREA=(3),RC=4,RETADDR=(4),FRESDWA=YES
B RLAB7

RLAB6 DS 0H No SDWA
LR 0,4 Set retry address
LA 15,4 Indicate to retry

RLAB7 DS 0H Exit from recovery
L 14,SAVER14 Restore return address

CSVDYNEX macro

430 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

BR 14 Return
SAVER14 DS A Saved return address
RETADDR DS A Retry address
RRETALEN EQU L’EXRETHDR+L’EXRETINFO Size of return area
RRETAREA DS (RETALEN)CL1 Return area

DS 0D
CSVEXAA LIST answer area
CSVEXRET Return code information
IHASDWA

Example 6
List information about all exits in the system.
...

L 2,=AL4(INITEXAA) Initial answer area size
ST 2,SIZEEXAA Save it
GETMAIN RU,LV=(2) Allocate the answer area
ST 1,EXAA@ Save address of answer area

LAB1 DS 0H
L 4,EXAA@ Address of answer area

* Issue the CSVDYNEX LIST request *

CSVDYNEX REQUEST=LIST,ANSAREA=(4),ANSLEN=SIZEEXAA,
RETCODE=LRETCODE,RSNCODE=LRSNCODE

*
CLC LRETCODE(4),=AL4(CSVDYNEXRC_WARN) Warning?
BNE LAB2 No, request successful or error

* Yes, not enough room
LR 3,2 Save current size
L 2,EXAAHTLEN-EXAAHDR(4) Get required size
FREEMAIN RU,A=(4),LV=(3) Release old area
ST 2,SIZEEXAA Save it
GETMAIN RU,LV=(2) Allocate new area
ST 1,EXAA@ Save address of answer area
B LAB1 Retry List operation

LAB2 DS 0H
CLC LRETCODE(4),=AL4(CSVDYNEXRC_OK) Success?
BNE LAB3 No, error

* Process information in answer area when RC=0 *
USING EXAAHDR,4 EXAAHDR DSECT
L 5,EXAAH#REC Find how many EXAAE entries
LTR 5,5 Are there any entries
BZ LAB4 No, join common path
L 4,EXAAHFIRST@ Get first entry
USING EXAAE,4 EXAAE DSECT

LAB5 DS 0H EXAAE loop
*
* Put code to process information contained in EXAAE here...

LH 7,EXAAE#ENT Get number of EXAAM entries
N 7,CLEAR0TO15 Clear bits 0 to 15

* Are there any routines
BZ LAB7 No, move to end of EXAAE loop
L 6,EXAAEFIRSTENT@ Get first EXAAM

LAB6 DS 0H EXAAM loop
USING EXAAM,6 EXAAM DSECT

* Put code to process information contained in EXAAM here...
L 6,EXAAMNEXT@ Get next EXAAM
DROP 6 EXAAM DSECT
BCT 7,LAB6 Continue while there are more

LAB7 DS 0H Bottom of EXAAE loop
L 4,EXAAENEXT@ Get next EXAAE
BCT 5,LAB5 Continue while there are more

CSVDYNEX macro

Chapter 38. CSVDYNEX — Provide dynamic exits services 431

B LAB4 Skip error case
LAB3 DS 0H Error return
* Process error case *...
LAB4 DS 0H Common path

L 2,SIZEEXAA Get size of area
L 4,EXAA@ Get address of area
FREEMAIN RU,A=(4),LV=(2) Release area...

* Data Declarations
EXAA@ DS A Address of answer area
SIZEEXAA DS F Size of answer area
TEMPSIZE DS F Temporary
MODLEN EQU 20*EXAAM_LEN Room for 20 routines’ information
EXLEN EQU 10*EXAAE_LEN Room for 10 exits’ information
INITEXAA EQU EXAAHDR_LEN+MODLEN+EXLEN Initial size of answer area
LRETCODE DS F Return code
LRSNCODE DS F Reason code
CLEAR0TO15 DC X’0000FFFF’ Mask to clear bits 0-15

CSVEXAA LIST answer area
CSVEXRET Return code information

Example 7
Determine if a particular exit has any routines associated with it at this moment.
You might use this request if the setup for the CSVDYNEX CALL was very
extensive.
...

CSVDYNEX REQUEST=QUERY,EXITNAME=LEX,QTYPE=CALL,
WORKAREA=LWORKAREA,
RETCODE=LRETCODE,RSNCODE=LRSNCODE

NC LRSNCODE,=AL4(CSVDYNEXRSNCODEMASK) Clear unused bits
CLC LRETCODE,=AL4(CSVDYNEXRC_WARN)
BE LAB1 Warning, didn’t find any routines
BH ERROR1 Some sort of error

* Otherwise, RC=0

* Place code to set up and call the exit using REQUEST=CALL here...
B LAB9 Join common path

LAB1 DS 0H No routines found
* Possible reason codes at this point are:
* CSVEXRETRSNNOMODULES,
* CSVEXRETRSNQUERYNOTFOUND, and
* CSVEXRETRSNIMPLICITLYDEFINED.
* Place code to process default here
*

B LAB9 Join common path
ERROR1 DS 0H Error
*

* Handle other conditions...
* Data Declarations
LAB9 DS 0H End of processing

DS 0D Doubleword align
LWORKAREA DS CL512 Work area
LEX DC CL16’MYEXIT’ Name of exit
LRETCODE DS F Return code
LRSNCODE DS F Reason code

CSVEXAA LIST answer area
CSVEXRET Return code information

CSVDYNEX macro

432 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Example 8
Tell the system how to handle information that returns from multiple routines. In
this example, if the return code from an exit routine is greater than the value 4
(KEEPRCCOMP=GT and KEEPRC parameters), and the issuer of CSVDYNEX
REQUEST=CALL specified RETINFO=LAST, RETINFO=LOWEST, or
RETINFO=HIGHEST, the system keeps the return code and passes it back to the
caller of the exit.
...

CSVDYNEX REQUEST=ATTRIB,EXITNAME=LEX,
KEEPRC=KEEPRCCVAL,KEEPRCCOMP=GT,
RETCODE=LRETCODE,RSNCODE=LRSNCODE,MF=(E,MYPLIST)

* CHECK return codes...

* Data Declarations
LEX DC CL16’MYEXIT’ Name of exit
KEEPRCCVAL DC F’4’ Keep any return code > this
DYNAREA DSECT
LRETCODE DS F Return code
LRSNCODE DS F Reason code

CSVDYNEX MF=(L,MYPLIST) Define storage
CSVEXAA LIST answer area
CSVEXRET Return code information

Example 9
Delete routine MYMOD from exit MYEXIT.
...

CSVDYNEX REQUEST=DELETE,EXITNAME=LEX,
MODNAME=LMOD,
RETCODE=LRETCODE,RSNCODE=LRSNCODE,MF=(E,DYNEXL)

*
* Place code to check return/reason codes here...
* Data Declarations
LEX DC CL16’MYEXIT’
LMOD DC CL8’MYMOD’

CSVEXAA LIST answer area
CSVEXRET Return code information

DYNAREA DSECT
LRETCODE DS F
LRSNCODE DS F

CSVDYNEX MF=(L,DYNEXL)

Example 10
Remove the definition of MYEXIT.

CSVDYNEX REQUEST=UNDEFINE,EXITNAME=LEX,
RETCODE=LRETCODE,RSNCODE=LRSNCODE,MF=(E,DYNEXL)

* Place code to check return/reason codes here...
* Data Declarations
LEX DC CL16’MYEXIT’

CSVEXAA LIST answer area
CSVEXRET Return code information

DYNAREA DSECT
LRETCODE DS F
LRSNCODE DS F

CSVDYNEX MF=(L,DYNEXL)

CSVDYNEX macro

Chapter 38. CSVDYNEX — Provide dynamic exits services 433

CSVDYNEX - List form
Use the list form of the CSVDYNEX macro together with the execute form of the
macro for applications that require reentrant code. The list form of the macro
defines an area of storage, which the execute form of the macro uses to store the
parameters.

The list form of the CSVDYNEX macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede CSVDYNEX.

CSVDYNEX

� One or more blanks must follow CSVDYNEX.

MF=(L,list addr) list addr: symbol.

MF=(L,list addr,attr) attr: 1- to 60-character input string.

MF=(L,list addr,0D) Default: 0D

Parameters
The parameters are explained under the standard form of the CSVDYNEX macro
with the following exception:

MF=(L,list addr)
MF=(L,list addr,attr)
MF=(L,list addr,0D)

Specifies the list form of the CSVDYNEX macro.

list addr is the name of a storage area to contain the parameters.

attr is an optional 1- to 60-character input string, which can contain any value
that is valid on an assembler DS pseudo-op. You can use this parameter to
force boundary alignment of the parameter list. If you do not code attr, the
system provides a value of 0D, which forces the parameter list to a
doubleword boundary.

CSVDYNEX - Modify form
Use the modify form of the CSVDYNEX macro together with the list and execute
forms of the macro for service routines that need to provide different options
according to user-provided input. Use the list form to define a storage area; use the
modify form to set the appropriate options; then use the execute form to call the
service.

The modify form of the CSVDYNEX macro is written as follows:

CSVDYNEX macro

434 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede CSVDYNEX.

CSVDYNEX

� One or more blanks must follow CSVDYNEX.

The parameters on the modify form are identical to those on the standard
form with the following exceptions:

- FASTPATH is not valid on the modify form.

- MF, COMPLETE, and NOCHECK are listed below.

The following list tells you where to look for the syntax diagrams of the
standard form of CSVDYNEX.

REQUEST=DEFINE — in “Define an exit” on page 369

REQUEST=ADD — in “Add an exit routine to an exit” on page 376

REQUEST=MODIFY — in “Change the state of an exit routine” on page
383

REQUEST=DELETE — in “Delete an exit routine from an exit” on page
386

REQUEST=UNDEFINE — in “Remove the definition of an exit” on
page 389

REQUEST=ATTRIB — in “Change the attributes of an exit” on page 391

REQUEST=LIST — in “List information about one or more exits” on
page 395

REQUEST=CALL — in “Call one or more exit routines at an exit” on
page 398

REQUEST=RECOVER — in “Provide recovery for an exit routine that
abnormally ended” on page 404

REQUEST=QUERY — in “Determine whether an exit routine exists for
an exit” on page 407

,MF=(M,list-addr,COMPLETE) list-addr: RX-type address or register (2) - (12).

,MF=(M,list-addr,NOCHECK) Default: COMPLETE.

Parameters
Parameters for the modify form of CSVDYNEX are described in the standard form
of the macro with the following exceptions:

,MF=(M,list-addr,COMPLETE)

CSVDYNEX macro

Chapter 38. CSVDYNEX — Provide dynamic exits services 435

,MF=(M,list-addr,NOCHECK)
Specifies the modify form of the CSVDYNEX macro.

list-addr specifies the area that the system uses to store the parameters.

COMPLETE, which is the default, specifies that the system is to check for
required parameters and supply optional parameters that you did not specify.

NOCHECK specifies that the system does not check for required parameters
and does not supply the optional parameters that you did not specify.

When using the NOCHECK option with the modify or execute forms, be sure
that it is preceded by a modify or execute form invocation that specifies or
defaults to the COMPLETE option. This ensures that the parameter list is
initialized completely.

IBM recommends that you use the modify and execute forms of CSVDYNEX in
the following order:
v Use CSVDYNEX REQUEST=...MF=(M,list-addr,COMPLETE) specifying

appropriate parameters, including all required ones.
v Use CSVDYNEX REQUEST=...MF=(M,list-addr,NOCHECK), specifying the

parameters that you want to change.
v Use CSVDYNEX REQUEST=...MF=(E,list-addr,NOCHECK), to execute the macro.

CSVDYNEX - Execute form
Use the execute form of the CSVDYNEX macro together with the list form of the
macro for applications that require reentrant code. The execute form of the macro
stores the parameters into the storage area defined by the list form.

The execute form of the CSVDYNEX macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede CSVDYNEX.

CSVDYNEX

� One or more blanks must follow CSVDYNEX.

The parameters on the execute form are identical to those on the standard
form with the exception of the MF, COMPLETE, and NOCHECK parameters
listed below.

The following list tells you where to look for the syntax diagrams of the
standard form of CSVDYNEX.

REQUEST=DEFINE — in “Define an exit” on page 369

REQUEST=ADD — in “Add an exit routine to an exit” on page 376

CSVDYNEX macro

436 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Syntax Description

REQUEST=MODIFY — in “Change the state of an exit routine” on page
383

REQUEST=DELETE — in “Delete an exit routine from an exit” on page
386

REQUEST=UNDEFINE — in “Remove the definition of an exit” on
page 389

REQUEST=ATTRIB — in “Change the attributes of an exit” on page 391

REQUEST=LIST — in “List information about one or more exits” on
page 395

REQUEST=CALL — in “Call one or more exit routines at an exit” on
page 398

REQUEST=RECOVER — in “Provide recovery for an exit routine that
abnormally ended” on page 404

REQUEST=QUERY — in “Determine whether an exit routine exists for
an exit” on page 407

The REQUEST parameter is required, even when you specify the
NOCHECK parameter.

,MF=(E,list-addr,COMPLETE) list-addr: RX-type address or register (2) - (12).

,MF=(E,list-addr,NOCHECK) Default: COMPLETE.

Parameters
The parameters are explained under the standard form of the CSVDYNEX macro
with the following exceptions:

,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

Specifies the execute form of the CSVDYNEX macro.

list addr specifies the area that the system uses to store the parameters.

COMPLETE, which is the default, specifies that the system is to check for
required parameters and supply optional parameters that you did not specify.

NOCHECK specifies that the system does not check for required parameters
and does not supply the optional parameters that you did not specify.

CSVDYNEX macro

Chapter 38. CSVDYNEX — Provide dynamic exits services 437

CSVDYNEX macro

438 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Chapter 39. CSVDYNL — Provide dynamic LNKLST services

CSVDYNL provides an interface to request dynamic LNKLST services. With
CSVDYNL, you can request services for the following operations:
v Define a LNKLST set that can be used as the LNKLST concatenation

(REQUEST=DEFINE).
v Add a data set to a LNKLST set (REQUEST=ADD).
v Delete a data set from a LNKLST set (REQUEST=DELETE).
v Remove the definition of a LNKLST set (REQUEST=UNDEFINE).
v Test to determine if a module can be located in a LNKLST set

(REQUEST=TEST).
v Obtain a list of LNKLST sets and users (REQUEST=LIST).
v Update jobs and address spaces to use the current LNKLST set

(REQUEST=UPDATE).
v Query information about support for LNKLST services

(REQUEST=QUERYDYN).

Following the descriptions of the standard forms of all requests are:
v The return and reason codes, see “Return and reason codes” on page 480.
v Examples of using CSVDYNL, see “Examples” on page 487.

REQUEST=DEFINE option of CSVDYNL
REQUEST=DEFINE allows you to define a LNKLST set for the LNKLST
concatenation.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: SAF authority to the FACILITY class. If SAF is not available,

or has no pertinent information, then the caller must be
supervisor state or PKM 0-7, or PSW key 0-7, or
APF-authorized. The SAF entity name and authorization
level applied is UPDATE authority to FACILITY class entity
CSVDYNL.lnklstname.DEFINE

Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: The caller must not be locked.
Control parameters: Control parameters must be in the primary address space or,

for AR-mode callers, must be in an address/data space that
is addressable through a public entry on the caller's
dispatchable unit access list (DU-AL).

© Copyright IBM Corp. 1988, 2013 439

Programming requirements
The caller should include the CSVDLAA macro to get equate symbols for the
return and reason codes.

Restrictions
The caller must not have functional recovery routines (FRRs) established.

Input register information
Before issuing the CSVDYNL macro, the caller does not have to place any
information into any general purpose register (GPR) unless using it in register
notation for a particular parameter, or using it as a base register.

Before issuing the CSVDYNL macro, the caller does not have to place any
information into any access register (AR) unless using it in register notation for a
particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0 Reason code if GPR15 is not 0

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
The CSVDYNL macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

CSVDYNL macro

440 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Syntax Description

� One or more blanks must precede CSVDYNL.

CSVDYNL

� One or more blanks must follow CSVDYNL.

REQUEST=DEFINE

,LNKLSTNAME=lnklstname lnklstname: RS-type address or address in register (2) - (12).

,COPYFROM=copyfrom copyfrom: RS-type address or address in register (2) - (12).

,COPYFROM=NO_COPY Default: COPYFROM=NO_COPY

,CHECKSYS1=YES Default: CHECKSYS1=YES

,CHECKSYS1=NO

,RETCODE=retcode retcode: RS-type address or register (2) - (12).

,RSNCODE=rsncode rsncode: RS-type address or register (2) - (12).

,PLISTVER=IMPLIED_VERSION Default: PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0

,MF=S Default: MF=S

,MF=(L,list addr) list addr: RS-type address or register (1) - (12).

,MF=(L,list addr,attr)

,MF=(L,list addr,0D)

,MF=(E,list addr)

,MF=(E,list addr,COMPLETE)

,MF=(E,list addr,NOCHECK)

,MF=(M,list addr)

,MF=(M,list addr,COMPLETE)

,MF=(M,list addr,NOCHECK)

Parameters
The parameters are explained as follows:

CSVDYNL macro

Chapter 39. CSVDYNL — Provide dynamic LNKLST services 441

name
An optional symbol, starting in column 1, that is the name on the CSVDYNL
macro invocation. The name must conform to the rules for an ordinary
assembler language symbol.

REQUEST=DEFINE
A required parameter. REQUEST is required even when
MF=(E,label,NOCHECK) is specified. REQUEST=DEFINE indicates to define a
LNKLST set.

,LNKLSTNAME=lnklstname
A required input parameter that contains the name of the LNKLST set. For
IBM-provided LNKLST sets, this name should begin with the letters SYS. The
first character must not be X'00' or blank. It is recommended that the name use
characters from among the set of alphanumerics, special (@#$), underscore, and
period. There should be no imbedded blanks. Avoid using the names
"CURRENT" and "IPL". The first is reserved to mean "the current LNKLST".
The other is reserved to mean the LNKLST defined via the LNKLSTxx parmlib
members and the LNK parameter of the IEASYSxx parmlib member.

To code: Specify the RS-type address, or address in register (2)-(12), of a
16-character field.

,COPYFROM=copyfrom
,COPYFROM=NO_COPY

An optional input parameter that contains the name of the LNKLST set to be
copied in order to initialize the LNKLST set being defined. If "CURRENT" is
specified, the current LNKLST set will be used. By default, the LNKLST set
being defined will contain the LINKLIB, MIGLIB, CSSLIB, LINKLIBE and
MIGLIBE data sets (SYS1.LINKLIB, SYS1.MIGLIB, SYS1.CSSLIB,
SYS1.SIEALNKE, and SYS1.SIEAMIGE, unless overridden by the SYSLIB
statement of PROGxx). The default is NO_COPY.

To code: Specify the RS-type address, or address in register (2)-(12), of a
16-character field.

,CHECKSYS1=YES
,CHECKSYS1=NO

An optional parameter that indicates whether the LNKLST set must contain
SYS1.LINKLIB, SYS1.MIGLIB, SYS1.CSSLIB, SYS1.SIEALNKE, and
SYS1.SIEAMIGE. The default is CHECKSYS1=YES.

,CHECKSYS1=YES
specifies that the LNKLST set must contain SYS1.LINKLIB, SYS1.MIGLIB,
and SYS1.CSSLIB.

,CHECKSYS1=NO
specifies that the LNKLST set does not need to contain one or more of the
following:
v SYS1.LINKLIB
v SYS1.MIGLIB
v SYS1.CSSLIB

When CHECKSYS1=NO is specified, it is the customer's responsibility to
have an alternate data set for each SYS1.xxxLIB data set that is not in the
LNKLST set, and that data set must contain all of the information present
in the SYS1.xxxLIB data set. Be aware that all LNKLST sets begin with the
LINKLIB, MIGLIB, and CSSLIB data sets as defined by the SYSLIB
statement of the PROGxx parmlib member. These data sets default to
SYS1.xxxLIB. Thus the only way to create a LNKLST set without one or

CSVDYNL macro

442 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

more of the SYS1.xxxLIB data sets is to have used the SYSLIB statement to
provide a different name for those data sets.

This option should be used with care. It might be used, for instance, to
allow for compressing of SYS1.LINKLIB after additional members have
been added to it. Since compressing can only safely be done when the data
set is not allocated, the data set must not be in use as an active LNKLST.
The following protocol could be used, for instance:
v Use the SYSLIB statement of the PROGxx parmlib member during IPL to

define alternate names for the LINKLIB, MIGLIB, and CSSLIB data sets.
v Create a data set that contains a copy of SYS1.LINKLIB.
v DEFINE a LNKLST set that is the same as the current one, but has the

new data set in place of SYS1.LINKLIB.
v ACTIVATE that new LNKLST set.
v Stop the library lookaside (LLA) facility.
v UPDATE jobs to use the new LNKLST set. There are cautions associated

with using the UPDATE function that you need to be aware of. After
doing the UPDATE and stopping LLA, SYS1.LINKLIB should no longer
be allocated.

v Compress SYS1.LINKLIB.
v ACTIVATE the previous LNKLST set.
v UPDATE jobs to use that LNKLST set.
v Start LLA.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from
GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2) - (12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from
GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2) - (12).

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an
optional input parameter on all forms of the macro, including the list form.
When using PLISTVER, specify it on all macro forms used for a request and
with the same value on all of the macro forms. The values are:
v IMPLIED_VERSION, which is the lowest version that allows all parameters

specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.
If you can tolerate the size change, IBM recommends that you always
specify PLISTVER=MAX on the list form of the macro. Specifying MAX
ensures that the list-form parameter list is always long enough to hold all
the parameters you might specify on the execute form, when both are
assembled with the same level of the system. In this way, MAX ensures that
the parameter list does not overwrite nearby storage.

CSVDYNL macro

Chapter 39. CSVDYNL — Provide dynamic LNKLST services 443

v 0, if you use the currently available parameters.

To code: Specify one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 0

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)
,MF=(E,list addr,NOCHECK)
,MF=(M,list addr)
,MF=(M,list addr,COMPLETE)
,MF=(M,list addr,NOCHECK)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline
parameter list and generates the macro invocation to transfer control to the
service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with
the execute form of the macro for applications that require reentrant code. The
list form defines an area of storage that the execute form uses to store the
parameters. Only the PLISTVER parameter may be coded with the list form of
the macro.

Use MF=E to specify the execute form of the macro. Use the execute form
together with the list form of the macro for applications that require reentrant
code. The execute form of the macro stores the parameters into the storage area
defined by the list form, and generates the macro invocation to transfer control
to the service.

Use MF=M together with the list and execute forms of the macro for service
routines that need to provide different options according to user-provided
input. Use the list form to define a storage area; use the modify form to set the
appropriate options; then use the execute form to call the service.

IBM recommends that you use the modify and execute forms of CSVDYNL in
the following order:
v Use CSVDYNL ...MF=(M,list-addr,COMPLETE) specifying appropriate

parameters, including all required ones.
v Use CSVDYNL ...MF=(M,list-addr,NOCHECK), specifying the parameters

that you want to change.
v Use CSVDYNL ...MF=(E,list-addr,NOCHECK), to execute the macro.

,list addr
The name of a storage area to contain the parameters. For MF=S, MF=E,
and MF=M, this can be an RS-type address or an address in register (1) -
(12).

,attr
An optional 1- to 60-character input string that you use to force boundary
alignment of the parameter list. Use a value of 0F to force the parameter
list to a word boundary, or 0D to force the parameter list to a doubleword
boundary. If you do not code attr, the system provides a value of 0D.

CSVDYNL macro

444 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

,COMPLETE
Specifies that the system is to check for required parameters and supply
defaults for omitted optional parameters.

,NOCHECK
Specifies that the system is not to check for required parameters and is not
to supply defaults for omitted optional parameters.

ABEND codes
None.

Return and reason codes
See “Return and reason codes” on page 480 for the return and reason codes.

Examples
See “Examples” on page 487 for an example.

REQUEST=ADD option of CSVDYNL
REQUEST=ADD allows you to add a data set to a LNKLST set.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: SAF authority to the FACILITY class. If SAF is not available,

or has no pertinent information, then the caller must be
supervisor state or PKM 0-7, or PSW key 0-7, or
APF-authorized. The SAF entity name and authorization
level applied is

UPDATE authority to FACILITY class entity
CSVDYNL.lnklstname.ADD

Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: The caller must not be locked.
Control parameters: Control parameters must be in the primary address space or,

for AR-mode callers, must be in an address/data space that
is addressable through a public entry on the caller's
dispatchable unit access list (DU-AL).

The user-provided data set name via the DSNAME
parameter has the same requirements and restrictions as the
control parameters.

The user-provided data set name via the AFTERDSNAME
parameter has the same requirements and restrictions as the
control parameters.

The user-provided data set name via the PROBDSNAME
parameter has the same requirements and restrictions as the
control parameters.

CSVDYNL macro

Chapter 39. CSVDYNL — Provide dynamic LNKLST services 445

Programming requirements
The caller should include the CSVDLAA macro to get equate symbols for the
return and reason codes.

Restrictions
The caller must not have functional recovery routines (FRRs) established.

Input register information
Before issuing the CSVDYNL macro, the caller does not have to place any
information into any general purpose register (GPR) unless using it in register
notation for a particular parameter, or using it as a base register.

Before issuing the CSVDYNL macro, the caller does not have to place any
information into any access register (AR) unless using it in register notation for a
particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0 Reason code if GPR15 is not 0

1 Used as a work register by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
The CSVDYNL macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

CSVDYNL macro

446 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Syntax Description

� One or more blanks must precede CSVDYNL.

CSVDYNL

� One or more blanks must follow CSVDYNL.

REQUEST=ADD

,LNKLSTNAME=lnklstname lnklstname: RS-type address or address in register (2) - (12).

,DSNAME=dsname dsname: RS-type address or address in register (2) - (12).

,VOLUME=volume volume: RS-type address or address in register (2) - (12).

,VOLUME=CATALOG Default: VOLUME=CATALOG

,POS=BOTTOM Default: POS=BOTTOM

,POS=TOP

,POS=AFTER

,AFTERDSNAME=afterdsname afterdsname: RS-type address or address in register (2) - (12).

,CHECKCONCAT=NO Default: CHECKCONCAT=NO

,CHECKCONCAT=YES

,PROBDSNAME=probdsname probdsname: RS-type address or address in register (2) - (12).

,RETCODE=retcode retcode: RS-type address or register (2) - (12).

,RSNCODE=rsncode rsncode: RS-type address or register (2) - (12).

,PLISTVER=IMPLIED_VERSION Default: PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0

,MF=S Default: MF=S

,MF=(L,list addr) list addr: RS-type address or register (1) - (12)

,MF=(L,list addr,attr)

,MF=(L,list addr,0D)

,MF=(E,list addr)

,MF=(E,list addr,COMPLETE)

CSVDYNL macro

Chapter 39. CSVDYNL — Provide dynamic LNKLST services 447

Syntax Description

,MF=(E,list addr,NOCHECK)

,MF=(M,list addr)

,MF=(M,list addr,COMPLETE)

,MF=(M,list addr,NOCHECK)

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the CSVDYNL
macro invocation. The name must conform to the rules for an ordinary
assembler language symbol.

REQUEST=ADD
A required parameter. REQUEST is required even when
MF=(E,label,NOCHECK) is specified. REQUEST=ADD indicates to add a data
set to a LNKLST set. You cannot add a data set to any active LNKLST set
(either the current set, or prior sets that are still in use). You cannot add a data
set to LNKLST sets "CURRENT" and "IPL."

Note that if any data set in the LNKLST set is migrated, the issuer's unit of
work will wait until the data set is retrieved before continuing.

The system keeps track of the volume on which the data set resides as well as
whether or not the data set is managed by the storage management subsystem
(SMS). Once the system has determined these values for a data set within a
LNKLST set, any of the following will result in an error when the system
attempts to allocate the LNKLST set:
v A data set has changed from not SMS-managed to SMS-managed, or vice

versa;
v A data set that is not SMS-managed is deleted and then reallocated on

another volume

The system flags these cases as errors because they might indicate that the
LNKLST set is not what the user expects, and in particular, the APF
authorization of the data set might not be as expected. In both cases, if you do
want the new data set, you must delete the data set from the LNKLST set and
then re-add it.

,LNKLSTNAME=lnklstname
A required input parameter that contains the name of the LNKLST set.

To code: Specify the RS-type address, or address in register (2) - (12), of a
16-character field.

,DSNAME=dsname
A required input parameter that contains the name of the data set or library to
be added to the LNKLST set. The data set must be cataloged. It may be
allocated as a PDS or as a PDSE.

Note that if the data set is migrated, the issuer's unit of work will wait until
the data set is retrieved before continuing.

To code: Specify the RS-type address, or address in register (2) - (12), of a
44-character field.

CSVDYNL macro

448 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

,VOLUME=volume
,VOLUME=CATALOG

An optional input parameter that contains the name of the volume on which
the data set resides. Be aware that even when this option is specified, the data
set must reside on the volume indicated by the "normal" catalog. If used
during IPL when only the master catalog is available, the volume ID will be
checked once the "normal" catalog is available. The ADD will be rejected if the
specified volume did not match the volume indicated by the catalog. You can
use a value of "******" to indicate that the data set is located on the current
SYSRES volume. You can use a value of "*MCAT*" to indicate that the data set
is located on the volume containing the master catalog. The default is
CATALOG.

To code: Specify the RS-type address, or address in register (2) - (12), of a
6-character field.

,POS=BOTTOM
,POS=TOP
,POS=AFTER

An optional parameter that indicates where in the list to place the data set. The
default is POS=BOTTOM.

,POS=BOTTOM
specifies to place the data set at the bottom or end of the list.

,POS=TOP
specifies to place the data set at the top or start of the list. Note that the
system always places the LINKLIB, MIGLIB, CSSLIB, SIEALNKE, and
SIEAMIGE data sets at the top of the list. Thus POS=TOP would indicate
to place the data set immediately after the CSSLIB data set.

,POS=AFTER
specifies to place the data set after the data set named by the
AFTERDSNAME parameter. Note that you cannot place the data set in
between two of the system libraries that are always present in the
LNKLST. Thus you cannot specify the LINKLIB or MIGLIB data set via the
AFTERDSNAME parameter. You also cannot specify the CSSLIB data set
via "AFTER=xx". Use POS=TOP if you want the data set to be placed into
the LNKLST immediately after the CSSLIB data set.

,AFTERDSNAME=afterdsname
When POS=AFTER is specified, a required input parameter that contains the
name of the data set or library after which the data set named by the
DSNAME parameter is to be placed within the LNKLST set. The data set must
be cataloged.

To code: Specify the RS-type address, or address in register (2) - (12), of a
44-character field.

,CHECKCONCAT=NO
,CHECKCONCAT=YES

An optional parameter that indicates whether to check if the concatenation
defined by the LNKLST set is full. The default is CHECKCONCAT=NO.

,CHECKCONCAT=NO
specifies not to check if the concatenation is full. If the concatenation
actually is full, the situation will be caught when the LNKLST set is
activated.

,CHECKCONCAT=YES
specifies to check if the concatenation is full. This implies that all the data

CSVDYNL macro

Chapter 39. CSVDYNL — Provide dynamic LNKLST services 449

sets in the LNKLST set must be allocated and concatenated together. The
system processing for this option will be longer than when
CHECKCONCAT=NO is specified.

,PROBDSNAME=probdsname
An optional output parameter that is to contain the name of the "problem"
data set or library for which processing failed. The library either could not be
allocated, opened, or caused the extent limit to be exceeded.

To code: Specify the RS-type address, or address in register (2) - (12), of a
44-character field.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from
GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2) - (12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from
GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2) - (12).

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an
optional input parameter on all forms of the macro, including the list form.
When using PLISTVER, specify it on all macro forms used for a request and
with the same value on all of the macro forms. The values are:
v IMPLIED_VERSION, which is the lowest version that allows all parameters

specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.
If you can tolerate the size change, IBM recommends that you always
specify PLISTVER=MAX on the list form of the macro. Specifying MAX
ensures that the list-form parameter list is always long enough to hold all
the parameters you might specify on the execute form, when both are
assembled with the same level of the system. In this way, MAX ensures that
the parameter list does not overwrite nearby storage.

v 0, if you use the currently available parameters.

To code: Specify one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 0

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)
,MF=(E,list addr,NOCHECK)
,MF=(M,list addr)

CSVDYNL macro

450 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

,MF=(M,list addr,COMPLETE)
,MF=(M,list addr,NOCHECK)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline
parameter list and generates the macro invocation to transfer control to the
service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with
the execute form of the macro for applications that require reentrant code. The
list form defines an area of storage that the execute form uses to store the
parameters. Only the PLISTVER parameter may be coded with the list form of
the macro.

Use MF=E to specify the execute form of the macro. Use the execute form
together with the list form of the macro for applications that require reentrant
code. The execute form of the macro stores the parameters into the storage area
defined by the list form, and generates the macro invocation to transfer control
to the service.

Use MF=M together with the list and execute forms of the macro for service
routines that need to provide different options according to user-provided
input. Use the list form to define a storage area; use the modify form to set the
appropriate options; then use the execute form to call the service.

IBM recommends that you use the modify and execute forms of CSVDYNL in
the following order:
v Use CSVDYNL ...MF=(M,list-addr,COMPLETE) specifying appropriate

parameters, including all required ones.
v Use CSVDYNL ...MF=(M,list-addr,NOCHECK), specifying the parameters

that you want to change.
v Use CSVDYNL ...MF=(E,list-addr,NOCHECK), to execute the macro.

,list addr
The name of a storage area to contain the parameters. For MF=S, MF=E,
and MF=M, this can be an RS-type address or an address in register (1) -
(12).

,attr
An optional 1- to 60-character input string that you use to force boundary
alignment of the parameter list. Use a value of 0F to force the parameter
list to a word boundary, or 0D to force the parameter list to a doubleword
boundary. If you do not code attr, the system provides a value of 0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply
defaults for omitted optional parameters.

,NOCHECK
Specifies that the system is not to check for required parameters and is not
to supply defaults for omitted optional parameters.

ABEND codes
None.

Return and reason codes
See “Return and reason codes” on page 480 for the return and reason codes.

CSVDYNL macro

Chapter 39. CSVDYNL — Provide dynamic LNKLST services 451

Examples
See “Examples” on page 487 for an example.

REQUEST=DELETE option of CSVDYNL
REQUEST=DELETE deletes a data set from a LNKLST set.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: SAF authority to the FACILITY class. If SAF is not available,

or has no pertinent information, then the caller must be
supervisor state or PKM 0-7, or PSW key 0-7, or
APF-authorized. The SAF entity name and authorization
level applied is

UPDATE authority to FACILITY class entity
CSVDYNL.lnklstname.DELETE

Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: The caller must not be locked.
Control parameters: Control parameters must be in the primary address space or,

for AR-mode callers, must be in an address/data space that
is addressable through a public entry on the caller's
dispatchable unit access list (DU-AL).

The user-provided data set name via the DSNAME
parameter has the same requirements and restrictions as the
control parameters.

Programming requirements
The caller should include the CSVDLAA macro to get equate symbols for the
return and reason codes.

Restrictions
The caller must not have functional recovery routines (FRRs) established.

Input register information
Before issuing the CSVDYNL macro, the caller does not have to place any
information into any general purpose register (GPR) unless using it in register
notation for a particular parameter, or using it as a base register.

Before issuing the CSVDYNL macro, the caller does not have to place any
information into any access register (AR) unless using it in register notation for a
particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:

CSVDYNL macro

452 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Register
Contents

0 Reason code if GPR15 is not 0

1 Used as a work register by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
The CSVDYNL macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede CSVDYNL.

CSVDYNL

� One or more blanks must follow CSVDYNL.

REQUEST=DELETE

,LNKLSTNAME=lnklstname lnklstname: RS-type address or address in register (2) - (12).

,DSNAME=dsname dsname: RS-type address or address in register (2) - (12).

,RETCODE=retcode retcode: RS-type address or register (2) - (12).

CSVDYNL macro

Chapter 39. CSVDYNL — Provide dynamic LNKLST services 453

Syntax Description

,RSNCODE=rsncode rsncode: RS-type address or register (2) - (12).

,PLISTVER=IMPLIED_VERSION Default: PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0

,MF=S Default: MF=S

,MF=(L,list addr) list addr: RS-type address or register (1) - (12).

,MF=(L,list addr,attr)

,MF=(L,list addr,0D)

,MF=(E,list addr)

,MF=(E,list addr,COMPLETE)

,MF=(E,list addr,NOCHECK)

,MF=(M,list addr)

,MF=(M,list addr,COMPLETE)

,MF=(M,list addr,NOCHECK)

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the CSVDYNL
macro invocation. The name must conform to the rules for an ordinary
assembler language symbol.

REQUEST=DELETE
A required parameter. REQUEST is required even when
MF=(E,label,NOCHECK) is specified. REQUEST=DELETE indicates to remove
a data set from the LNKLST set. You cannot delete a data set from any active
LNKLST set (either the current set, or prior sets that are still in use). You
cannot delete a data set from LNKLST sets "CURRENT" and "IPL".

,LNKLSTNAME=lnklstname
A required input parameter that contains the name of the LNKLST set.

To code: Specify the RS-type address, or address in register (2) - (12), of a
16-character field.

,DSNAME=dsname
A required input parameter that contains the name of the data set or library to
be deleted from the LNKLST set.

To code: Specify the RS-type address, or address in register (2) - (12), of a
44-character field.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from
GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2) - (12).

CSVDYNL macro

454 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from
GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2) - (12).

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an
optional input parameter on all forms of the macro, including the list form.
When using PLISTVER, specify it on all macro forms used for a request and
with the same value on all of the macro forms. The values are:
v IMPLIED_VERSION, which is the lowest version that allows all parameters

specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.
If you can tolerate the size change, IBM recommends that you always
specify PLISTVER=MAX on the list form of the macro. Specifying MAX
ensures that the list-form parameter list is always long enough to hold all
the parameters you might specify on the execute form, when both are
assembled with the same level of the system. In this way, MAX ensures that
the parameter list does not overwrite nearby storage.

v 0, if you use the currently available parameters.

To code: Specify one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 0

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)
,MF=(E,list addr,NOCHECK)
,MF=(M,list addr)
,MF=(M,list addr,COMPLETE)
,MF=(M,list addr,NOCHECK)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline
parameter list and generates the macro invocation to transfer control to the
service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with
the execute form of the macro for applications that require reentrant code. The
list form defines an area of storage that the execute form uses to store the
parameters. Only the PLISTVER parameter may be coded with the list form of
the macro.

Use MF=E to specify the execute form of the macro. Use the execute form
together with the list form of the macro for applications that require reentrant

CSVDYNL macro

Chapter 39. CSVDYNL — Provide dynamic LNKLST services 455

code. The execute form of the macro stores the parameters into the storage area
defined by the list form, and generates the macro invocation to transfer control
to the service.

Use MF=M together with the list and execute forms of the macro for service
routines that need to provide different options according to user-provided
input. Use the list form to define a storage area; use the modify form to set the
appropriate options; then use the execute form to call the service.

IBM recommends that you use the modify and execute forms of CSVDYNL in
the following order:
v Use CSVDYNL ...MF=(M,list-addr,COMPLETE) specifying appropriate

parameters, including all required ones.
v Use CSVDYNL ...MF=(M,list-addr,NOCHECK), specifying the parameters

that you want to change.
v Use CSVDYNL ...MF=(E,list-addr,NOCHECK), to execute the macro.

,list addr
The name of a storage area to contain the parameters. For MF=S, MF=E,
and MF=M, this can be an RS-type address or an address in register (1) -
(12).

,attr
An optional 1- to 60-character input string that you use to force boundary
alignment of the parameter list. Use a value of 0F to force the parameter
list to a word boundary, or 0D to force the parameter list to a doubleword
boundary. If you do not code attr, the system provides a value of 0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply
defaults for omitted optional parameters.

,NOCHECK
Specifies that the system is not to check for required parameters and is not
to supply defaults for omitted optional parameters.

ABEND codes
None.

Return and reason codes
See “Return and reason codes” on page 480 for the return and reason codes.

Examples
See “Examples” on page 487 for an example.

REQUEST=UNDEFINE option of CSVDYNL
REQUEST=UNDEFINE removes the definition of a LNKLST set. For further
information, see the topic “Removing or Compressing a Dataset in an Active
LNKLST Set” in z/OS MVS Initialization and Tuning Reference.

CSVDYNL macro

456 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: SAF authority to the FACILITY class. If SAF is not available,

or has no pertinent information, then the caller must be
supervisor state or PKM 0-7, or PSW key 0-7, or
APF-authorized. The SAF entity name and authorization
level applied is

UPDATE authority to FACILITY class entity
CSVDYNL.lnklstname.UNDEFINE

Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: The caller must not be locked.
Control parameters: Control parameters must be in the primary address space or,

for AR-mode callers, must be in an address/data space that
is addressable through a public entry on the caller's
dispatchable unit access list (DU-AL).

Programming requirements
The caller should include the CSVDLAA macro to get equate symbols for the
return and reason codes.

Restrictions
The caller must not have functional recovery routines (FRRs) established.

Input register information
Before issuing the CSVDYNL macro, the caller does not have to place any
information into any general purpose register (GPR) unless using it in register
notation for a particular parameter, or using it as a base register.

Before issuing the CSVDYNL macro, the caller does not have to place any
information into any access register (AR) unless using it in register notation for a
particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0 Reason code if GPR15 is not 0

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

CSVDYNL macro

Chapter 39. CSVDYNL — Provide dynamic LNKLST services 457

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
The CSVDYNL macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede CSVDYNL.

CSVDYNL

� One or more blanks must follow CSVDYNL.

REQUEST=UNDEFINE

,LNKLSTNAME=lnklstname lnklstname: RS-type address or address in register (2) - (12).

,RETCODE=retcode retcode: RS-type address or register (2) - (12).

,RSNCODE=rsncode rsncode: RS-type address or register (2) - (12).

,PLISTVER=IMPLIED_VERSION Default: PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0

,MF=S Default: MF=S

,MF=(L,list addr) list addr: RS-type address or register (1) - (12).

,MF=(L,list addr,attr)

,MF=(L,list addr,0D)

,MF=(E,list addr)

,MF=(E,list addr,COMPLETE)

,MF=(E,list addr,NOCHECK)

CSVDYNL macro

458 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Syntax Description

,MF=(M,list addr)

,MF=(M,list addr,COMPLETE)

,MF=(M,list addr,NOCHECK)

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the CSVDYNL
macro invocation. The name must conform to the rules for an ordinary
assembler language symbol.

REQUEST=UNDEFINE
A required parameter. REQUEST is required even when
MF=(E,label,NOCHECK) is specified. REQUEST=UNDEFINE indicates to
remove the definition of a LNKLST set. You cannot remove a LNKLST set that
is currently in use. You cannot remove the current LNKLST set. You cannot
remove LNKLST set "IPL".

,LNKLSTNAME=lnklstname
A required input parameter that contains the name of the LNKLST set.

To code: Specify the RS-type address, or address in register (2) - (12), of a
16-character field.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from
GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2) - (12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from
GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2) - (12).

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an
optional input parameter on all forms of the macro, including the list form.
When using PLISTVER, specify it on all macro forms used for a request and
with the same value on all of the macro forms. The values are:
v IMPLIED_VERSION, which is the lowest version that allows all parameters

specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.
If you can tolerate the size change, IBM recommends that you always
specify PLISTVER=MAX on the list form of the macro. Specifying MAX
ensures that the list-form parameter list is always long enough to hold all
the parameters you might specify on the execute form, when both are

CSVDYNL macro

Chapter 39. CSVDYNL — Provide dynamic LNKLST services 459

assembled with the same level of the system. In this way, MAX ensures that
the parameter list does not overwrite nearby storage.

v 0, if you use the currently available parameters.

To code: Specify one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 0

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)
,MF=(E,list addr,NOCHECK)
,MF=(M,list addr)
,MF=(M,list addr,COMPLETE)
,MF=(M,list addr,NOCHECK)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline
parameter list and generates the macro invocation to transfer control to the
service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with
the execute form of the macro for applications that require reentrant code. The
list form defines an area of storage that the execute form uses to store the
parameters. Only the PLISTVER parameter may be coded with the list form of
the macro.

Use MF=E to specify the execute form of the macro. Use the execute form
together with the list form of the macro for applications that require reentrant
code. The execute form of the macro stores the parameters into the storage area
defined by the list form, and generates the macro invocation to transfer control
to the service.

Use MF=M together with the list and execute forms of the macro for service
routines that need to provide different options according to user-provided
input. Use the list form to define a storage area; use the modify form to set the
appropriate options; then use the execute form to call the service.

IBM recommends that you use the modify and execute forms of CSVDYNL in
the following order:
v Use CSVDYNL ...MF=(M,list-addr,COMPLETE) specifying appropriate

parameters, including all required ones.
v Use CSVDYNL ...MF=(M,list-addr,NOCHECK), specifying the parameters

that you want to change.
v Use CSVDYNL ...MF=(E,list-addr,NOCHECK), to execute the macro.

,list addr
The name of a storage area to contain the parameters. For MF=S, MF=E,
and MF=M, this can be an RS-type address or an address in register (1) -
(12).

,attr
An optional 1- to 60-character input string that you use to force boundary
alignment of the parameter list. Use a value of 0F to force the parameter

CSVDYNL macro

460 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

list to a word boundary, or 0D to force the parameter list to a doubleword
boundary. If you do not code attr, the system provides a value of 0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply
defaults for omitted optional parameters.

,NOCHECK
Specifies that the system is not to check for required parameters and is not
to supply defaults for omitted optional parameters.

ABEND codes
None.

Return and reason codes
See “Return and reason codes” on page 480 for the return and reason codes.

Examples
See “Examples” on page 487 for an example.

REQUEST=TEST option of CSVDYNL
REQUEST=TEST allows you to determine if a routine can be located using a
LNKLST set.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: SAF authority to the FACILITY class. If SAF is not available,

or has no pertinent information, then the caller must be
supervisor state or PKM 0-7, or PSW key 0-7, or
APF-authorized. The SAF entity name and authorization
level applied is

READ authority to FACILITY class entity
CSVDYNL.lnklstname.TEST

Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: The caller must not be locked.
Control parameters: Control parameters must be in the primary address space or,

for AR-mode callers, must be in an address/data space that
is addressable through a public entry on the caller's
dispatchable unit access list (DU-AL).

The user-provided data set name via the PROBDSNAME
parameter has the same requirements and restrictions as the
control parameters.

The user-provided data set name via the FOUNDDSNAME
parameter has the same requirements and restrictions as the
control parameters.

CSVDYNL macro

Chapter 39. CSVDYNL — Provide dynamic LNKLST services 461

Programming requirements
The caller should include the CSVDLAA macro to get equate symbols for the
return and reason codes.

Restrictions
The caller must not have functional recovery routines (FRRs) established.

Input register information
Before issuing the CSVDYNL macro, the caller does not have to place any
information into any general purpose register (GPR) unless using it in register
notation for a particular parameter, or using it as a base register.

Before issuing the CSVDYNL macro, the caller does not have to place any
information into any access register (AR) unless using it in register notation for a
particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0 Reason code if GPR15 is not 0

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
The CSVDYNL macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

CSVDYNL macro

462 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Syntax Description

� One or more blanks must precede CSVDYNL.

CSVDYNL

� One or more blanks must follow CSVDYNL.

REQUEST=TEST

,LNKLSTNAME=lnklstname lnklstname: RS-type address or address in register (2) - (12).

,MODNAME=modname modname: RS-type address or address in register (2) - (12).

,FOUNDDSNAME=founddsname founddsname: RS-type address or address in register (2) - (12).

,PROBDSNAME=probdsname probdsname: RS-type address or address in register (2) - (12).

,RETCODE=retcode retcode: RS-type address or register (2) - (12).

,RSNCODE=rsncode rsncode: RS-type address or register (2) - (12).

,PLISTVER=IMPLIED_VERSION Default: PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0

,MF=S Default: MF=S

,MF=(L,list addr) list addr: RS-type address or register (1) - (12).

,MF=(L,list addr,attr)

,MF=(L,list addr,0D)

,MF=(E,list addr)

,MF=(E,list addr,COMPLETE)

,MF=(E,list addr,NOCHECK)

,MF=(M,list addr)

,MF=(M,list addr,COMPLETE)

,MF=(M,list addr,NOCHECK)

Parameters
The parameters are explained as follows:

CSVDYNL macro

Chapter 39. CSVDYNL — Provide dynamic LNKLST services 463

name
An optional symbol, starting in column 1, that is the name on the CSVDYNL
macro invocation. The name must conform to the rules for an ordinary
assembler language symbol.

REQUEST=TEST
A required parameter. REQUEST is required even when
MF=(E,label,NOCHECK) is specified. REQUEST=TEST indicates to test the
particular LNKLST set to see if a given routine can be located using it.

Note that if any data set in the LNKLST set is migrated, the issuer's unit of
work will wait until the data set is retrieved before continuing.

,LNKLSTNAME=lnklstname
A required input parameter that contains the name of the LNKLST set. If
"CURRENT" is specified, the current LNKLST set will be used.

To code: Specify the RS-type address, or address in register (2) - (12), of a
16-character field.

,MODNAME=modname
A required input parameter that contains the name of the routine that is to be
located via the LNKLST set. The first character must not be X'00' or blank.

To code: Specify the RS-type address, or address in register (2) - (12), of an
8-character field.

,FOUNDDSNAME=founddsname
An optional output parameter that is to contain the name of the data set or
library in which the requested module was found. This field is only valid
when the return code is 0.

To code: Specify the RS-type address, or address in register (2) - (12), of a
44-character field.

,PROBDSNAME=probdsname
An optional output parameter that is to contain the name of the "problem"
data set or library for which processing failed. The library either could not be
allocated, opened, or caused the extent limit to be exceeded.

To code: Specify the RS-type address, or address in register (2) - (12), of a
44-character field.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from
GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2) - (12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from
GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2) - (12).

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an
optional input parameter on all forms of the macro, including the list form.
When using PLISTVER, specify it on all macro forms used for a request and
with the same value on all of the macro forms. The values are:

CSVDYNL macro

464 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

v IMPLIED_VERSION, which is the lowest version that allows all parameters
specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.
If you can tolerate the size change, IBM recommends that you always
specify PLISTVER=MAX on the list form of the macro. Specifying MAX
ensures that the list-form parameter list is always long enough to hold all
the parameters you might specify on the execute form, when both are
assembled with the same level of the system. In this way, MAX ensures that
the parameter list does not overwrite nearby storage.

v 0, if you use the currently available parameters.

To code: Specify one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 0

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)
,MF=(E,list addr,NOCHECK)
,MF=(M,list addr)
,MF=(M,list addr,COMPLETE)
,MF=(M,list addr,NOCHECK)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline
parameter list and generates the macro invocation to transfer control to the
service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with
the execute form of the macro for applications that require reentrant code. The
list form defines an area of storage that the execute form uses to store the
parameters. Only the PLISTVER parameter may be coded with the list form of
the macro.

Use MF=E to specify the execute form of the macro. Use the execute form
together with the list form of the macro for applications that require reentrant
code. The execute form of the macro stores the parameters into the storage area
defined by the list form, and generates the macro invocation to transfer control
to the service.

Use MF=M together with the list and execute forms of the macro for service
routines that need to provide different options according to user-provided
input. Use the list form to define a storage area; use the modify form to set the
appropriate options; then use the execute form to call the service.

IBM recommends that you use the modify and execute forms of CSVDYNL in
the following order:
v Use CSVDYNL ...MF=(M,list-addr,COMPLETE) specifying appropriate

parameters, including all required ones.

CSVDYNL macro

Chapter 39. CSVDYNL — Provide dynamic LNKLST services 465

v Use CSVDYNL ...MF=(M,list-addr,NOCHECK), specifying the parameters
that you want to change.

v Use CSVDYNL ...MF=(E,list-addr,NOCHECK), to execute the macro.

,list addr
The name of a storage area to contain the parameters. For MF=S, MF=E,
and MF=M, this can be an RS-type address or an address in register (1) -
(12).

,attr
An optional 1- to 60-character input string that you use to force boundary
alignment of the parameter list. Use a value of 0F to force the parameter
list to a word boundary, or 0D to force the parameter list to a doubleword
boundary. If you do not code attr, the system provides a value of 0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply
defaults for omitted optional parameters.

,NOCHECK
Specifies that the system is not to check for required parameters and is not
to supply defaults for omitted optional parameters.

ABEND codes
None.

Return and reason codes
See “Return and reason codes” on page 480 for the return and reason codes.

Examples
See “Examples” on page 487 for an example.

REQUEST=LIST option of CSVDYNL
REQUEST=LIST returns a list of LNKLST sets and their users.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state and PSW key 8-15
Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: The caller must not be locked.
Control parameters: Control parameters must be in the primary address space or,

for AR-mode callers, must be in an address/data space that
is addressable through a public entry on the caller's
dispatchable unit access list (DU-AL).

The user-provided answer area (via the ANSAREA
parameter) has the same requirements and restrictions as the
control parameters.

CSVDYNL macro

466 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Programming requirements
The caller should include the CSVDLAA macro to get equate symbols for the
return and reason codes.

The caller must include the CSVDLAA macro to get a mapping of the output area
provided via the ANSAREA parameter.

Restrictions
The caller must not have functional recovery routines (FRRs) established.

Input register information
Before issuing the CSVDYNL macro, the caller does not have to place any
information into any general purpose register (GPR) unless using it in register
notation for a particular parameter, or using it as a base register.

Before issuing the CSVDYNL macro, the caller does not have to place any
information into any access register (AR) unless using it in register notation for a
particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0 Reason code if GPR15 is not 0

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
The CSVDYNL macro is written as follows:

Syntax Description

CSVDYNL macro

Chapter 39. CSVDYNL — Provide dynamic LNKLST services 467

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede CSVDYNL.

CSVDYNL

� One or more blanks must follow CSVDYNL.

REQUEST=LIST

,ANSAREA=ansarea ansarea: RS-type address or address in register (2) - (12).

,ANSLEN=anslen anslen: RS-type address or address in register (2) - (12).

,SEARCH=BYNAME Default: SEARCH=BYNAME

,SEARCH=BYJOBASID

,LISTLNKNAME=listlnkname listlnkname: RS-type address or address in register (2) - (12).

,LISTLNKNAME=ALL_LNKLSTS Default: LISTLNKNAME=ALL_LNKLSTS

,USERINFO=NO Default: USERINFO=NO

,USERINFO=YES

,JOBNAME=jobname jobname: RS-type address or address in register (2) - (12).

,ASID=asid asid: RS-type address or address in register (2) - (12).

,RETCODE=retcode retcode: RS-type address or register (2) - (12).

,RSNCODE=rsncode rsncode: RS-type address or register (2) - (12).

,PLISTVER=IMPLIED_VERSION Default: PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0

,MF=S Default: MF=S

,MF=(L,list addr) list addr: RS-type address or register (1) - (12).

,MF=(L,list addr,attr)

,MF=(L,list addr,0D)

,MF=(E,list addr)

,MF=(E,list addr,COMPLETE)

,MF=(E,list addr,NOCHECK)

CSVDYNL macro

468 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Syntax Description

,MF=(M,list addr)

,MF=(M,list addr,COMPLETE)

,MF=(M,list addr,NOCHECK)

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the CSVDYNL
macro invocation. The name must conform to the rules for an ordinary
assembler language symbol.

REQUEST=LIST
A required parameter. REQUEST is required even when
MF=(E,label,NOCHECK) is specified. REQUEST=LIST indicates to list
information about the LNKLST sets.

,ANSAREA=ansarea
A required output parameter that is to contain the information associated with
the LNKLST sets. The area is mapped by macro CSVDLAA.

To code: Specify the RS-type address, or address in register (2) - (12), of a
character field.

,ANSLEN=anslen
A required input parameter that contains the length of the provided answer
area.

To code: Specify the RS-type address, or address in register (2) - (12), of a
fullword field, or specify a literal decimal value.

,SEARCH=BYNAME
,SEARCH=BYJOBASID

An optional parameter that indicates what the search criteria are. The default is
SEARCH=BYNAME.

,SEARCH=BYNAME
specifies to search for particular LNKLST sets. Information returned is
mapped by structure DLAALS (and its subsidiary structures).

,SEARCH=BYJOBASID
specifies to search for particular job or jobs or an ASID. Information
returned is mapped by structure DLAAJA. You must specify a valid
jobname or ASID.

,LISTLNKNAME=listlnkname
,LISTLNKNAME=ALL_LNKLSTS

When SEARCH=BYNAME is specified, an optional input parameter that
contains the name of the LNKLST set. If the LNKLST set name is not provided,
information about all LNKLST sets is returned. There should be no imbedded
blanks. If the LNKLST set name contains wildcard characters (? or *),
information is provided about all LNKLST sets that have names that match the
provided pattern. If "CURRENT" is specified, the current LNKLST set will be
used. Specify "IPL" to get the IPL-time LNKLST if the LNKLST was defined
via the LNK parameter of the IEASYSxx parmlib member and the LNKLSTxx
parmlib member(s). The default is ALL_LNKLSTS.

CSVDYNL macro

Chapter 39. CSVDYNL — Provide dynamic LNKLST services 469

To code: Specify the RS-type address, or address in register (2) - (12), of a
16-character field.

,USERINFO=NO
,USERINFO=YES

When SEARCH=BYNAME is specified, an optional parameter that indicates
whether or not to return information about the users of a LNKLST set. The
default is USERINFO=NO.

,USERINFO=NO
specifies not to return user information.

,USERINFO=YES
specifies to return user information.

,JOBNAME=jobname
,ASID=asid

When SEARCH=BYJOBASID is specified, a required input parameter.

,JOBNAME=jobname
A parameter that contains the name of the job that is to be looked for. If
the jobname set name contains wildcard characters (? or *), information
will be returned about all jobs that match the provided pattern. A jobname
in which the first character is blank or hexadecimal zeroes is treated as if
JOBNAME had not been specified. The jobname used in performing the
comparison is the name of the job for an initiated job, or the name of the
address space otherwise.

To code: Specify the RS-type address, or address in register (2) - (12), of an
8-character field.

,ASID=asid
A parameter that contains the ASID. An ASID of 0 is treated as if ASID
had not been specified.

To code: Specify the RS-type address, or address in register (2) - (12), of a
halfword field.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from
GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2) - (12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from
GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2) - (12).

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an
optional input parameter on all forms of the macro, including the list form.
When using PLISTVER, specify it on all macro forms used for a request and
with the same value on all of the macro forms. The values are:
v IMPLIED_VERSION, which is the lowest version that allows all parameters

specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

CSVDYNL macro

470 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.
If you can tolerate the size change, IBM recommends that you always
specify PLISTVER=MAX on the list form of the macro. Specifying MAX
ensures that the list-form parameter list is always long enough to hold all
the parameters you might specify on the execute form, when both are
assembled with the same level of the system. In this way, MAX ensures that
the parameter list does not overwrite nearby storage.

v 0, if you use the currently available parameters.

To code: Specify one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 0

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)
,MF=(E,list addr,NOCHECK)
,MF=(M,list addr)
,MF=(M,list addr,COMPLETE)
,MF=(M,list addr,NOCHECK)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline
parameter list and generates the macro invocation to transfer control to the
service. MF=S is the default.

Use MF=L to specify the list form of the macro. Use the list form together with
the execute form of the macro for applications that require reentrant code. The
list form defines an area of storage that the execute form uses to store the
parameters. Only the PLISTVER parameter may be coded with the list form of
the macro.

Use MF=E to specify the execute form of the macro. Use the execute form
together with the list form of the macro for applications that require reentrant
code. The execute form of the macro stores the parameters into the storage area
defined by the list form, and generates the macro invocation to transfer control
to the service.

Use MF=M together with the list and execute forms of the macro for service
routines that need to provide different options according to user-provided
input. Use the list form to define a storage area; use the modify form to set the
appropriate options; then use the execute form to call the service.

IBM recommends that you use the modify and execute forms of CSVDYNL in
the following order:
v Use CSVDYNL ...MF=(M,list-addr,COMPLETE) specifying appropriate

parameters, including all required ones.
v Use CSVDYNL ...MF=(M,list-addr,NOCHECK), specifying the parameters

that you want to change.
v Use CSVDYNL ...MF=(E,list-addr,NOCHECK), to execute the macro.

CSVDYNL macro

Chapter 39. CSVDYNL — Provide dynamic LNKLST services 471

,list addr
The name of a storage area to contain the parameters. For MF=S, MF=E,
and MF=M, this can be an RS-type address or an address in register (1) -
(12).

,attr
An optional 1- to 60-character input string that you use to force boundary
alignment of the parameter list. Use a value of 0F to force the parameter
list to a word boundary, or 0D to force the parameter list to a doubleword
boundary. If you do not code attr, the system provides a value of 0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply
defaults for omitted optional parameters.

,NOCHECK
Specifies that the system is not to check for required parameters and is not
to supply defaults for omitted optional parameters.

ABEND codes
None.

Return and reason codes
See “Return and reason codes” on page 480 for the return and reason codes.

Examples
See “Examples” on page 487 for an example.

REQUEST=UPDATE option of CSVDYNL
REQUEST=UPDATE updates jobs or address spaces to use the current LNKLST
set. For further information, see the topic "Removing or Compressing a Dataset in
an Active LNKLST Set” in z/OS MVS Initialization and Tuning Reference.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: SAF authority to the FACILITY class. If SAF is not available,

or has no pertinent information, then the caller must be
supervisor state or PKM 0-7, or PSW key 0-7, or
APF-authorized. The SAF entity name and authorization
level applied is

UPDATE authority to FACILITY class entity
CSVDYNL.UPDATE.LNKLST

Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: The caller must not be locked.
Control parameters: Control parameters must be in the primary address space or,

for AR-mode callers, must be in an address/data space that
is addressable through a public entry on the caller's
dispatchable unit access list (DU-AL).

CSVDYNL macro

472 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Programming requirements
The caller should include the CSVDLAA macro to get equate symbols for the
return and reason codes.

Restrictions
The caller must not have functional recovery routines (FRRs) established.

Input register information
Before issuing the CSVDYNL macro, the caller does not have to place any
information into any general purpose register (GPR) unless using it in register
notation for a particular parameter, or using it as a base register.

Before issuing the CSVDYNL macro, the caller does not have to place any
information into any access register (AR) unless using it in register notation for a
particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0 Reason code if GPR15 is not 0

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
The CSVDYNL macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

CSVDYNL macro

Chapter 39. CSVDYNL — Provide dynamic LNKLST services 473

Syntax Description

� One or more blanks must precede CSVDYNL.

CSVDYNL

� One or more blanks must follow CSVDYNL.

REQUEST=UPDATE

,WHICHAS=HOME Default: WHICHAS=HOME

,WHICHAS=SPECIFIED

,JOBNAME=jobname jobname: RS-type address or address in register (2) - (12).

,ASID=asid asid: RS-type address or address in register (2) - (12).

,DELAY=d d: RS-type address or address in register (2) - (12).

,DELAY=NO_DELAY Default: DELAY=NO_DELAY

,RETCODE=retcode retcode: RS-type address or register (2) - (12).

,RSNCODE=rsncode rsncode: RS-type address or register (2) - (12).

,PLISTVER=IMPLIED_VERSION Default: PLISTVER=IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=0

,MF=S Default: MF=S

,MF=(L,list addr) list addr: RS-type address or register (1) - (12).

,MF=(L,list addr,attr)

,MF=(L,list addr,0D)

,MF=(E,list addr)

,MF=(E,list addr,COMPLETE)

,MF=(E,list addr,NOCHECK)

,MF=(M,list addr)

,MF=(M,list addr,COMPLETE)

,MF=(M,list addr,NOCHECK)

Parameters
The parameters are explained as follows:

CSVDYNL macro

474 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

name
An optional symbol, starting in column 1, that is the name on the CSVDYNL
macro invocation. The name must conform to the rules for an ordinary
assembler language symbol.

REQUEST=UPDATE
A required parameter. REQUEST is required even when
MF=(E,label,NOCHECK) is specified. REQUEST=UPDATE indicates to update
the named address space so that subsequent operations will use the current
LNKLST. Normally, a job continues to use the LNKLST set that was current
when the job began. This function allows the job to use the current LNKLST
set. Use this parameter with caution. Updating an address space while it is in
the middle of fetching a module can cause the fetch to fail or to locate an
incorrect copy of the module.

,WHICHAS=HOME
,WHICHAS=SPECIFIED

An optional parameter that indicates what address space is to be updated. The
default is WHICHAS=HOME.

,WHICHAS=HOME
indicates the home address space.

,WHICHAS=SPECIFIED
indicates that the JOBNAME or ASID parameter specifies the address
space. This option must be used with care, as modification of the LNKLST
for any address space is dangerous unless the program knows that no
program fetch processing is being done within that address space. IBM
recommends that you do not use this option. It is provided primarily so
that a program can fully duplicate the functions of the SETPROG
LNKLST,UPDATE command.

,JOBNAME=jobname
,ASID=asid

When WHICHAS=SPECIFIED is specified, a required input parameter.

,JOBNAME=jobname
A parameter that contains the name of the job that is to be updated. All
jobs of this name will be updated. If the jobname contains wildcard
characters (? or *), the LNKLST will be updated for all jobs that match the
provided pattern. The jobname used in performing the comparison is the
name of the job for an initiated job; otherwise, the name of the address
space.

To code: Specify the RS-type address, or address in register (2) - (12), of an
8-character field.

,ASID=asid
A parameter that contains the ASID of the job.

To code: Specify the RS-type address, or address in register (2) - (12), of a
halfword field.

DELAY=d
An optional input parameter that contains the value to delay the completion of
the UPDATE operation in seconds. It must be a value in the range 0 to 255.
The LNKLST will be updated immediately, but the processing for closing
LNKLST data sets no longer in use and unallocating LNKLST data sets that are
no longer in use is delayed by the given amount.

CSVDYNL macro

Chapter 39. CSVDYNL — Provide dynamic LNKLST services 475

To code: Specify the RS-type address, or address in register (2) - (12), of a
one-byte field.

,RETCODE=retcode
An optional output parameter into which the return code is to be copied from
GPR 15.

To code: Specify the RS-type address of a fullword field, or register (2) - (12).

,RSNCODE=rsncode
An optional output parameter into which the reason code is to be copied from
GPR 0.

To code: Specify the RS-type address of a fullword field, or register (2) - (12).

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=0

An optional input parameter that specifies the version of the macro. PLISTVER
determines which parameter list the system generates. PLISTVER is an
optional input parameter on all forms of the macro, including the list form.
When using PLISTVER, specify it on all macro forms used for a request and
with the same value on all of the macro forms. The values are:
v IMPLIED_VERSION, which is the lowest version that allows all parameters

specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.
If you can tolerate the size change, IBM recommends that you always
specify PLISTVER=MAX on the list form of the macro. Specifying MAX
ensures that the list-form parameter list is always long enough to hold all
the parameters you might specify on the execute form, when both are
assembled with the same level of the system. In this way, MAX ensures that
the parameter list does not overwrite nearby storage.

v 0, if you use the currently available parameters.

To code: Specify one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 0

,MF=S
,MF=(L,list addr)
,MF=(L,list addr,attr)
,MF=(L,list addr,0D)
,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)
,MF=(E,list addr,NOCHECK)
,MF=(M,list addr)
,MF=(M,list addr,COMPLETE)
,MF=(M,list addr,NOCHECK)

An optional input parameter that specifies the macro form.

Use MF=S to specify the standard form of the macro, which builds an inline
parameter list and generates the macro invocation to transfer control to the
service. MF=S is the default.

CSVDYNL macro

476 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Use MF=L to specify the list form of the macro. Use the list form together with
the execute form of the macro for applications that require reentrant code. The
list form defines an area of storage that the execute form uses to store the
parameters. Only the PLISTVER parameter may be coded with the list form of
the macro.

Use MF=E to specify the execute form of the macro. Use the execute form
together with the list form of the macro for applications that require reentrant
code. The execute form of the macro stores the parameters into the storage area
defined by the list form, and generates the macro invocation to transfer control
to the service.

Use MF=M together with the list and execute forms of the macro for service
routines that need to provide different options according to user-provided
input. Use the list form to define a storage area; use the modify form to set the
appropriate options; then use the execute form to call the service.

IBM recommends that you use the modify and execute forms of CSVDYNL in
the following order:
v Use CSVDYNL ...MF=(M,list-addr,COMPLETE) specifying appropriate

parameters, including all required ones.
v Use CSVDYNL ...MF=(M,list-addr,NOCHECK), specifying the parameters

that you want to change.
v Use CSVDYNL ...MF=(E,list-addr,NOCHECK), to execute the macro.

,list addr
The name of a storage area to contain the parameters. For MF=S, MF=E,
and MF=M, this can be an RS-type address or an address in register (1) -
(12).

,attr
An optional 1- to 60-character input string that you use to force boundary
alignment of the parameter list. Use a value of 0F to force the parameter
list to a word boundary, or 0D to force the parameter list to a doubleword
boundary. If you do not code attr, the system provides a value of 0D.

,COMPLETE
Specifies that the system is to check for required parameters and supply
defaults for omitted optional parameters.

,NOCHECK
Specifies that the system is not to check for required parameters and is not
to supply defaults for omitted optional parameters.

ABEND codes
None.

Return and reason codes
See “Return and reason codes” on page 480 for the return and reason codes.

Examples
See “Examples” on page 487 for an example.

REQUEST=QUERYDYN option of CSVDYNL
REQUEST=QUERYDYN queries to determine if the DEFINE, ADD, DELETE,
UNDEFINE, TEST, and UPDATE functions are available.

CSVDYNL macro

Chapter 39. CSVDYNL — Provide dynamic LNKLST services 477

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state and PSW key 8-15
Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: The caller must not be locked.
Control parameters: Control parameters must be in the primary address space or,

for AR-mode callers, must be in an address/data space that
is addressable through a public entry on the caller's
dispatchable unit access list (DU-AL).

Programming requirements
The caller must include the CSVDLAA macro to get equates for the information
returned via the DYNFUNC parameter.

Restrictions
The caller must not have functional recovery routines (FRRs) established.

Input register information
Before issuing the CSVDYNL macro, the caller does not have to place any
information into any general purpose register (GPR) unless using it in register
notation for a particular parameter, or using it as a base register.

Before issuing the CSVDYNL macro, the caller does not have to place any
information into any access register (AR) unless using it in register notation for a
particular parameter, or using it as a base register.

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

CSVDYNL macro

478 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
The CSVDYNL macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede CSVDYNL.

CSVDYNL

� One or more blanks must follow CSVDYNL.

REQUEST=QUERYDYN

,DYNFUNC=dynfunc dynfunc: RS-type address or address in register (2) - (12).

Parameters
The parameters are explained as follows:

name
An optional symbol, starting in column 1, that is the name on the CSVDYNL
macro invocation. The name must conform to the rules for an ordinary
assembler language symbol.

REQUEST=QUERYDYN
A required parameter. REQUEST is required even when
MF=(E,label,NOCHECK) is specified. REQUEST=QUERYDYN indicates to
return an indication of whether LNKLST sets can be defined or changed. Those
functions are available if the required DFSMS support is present. The
RETCODE, RSNCODE, and MF keys cannot be specified.

,DYNFUNC=dynfunc
A required output parameter that will contain the availability of the DEFINE,
ADD, DELETE, UNDEFINE, TEST, and UPDATE functions. If 0 (symbol
CsvdynlDynNotAvailable in mapping macro CSVDLAA), the functions are not
available. If 1 (symbol CsvdynlDynAvailable), the functions are available.

To code: Specify the RS-type address, or address in register (2) - (12), of an
one-byte field.

CSVDYNL macro

Chapter 39. CSVDYNL — Provide dynamic LNKLST services 479

ABEND codes
None.

Return codes
None.

Examples
None.

Return and reason codes
When the CSVDYNL macro returns control to your program:
v GPR 15 (and retcode, when you code RETCODE) contains a return code.
v When the value in GPR 15 is not zero, GPR 0 (and rsncode, when you code

RSNCODE) contains a reason code.

Macro CSVDLAA provides equate symbols for the return and reason codes.

The following table identifies the hexadecimal return and reason codes and the
equate symbol associated with each reason code. IBM support personnel may
request the entire reason code, including the xxxx value.

Table 45. Return and Reason Codes for the CSVDYNL Macro

Return Code Reason Code Equate Symbol Meaning and Action

0 — Equate Symbol: CsvdynlRc_OK

Meaning: CSVDYNL request successful.

DEFINE Meaning: LNKLST set defined.

Action: None required.

ADD Meaning: Data set added to LNKLST set.

Action: None required.

DELETE
Meaning: Data set removed from LNKLST set.

Action: None required.

UNDEFINE
Meaning: LNKLST set removed.

Action: None required.

TEST Meaning: Routine was located using LNKLST
set.

Action: None required.

LIST Meaning: All data returned.

Action: None required.

UPDATE
Meaning: Specified job's LNKLST has been
updated.

Action: None required.

CSVDYNL macro

480 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Table 45. Return and Reason Codes for the CSVDYNL Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

4 — Equate Symbol: CsvdynlRc_Warn

Meaning: Warning

Action: Refer to the action provided with the specific
reason code.

4 xxxx0402 Equate Symbol: CsvdynlRsnRoutineNotFound

Meaning: For TEST request, routine was not found

Action: Change the LNKLST set to contain the data set in
which the requested routine is located.

4 xxxx0403 Equate Symbol: CsvdynlRsnNotAllDataReturned

Meaning: For LIST request, not all data was returned
because the answer area is not big enough. Answer area
field DLAAHTLEN indicates how much space is currently
required.

Action: Allocate a larger area and request the function
again.

4 xxxx0406 Equate Symbol: CsvdynlRsnNoMatchingJob

Meaning: For UPDATE request, no matching job was
found.

Action: Make sure that you specified the proper jobname
and ASID parameters.

8 — Equate Symbol: CsvdynlRc_InvParm

Meaning: CSVDYNL request specifies invalid parameters.

Action: Refer to the action provided with the specific
reason code.

8 xxxx0801 Equate Symbol: CsvdynlRsnBadParmlist

Meaning: Unable to access parameter list.

Action: Check for possible storage overlay.

8 xxxx0802 Equate Symbol: CsvdynlRsnSrbMode

Meaning: SRB mode.

Action: Avoid requesting this function in SRB mode.

8 xxxx0803 Equate Symbol: CsvdynlRsnNotEnabled

Meaning: Not Enabled.

Action: Avoid requesting this function while not enabled.

8 xxxx0804 Equate Symbol: CsvdynlRsnNotAuthorized

Meaning: Not authorized.

Action: Request this function only when you have the
proper authority.

8 xxxx0805 Equate Symbol: CsvdynlRsnHomeNotPrimary

Meaning: Home address space different than primary
address space.

Action: Avoid requesting this function in this environment.

CSVDYNL macro

Chapter 39. CSVDYNL — Provide dynamic LNKLST services 481

Table 45. Return and Reason Codes for the CSVDYNL Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

8 xxxx0806 Equate Symbol: CsvdynlRsnBadAnsareaALET

Meaning: Bad answer area ALET.

Action: Make sure that the ALET associated with the
answer area is valid. The access register might not have
been set up correctly.

8 xxxx0807 Equate Symbol: CsvdynlRsnBadAnsarea

Meaning: Error accessing answer area.

Action: Make sure that the provided answer area is valid.

8 xxxx0808 Equate Symbol: CsvdynlRsnBadAnslen

Meaning: LIST - AnsLen is less than size of the header
area.

Action: Provide a larger answer area (as indicated by the
ANSLEN parameter).

8 xxxx0809 Equate Symbol: CsvdynlRsnBadRequestType

Meaning: Request type is not valid.

Action: Check for possible storage overlay of the parameter
list.

8 xxxx080A Equate Symbol: CsvdynlRsnBadEstaex

Meaning: Unable to establish ESTAEX. "xxxx" contains
ESTAE(X) return code.

Action: Refer to documentation for ESTAEX return code
"xxxx".

8 xxxx080B Equate Symbol: CsvdynlRsnReservedNot0

Meaning: Reserved field not 0.

Action: Check for possible storage overlay of the parameter
list.

8 xxxx080D Equate Symbol: CsvdynlRsnBadParmlistALET

Meaning: Bad parmlist ALET.

Action: Make sure that the ALET of the parameter list is
valid. The access register might not have been set up
correctly.

8 xxxx080E Equate Symbol: CsvdynlRsnBadVersion

Meaning: Bad version number.

Action: Check for possible storage overlay of the parameter
list.

8 xxxx080F Equate Symbol: CsvdynlRsnLocked

Meaning: Locked

Action: Avoid requesting this function in this environment.

8 xxxx0815 Equate Symbol: CsvdynlRsnBadDsnameArea

Meaning: Unable to access data set name.

Action: Make sure that the DSNAME area is valid.

CSVDYNL macro

482 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Table 45. Return and Reason Codes for the CSVDYNL Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

8 xxxx0816 Equate Symbol: CsvdynlRsnBadAfterDsnameArea

Meaning: Unable to access AFTERDSNAME area.

Action: Make sure that the AFTERDSNAME area is valid.

8 xxxx0818 Equate Symbol: CsvdynlRsnBadOpen

Meaning: Unable to open specified data set. The
Probdsname area is filled in with the name of the data set.

Action: Make sure that you specified the proper data set
and that it is partitioned and can be located by the system.

8 xxxx0819 Equate Symbol: CsvdynlRsnLnklstSetNotFound

Meaning: LNKLST set name not found (for ADD, DELETE,
UNDEFINE)

Action: Make sure that you specified the proper LNKLST
set name.

8 xxxx081C Equate Symbol: CsvdynlRsnDatasetNotFound

Meaning: For Delete request, data set was not associated
with the LNKLST set.

Action: Make sure that you specified the proper data set
and LNKLST set names.

8 xxxx0820 Equate Symbol: CsvdynlRsnBadDsnameALET

Meaning: Bad dsname ALET.

Action: Make sure that the ALET of the DSNAME area is
valid. The access register might not have been set up
correctly.

8 xxxx0821 Equate Symbol: CsvdynlRsnBadAfterDsnameALET

Meaning: Bad afterdsname ALET.

Action: Make sure that the ALET of the AFTERDSNAME
area is valid. The access register might not have been set
up correctly.

8 xxxx0822 Equate Symbol: CsvdynlRsnBadLnklstName

Meaning: Bad lnklstname - first character is 0 or blank.

Action: Provide a valid LNKLST set name.

8 xxxx0823 Equate Symbol: CsvdynlRsnBadDsname

Meaning: Bad DSNAME - first character is 0 or blank.

Action: Provide a valid data set name.

8 xxxx0824 Equate Symbol: CsvdynlRsnBadAfterDsname

Meaning: Bad AFTERDSNAME - first character is 0 or
blank.

Action: Provide a valid data set name.

8 xxxx0829 Equate Symbol: CsvdynlRsnBadAlloc

Meaning: Unable to allocate data set. The Probdsname area
is filled in with the name of the data set.

Action: Make sure that you specified the proper data set
and that it is partitioned and can be located by the system.

CSVDYNL macro

Chapter 39. CSVDYNL — Provide dynamic LNKLST services 483

Table 45. Return and Reason Codes for the CSVDYNL Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

8 xxxx082B Equate Symbol: CsvdynlRsnFunctionNotAvailableError

Meaning: Dynamic allocation is not available or request
issued during NIP.

Action: Avoid requesting the function in an environment
where dynamic allocation is not available. Avoid requesting
the function until the IPL completes.

8 xxxx0831 Equate Symbol: CsvdynlRsnReservedName

Meaning: Reserved name used.

Action: Avoid specifying reserved names "CURRENT" and
"IPL" when defining, adding to, deleting from, or
undefining a LNKLST set.

8 xxxx0832 Equate Symbol: CsvdynlRsnNoJobASID

Meaning: No jobname or ASID

Action: Specify a jobname with the first character being
non-zero and non-blank or specify a non-zero ASID for
UPDATE.

8 xxxx0833 Equate Symbol: CsvdynlRsnAddSysdsn

Meaning: Attempt to ADD after system data set.

Action: Do not specify the LINKLIB, MIGLIB, CSSLIB,
SIEALNKE, or SIEAMIGE data set via the AFTERDSNAME
parameter. Specify POS=TOP if you want your data set to
be in the first available position.

8 xxxx0834 Equate Symbol: CsvdynlRsnDeleteSysdsn

Meaning: Attempt to DELETE system data set.

Action: Do not specify the LINKLIB, MIGLIB, CSSLIB,
SIEALNKE, or SIEAMIGE data set on REQUEST=DELETE.
You cannot remove those data sets from the LNKLST.

8 xxxx0835 Equate Symbol: CsvdynlRsnNoCopyFrom

Meaning: COPYFROM LNKLST set does not exist.

Action: Be sure that you specified the proper LNKLST set
name.

8 xxxx0836 Equate Symbol: CsvdynlRsnAlreadyExists

Meaning: For DEFINE request, LNKLST set already exists.
For ADD request, data set was already associated with this
LNKLST set.

Action: Make sure that you specified the proper data set
and LNKLST set names.

8 xxxx0837 Equate Symbol: CsvdynlRsnNoModname

Meaning: For TEST request, no module name was
provided.

Action: Make sure that you specified a module name that
began other than with a blank or hexadecimal zeroes.

CSVDYNL macro

484 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Table 45. Return and Reason Codes for the CSVDYNL Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

8 xxxx0839 Equate Symbol: CsvdynlRsnConcatFull

Meaning: For ADD request, concatenation is full. The
Probdsname area is filled in with the name of the data set
at which the concatenation became full.

Action: Remove data sets from the LNKLST set, or change
the data sets to be PDSEs.

8 xxxx083A Equate Symbol: CsvdynlRsnBadProbDsnameArea

Meaning: For ADD or TEST request, unable to store into
the PROBDSNAME area.

Action: Make sure that the PROBDSNAME area is valid.

8 xxxx083B Equate Symbol: CsvdynlRsnBadProbDsnameALET

Meaning: For ADD or TEST request, ALET of ProbDsname
is not acceptable.

Action: Make sure that the ALET of the PROBDSNAME
area is valid. The access register might not have been set
up correctly.

8 xxxx083C Equate Symbol: CsvdynlRsnNotPartitioned

Meaning: For ADD or TEST request, data set is not
partitioned. The Probdsname area is filled in with the name
of the data set.

Action: Make sure that you specified the proper data set.

8 xxxx083D Equate Symbol: CsvdynlRsnBadVolid

Meaning: For ADD or TEST request, the provided volume
ID does not match the volume ID found when the data set
was looked up in the catalog. The Probdsname area is
filled in with the name of the data set.

Action: Make sure that you specified the proper volume
ID. Make sure that the data set name in the catalog is
cataloged to that volume. If the data set has been moved
from one volume to another, then remove the data set from
the LNKLST set, and add it back if the current volume is
correct.

8 xxxx083E Equate Symbol: CsvdynlRsnMultiVolume

Meaning: Multi-Volume data set.

Action: Avoid using a "multi-volume" data set within the
LNKLST.

8 xxxx083F Equate Symbol: CsvdynlRsnMissingSysdsn

Meaning: The LNKLST set being tested does not contain at
least one of SYS1.LINKLIB, SYS1.MIGLIB, and
SYS1.CSSLIB. This should only occur if you used the
SYSLIB statement of PROGxx.

Action: Check with the system programmer.

8 xxxx0840 Equate Symbol: CsvdynlRsnUndefineCurrent

Meaning: Cannot undefine the current LNKLST set.

Action: Make sure that you specified the proper LNKLST
set.

CSVDYNL macro

Chapter 39. CSVDYNL — Provide dynamic LNKLST services 485

Table 45. Return and Reason Codes for the CSVDYNL Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

8 xxxx0841 Equate Symbol: CsvdynlRsnBadFoundDsnameArea

Meaning: For TEST request, unable to store into the
FOUNDDSNAME area.

Action: Make sure that the FOUNDDSNAME area is valid.

8 xxxx0842 Equate Symbol: CsvdynlRsnBadFoundDsnameALET

Meaning: For TEST request, ALET of FOUNDDSNAME is
not acceptable.

Action: Make sure that the ALET of the FOUNDDSNAME
area is valid. The access register might not have been set
up correctly.

8 xxxx0843 Equate Symbol: CsvdynlRsnBadSMS

Meaning: For ADD or TEST request, the SMS status of the
data set has changed. Either it is now SMS-managed but
had not been, or is not SMS-managed but had been. The
Probdsname area is filled in with the name of the data set.

Action: Remove the data set from the LNKLST set. Add it
back if the current SMS status of the data set is correct.

C — Equate Symbol: CsvdynlRc_Env

Meaning: Environmental error

Action: Refer to the action provided with the specific
reason code.

C xxxx0C01 Equate Symbol: CsvdynlRsnFunctionNotAvailable

Meaning: Meaning: Function is not available.

Action: Avoid requesting this function until system
initialization is complete.

C xxxx0C02 Equate Symbol: CsvdynlRsnNoStorage

Meaning: No storage is available to complete the request.

Action: Contact your system programmer. There is a
common storage shortage.

C xxxx0C03 Equate Symbol: CsvdynlRsnChangeInUse

Meaning: Cannot update an in-use LNKLST set.

Action: Make sure that you specified the proper LNKLST
set. You will have to wait if you need to modify a LNKLST
set that is in use until it is no longer the active set. You can
alternately create a new LNKLST set, initialized from the
active one. You can use the UPDATE request to update
users of prior LNKLST sets to be using the current
LNKLST set, thus letting you update that prior set.

C xxxx0C04 Equate Symbol: CsvdynlRsnUndefineUsers

Meaning: Cannot undefine a LNKLST set that is in use.

Action: Make sure that you specified the proper LNKLST
set. You can use DISPLAY PROG,LINK to display the
current users of the LNKLST set. You can consider using
CSVDYNEX REQUEST=UPDATE to update the current
users to the current LNKLST set, but refer to that operation
for appropriate caveats.

CSVDYNL macro

486 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Table 45. Return and Reason Codes for the CSVDYNL Macro (continued)

Return Code Reason Code Equate Symbol Meaning and Action

C xxxx0C05 Equate Symbol: CsvdynlRsnActivateNoENF

Meaning: Could not issue ENF signal for ACTIVATE
request.

Action: Contact your system programmer.

C xxxx0C06 Equate Symbol: CsvdynlRsnUndefineLLA

Meaning: Cannot undefine a LNKLST set that LLA is using
to manage the LNKLST.

Action: Make sure that you specified the proper LNKLST
set. You can use DISPLAY PROG,LINK to display the
current users of the LNKLST set. You can consider using
CSVDYNEX REQUEST=UPDATE to update the current
users to the current LNKLST set, but refer to that operation
for appropriate caveats.

10 — Equate Symbol: CsvdynlRC_CompError

Meaning: Unexpected failure.

Action: Refer to the action provided with the specific
reason code.

10 xxxx1001 Equate Symbol: CsvdynlRsnCompError

Meaning: Unexpected failure. The state of the request is
unpredictable.

Action: Contact your system programmer.

Examples

Example 1:

Operation:

1. Define a LNKLST set.
2. Add data sets to that LNKLST set.
3. Delete a data set from the LNKLST set.
4. Test the LNKLST set for the presence of a particular module.
5. Undefine the LNKLST set.

The code is as follows.

* Define LNKLST set MYLNKLST_SET. *
* Copy it from the current LNKLST set. *

CSVDYNL REQUEST=DEFINE,LNKLSTNAME=LLS, *
COPYFROM==CL16’CURRENT’, *
RETCODE=LRETCODE,RSNCODE=LRSNCODE, *
MF=(E,DYNLL)

*
* Place code to check return/reason codes here
*

* Add data set SYS1.MYDS1 at the top of the user-specified *
* data sets (but after the system-defined data sets *
* SYS1.LINKLIB, SYS1.MIGLIB, SYS1.CSSLIB,SYS1.SIEALNKE, SYS1.SIEAMIGE)*

CSVDYNL REQUEST=ADD,LNKLSTNAME=LLS, *

CSVDYNL macro

Chapter 39. CSVDYNL — Provide dynamic LNKLST services 487

DSNAME=LDS1,POS=TOP, *
RETCODE=LRETCODE,RSNCODE=LRSNCODE, *
MF=(E,DYNLL)

*
* Place code to check return/reason codes here
*

* Add data set SYS1.MYDS2 at the bottom of the *
* user-specified data sets *

CSVDYNL REQUEST=ADD,LNKLSTNAME=LLS, *
DSNAME=LDS2,POS=BOTTOM, *
RETCODE=LRETCODE,RSNCODE=LRSNCODE, *
MF=(E,DYNLL)

*
* Place code to check return/reason codes here
*

* Add data set SYS1.MYDS3 after SYS1.MYDS1 *

CSVDYNL REQUEST=ADD,LNKLSTNAME=LLS, *
DSNAME=LDS3, *
POS=AFTER,AFTERDSNAME=LDS1, *
RETCODE=LRETCODE,RSNCODE=LRSNCODE, *
MF=(E,DYNLL)

*
* Place code to check return/reason codes here
*

* Delete data set SYS1.DONTWANT from the LNKLST set *

CSVDYNL REQUEST=DELETE,LNKLSTNAME=LLS, *
DSNAME=LDONTWANT, *
RETCODE=LRETCODE,RSNCODE=LRSNCODE, *
MF=(E,DYNLL)

*
* Place code to check return/reason codes here
*

* Test the LNKLST set to see if routine MYMODULE can be *
* found *

CSVDYNL REQUEST=TEST,LNKLSTNAME=LLS, *
MODNAME=LMOD, *
FOUNDDSNAME=LDSF, *
RETCODE=LRETCODE,RSNCODE=LRSNCODE, *
MF=(E,DYNLL)

*
* Place code to check return/reason codes here.
* Note that when the return code is 0, the name of the data
* set which the routine was found is placed into LDSF
*

* Undefine the LNKLST set *

CSVDYNL REQUEST=UNDEFINE,LNKLSTNAME=LLS, *
RETCODE=LRETCODE,RSNCODE=LRSNCODE, *
MF=(E,DYNLL)

*
* Place code to check return/reason codes here.
*
LLS DC CL16’MYLNKLST_SET’
LMOD DC CL8’MYMODULE’
LDS1 DC CL44’SYS1.MYDS1’
LDS2 DC CL44’SYS1.MYDS2’
LDS3 DC CL44’SYS1.MYDS3’
LDONTWANT DC CL44’SYS1.DONTWANT’

CSVDYNL macro

488 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

CSVDLAA Return code information
DYNAREA DSECT
LRETCODE DS F
LRSNCODE DS F
LDSF DS CL44

CSVDYNL MF=(L,DYNLL)

Example 2:

Operation:

v Update the address space to use the current LNKLST set.

The code is as follows.

* Update this address space to be using the current LNKLST *
* set. This would generally be done in response to *
* receiving an ENF signal indicating that a new LNKLST set *
* had been made available, and would be done at a time when *
* the program had reason to believe that the address space *
* was not in the middle of fetching (e.g., LINK, LOAD) a *
* routine. *

CSVDYNL REQUEST=UPDATE, *
WHICHAS=HOME, *
RETCODE=LRETCODE,RSNCODE=LRSNCODE, *
MF=(E,DYNLL)

*
* Place code to check return/reason codes here
*

CSVDLAA Return code information
DYNAREA DSECT
LRETCODE DS F
LRSNCODE DS F

CSVDYNL MF=(L,DYNLL)

Example 3:

Operation:

v Retrieve information about all of the LNKLST sets.

The code is as follows.
L 2,=AL4(INITDLAA) Initial answer area size
ST 2,SIZEDLAA Save it
GETMAIN RU,LV=(2) Allocate the answer area
ST 1,DLAA@ Save address of answer area

LAB1 DS 0H
L 4,DLAA@ Address of answer area
CSVDYNL REQUEST=LIST,ANSAREA=(4),ANSLEN=SIZEDLAA, *

RETCODE=LRETCODE,RSNCODE=LRSNCODE, *
MF=(E,DYNLL)

CLC LRETCODE(4),=AL4(CSVDYNLRC_WARN) Warning?
BNE LAB2 No, request OK or error

* Yes, not enough room
LR 3,2 Save current size
L 2,DLAAHTLEN-DLAAHDR(4) Get required size
FREEMAIN RU,A=(4),LV=(3) Release old area
ST 2,SIZEDLAA Save it
GETMAIN RU,LV=(2) Allocate new area
ST 1,DLAA@ Save address of answer area
B LAB1 Retry List operation

LAB2 DS 0H
CLC LRETCODE(4),=AL4(CSVDYNLRC_OK) Success?
BNE LAB3 No, error

CSVDYNL macro

Chapter 39. CSVDYNL — Provide dynamic LNKLST services 489

* *
* Process information in answer area when RC=0 *
* *

USING DLAAHDR,4 DLAAHDR DSECT
L 5,DLAAH#LS Find how many DLAALS entries
LTR 5,5 Are there any entries
BZ LAB4 No, join common path
L 4,DLAAHFIRSTLS@ Get first entry
USING DLAALS,4 DLAALS DSECT

LAB5 DS 0H DLAALS loop
*
* Put code to process information contained in DLAALS here
*

LH 7,DLAALS#DS Get number of DLAADS entries
N 7,CLEAR0TO15 Clear bits 0 to 15

* Are there any data sets
BZ LAB7 No, move to end of LS loop
L 6,DLAALSFIRSTDS@ Get first DLAADS

LAB6 DS 0H DLAADS loop
USING DLAADS,6 DLAADS DSECT

*
* Put code to process information contained in DLAADS here
*

L 6,DLAADSNEXT@ Get next DLAADS
DROP 6 DLAADS DSECT
BCT 7,LAB6 Continue while there are more

LAB7 DS 0H Bottom of DLAALS loop
L 4,DLAALSNEXT@ Get next DLAALS
BCT 5,LAB5 Continue while there are more
B LAB4 Skip error case

LAB3 DS 0H Error return
*
* Process error case
*
LAB4 DS 0H Common path

L 2,SIZEDLAA Get size of area
L 4,DLAA@ Get address of area
FREEMAIN RU,A=(4),LV=(2) Release area
...

CLEAR0TO15 DC A(X’0000FFFF’) Mask to clear bits 0-15
CSVDLAA LIST answer area, return codes

DSNLEN EQU 50*DLAADS_LEN Room for 50 data sets’ info
LSLEN EQU 3*DLAALS_LEN Room for 3 LNKLST sets’ info
INITDLAA EQU DLAAHDR_LEN+DSNLEN+LSLEN Initial ansarea size
DYNAREA DSECT
DLAA@ DS A Address of answer area
SIZEDLAA DS F Size of answer area
TEMPSIZE DS F Temporary
LRETCODE DS F Return code
LRSNCODE DS F Reason code

CSVDYNL MF=(L,DYNLL)

CSVDYNL macro

490 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Chapter 40. CTRACE — Define a user application to the
component trace service

Description
The CTRACE macro defines a user application to the component trace service
(referred to as “component trace” for the remainder of this text). An application
using component trace must have an installation-written start/stop exit routine to
start, stop, or modify tracing for the application. Once you define the application
to component trace:
v The application's start/stop routine can get control through a parmlib member

specified on the PARM parameter on CTRACE DEFINE. If the parmlib member
contains trace options that tell the system to turn the trace on, the system passes
control to the start/stop routine without operator intervention. See z/OS MVS
Initialization and Tuning Reference for information about setting up one or more
CTncccxx parmlib members.

v The operator can pass control to the start/stop routine, and can specify trace
options through operator commands, with or without specifying parmlib
members. The operator can also display the status of the application's trace. See
z/OS MVS System Commands for the command syntax and parameter
descriptions for the TRACE and DISPLAY commands.

Before the application ends, it should use the CTRACE macro to delete itself from
component trace. If a component trace is active, the CTRACE DELETE macro calls
the start/stop exit routine to clean up resources and stop tracing. Deleting the trace
prevents the system from reporting an inactive trace as active when the operator
requests a display of the application's trace.

For information on writing the start/stop routine, and for additional information
about using the CTRACE macro, see z/OS MVS Programming: Authorized Assembler
Services Guide.

Once your application creates trace entries and externalizes them, either in a dump
or through the component trace external writer, use the interactive problem control
system (IPCS) to format the trace data. See z/OS MVS IPCS Commands and z/OS
MVS IPCS Customization for details.

For an understanding of tracing in general, and for details on planning to use
component trace to trace an application, see z/OS Problem Management.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Supervisor state and PSW key 0
Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 31-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control Parameters: Must be in the primary address space

© Copyright IBM Corp. 1988, 2013 491

Programming requirements
An application using component trace must have an installation-written start/stop
exit routine to start, stop, or modify tracing for the application.

Restrictions
None.

Register information
After the caller issues the macro, the system might use some registers as work
registers or might change the contents of some registers. When the system returns
control to the caller, the contents of these registers are not the same as they were
before the caller issued the macro. Therefore, if the caller depends on these
registers containing the same value before and after issuing the macro, the caller
must save these registers before issuing the macro and restore them after the
system returns control.

The caller must ensure that register 13 points to a standard 72-byte save area.

When control returns to the caller, the GPRs contain:

Register
Contents

0 Used as a work register by the system if GPR 15 contains 0 or 4; otherwise,
GPR 0 contains a reason code.

1 Used as a work register by the system

2-12 Unchanged.

13 Contains the address of a standard savearea.

14 Used as a work register by the system

15 Return code

Performance implications
All component traces use system resources and will have some impact on
performance. You should evaluate the impact of using either a single trace or
multiple traces and determine which trace will provide the information you need
with the least effect on performance. For information about multiple and single
traces, see z/OS Problem Management

Syntax
The standard form of the CTRACE macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede CTRACE.

CTRACE

CTRACE macro

492 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Syntax Description

� One or more blanks must follow CTRACE.

DEFINE

DELETE

,NAME=name name: RX-type address or register (2) - (12).

,STARTNAM=sname sname: RX-type address or register (2)-(12).

,DISPNAM=dname dname: RX-type address or register (2)-(12).

,PARM=parm parm: RX-type address or register (2) - (12).

,PARM=NOPARM Default: PARM=NOPARM.

,ASIDS=NO Default: ASIDS=NO.

,ASIDS=YES

,JOBS=NO Default: JOBS=NO.

,JOBS=YES

,MINOPS=options options: RX-type address.

,MINOPS=NONE Default: MINOPS=NONE.

,MOD=NO Default: MOD=NO.

,MOD=YES

,FMTTAB=fmtabs fmtabs: RX-type address or register (2) - (12).

,FMTTAB=NONE Default: FMTTAB=NONE.

,USERDATA=userdata userdata: RX-type address or register (2) - (12).

,USERDATA=NOUSERDATA Default: USERDATA=NOUSERDATA

,HEAD=NO Default: HEAD=NO.

,HEAD=YES

,HEADOPTS=NO Default: HEADOPTS=NO.

,HEADOPTS=YES

,SUB=subname subname: RX-type address or register (2) - (12).

,SUB=NOSUB Default: SUB=NOSUB.

CTRACE macro

Chapter 40. CTRACE — Define a user application to the component trace service 493

Syntax Description

,LIKEHEAD=NO Default: LIKEHEAD=NO.

,LIKEHEAD=YES

,MANYSUBS=NO Default: MANYSUBS=NO.

,MANYSUBS=YES

,DELSUBS Default: DELSUBS

,IFNOSUBS

,BUFFER=NO Default: BUFFER=NO.

,BUFFER=YES

,BUFDEFIN=NO Default: BUFDEFIN=NO.

,BUFDEFIN=YES

,BUFMIN=minsize minsize: Minimum buffer size.

Default: BUFMIN=1024.

,BUFMAX=maxsize maxsize: Maximum buffer size.

Default: BUFMAX=2147483647.

,BUFDFLT=dfltsize dfltsize: RX-type address or register (2) - (12).

,BUFDFLT=NODFLT Default: BUFDFLT=NODFLT.

,WTR=NO Default: WTR=NO.

,WTR=YES

,WTRMODE=PAGEABLE

,WTRMODE=DREF

,WTRMODE=FIXED

,SSRC=ss_retcode ss_retcode: RX-type address or register (2) - (12).

,SSRSNC=ss_rsncode ss_rsncode: RX-type address or register (2) - (12).

,RC=retcode retcode: RX-type address or register (2) - (12).

,RSNCODE=rsncode rsncode: RX-type address or register (2) - (12).

,COM=comment comment: A comment string.

,COM=NULL Default: NULL.

CTRACE macro

494 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Syntax Description

,MF=(S) Default: MF=(S)

Parameters
The parameters are explained as follows:

DEFINE
DELETE

The required parameter that either defines the application to or deletes the
application from component trace.

When you specify DEFINE:
v You must specify NAME.
v You cannot specify DELSUBS or IFNOSUBS.

All other parameters are optional with DEFINE.

When an application is using multiple traces, the application must issue
CTRACE DEFINE separately for each trace.

When you specify DELETE:
v You must specify NAME.
v SUB, DELSUBS, IFNOSUBS, RSNCODE, RC, COM, and MF are optional

parameters.

You cannot specify any other parameters with DELETE.

,NAME=name
The required parameter that specifies the name of the application or head node
to be defined or deleted. The name must begin with an alphabetic or national
character and can contain up to eight alphanumeric or national characters. The
first three letters must not be SYS because SYS is reserved for IBM use. NAME
is required for both DEFINE and DELETE.

The operator uses this name on the TRACE CT command (COMP parameter),
and IPCS uses this name on the CTRACE subcommand (COMP parameter).

,STARTNAM=sname
Specifies the name of the application's start/stop exit routine. This routine
receives control to start, stop, or modify tracing for the application. The
application must have at least one start/stop routine. In the case of multiple
traces, the application might have a start/stop routine for the head node and
for each sublevel trace.

This routine must be a reentrant load module in the LNKLST or LPA.

You must code STARTNAM whenever you code CTRACE DEFINE, unless you
code HEADOPTS=NO with HEAD=YES. If you code HEADOPTS=NO with
HEAD=YES, STARTNAM is not valid.

,DISPNAM=dname
Specifies the name of the application's display exit routine. This routine
receives control to provide status information about the component trace for
the DISPLAY TRACE operator command.

This routine must be a reentrant load module in the LNKLST or LPA.

CTRACE macro

Chapter 40. CTRACE — Define a user application to the component trace service 495

You may code DISPNAM whenever you code CTRACE DEFINE, unless you
code HEADOPTS=NO with HEAD=YES. If you code HEADOPTS=NO with
HEAD=YES, DISPNAM is not valid.

,PARM=parm
,PARM=NOPARM

Specifies the name of a parmlib member that contains the options to be used
for tracing. A parmlib member specified on the CTRACE macro can contain
tracing options for only one trace. Consult z/OS MVS Initialization and Tuning
Reference for information on how to set up one or more component trace
(CTncccxx) parmlib members.

The default is PARM=NOPARM.

,ASIDS=YES
,ASIDS=NO

Allows you to request trace filtering by ASIDs. A single trace that uses
multiple address spaces can use this parameter as a filter to ensure that a trace
is done only in certain address spaces. With ASIDS=YES, you can specify up to
16 ASIDs in a parmlib member on the PARM parameter, or the operator can
specify up to 16 ASIDs. With ASIDS=NO, which is the default, neither you nor
the operator can request trace filtering by ASIDs.

,JOBS=YES
,JOBS=NO

Allows you to request trace filtering by JOBNAMEs. With JOBS=YES, you can
specify up to 16 JOBNAMEs in a parmlib member on the PARM parameter, or
the operator can specify up to 16 JOBNAMEs. With JOBS=NO, which is the
default, neither you nor the operator can request trace filtering by JOBNAMEs.

,MINOPS=options
,MINOPS=NONE

Specifies a list of user-defined options that are in effect when the trace is off or
no other options are specified. These options cannot be turned off by the
operator. The character string for the options list must not exceed 255 bytes.
The individual options must be separated by commas. See z/OS Problem
Management for information about planning and setting up user-defined
options for your application. The default is MINOPS=NONE.

,MOD=NO
,MOD=YES

Specifies whether an application's trace must be stopped before changes are
made to the application's tracing options. If you code MOD=YES, you allow
the tracing options to be modified without stopping the trace. The default is
MOD=NO.

,FMTTAB=fmtabs
,FMTTAB=NONE

Specifies the name of the load module that contains the CTRACE format table
for the application. Use the ITTFMTB macro, described in z/OS MVS
Programming: Authorized Assembler Services Reference EDT-IXG to create this
CTRACE format table. See z/OS MVS IPCS Customization for further details
about how to create a CTRACE format table.

The default,FMTTAB=NONE, specifies that IPCS is not to format the trace.

Note that specifying either the FMTTAB=fmtabs and USERDATA=userdata
parameters cause information to be placed in the SQA. If SQA is not dumped,
the information supplied by CTRACE DEFINE will not enable formatting to
proceed. You may supply a CTRACE statement in parmlib member BLSCUSER

CTRACE macro

496 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

to enable formatting to commence in this situation, but the buffer find routine
supplied by your component will be supplied with userdata of zeros.

,USERDATA=userdata
,USERDATA=NOUSERDATA

Specifies an optional 16-byte input/output area used by the application to
contain any data that it wants to associate with this trace. When control is
passed to the trace's start/stop routine, this user data field is passed in the
CTSS. Similarly, the user data field is passed in the CTXI to the trace's IPCS
exit routines. Suggested uses include placing the address (and optionally, the
ALET) of either of the following into this field:
v The application's control information
v The application's first trace buffer.

Note that specifying either the FMTTAB=fmtabs and USERDATA=userdata
parameters cause information to be placed in the SQA. If SQA is not dumped,
the information supplied by CTRACE DEFINE will not enable formatting to
proceed. You may supply a CTRACE statement in parmlib member BLSCUSER
to enable formatting to commence in this situation, but the buffer find routine
supplied by your component will be supplied with userdata of zeros.

,HEAD=NO
,HEAD=YES

When using multiple traces, use this parameter to specify whether the trace
you are defining is a head node. If you specify HEAD=YES, you can define
sublevel traces (SUB parameter) on subsequent invocations of CTRACE
DEFINE that share the options, attributes, and state of this head node.

If you specify both HEAD=YES and SUB=sub on the same invocation of
CTRACE DEFINE, both of the following are true:
v The trace you are defining is a head node for sublevel traces to be defined

on subsequent invocations of CTRACE DEFINE.
v The trace you are defining is a sublevel trace for a head node that was

defined on a previous invocation of CTRACE DEFINE.

If you specify HEAD=NO (or take the default), you cannot define sublevel
traces under this trace.

,HEADOPTS=NO
,HEADOPTS=YES

Specifies that the application supports options for the head node that is being
defined. This parameter is valid only if you specify HEAD=YES.

When you specify HEADOPTS=YES, you can define sublevel traces on
subsequent invocations of CTRACE DEFINE with the LIKEHEAD parameter
and those traces will have the same options, attributes, and state as the HEAD.
When any of the options or the state of the head are changed, all of the
sublevel traces that are defined LIKEHEAD are also changed.

If you specify HEADOPTS=YES, you must specify a start/stop routine.

If you specify HEADOPTS=NO, you define a head node whose sublevel traces
will be independent of the head node. You will not be able to turn on the trace
at the head node, but only at the sublevels. Consequently, if HEADOPTS=NO,
you cannot specify a start/stop routine.

HEADOPTS=NO is the default.

,SUB=subname

CTRACE macro

Chapter 40. CTRACE — Define a user application to the component trace service 497

,SUB=NOSUB
When using multiple traces, use this parameter to specify that the trace you
are defining is a sublevel trace, and specifies the name of the sublevel trace.
Specify a sublevel trace name in one of the following ways:
v A 1- to 18-character name that begins with a letter, A-Z, or the characters $,

#, or @ and consists of a combination of the characters A-Z, 0-9, and the
characters $, #, and @. If you enclose the name in quotation marks, you can
also use lowercase letters, a-z, and the underscore character (_).

v The keyword ASID or JOBNAME. For example, for job ABC running in
address space ASID(05), you can code either of the following for the same
result:
– SUB=JOBNAME(ABC)
– SUB=ASID(05)

If you define multiple sublevel traces on one path of the trace structure, you
can specify up to five sublevel trace names separated by periods; for example:
CTRACE DEFINE,NAME=APPLABC,SUB=ASID(13).FACILITY12.SUBA.SUBB.SUBC,...

,LIKEHEAD=NO
,LIKEHEAD=YES

When using multiple traces, use this parameter to specify whether the sublevel
trace you are defining is to use the options, attributes, and state of its head
node (defined on a previous invocation of the CTRACE macro.) The default is
LIKEHEAD=NO.

You cannot specify LIKEHEAD=YES with the following:
v HEADOPTS=NO
v PARM=parm

v Any of the attributes keywords (ASIDS, JOBS, MINOPS, MOD, BUFFER,
BUFMIN, BUFMAX, BUFDFLT, BUFDEFIN, and WTR).

,MANYSUBS=NO
,MANYSUBS=YES

Specifies whether you expect the head node you are defining to have more
than 15 sublevel traces directly associated with it. For example, a head node
with NAME=APPLABC might have 20 sublevel traces specified on subsequent
invocations of CTRACE DEFINE that are directly associated with APPLABC:
CTRACE DEFINE,NAME=APPLABC,SUB=SUB1,...
CTRACE DEFINE,NAME=APPLABC,SUB=SUB2,...
CTRACE DEFINE,NAME=APPLABC,SUB=SUB3,......
CTRACE DEFINE,NAME=APPLABC,SUB=SUB20,...

In this case, code MANYSUBS=YES when you define the head node.

The default is MANYSUBS=NO.

,DELSUBS
,IFNOSUBS

When using multiple traces, use this parameter to restrict which traces will be
deleted.

When you issue CTRACE DELETE to delete a trace, and you specify
IFNOSUBS, the system does the following:
v If the trace is not a head node, the system deletes the trace.
v If the trace is a head node with no sublevel traces associated with it, the

system deletes the trace.

CTRACE macro

498 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

v If the trace is a head node with sublevel traces, the system issues return
code X'0C' with reason code X'2B' and does not delete the trace.

When you issue CTRACE DELETE to delete a trace, and you specify
DELSUBS, the system deletes the trace. If the trace is a head node with
sublevel traces associated with it, the system also deletes the sublevel traces.
DELSUBS is the default.

,BUFFER=NO
,BUFFER=YES

Restricts how you can specify the application's trace buffer size. If you code
BUFFER=YES, you can specify the trace buffer size in a parmlib member on
the CTRACE macro, or the operator can specify the trace buffer size.

If you code BUFFER=NO, which is the default:
v You cannot specify a trace buffer size in a parmlib member on the CTRACE

macro.
v The operator cannot specify a trace buffer size.
v You cannot specify BUFDEFIN, BUFMIN, BUFMAX, or BUFDFLT.

,BUFDEFIN=NO
,BUFDEFIN=YES

If you code BUFDEFIN=YES, a buffer size can be specified only on a parmlib
member with the PRESET option, or in a parmlib member that you specify on
the PARM parameter of CTRACE DEFINE. If you specify BUFDEFIN=YES you
must also specify BUFFER=YES. BUFDEFIN=NO is the default.

,BUFMIN=minsize
Specifies the minimum buffer size allowed. The default is 1024 bytes. If you
specify less than the default, the default will be used. If you specify BUFMIN,
you must also specify BUFFER=YES.

,BUFMAX=maxsize
Specifies the maximum buffer size allowed. BUFMAX cannot be less than
BUFMIN. The default is 2147483647 bytes. If you specify BUFMAX, you must
also specify BUFFER=YES.

,BUFDFLT=dfltsize
,BUFDFLT=NODFLT

Specifies the default buffer size to be used if you do not specify a buffer size in
a parmlib member on the PARM parameter, or if the operator does not specify
a buffer size. dfltsize cannot be less than BUFMIN or more than BUFMAX.

If you specify BUFDFLT=dfltsize and also specify a buffer size in a parmlib
member or on an operator command, the dfltsize is overridden.

To specify BUFDFLT=dfltsize, you must also specify BUFFER=YES.

BUFDFLT=NODFLT is the default.

,WTR=NO
,WTR=YES

Specifies whether the application's trace supports writing trace data to DASD
or tape through the component trace external writer. If you specify WTR=YES,
you must also specify WTRMODE.

The default, WTR=NO, means an external writer is not used for this trace.

,WTRMODE=PAGEABLE
,WTRMODE=DREF
,WTRMODE=FIXED

Indicates the type of storage the application's trace buffers are in when you

CTRACE macro

Chapter 40. CTRACE — Define a user application to the component trace service 499

issue the CTRACEWR macro to write the trace buffers to DASD or tape. This
parameter is required when you specify WTR=YES.

When you code WTRMODE=PAGEABLE, the application's trace buffers can be
in either fixed, disabled reference (DREF), or pageable storage at the time you
issue CTRACEWR.

Note: IBM recommends you keep your trace buffers in pageable storage,
which will not deplete your system's central storage.

When you code WTRMODE=DREF, the application's trace buffers can be in
either fixed or DREF storage at the time you issue CTRACEWR. Regular page
faults are not allowed.

When you code WTRMODE=FIXED, the application's trace buffers must be in
fixed storage at the time you issue CTRACEWR.

,SSRC=ss_retcode
Specifies the name of a 4-byte output area to contain the return code set by the
start/stop routine.

,SSRSNC=ss_rsncode
Specifies the name of a 4-byte output area to contain the reason code from the
start/stop routine.

,RC=retcode
Specifies the location where the system is to store the return code. The return
code is also in general purpose register (GPR) 15.

,RSNCODE=rsncode
Specifies the location where the system is to store the reason code. The reason
code is also in GPR 0. CTRACE provides a reason code if the return code is
other than 0 or 4.

,COM=comment
,COM=NULL

Allows you to include a comment string in the macro block comment before
the macro invocation. If the comment contains any lowercase characters, it
must be enclosed in quotation marks.

,MF=(S)
Specifies the standard form of the CTRACE macro.

ABEND codes
The following table identifies abend code and reason code combinations, and a
description of what each means:

Table 46. Abend codes for the CTRACE Macro

Abend Code Reason Code Description

00D 00000101 For the CTRACE DEFINE macro, the parameter list version
number is not correct.

00D 00000102 For the CTRACE DEFINE macro, the component name
either does not begin with an alphabetic or national
character, or it contains one or more characters that are not
alphanumeric or national characters.

00D 00000301 The system found either nonzero values in the reserved
fields or unused fields for the requested service in the
CTRACE DEFINE macro parameter list.

00D 00000302 The system found either nonzero values in the reserved
fields or unused fields for the requested service in the
CTRACE DELETE macro parameter list.

CTRACE macro

500 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Table 46. Abend codes for the CTRACE Macro (continued)

Abend Code Reason Code Description

00D 00000401 For the CTRACE macro, an incorrect service request was
specified. Valid services are CTRACE DEFINE and
CTRACE DELETE.

00D 00000501 For the CTRACE DEFINE macro, the length of minimum
options string is greater than 256 bytes.

Return and reason codes
When control returns from CTRACE, GPR 15 (and retcode, if you coded RC)
contains one of the following return codes. The third byte of GPR 0 (and rsncode, if
you coded RSNCODE) might contain one of the following reason codes.

Note: The application should always check the return code from the CTRACEWR
macro. A non-zero return code indicates that some data might have been lost in the
next record output.

Table 47. Return and Reason Codes for the CTRACE Macro

Hexadecimal
Return Code

Hexadecimal
Reason Code

Meaning

00 None. CTRACE was successful.

04 None. CTRACE was unsuccessful.

v For the DEFINE request, the application was already
defined to component trace.

v For the DELETE request, the application is not defined to
component trace.

08 xxxx06xx Insufficient storage for a DEFINE operation.

08 xxxx07xx CTRACE could not establish a recovery environment.

0C xxxx01xx An attempt to define a SUB was made before a HEAD was
defined.

0C xxxx02xx The LIKEHEAD option was specified with other trace
options.

0C xxxx03xx An attempt to define a SUB was made, but the previous
level was not a HEAD.

0C xxxx04xx The specified parmlib member was not found.

0C xxxx05xx While attempting to read the specified parmlib member, an
I/O error occurred.

0C xxxx06xx There is a syntax error in the specified parmlib member.

0C xxxx07xx LIKEHEAD=YES was specified, but no HEAD exists for a
SUB to match. The head node was defined with
HEADOPTS=NO.

0C xxxx08xx JOBNAME or ASID was specified as the SUB name, but the
job or address space is not active.

0C xxxx09xx LIKEHEAD was specified in the parmlib member, but the
HEAD had different attributes.

0C xxxx0Axx LIKEHEAD=YES was specified with the PARM keyword.

0C xxxx0Bxx HEADOPTS=NO was specified with the PARM keyword.

0C xxxx0Cxx LIKEHEAD=YES was specified with HEADOPTS=NO.

0C xxxx0Dxx STARTNAM is required for all defines except when
HEADOPTS=NO.

0C xxxx0E01 STARTNAM is not allowed when both HEADOPTS=NO
and HEAD=YES are specified.

CTRACE macro

Chapter 40. CTRACE — Define a user application to the component trace service 501

Table 47. Return and Reason Codes for the CTRACE Macro (continued)

Hexadecimal
Return Code

Hexadecimal
Reason Code

Meaning

0C xxxx0E02 DISPNAM is not allowed when both HEADOPTS=NO and
HEAD=YES are specified.

0C xxxx0Fxx SUB cannot be specified in the parmlib member.

0C xxxx10xx PRESET(DELETE) cannot be specified in the parmlib
member.

0C xxxx11xx The start/stop routine returned a nonzero return code.

0C xxxx12xx A buffer cannot be specified on this invocation of the
CTRACE macro.

0C xxxx13xx The buffer size (BUFSIZE) specified in the parmlib member
is not within the limits as defined by BUFMIN and
BUFMAX.

0C xxxx14xx ASID filtering is not allowed.

0C xxxx15xx Jobname filtering is not allowed.

0C xxxx16xx The BUFMIN specified is greater than the BUFMAX.

0C xxxx17xx The BUFDFLT specified is less than the BUFMIN.

0C xxxx18xx The BUFDFLT specified is greater than the BUFMAX.

0C xxxx19xx The LOAD or LINK to the specified start/stop routine
failed.

0C xxxx1Axx A specified sublevel trace name is not valid. Either the
syntax is not correct, or more than five names were
specified.

0C xxxx1Bxx A parmlib error was found.

0C xxxx1Cxx An ASID is not a valid hexadecimal number.

0C xxxx1Dxx The parmlib member, including comments, is too large.

0C xxxx1Fxx The parmlib member cannot be read.

0C xxxx20xx The dynamic allocation of a parmlib member failed.

0C xxxx21xx An ASID is longer than four characters.

0C xxxx22xx An ASID of zero is not valid.

0C xxxx23xx More than 16 ASIDs were specified.

0C xxxx24xx A jobname is longer than eight characters.

0C xxxx25xx More than 16 jobnames were specified.

0C xxxx26xx The buffer size specification is longer than five characters.

0C xxxx27xx The buffer size specification does not have K or M
specified as the unit.

0C xxxx28xx The buffer size specified is not a valid decimal number.

0C xxxx29xx The options string is longer than 1024 characters.

0C xxxx2Axx The parmlib member name did not begin with the
characters 'CT.'

0C xxxx2Bxx The DELETE failed because IFNOSUBS was specified and
the trace had sublevel traces.

0C xxxx2Cxx The trace does not support using an external writer.

0C xxxx2Dxx The name of the external writer is not valid. A valid name
is 1-7 characters in length, starting with an alphabetic or
national character (A-Z, $, @, #) and containing
alphanumeric or national characters (A-Z, 0-9, $, @, #).

CTRACE macro

502 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Example
Define application APPXYZ to component trace as a head node, and allow sublevel
traces to be defined with the same options, attributes, and state as the head node.
Use a parmlib member to supply default options for the trace. The name of the
head node's start/stop exit routine is APPXYZSS. The system is to store the return
and reason codes from the start/stop routine in SSRC and SSRSNC. The system is
to store the return and reason codes from the CTRACE macro in TCRC and
TCRSN.

CTRACE DEFINE,NAME=COMPNAM1,STARTNAM=STRTNAM1, X
HEADOPTS=YES,HEAD=YES,ASIDS=NO,JOBS=NO, X
BUFFER=YES,BUFDEFIN=NO,BUFDFLT=5000, X
SSRC=SSRC,SSRSNC=SSRSN,MANYSUBS=YES, X
WTR=YES,WTRMODE=PAGEABLE,PARM=PARM1,MOD=YES, X
RC=TCRC,RSNCODE=TCRSN

COMPNAM1 DC CL8’APPXYZ ’ Component name
STRTNAM1 DC CL8’APPXYZSS’ Component Start/Stop

* routine name
PARM1 DC CL8’CTAPPXYZ’ PARMLIB member name
SSRC DS F Return code from Start/Stop
SSRSN DS F Reason code from Start/Stop
TCRC DS F Return code from CTRACE
TCRSN DS F Reason code from CTRACE

CTRACE - List form
Use the list form of the CTRACE macro together with the execute form of the
macro for applications that require reentrant code. The list form of the macro
defines an area of storage, which the execute form of the macro uses to store the
parameters.

Syntax
The list form of the CTRACE macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede CTRACE.

CTRACE

� One or more blanks must follow CTRACE.

,PLISTVER=xplistver xplistver: Parameter list version 0, 1, or 2

,PLISTVER=IMPLIED_VERSION Default: IMPLIED_VERSION

,PLISTVER=MAX Default: Version that allows all specified parameters

,MF=(L,cntl) cntl: Symbol.

,MF=(L,cntl,attr) attr: 1- to 60-character input string.

,MF=(L,cntl,0D) Default: 0D.

CTRACE macro

Chapter 40. CTRACE — Define a user application to the component trace service 503

Syntax Description

Parameters
The parameters are explained as follows:

,PLISTVER=(xplistver | IMPLIED_VERSION)
Is an optional one byte input, decimal value in the range of 0 to 2, that
specifies the macro version associated with CTRACE. PLISTVER is the only
keyword allowed on the list form of the macro. It determines which parameter
list is generated.

Note that MAX can be specified instead of a number, and the parameter list
will be the largest size currently supported. This size may grow from release to
release (thus possibly affecting the amount of storage needed by your
program). If your program can tolerate this, IBM recommends that you always
specify MAX when creating the list form parameter list, to ensure that the list
form parameter list is always long enough to hold whatever parameters are
specified on the execute form. The macro keywords associated with each
supported version of the macro are listed below.

Version Keyword

0 v ASID

v BUFFER

v DEFINE

v DELETE

v DELSUBS

v FMTTAB

v IFNOSUBS

v JOBS

v MINOPS

v NAME

v RC

v STARTNAM

CTRACE macro

504 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Version Keyword

1 v BUFDEFIN

v BUFDFLT

v BUFMAX

v BUFMIN

v HEAD

v HEADOPTS

v LIKEHEAD

v MANYSUB

v MOD

v PARM

v SSRC

v SSRSNC

v SUB

v USERDATA

v WTR

v WTRMODE

2 v DISPNAM

,MF=(L,cntl)
,MF=(L,cntl,attr)
,MF=(L,cntl,0D)

Specifies the list form of the macro.

cntl is the name of a storage area for the parameter list.

attr is an optional 1- to 60-character input string, which can contain any value
that is valid on an assembler DS pseudo-op. You can use this parameter to
force boundary alignment of the parameter list. If you do not code attr, the
system provides a value of 0D, which forces the parameter list to a
doubleword boundary.

CTRACE - Execute form
Use the execute form of the CTRACE macro together with the list form of the
macro for applications that require reentrant code. The execute form of the macro
stores the parameters into the storage area defined by the list form.

Syntax
The execute form of the CTRACE macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede CTRACE.

CTRACE

� One or more blanks must follow CTRACE.

CTRACE macro

Chapter 40. CTRACE — Define a user application to the component trace service 505

Syntax Description

DEFINE

DELETE

,NAME=name name: RX-type address or register (2) - (12).

,STARTNAM=sname sname: RX-type address or register (2)-(12).

,DISPNAM=dname dname: RX-type address or register (2)-(12).

,PARM=parm parm: RX-type address or register (2) - (12).

,PARM=NOPARM Default: PARM=NOPARM.

,ASIDS=NO Default: ASIDS=NO.

,ASIDS=YES

,JOBS=NO Default: JOBS=NO.

,JOBS=YES

,MINOPS=options options: RX-type address.

,MINOPS=NONE Default: MINOPS=NONE.

,MOD=NO Default: MOD=NO.

,MOD=YES

,FMTTAB=fmtabs fmtabs: RX-type address or register (2) - (12).

,FMTTAB=NONE Default: FMTTAB=NONE.

,USERDATA=userdata userdata: RX-type address or register (2) - (12).

,USERDATA=NOUSERDATA Default: USERDATA=NOUSERDATA

,HEAD=NO Default: HEAD=NO.

,HEAD=YES

,HEADOPTS=NO Default: HEADOPTS=NO.

,HEADOPTS=YES

,SUB=subname subname: RX-type address or register (2) - (12).

,SUB=NOSUB Default: SUB=NOSUB.

,LIKEHEAD=NO Default: LIKEHEAD=NO.

CTRACE macro

506 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Syntax Description

,LIKEHEAD=YES

,MANYSUBS=NO Default: MANYSUBS=NO.

,MANYSUBS=YES

,DELSUBS Default: DELSUBS

,IFNOSUBS

,BUFFER=NO Default: BUFFER=NO.

,BUFFER=YES

,BUFDEFIN=NO Default: BUFDEFIN=NO.

,BUFDEFIN=YES

,BUFMIN=minsize minsize: Minimum buffer size.

Default: BUFMIN=1024.

,BUFMAX=maxsize maxsize: Maximum buffer size.

Default: BUFMAX=2147483647.

,BUFDFLT=dfltsize dfltsize: RX-type address or register (2) - (12).

,BUFDFLT=NODFLT Default: BUFDFLT=NODFLT.

,WTR=NO Default: WTR=NO.

,WTR=YES

,WTRMODE=PAGEABLE

,WTRMODE=DREF

,WTRMODE=FIXED

,SSRC=ss_retcode ss_retcode: RX-type address or register (2) - (12).

,SSRSNC=ss_rsncode ss_rsncode: RX-type address or register (2) - (12).

,RC=retcode retcode: RX-type address or register (2) - (12).

,RSNCODE=rsncode rsncode: RX-type address or register (2) - (12).

,COM=comment comment: A comment string.

,COM=NULL Default: NULL.

CTRACE macro

Chapter 40. CTRACE — Define a user application to the component trace service 507

Syntax Description

,MF=(E,cntl) cntl: RX-type address or register (2) - (12).

,MF=(E,cntl,COMPLETE) Default: COMPLETE

Parameters
The parameters are explained under the standard form of the CTRACE macro with
the following exception:

,MF=(E,cntl)
,MF=(E,cntl,COMPLETE)

Specifies the execute form of the macro.

cntl is the name of a storage area for the parameter list.

COMPLETE specifies that the system is to check the macro parameter syntax
and supply defaults on parameters that you do not use. COMPLETE is the
default.

CTRACE macro

508 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Chapter 41. CTRACECS — Setting fields in the trace buffer
writer control area

Description
The CTRACECS macro allows you to set fields in the trace buffer writer control
area (TBWC). By setting these fields, your application can manage and track the
status of its trace buffers. When a buffer is full, the application uses the
CTRACEWR macro to have the component trace external writer write the buffer
out to DASD or tape.

See TBWC in z/OS MVS Data Areas in z/OS Internet Library at
http://www.ibm.com/systems/z/os/zos/bkserv/ for complete field names and
lengths, offsets, and descriptions of the fields of the TBWC, which is mapped by
the ITTTBWC mapping macro.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Supervisor state or PSW key 0
Dispatchable unit mode: Task or SRB
Cross memory mode: PASN=HASN=SASN
AMODE: 24- or 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled or disabled for I/O and external interrupts
Locks: No requirement
Control parameters: Must be in the primary address space or be in an

address/data space that is addressable through a public
entry on the caller's dispatchable unit access list (DU-AL)

Programming requirements
The program checking the bits in the TBWC must include the ITTTBWC mapping
macro.

Restrictions
None.

Register information
After the caller issues the macro, the system might use some registers as work
registers or might change the contents of some registers. When the system returns
control to the caller, the contents of these registers are not the same as they were
before the caller issued the macro. Therefore, if the caller depends on these
registers containing the same value before and after issuing the macro, the caller
must save these registers before issuing the macro and restore them after the
system returns control.

When control returns to the caller, the general purpose registers (GPRs) contain:

Register
Contents

© Copyright IBM Corp. 1988, 2013 509

http://www.ibm.com/systems/z/os/zos/bkserv/

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

When control returns to the caller, the ARs contain:

Register
Contents

0-15 Unchanged

Performance implications
None.

Syntax
The standard form of the CTRACECS macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column
1.

� One of more blanks must precede
CTRACECS.

CTRACECS

� One or more blanks must follow
CTRACECS.

TBWC=tbwcaddr tbwcaddr: RS-type address or register
(2) - (12).

,MODE=AVAIL

,MODE=FULL

,MODE=FILLING,BUFFSEQ#=seq#addr

,BUFFSEQ#=seq#addr seq#addr: RS-type name or address in
register (2) - (12).

,TESTMODE=CURRENT Default: TESTMODE=CURRENT

,TESTMODE=AVAIL

,TESTMODE=FULL

,TESTMODE=FILLING

,TESTSEQ#=testseq# testseq#: RS-type name or address in
register (2)-(12). that specifies the
expected buffer sequence number.

,TESTSEQ#=TBWCSEQ# Default: TESTSEQ#=TBWCSEQ#

CTRACECS macro

510 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Syntax Description

,CSLABEL=cslabel cslabel: A-type name of a label.

Optional for TESTMODE=CURRENT.

Required for TESTMODE=AVAIL/
FULL/FILLING and TESTSEQ#.

,CSLABEL=RETRY Default: CSLABEL=RETRY

,COM=comment comment: A comment string.

,COM=NULL Default: COM=NULL

Parameters
The parameters are explained as follows:

TBWC=tbwcaddr
Specifies the storage for the TBWC which contains the state of the buffer and
the buffer sequence number. The storage must be 8 bytes in length and aligned
on a doubleword boundary.

If a register is used to give the address of the TBWC and the program is
running in access register ASC mode, then the corresponding AR must be set
appropriately to contain the ALET of the TBWC.

,MODE=AVAIL
,MODE=FULL
,MODE=FILLING

Indicates the requested state to which the buffer is to be set.

AVAIL
Requests that the trace buffer be set to the available state. Use
MODE=AVAIL to initialize the trace buffers to the available state before
filling them with data. If the buffer is eventually written out to an external
writer data set using the CTRACEWR macro, CTRACE will mark the
buffer available when it is finished with it. If the buffer is not going to be
written using CTRACEWR, use CTRACECS to mark the buffer available
before reusing it.

FILLING
Requests that the buffer be set to the filling state. Use this parameter before
you have put any trace entries in the buffer to indicate that it is about to
be filled.

IBM recommends that TESTMODE=AVAIL be used with MODE=FILLING
to make sure that you will not overlay data in a buffer that is already in
use.

FULL
Requests that the buffer be set to the full state. Use this parameter to
indicate that the buffer is filled with trace data. No more data should be
put into the buffer until its state is set to available. If you are using
CTRACEWR, CTRACE will mark the buffer available when it is finished
writing its contents to the output dataset. If you are not using
CTRACEWR, you will have to mark the buffer available using the
CTRACECS macro, specifying MODE=AVAIL.

CTRACECS macro

Chapter 41. CTRACECS — Setting fields in the trace buffer writer control area 511

,BUFFSEQ#=seq#addr
Specifies the name (RS-type) or address (in register 2-12) of a fullword that
contains the address of TBWCxxxx, a field that contains the buffer sequence
number. The number, starting at one and incremented by 1 for every buffer,
must be unique for every buffer passed to an external writer by a given trace.

For MODE=FILLING, the BUFFSEQ# parameter is required. Do not specify
BUFFSEQ# with MODE=FULL or AVAIL.

,TESTMODE=CURRENT
,TESTMODE=AVAIL
,TESTMODE=FILLING
,TESTMODE=FULL

Optional input specifying the expected state of the buffer. The expected state is
compared to the current state of the buffer. The TBWC is only updated with
the requested state (MODE) if the expected state (TESTMODE) is the same as
the current state of the buffer.

CURRENT
CURRENT is the default. It sets the state of the buffer to the state specified
by the MODE keyword regardless of the current state.

AVAIL
Requests that the state of the buffer be set to the state requested by the
MODE keyword only when the buffer is in the available state. Use this
parameter with MODE=FILLING to change the state of the buffer to its
next valid state. CSLABEL is required with TESTMODE=AVAIL.

FILLING
Requests that the state of the buffer be set to the state requested by the
MODE keyword only when the buffer is in the filling state. Use this
parameter with MODE=FULL to change the state of the buffer to its next
valid state. CSLABEL is required with TESTMODE=FILLING.

FULL
Requests that the state of the buffer be set to the state requested by the
MODE keyword only when the buffer is in the full state. Use this
parameter with MODE=AVAIL to change the state of the buffer to its next
valid state. CSLABEL is required with TESTMODE=FULL.

,TESTSEQ#=testseq#
,TESTSEQ#=TBWCSEQ#

Optional fullword input value that is used to test the current buffer sequence
number. If the input value matches the current buffer sequence number the
TBWC is updated to the expected requested state (specified by the MODE
keyword). If you are using more than one buffer, TESTSEQ# ensures that your
are changing the state of the correct buffer by verifying its sequence number in
the TBWC.

,CSLABEL=label
,CSLABEL=RETRY

Specifies the name of a label within your application to which the system
returns control when the current mode or sequence number does not equal the
expected buffer mode or sequence number. CSLABEL is required when using
the TESTMODE and TESTSEQ# keywords; however, it is optional when used
with TESTMODE=CURRENT.

If CSLABEL=RETRY is specified, the application will branch to a system
generated label that retries the CDS instruction with the current value of the
TBWC. CSLABEL=RETRY is not valid with the TESTMODE and TESTSEQ#

CTRACECS macro

512 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

parameters. It is provided for existing applications that invoked the
CTRACECS macro before the two parameters became available.

,COM=comment
,COM=NULL

Optional input. Comments the macro invocation. The comment string must be
enclosed in quotation marks if it contains any lowercase characters.

Return and reason codes
None.

Example 1
Indicate to component trace that you are starting to fill a trace buffer. Then indicate
to component trace that the buffer is full. Note that this example does not use the,
TESTMODE TESTSEQ#, and CSLABEL parameters which would prevent buffers
from being overwritten, especially in a sysplex environment.

CTRACECS TBWC=TBWCAREA,MODE=FILLING,BUFFSEQ#=REQ#
.
.
.

CTRACECS TBWC=TBWCAREA,MODE=FULL

TBWCAREA DS CL8 Trace Buffer Writer Control area
* TBWC contains buffer seq #

REQ# DS F Buffer Seq #
*

Example 2
Test to ensure that the next buffer associated with the input TBWC is currently
available. If it is, update the mode to FILLING. If the buffer is not available the
code will branch to the subroutine TLABL.

CTRACECS TBWC=TBWCAREA,MODE=FILLING,BUFFSEQ#=next#,
TESTMODE=AVAIL,CSLABEL=TLABL

.

.

TLABL: (next instruction)

Example 3
Update the status of the buffer from FILLING to FULL if its sequence number is
equal to the expected buffer sequence number in the TESTSEQ# parameter.

CTRACECS TBWC=TBWCAREA,MODE=FULL,TESTMODE=FILLING,
TESTSEQ#=xtestseq#,CSLABEL=TLABL

Example 4
Update the status of the buffer to FILLING regardless of its current status. The
following example uses the default values for TESTMODE and CSLABEL.

CTRACECS TBWC=TBWCPTR,MODE=FILLING,BUFFSEQ#=BUFFNUM,
TESTMODE=CURRENT,CSLABEL=RETRY

CTRACECS macro

Chapter 41. CTRACECS — Setting fields in the trace buffer writer control area 513

CTRACECS macro

514 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Chapter 42. CTRACEWR — Write a full trace buffer to DASD
or tape

Description
The CTRACEWR macro enables the component trace external writer to write a full
trace buffer out to a trace data set on DASD or tape.

The CTRACEWR macro will asynchronously capture a full trace buffer while the
application continues processing and writing trace entries to another trace buffer.

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Supervisor state or PSW key 0-7
Dispatchable unit mode: Task or SRB mode
Cross memory mode: PASN=HASN=SASN or PASN¬=HASN¬=SASN
AMODE: 31-bit.
ASC mode: Primary or access register.
Interrupt status: Enabled or disabled for I/O and external interrupts.
Locks: If SYNCH(YES) is specified, no locks can be held.
Control Parameters: Must be in the primary address space

Programming requirements
None.

Restrictions
If either the BUFFALET or the TBWCALET identifies the secondary or home
address space, then both must identify the same address space (that is, both the
trace buffer and the trace buffer writer control area must be in the same address
space).

Register information
After the caller issues the macro, the system might use some registers as work
registers or might change the contents of some registers. When the system returns
control to the caller, the contents of these registers are not the same as they were
before the caller issued the macro. Therefore, if the caller depends on these
registers containing the same value before and after issuing the macro, the caller
must save these registers before issuing the macro and restore them after the
system returns control.

When control returns to the caller, the general purpose registers (GPRs) contain:

Register
Contents

0 If GPR 15 contains 0 or 4, GPR 0 is used as a work register by the system;
otherwise, GPR 0 contains a reason code.

1 Used as a work register by the system

© Copyright IBM Corp. 1988, 2013 515

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the ARs contain:

Register
Contents

0-15 Unchanged

Performance implications
None.

Syntax
The standard form of the CTRACEWR macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede CTRACEWR.

CTRACEWR

� One or more blanks must follow CTRACEWR.

BUFFADDR=buffer_address buffer_address: RS-type address or register (2)-(12).

,BUFFALET=buffer_alet buffer_alet: RS-type address or register (2)-(12).

,BUFFALET=NOBUFFALET Default: BUFFALET=NOBUFFALET

,BUFFLEN=buffer_length buffer_length: RS-type address or register (2)-(12).

,TOKEN=token token: RS-type address or register (2)-(12).

,TBWCADDR=tbwc_address tbwc_address: RS-type address or register (2)-(12).

,TBWCALET=tbwc_alet tbwc_alet: RS-type address or register (2)-(12).

,TBWCALET=NOTBWCALET Default: TBWCALET=NOTBWCALET

,SYNCH=YES | NO Default: SYNCH=NO

,RC=return_code return_code: RS-type address or register (2)-(12).

,RSNCODE=reason_code reason_code: RS-type address or register (2)-(12).

CTRACEWR macro

516 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Syntax Description

,COM=comment comment: A comment string.

,COM=NULL Default: COM=NULL.

,MF=(S) Default: MF=(S)

Parameters
The parameters are explained as follows:

BUFFADDR=buffer_address
Specifies a required parameter that points to the address of the buffer to be
written externally.

,BUFFALET=buffer_alet
,BUFFALET=NOBUFFALET

Contains the PASN ALET that identifies the address/data space where the
buffer resides. Use this optional parameter when the buffer to be written
externally resides in either a data space or an address space that is different
from the current primary address space. The default is
BUFFALET=NOBUFFALET.

,BUFFLEN=buffer_length
A required parameter that indicates the number of bytes in length of the buffer
to be written externally. IBM recommends the length be at least 4KB.
Component trace will split buffers that are too large to fit into a single block.

,TOKEN=token
A required parameter that specifies the token passed to the start/stop exit
routine when it was requested to start tracing externally.

TBWCADDR=tbwc_address
Specifies a required parameter that points to a word that points to the address
of the storage obtained by the application for the trace buffer writer control
area (TBWC) mapped by ITTTBWC. The TBWC provides communication
between the application and component trace. See TBWC in z/OS MVS Data
Areas in z/OS Internet Library at http://www.ibm.com/systems/z/os/zos/
bkserv/ for complete field names and lengths, offsets, and descriptions of the
fields of the TBWC.

,TBWCALET=tbwc_alet
,TBWCALET=NOTBWCALET

Contains the ALET that identifies the address/data space where the TBWC
resides. Use this optional parameter when the TBWC resides in either a data
space or an address space that is different from the current primary address
space. The default is TBWCALET=NOTBWCALET.

,SYNCH=YES | NO
YES causes CTRACE to copy the application's buffers before control is returned
instead of scheduling an asynchronous SRB to copy the buffer. The
CTRACEWR function executes synchronously. The SYNCH keyword is
optional. NO causes the CTRACEWR function to execute asynchronously.

Note: Because your application will run slower, IBM does not recommend that
you use the SYNCH keyword on every CTRACEWR invocation. Use the

CTRACEWR macro

Chapter 42. CTRACEWR — Write a full trace buffer to DASD or tape 517

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

SYNCH keyword in the start/stop routine any time that the trace buffers will
be freed. For example, when the trace is being turned off or the buffer size is
changing, you can free trace buffer storage after issuing the CTRACEWR
macro with the SYNCH keyword and be assured that the buffers were copied
to I/O buffers to be written to the external data set by CTRACE. The default is
SYNCH=NO.

,RC=return_code
Specifies the location where the system is to store the return code. The return
code is also in general purpose register (GPR) 15.

,RSNCODE=reason_code
Specifies the location where the system is to store the reason code. If GPR 15
contains a return code other than 0 or 4, the reason code is also in GPR 0.

,COM=comment
,COM=NULL

Comments the macro invocation. If the comment contains any lowercase
characters, it must be enclosed in quotation marks.

,MF=(S)
Specifies the standard form of the CTRACEWR macro.

ABEND codes
The following table identifies abend code and reason code combinations, and a
description of what each means:

Table 48. Abend codes for the CTRACEWR Macro

Abend Code Reason Code Description

00D 00010100 For the CTRACEWR macro, the parameter list version
number is not correct.

00D 00010200 The system found either nonzero values in the reserved
fields or unused fields for the requested service in the
CTRACEWR macro parameter list.

00D 00010300 The buffer length passed was 0 or less.

Return and reason codes
When control returns from CTRACEWR, GPR 15 (and return_code, if you coded
RC) contains one of the following return codes. The third byte of GPR 0 (and
reason_code, if you coded RSNCODE) might contain one of the following reason
codes.

Note: An application should always check the return code from the CTRACEWR
macro. A non-zero code indicates that some data might have been lost in the next
record output.

Table 49. Return and Reason Codes for the CTRACEWR Macro

Hexadecimal
Return Code

Hexadecimal
Reason Code

Meaning

00 None. CTRACEWR was successful.

04 None. CTRACEWR was unsuccessful. No data was captured
because the trace is not connected to an active external
writer.

08 xxxx01xx Storage required to perform the write operation could not
be obtained.

CTRACEWR macro

518 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Table 49. Return and Reason Codes for the CTRACEWR Macro (continued)

Hexadecimal
Return Code

Hexadecimal
Reason Code

Meaning

08 xxxx02xx CTRACEWR was unable to schedule an SRB to process this
request.

08 xxxx03xx The control information (TBWC) has already been reused
by the application.

0C xxxx01xx The caller is holding locks.

0C xxxx02xx The input token was not valid.

0C xxxx0300 The TBWC is not valid because the sequence number is the
same as a previous write request.

0C xxxx0301 The TBWC is not valid for one of the following reasons:

v The TBWC is not in central storage and the CTRACEWR
issuer is disabled.

v The BUFFALET is not the same as the TBWCALET.

Example
Indicate to component trace that the buffer at address TRACEADR is ready to be
written out. Pass the token (TCWTRTKN) that the application received from the
start/stop routine. Component trace is to store the return and reason codes from
the CTRACEWR macro in TCRCODE and TCRSNCODE.

CTRACEWR BUFFADDR=TRACEADR,BUFFLEN=TRACESIZ, X
TOKEN=TCWTRTKN,TBWCADDR=TBWCADR, X
RC=TCRCODE,RSNCODE=TCRSNCODE

TBWCADR DS A TBWC address
TRACEADR DS A Trace buffer address
TRACESIZ DS F Trace buffer size
TCWTRTKN DS CL8 Trace writer token produced by

* CTRACE upon connection
TCRCODE DS F Return code from CTRACE
TCRSNCODE DS F Reason code from CTRACE

CTRACEWR - List form

Syntax
The list form of the CTRACEWR macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede CTRACEWR.

CTRACEWR

� One or more blanks must follow CTRACEWR.

,MF=(L,cntl) cntl: Symbol.

,MF=(L,cntl,attr) attr: 1- to 60-character input string.

CTRACEWR macro

Chapter 42. CTRACEWR — Write a full trace buffer to DASD or tape 519

Syntax Description

,MF=(L,cntl,0D) Default: 0D

Parameters
The parameters are explained as follows:

,MF=(L,cntl)
,MF=(L,cntl,attr)
,MF=(L,cntl,0D)

Specifies the list form of the macro.

cntl is the name of a storage area for the parameter list.

attr is an optional 1- to 60-character input string, which can contain any value
that is valid on an assembler DS pseudo-op. You can use this parameter to
force boundary alignment of the parameter list. If you do not code attr, the
system provides a value of 0D, which forces the parameter list to a
doubleword boundary.

CTRACEWR - Execute form
Use the execute form of the CTRACEWR macro together with the list form of the
macro for applications that require reentrant code. The execute form of the macro
stores the parameters into the storage area defined by the list form.

Syntax
The execute form of the CTRACEWR macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede CTRACEWR.

CTRACEWR

� One or more blanks must follow CTRACEWR.

BUFFADDR=buffer_address buffer_address: RS-type address or register (2)-(12).

,BUFFALET=buffer_alet buffer_alet: RS-type address or register (2)-(12).

,BUFFALET=NOBUFFALET Default: BUFFALET=NOBUFFALET

,BUFFLEN=buffer_length buffer_length: RS-type address or register (2)-(12).

,TOKEN=token token: RS-type address or register (2)-(12).

CTRACEWR macro

520 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Syntax Description

,TBWCADDR=tbwc_address tbwc_address: RS-type address or register (2)-(12).

,TBWCALET=tbwc_alet tbwc_alet: RS-type address or register (2)-(12).

,TBWCALET=NOTBWCALET Default: TBWCALET=NOTBWCALET

,SYNCH=YES | NO Default: SYNCH=NO

,RC=return_code return_code: RS-type address or register (2)-(12).

,RSNCODE=reason_code reason_code: RS-type address or register (2)-(12).

,COM=comment comment: A comment string.

,COM=NULL Default: COM=NULL.

,MF=(E,cntl) cntl: RX-type address or register (2) - (12).

,MF=(E,cntl,COMPLETE) Default: COMPLETE

Parameters
The parameters are explained under the standard form of the CTRACEWR macro
with the following exception:

,MF=(E,cntl)
,MF=(E,cntl,COMPLETE)

Specifies the execute form of the macro.

cntl is the name of a storage area for the parameter list.

COMPLETE specifies that the system is to check the macro parameter syntax
and supply defaults on parameters that you do not use. COMPLETE is the
default.

CTRACEWR macro

Chapter 42. CTRACEWR — Write a full trace buffer to DASD or tape 521

CTRACEWR macro

522 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Chapter 43. DATOFF — DAT-OFF linkage

Description
The DATOFF macro transfers control to a specified routine in the DAT-OFF section
of the nucleus.

The macro is restricted to key 0, supervisor state users, that are enabled for DAT.
Callers must include the IHAPSA mapping macro with the DATOFF macro. Callers
can be in primary or access register (AR) address space control (ASC) mode. The
macro destroys the contents of general registers 0, 14, and 15.

Environment
These are the requirements for the caller:

Environmental factor Requirement
Minimum authorization: Supervisor state and key 0
Dispatchable unit mode: Task or SRB
Cross memory mode: PASN=HASN=SASN
AMODE: 24-, 31- or 64-bit
ASC mode: Primary or Access Register
Interrupt status: None
Locks: The caller may hold locks, but is not required to hold any.
Control parameters: Must be in the primary address space

Programming requirements
The caller must include the IHAPSA mapping macro and must be enabled for
DAT.

Restrictions
None.

Input register information
Before issuing the DATOFF macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output register information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register
Contents

0-1 Used as work registers by the system

2-5 May be used as work registers depending upon the index specified

6-13 Unchanged

14 Used as a work register by the system

15 Return code

© Copyright IBM Corp. 1988, 2013 523

When control returns to the caller, the ARs contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Performance implications
None.

Syntax
The DATOFF macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede DATOFF.

DATOFF

� One or more blanks must follow DATOFF.

index Note: See the description of the parameters for the valid options.

,RELATED=value value: Any valid macro keyword specification.

Parameters
The parameters are explained as follows:

index
Specifies the function that is to be given control in the DAT-OFF section of the
nucleus. The possible values for index, along with the associated functions, are
as follows:

Index Function

INDCDS
31-bit DAT-OFF compare double and swap

INDMVCL0
31-bit general DAT-OFF move character long

INDMVCLK
31-bit general DAT-OFF move character long in user key

INDXC0
31-bit general DAT-OFF exclusive OR character

DATOFF macro

524 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

INDCDS64
64-bit DAT-OFF compare double and swap

INDMVCL64
64-bit general DAT-OFF move character long

INDMVCLK64
64-bit general DAT-OFF move character long in user key

INDXC64
64-bit general DAT-OFF exclusive OR character

INDUSR1
User-written 31-bit

INDUSR2
User-written 31-bit

INDUSR3
User-written 31-bit

INDUSR4
User-written 31-bit

INDUSR641
User-written 64-bit

INDUSR642
User-written 64-bit

INDUSR643
User-written 64-bit

INDUSR644
User-written 64-bit

For all system-defined index values (INDCDS, INDMVCL0, INDMVCLK, and
INDXC0), the user must supply information in certain registers, as shown in
the following lists. All register values for INDCDS, INDMVCL0, INDMVCLK,
and INDXC0 must be 31-bit addresses. All register values for INDCDS64,
INDMVCL64, INDMVCLK64, and INDXC64 must be 64-bit addresses. Callers
must be AMODE=64 to use INDCDS64, INDMVCL64, INDMVCLK64, or
INDXC64.

INDCDS and INDCDS64

Registers
Information

2-3 First 64-bit operand in even-odd pair of registers (target data)

4-5 Third 64-bit operand in even-odd pair of registers (source data)

6 Location of second operand, a doubleword in storage (target
address)

Note: Register 6 contains a real address. If INCDS is specified, then the
low order 32 bits of GPR 6 form the real address operand. If INCDS64
is specified, then all 64 bits of GPR6 form the real address operand.

INDMVCL0 and INDMVCL64

Registers
Information

2 Location into which the characters are to be moved

DATOFF macro

Chapter 43. DATOFF — DAT-OFF linkage 525

3 Length of the area into which the characters are to be moved

4 Location of the area from which the characters are to be moved

5 Length of the area from which the characters are to be moved

Note: Registers 2 and 4 contain real addresses.

INDMVCLK and INDMVCLK64

Registers
Information

2 Location into which the characters are to be moved

3 Length of the area into which the characters are to be moved

4 Location of the area from which the characters are to be moved

5 Length of the area from which the characters are to be moved

6 Bits 24-27 contain the PSW key in which the MVCL is to be
executed

Note: Registers 2 and 4 contain real addresses.

INDXC0 and INDXC64

Registers
Information

2 Location of the results of exclusive OR character processing

3 Bits 24-31 contain one less than the number of bytes on which
the exclusive OR is to be performed

4 Location of the operand on which the exclusive OR is to be
performed

Note: Registers 2 and 4 contain real addresses.

There are eight DAT-OFF indexes that users can define. These indexes are
INDUSR1, INDUSR2, INDUSR3, INDUSR4, INDUSR641, INDUSR642,
INDUSR643, and INDUSR644. User written DAT-OFF functions are restricted
as follows:
v The user of the DATOFF macro instruction must be in key 0, supervisor

state, and executing with DAT turned on.
v The DAT-OFF function must have the attributes AMODE=31 and

RMODE=ANY to use INDUSR1, INDUSR2, INDUSR3, and INDUSR4.
v The DAT-OFF function must have the attributes AMODE=64 and

RMODE=ANY to use INDUSR641, INDUSR642, INDUSR643, and
INDUSR644.

v The DAT-OFF function must preserve register 0 because register 0 contains
the return address of the module that issued the DATOFF macro.

v The DAT-OFF function must use branch instructions to link to other
DAT-OFF functions.

v The DAT-OFF function must use BSM 0,14 to return from INDUSR1,
INDUSR2, INDUSR3, and INDUSR4.

v The DAT-OFF function must return via BR 14 from INDUSR641,
INDUSR642, INDUSR643, and INDUSR644.

DATOFF macro

526 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Note: See z/OS MVS Programming: Authorized Assembler Services Guide for
information about how to insert a user-written function in the nucleus.

,RELATED=value
Specifies information used to document the macro and to relate the service
performed to some corresponding service or function. The format of the
information specified can be any valid coding values that the user chooses.

ABEND codes
0FF

See z/OS MVS System Codes for an explanation and programmer responses for
these codes.

Return codes
When DATOFF macro returns control to your program, GPR 15 contains a return
code.

Table 50. Return Codes for the DATOFF Macro

Hexadecimal Return
Code

Meaning and Action

00 Meaning: Successful completion.

Action: None.

04 Meaning: The first and second operands specified on INDCDS were not
equal (a condition code 1 on the CDS). The first operand has been replaced
by the second.

Action: Reissue the request.

Examples
See z/OS MVS Programming: Authorized Assembler Services Guide for examples.

DATOFF macro

Chapter 43. DATOFF — DAT-OFF linkage 527

528 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Chapter 44. DEQ — Release a serially reusable resource

Description
The DEQ macro releases control of one or more serially reusable resources from
the active task. A task ends abnormally if it either requests an unconditional
release of a resource it does not control, or issues a request that contains incorrect
parameters.

When you use DEQ to release control of a resource obtained through the ENQ
macro, certain parameters on DEQ must match the parameters on the ENQ that
assigned control to that resource. Similarly, when you use DEQ to release control of
a resource obtained through the RESERVE macro, certain parameters on DEQ must
match the parameters on the RESERVE that assigned control to that resource. In
the cases where the parameters must match, the parameter descriptions note that
fact.

A description of the DEQ macro also appears in z/OS MVS Programming: Assembler
Services Reference ABE-HSP with the exception of the RMC, GENERIC, TCB, and
UCB parameters. See the z/OS MVS Programming: Authorized Assembler Services
Guide for information on using DEQ to release serialization of a resource.

Environment
The requirements for callers of DEQ are:

Environmental factor Requirement

Minimum authorization: Problem state with any PSW key. For the RMC, TCB,
GENERIC=YES, and UCB (where UCB is not allocated to
the requesting task) or when the specified qname is
ADRDFRAG, ADRDSN, ARCENQG, BWODSN, SYSZ*,
SYSCTLG, SYSDSN, SYSIEA01, SYSIEECT, SYSIEFSD,
SYSIGGV1, SYSIGGV2, SYSPSWRD, SYSVSAM, or
SYSVTOC. Authorization must be one of the following:

v Supervisor state

v PSW key 0-7

v APF-authorized.
Dispatchable unit mode: Task
Cross memory mode: For LINKAGE=SVC: PASN=HASN=SASN

For LINKAGE=SYSTEM: Any PASN, Any HASN, Any
SASN

For LINKAGE=SYSTEM with RMC=STEP: PASN=HASN,
Any SASN

AMODE: 24- or 31- or 64-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Control parameters must be in the primary address space.

With the exception of TCB and UCB, all parameters can
reside above 16 megabytes.

© Copyright IBM Corp. 1988, 2013 529

Programming requirements
None.

Restrictions
The caller cannot have an EUT FRR established.

Input register information
Before issuing the DEQ macro, the caller does not have to place any information
into any register unless using it in register notation for a particular parameter, or
using it as a base register.

Output register information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 One of the following:
v If you specify RET=HAVE, if all return codes for the resources named in

the DEQ macro are 0, register 15 contains 0. If any of the return codes
are not 0, register 15 contains the address of a storage area containing
the return codes.

v Otherwise: Used as a work register by the system.

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
The standard form of the DEQ macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

DEQ macro

530 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Syntax Description

� One or more blanks must precede DEQ.

DEQ

� One or more blanks must follow DEQ.

(

qname addr qname addr: A-type address, or register (2) - (12).

,

,rname addr rname addr: A-type address, or register (2) - (12).

, rname length: symbol, decimal digit, or register (2) - (12).

,rname length Note: rname length must be coded if a register is specified for rname addr.

, Default: STEP

,STEP

,SYSTEM

,SYSTEMS

)

,RET=NONE Default: RET=NONE

,RET=HAVE

,RMC=NONE Default: RMC=NONE

,RMC=STEP

,GENERIC=NO Default: GENERIC=NO

,GENERIC=YES Note: If GENERIC=YES is specified, you must also specify RET=HAVE.

,TCB=tcb addr tcb addr: A-type address, or register (2) - (12).

Note: Do not specify TCB with RMC.

,UCB=ucb addr ucb addr: A-type address, or register (2) - (12).

Note: Specify UCB only with SYSTEMS.

,LOC=BELOW DEFAULT: LOC=BELOW

,LOC=ANY

,RNL=YES Default: RNL=YES

DEQ macro

Chapter 44. DEQ — Release a serially reusable resource 531

Syntax Description

,RNL=NO

,RELATED=value value: any valid macro keyword specification.

,LINKAGE=SVC DEFAULT: LINKAGE=SVC

,LINKAGE=SYSTEM

Parameters
The parameters are explained as follows.

(Specifies the beginning of the resource description.

qname addr
Specifies the address of an 8-character name. The name can contain any valid
hexadecimal characters. The qname must be the same name specified for the
resource in an ENQ or RESERVE macro. Authorized programs should use a
restricted qname (as described under Minimum authorization in the
Environment topic of this chapter) to prevent interference from unauthorized
programs.

Note: See z/OS MVS Diagnosis: Reference for a list of major and minor
ENQ/DEQ names and the resources that issue the ENQ/DEQ.

,
,rname addr

Specifies the address of the name used together with qname and scope to
represent the resource acquired by a previous ENQ or RESERVE macro. The
name must be from 1 to 255 bytes long, can be qualified, and can contain any
valid hexadecimal characters. The rname must be the same name specified for
the resource in an ENQ or RESERVE macro.

,
,rname length

Specifies the length of the rname. The length must have the same value as
specified in the previous ENQ or RESERVE macro. If you omit this parameter,
the system uses the assembled length of the rname. You can specify a value
between 1 and 255 to override the assembled length, or you may specify a
value of 0. If you specify 0, the length of the rname must be contained in the
first byte at the rname addr.

,
,STEP
,SYSTEM
,SYSTEMS

Specifies the scope of the resource. If you used the ENQ macro to obtain
control of the resource, the scope you specify on DEQ must match the scope
specified on that ENQ. If you used the RESERVE macro to obtain control of the
resource, you must specify SYSTEMS as the scope on DEQ.

) Specifies the end of the resource description.

Notes on specifying multiple resources on one DEQ request:

DEQ macro

532 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

v Within a single set of parentheses, you can repeat the qname addr, rname addr,
type of control, rname length, and the scope until there is a maximum of 255
characters, including the parentheses.

v The following parameters apply to all the resources you specify on the request:
RET, RMC, TCB, and RNL.

,RET=NONE
,RET=HAVE

HAVE specifies that the request for releasing the resources named in DEQ is to
be honored only if the active task has been assigned control of the resources or
if the ECB parameter was specified on the associated ENQ macro. A return
code is set if the resource is not held. NONE specifies an unconditional request
to release all the resources. RET=NONE is the default. The active task ends
abnormally if it has not been assigned control of the resources.

In either case, if the resources requested for release were originally queued
with the ECB parameter specified, they are released with return code 0.

,RMC=NONE
,RMC=STEP

RMC specifies that the reset must-complete function is not to be used (NONE)
or that the requesting task is to release the resources and end the
must-complete function (STEP). Do not specify RMC with TCB or GENERIC.
The NONE or STEP subparameter must agree with the subparameter specified
in the SMC parameter of the corresponding ENQ macro. RMC=NONE is the
default.

In either case, if the resources requested for release were originally queued
with the ECB parameter specified, they are released with return code 0.

,GENERIC=NO
,GENERIC=YES

Specifies whether or not (YES or NO) all resources with the specified qname are
to be released. For the resource to be released, the task either must have
control of the resource, or must be waiting for the system to post the ECB
specified on the associated ENQ macro. If the task is waiting for a resource,
but is not waiting for the ECB to be posted, the task remains queued and
waiting. GENERIC=NO is the default.

,TCB=tcb addr
Specifies a register that points to a TCB or specifies the address of a fullword
on a fullword boundary that points to a TCB on whose behalf the DEQ is to be
done. The caller (not the directed task) ends abnormally if the RET parameter
is omitted and an attempt is made to release a resource not requested or not
owned by the directed task, except when ECB was specified on the original
ENQ. If ECB was specified on the ENQ and the resource is not owned by the
directed task, the DEQ request releases the resources with a return code of 0

Note: The TCB resides in storage below 16 megabytes in the caller's home
address space.

,UCB=ucb addr
Specifies the address of a fullword that contains the address of a UCB for a
reserved device that is now being released. This parameter is used to release a
device reserved with the RESERVE macro and is valid only with a scope of
SYSTEMS. The UCB parameter is optional.

DEQ macro

Chapter 44. DEQ — Release a serially reusable resource 533

Note: The UCB keyword might contain a UCB address for a UCB that resides
in storage above or below 16 megabytes. If the UCB address might point to a
UCB above 16 megabytes, you must also specify LOC=ANY.

,LOC=BELOW
,LOC=ANY

Specifies the location of the input UCB address. ANY specifies that the input
UCB address is to be treated as a 31-bit address. BELOW specifies that the
input UCB address is to be treated as a 24-bit address. The default is
LOC=BELOW.

,RNL=YES
,RNL=NO

Specifies whether the system is to perform RNL processing, which might
change the scope value of a resource. You must specify the same RNL option
as you used in the ENQ macro that requested the resource. The default is
RNL=YES.

,RELATED=value
Specifies information used to self-document macros by “relating” functions or
services to corresponding functions or services. The format and contents of the
information specified are at the discretion of the user, and can be any valid
coding values.

,LINKAGE=SVC
,LINKAGE=SYSTEM

Specifies the type of linkage the caller is using to invoke the DEQ service.

For LINKAGE=SVC, the linkage is through an SVC instruction. This linkage is
valid only when the caller is in primary mode and the primary, home, and
secondary address spaces are the same.

For LINKAGE=SYSTEM, the linkage uses a non-SVC entry. This linkage is
valid in cross memory mode or in non-cross memory mode.
LINKAGE=SYSTEM is intended to be used by programs in cross memory
mode.
v If TCB= is specified, then the specified TCB in the home address space is

associated with the resource; otherwise, the TCB in the home address space
making the request is associated with the resource.

The default is LINKAGE=SVC.

ABEND codes
For only unconditional requests, the caller might encounter abend code X'130' or
X'530'. For unconditional and conditional requests, the caller might encounter one
of the following abend codes:
v X'230'
v X'330'
v X'430'
v X'730'
v X'830'
v X'930'

See z/OS MVS System Codes for explanations and responses for these codes.

DEQ macro

534 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Return and reason codes
Return codes are provided by the system only if RET=HAVE is designated. If all of
the return codes for the resources named in DEQ are 0, register 15 contains 0. If
any of the return codes are not 0, register 15 contains the address of a virtual
storage area containing the return codes as shown in Figure 4.

The return codes are placed in the parameter list resulting from the macro
expansion in the same sequence as the resource names in the DEQ macro.

The return codes for the DEQ macro with the RET=HAVE parameter are described
in Table 51.

Table 51. Return Codes for the DEQ Macro with the RET=HAVE Parameter

Hexadecimal
Return Code

Meaning and Action

0 Meaning: The system has released the resource (or resources, if you specified
GENERIC=YES).

Action: None.

4 Meaning: The resource (or resources, if you specified GENERIC=YES) has been
requested for the task, but the task has not been assigned control of it. The task
continues waiting. (This return code might result if an exit routine, which
received control because of an interruption, issued the DEQ macro on behalf of
the task.)

Action: None.

8 Meaning: Control of the resource (or resources, if you specified GENERIC=YES)
has not been requested by the active task, or the resource has already been
released.

Action: None required. However, you might take some action based on your
application.

Address
Returned in
Register 15

Return
Codes

1
0

2 3 4

12

12

24

36

Return codes are
12 bytes apart,
starting 3 bytes
from the address
in register 15.

RC1

RC2

RC3

RCN

Figure 4. Return Code Area Used by DEQ

DEQ macro

Chapter 44. DEQ — Release a serially reusable resource 535

Example 1
Unconditionally release control of the resource in Example 1 of ENQ (see z/OS
MVS Programming: Authorized Assembler Services Reference EDT-IXG), and reset the
“must-complete” state.
DEQ (MAJOR1,MINOR1,8,STEP),RMC=STEP

Example 2
Conditionally release control of the resource in Example 2 of ENQ.
DEQ (MAJOR2,MINOR2,4,SYSTEM),TCB=(R2),RET=HAVE

Example 3
Unconditionally release control of the resource (device) in Example 1 of RESERVE
(see z/OS MVS Programming: Authorized Assembler Services Reference LLA-SDU).
DEQ (MAJOR3,MINOR3,,SYSTEMS),UCB=(R3)

Example 4
Release control of the resource in Example 1 of ENQ, if it has been assigned to the
current TCB. The length of the rname is explicitly defined as 8 characters.
DEQ (MAJOR1,MINOR1,8,STEP),RET=HAVE

DEQ—List form
Use the list form of the DEQ macro to construct a control program parameter list.
The number of qname, rname, and scope combinations in the list form of DEQ must
be equal to the maximum number of qname, rname, and scope combinations in any
execute form of DEQ that refers to that list form.

The list form of the DEQ macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede DEQ.

DEQ

� One or more blanks must follow DEQ.

(

qname addr qname addr: A-type address.

, rname addr: A-type address.

,rname addr

, rname length: symbol or decimal digit.

DEQ macro

536 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Syntax Description

,rname length

, Default: STEP

,STEP

,SYSTEM

,SYSTEMS

)

,RET=NONE Default: RET=NONE

,RET=HAVE

,RMC=NONE Default: RMC=NONE

,RMC=STEP

,GENERIC=NO Default: GENERIC=NO

,GENERIC=YES Note: If GENERIC=YES is specified, you must also specify RET=HAVE.

,TCB=0 Note: TCB cannot be specified with RMC, and must be specified on the list
form if used on the execute form.

,UCB=ucb addr ucb addr: A-type address.

,LOC=BELOW Default: LOC=BELOW

,LOC=ANY

,RNL=YES Default: RNL=YES

,RNL=NO

,RELATED=value value: any valid macro keyword specification.

,MF=L

Parameters
The parameters are explained under the standard form of the DEQ macro, with the
following exception:

,MF=L
Specifies the list form of the DEQ macro.

DEQ macro

Chapter 44. DEQ — Release a serially reusable resource 537

DEQ - Execute form
A remote control program parameter list is used in, and can be modified by, the
execute form of the DEQ macro. The parameter list can be generated by the list
form of either the DEQ or the ENQ macro.

The execute form of the DEQ macro is written as follows:

Syntax Description

name name: symbol. Begin name in column 1.

� One or more blanks must precede DEQ.

DEQ

� One or more blanks must follow DEQ.

(Note: (and) are the beginning and end of a parameter list. The entire list is
optional. If nothing in the list is desired, then (,), and all parameters
between (and) should not be specified. If something in the list is desired,
then (,), and all parameters in the list should be specified as indicated at
the left.

qname addr qname addr: RX-type address, or register (2) - (12).

, rname addr: RX-type address, or register (2) - (12).

,rname addr

, rname length: symbol, decimal digit, or register (2) - (12).

,rname length

,

,STEP

,SYSTEM

,SYSTEMS

) Note: See note opposite (above.

,RET=NONE

,RET=HAVE

,RMC=NONE

,RMC=STEP

DEQ macro

538 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Syntax Description

,GENERIC=NO

,GENERIC=YES Note: If GENERIC=YES is specified, you must also specify RET=HAVE.

,TCB=tcb addr tcb addr: RX-type address, or register (2) - (12).

Note: TCB cannot be specified with RMC and must be specified on the
execute form if used on the list form.

,UCB=ucb addr ucb addr: RX-type address, or register (2) - (12).

Note: Specify UCB only with SYSTEMS.

,LOC=BELOW Default: LOC=BELOW

,LOC=ANY

,RNL=YES

,RNL=NO

,RELATED=value value: any valid macro keyword specification.

,LINKAGE=SVC DEFAULT: LINKAGE=SVC

,LINKAGE=SYSTEM

,MF=(E,list addr) list addr: RX-type address, or register (1) - (12).

Parameters
The parameters are explained under the standard form of the DEQ macro, with the
following exception:

,MF=(E,list addr)
Specifies the execute form of the DEQ macro.

list addr specifies the area that the system uses to contain the parameters.

DEQ macro

Chapter 44. DEQ — Release a serially reusable resource 539

DEQ macro

540 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Chapter 45. DIV — Data-in-virtual

Description
The DIV macro establishes a window in your address space, data space, or
hiperspace and enables your program to reference or update data from a
data-in-virtual object without actually issuing I/O instructions. The data-in-virtual
object can be a VSAM linear data set or a nonshared standard hiperspace.

The DIV macro accesses a data object on permanent storage through paging I/O.
Data-in-virtual maps the object onto a single virtual address range so your
program can view it as beginning at a virtual location and occupying a consecutive
virtual address range.

If the window is in an address space or a data space, you use assembler
instructions to access data. If the window is in a hiperspace, you use the HSPSERV
macro to access data in 4K-byte blocks.

The DIV macro performs the following services:

Service
Function

IDENTIFY
Identifies you as a user of a data-in-virtual object.

ACCESS
Provides access to the data-in-virtual object.

MAP Makes the data-in-virtual object addressable through your virtual window.

RESET
Releases changes made in your window since the last SAVE operation.

SAVE Saves changed data that is in your window.

SAVELIST
Returns the addresses of the first and last changed pages in each range of
changed pages within the window.

UNMAP
Eliminates the correspondence between the data-in-virtual object and your
virtual window.

UNACCESS
Eliminates your access to the data-in-virtual object.

UNIDENTIFY
Ends your use of the data-in-virtual object.

For guidance information on the use of data-in-virtual, see z/OS MVS Programming:
Authorized Assembler Services Guide.

© Copyright IBM Corp. 1988, 2013 541

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: To use the TTOKEN or CHECKING parameters, programs

must be in supervisor state with PSW key 0-7. Programs
that use other parameters can be in problem state with any
PSW key. Additionally, a program requesting a
data-in-virtual service under a given ID must be running
with PSW key 0 or the same key as the program that
obtained the ID.

Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 31-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Must be in the primary address space or be in an

address/data space that is addressable through a public
entry on the caller's dispatchable unit access list (DU-AL)

Programming requirements
Before using the DIV macro, the caller must first create either a linear data set
object or a hiperspace object. The user must also supply a standard 72-byte save
area.

Restrictions
v The task that obtains the ID is the only task that can issue DIV ACCESS against

that ID. Any authorized (supervisor state, PSW key 0 - 7, or APF-authorized)
subtask of the obtaining task can issue a DIV service that specifies the given ID,
with one exception: if the object is a hiperspace, then the service cannot be MAP
or SAVE.

v When you attach a new task, you cannot pass ownership of a mapped virtual
storage window to the new task. That is, you cannot use the ATTACH or
ATTACHX keywords GSPV and GSPL to pass the mapped virtual storage.

v While you are in cross memory mode, you cannot invoke data-in-virtual
services; however, you can reference and update data in a mapped virtual
storage window.

v Tasks that are unauthorized cannot issue DIV services with an ID that belongs to
another task.

v When you identify a data-in-virtual object using the IDENTIFY service, you
cannot request a checkpoint until you invoke the corresponding UNIDENTIFY
service.

v DIV does not support VSAM extended format linear data sets for use as a DIV
object for which the size is greater than 4GB.

v When you use DIV with the IARVSERV macro to share data in virtual storage,
you must meet several requirements. For those requirements, see the chapter
about sharing data through IARVSERV in z/OS MVS Programming: Authorized
Assembler Services Guide.

Input register information
The DIV macro is sensitive to the SYSSTATE macro with the OSREL parameter

DIV macro

542 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

v If the caller has issued the SYSSTATE macro with the OSREL=ZOSV1R6
parameter (Version 1 Release 6 of z/OS or later) before issuing the DIV macro,
the caller does not have to place any information into any general purpose
register (GPR) unless using it in register notation for a particular parameter, or
using it as a base register.

v Otherwise, the caller must ensure that the following general purpose register
contains the specified information:

Register
Contents

13 The address of an 18-word save area

Output register information
When control returns to the caller, the GPRs contain:

Register
Contents

0 Reason code if GPR 15 contains a nonzero return code; otherwise, used as
a work register by the system.

1 Used as a work register by the system

2-14 Unchanged

15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-5 Used as work registers by the system

Performance implications
v By using the DIV macro, you are likely to reduce the amount of I/O. The

SAVELIST service additionally improves performance of the application when it
is necessary to inspect and verify data only in pages which have changed.

v Using LOCVIEW=MAP on a DIV ACCESS request degrades performance. Use
LOCVIEW=NONE whenever possible. You can use LOCVIEW=MAP for small
data objects without significant performance loss.

v Using RETAIN=YES on a DIV UNMAP request can degrade performance. Using
RETAIN=YES causes the system to read more pages from the object.

Syntax
The standard form of the DIV macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede DIV.

DIV macro

Chapter 45. DIV — Data-in-virtual 543

Syntax Description

DIV

� One or more blanks must follow DIV.

Valid parameters: (Underlined parameters are those that you must specify.)

IDENTIFY ID, TYPE, DDNAME or STOKEN, CHECKING, TTOKEN

ACCESS ID, MODE, SIZE, LOCVIEW

MAP ID, AREA, OFFSET, SPAN, STOKEN, RETAIN, PFCOUNT

RESET ID, OFFSET, SPAN, RELEASE

SAVE ID, OFFSET, SPAN, SIZE, STOKEN, LISTADDR, LISTSIZE, MF

SAVELIST ID, LISTADDR, LISTSIZE, MF

UNMAP ID, AREA, RETAIN, STOKEN

UNACCESS ID

UNIDENTIFY ID

,ID=addr addr: RX-type address, or register (2) - (12).

,AREA=addr addr: RX-type address, or register (2) - (12).

,CHECKING=YES Default: CHECKING=YES

,CHECKING=NO

,DDNAME=addr addr: RX-type address, or register (2) - (12).

,LISTADDR=listaddr listaddr: RX-type address, or register (2) - (12).

,LISTSIZE=listsize listsize: RX-type address, or register (2) - (12).

,LOCVIEW=MAP Default: LOCVIEW=NONE

,LOCVIEW=NONE

,MODE=READ Default: None

,MODE=UPDATE

,OFFSET=addr addr: RX-type address, or register (2) - (12).

,OFFSET=* Default: OFFSET=0

,RETAIN=YES Default: RETAIN=NO

,RETAIN=NO

DIV macro

544 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Syntax Description

,SIZE=addr addr: RX-type address, or register (2) - (12).

,SIZE=*

,SPAN=addr addr: RX-type address, or register (2) - (12).

,SPAN=*

,STOKEN=addr addr: RX-type address.

,TTOKEN=* Default: TTOKEN=*

,TYPE=DA Default: None

,TYPE=HS

,PFCOUNT=nnn Default: 0

,RELEASE=YES Default: RELEASE=NO

,RELEASE=NO

Parameters
The IDENTIFY, ACCESS, MAP, SAVE, SAVELIST, RESET, UNMAP, UNACCESS
and UNIDENTIFY parameters, which designate the services of the DIV macro, are
mutually exclusive. You can select only one. The parameters and their keywords
are explained as follows:

IDENTIFY
Selects the data-in-virtual object (linear data set or hiperspace) that you want
to process. When you specify IDENTIFY, you must also specify ID and TYPE.
ID specifies the address of an eight-byte field into which the IDENTIFY service
returns a unique eight-byte name. When you invoke other data-in-virtual
services, you use this identifier, or token, as input. When the object is a data
set, you must also specify TYPE=DA and DDNAME. When the object is a
nonshared standard hiperspace, you must specify TYPE=HS and STOKEN. To
bypass data-in-virtual validity checking, code CHECKING=NO. To assign
ownership of the ID to another task, code TTOKEN=addr.

ACCESS
Requests permission to access a data-in-virtual object. When you specify
ACCESS, you must also specify ID and MODE, and you may optionally
specify SIZE or LOCVIEW. ID specifies the token which identifies the object
you want to access. If your object is a hiperspace, ACCESS allows either
multiple readers or one updater. Therefore, the system does not accept a read
request if there is already an updater, and it does not accept an update request
if there is any other user currently accessing the same object. You cannot access
a hiperspace as a data object if it is, or has been on an access list.

DIV macro

Chapter 45. DIV — Data-in-virtual 545

MAP
Establishes addressability to the object in a specified range of virtual storage,
called the virtual window. When you specify MAP, you must also specify ID
and AREA, and you may optionally specify OFFSET, SPAN, STOKEN,
RETAIN, and PFCOUNT. Specify STOKEN when your window is in a data
space or a standard hiperspace. If your window is in an address space, your
object can be either a linear data set or a nonshared standard hiperspace. If
your window is in a data space or a hiperspace, your object can be only a
linear data set.

If you specified TYPE=DA, you can issue more than one MAP with different
STOKENs. You cannot mix data space and hiperspace maps with address space
maps under the same ID at any one time.

RESET
Releases changes made in the window since the last SAVE operation. When
you specify RESET, you must also specify ID, and you may optionally specify
OFFSET, SPAN, and RELEASE. If the window corresponds to blocks on the
object, the current contents of the object will replace the data that has changed
in the window when the program next references the window. RESET does not
change the object.

Do not specify RESET for a storage range that contains disabled reference
(DREF) storage.

SAVE
Writes changed pages from the window to the corresponding blocks in the
object. When you specify SAVE, you must also specify ID, and you may
optionally specify OFFSET, SPAN, SIZE, and STOKEN. The system writes
changed pages from the window into the blocks specified by OFFSET and
SPAN. SAVE cannot change the size of a hiperspace object.

Do not specify SAVE for a storage range that contains disabled reference
(DREF) storage.

Optionally, SAVE accepts a user list that the application specifies through the
LISTADDR and LISTSIZE parameters. The user list contains information
returned by the SAVELIST service. If you specify a user list as input for SAVE,
you cannot specify OFFSET and SPAN, and the system saves only those pages
specified in the user list.

SAVELIST
Returns the addresses of the first and last changed pages in each range of
changed pages within the window. The mapped ranges may either be address
spaces, data spaces, or hiperspaces. If more than one data space or hiperspace
is mapped onto a DIV object, the selected range must be contained with a
single data space or hiperspace.

UNMAP
Terminates a virtual window by removing the correspondence between virtual
pages in the window and blocks in the object. After the UNMAP is complete,
the contents of the pages depend on the value you specify for RETAIN; the
virtual pages in the former window either retain the current view of the object
or appear as if they had just been obtained.

When you specify UNMAP, you must also specify ID and AREA, and you may
specify RETAIN and STOKEN if the object is a data set and the window is in a
data space or a hiperspace. UNMAP has no effect on the object itself and does
not save data from the virtual window. If you want to save the data in the
window, invoke SAVE before you invoke UNMAP.

DIV macro

546 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

If you issued multiple MAPs with different STOKENs, use STOKEN on
UNMAP. If you do not specify STOKEN, the system scans the mapped ranges
and unmaps the first range that matches the virtual area regardless of the data
space it is in. Issuing UNACCESS or UNIDENTIFY automatically unmaps all
mapped ranges.

UNACCESS
Relinquishes your permission to read from or write to a data-in-virtual object.
When you specify UNACCESS, you must also specify ID, which provides the
address of the unique name that was returned by the IDENTIFY service. When
you invoke UNACCESS, any outstanding windows for the specified ID are
automatically unmapped with an implied RETAIN=NO.

UNIDENTIFY
Ends the use of a data-in-virtual object under a previously assigned ID. When
you specify UNIDENTIFY, you must also specify ID, which provides the
address of the unique name that was returned by the IDENTIFY service. If the
object is still accessed or mapped under the specified ID, the system will
automatically unaccess and unmap it with an implied RETAIN=NO.

,ID=addr
Specifies the address of a field in storage where the IDENTIFY service stores a
unique eight-byte name that it associates with the object. This name acts as a
token and is the output value from the IDENTIFY service. It is a required input
value for all the other services.

,AREA=addr
Specifies the address of a four-byte field in storage containing a pointer to the
start of the virtual window. You must specify the AREA parameter when you
invoke the MAP and the UNMAP services. The starting address for an
UNMAP request must be identical to the starting address of its corresponding
MAP request. Address space virtual storage that is occupied by a window
must meet the following requirements:
v The window must begin on a 4096-byte (page) boundary and must be a

multiple of 4096 bytes long.
v Virtual storage within the window must have been obtained from a single,

pageable, private area subpool owned by the task that issued the IDENTIFY.
v The window cannot contain VIO storage.
v Pages within the window cannot be page fixed.

Data space and hiperspace virtual storage that is occupied by a window must
meet the following requirements.
v The window must be on a 4096-byte boundary and must be a multiple of

4096 bytes long.
v The data space or hiperspace must be owned or created by the task

specifying the MAP service.
v The data space or hiperspace must exist until you specify the UNMAP

service for all mapped ranges.
v The specified mapped range must lie within the current bounds of the data

space or hiperspace.

,CHECKING=YES
,CHECKING=NO

To have data-in-virtual perform validity checking, code CHECKING=YES, or
omit the CHECKING parameter; CHECKING=YES is the default.

DIV macro

Chapter 45. DIV — Data-in-virtual 547

To bypass data-in-virtual validity checking for the corresponding ID, code
CHECKING=NO. The calling program must ensure the validity of the
parameter list, the parameter values, and the environment at the time the DIV
macro is issued. If a parameter or the environment is not valid, the results are
unpredictable. Data-in-virtual also bypasses validity checking for other
invocations of the DIV macro that use the same ID. Bypass data-in-virtual
validity checking only if you need to improve data-in-virtual performance.

,DDNAME=addr
Specifies the address of a field containing the ddname for the data set object
when you specify TYPE=DA on IDENTIFY. The first byte of the field must be
the number of characters in the ddname. The bytes following the first byte
must contain the EBCDIC characters of the ddname itself. The ddname must
conform to the standard syntax for ddnames (one through eight alphameric or
national characters). DDNAME is required when you invoke IDENTIFY with
TYPE=DA for a data set object but is not allowed when you specify TYPE=HS
for a hiperspace object. Do not specify a DDNAME that corresponds to a
VSAM extended format linear data set for which the size is greater than 4GB,
because the DIV macro does not support them for use as a DIV object.

,LISTADDR=addr
Specifies the address of a 4-byte field that contains a pointer to the user list
that the caller provides for the SAVELIST service.

,LISTSIZE=addr
Specifies the address of a 4-byte field that contains the number of entries in the
user list for SAVELIST service. The size of the list must be a minimum of three
entries and a maximum of 255 entries, where each entry contains two words.

,LOCVIEW=MAP
,LOCVIEW=NONE

Specifies whether the system is to create a local copy of the data-in-virtual
object. For hiperspace objects, you must specify or default to
LOCVIEW=NONE.

LOCVIEW=MAP specifies that the system is to establish a local copy of the
data set object for the specified range. Use MAP to maintain a consistent view
in the virtual storage window of data on permanent storage in environments
where there are multiple writers or at least one reader and writer at the same
time to the object.

LOCVIEW=NONE specifies that the system is not to create a local copy of the
object. NONE is the default. Use NONE in environments where there is either
a single writer, OR one or more readers, but not both at the same time.

,MODE=READ
,MODE=UPDATE

Specifies whether the object is being accessed for the purpose of reading or
updating. If you are using the SAVE service to update an object, specify
MODE=UPDATE. Otherwise, specify MODE=READ to signify read-only access
to the object. You must specify MODE whenever you specify ACCESS.

,OFFSET=addr
,OFFSET=*

Specifies the beginning of a continuous range of blocks in a data-in-virtual
object. OFFSET is used with SPAN to define a continuous range of blocks in an
object. OFFSET designates the location of the first block in the range, and
SPAN designates how many blocks are in the range. An OFFSET value of zero
designates the first block (the beginning) of an object. The system permits an
OFFSET beyond the current end of the object as long as it remains within the

DIV macro

548 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

maximum number of blocks allowed for the object and also within the absolute
limit of (2**20)-1 blocks. If you omit OFFSET or specify OFFSET=*, the system
uses a default OFFSET of zero. You can specify the OFFSET parameter with
MAP, RESET, and SAVE.

,RETAIN=YES
,RETAIN=NO

Determines what data appears in the window when you invoke the MAP
service, and what data is left in virtual storage when you invoke UNMAP.

When you specify RETAIN=YES with MAP, the data in the virtual range stays
the same. The system considers all pages in the range changed. When you
specify or default to RETAIN=NO with MAP, data in the object replaces the
data in virtual range.

When you specify RETAIN=NO with UNMAP, the data in the virtual range
becomes freshly obtained. When you specify RETAIN=YES with UNMAP, the
virtual range retains its current view.

,SIZE=addr
,SIZE=*

Specifies the address of a field where the system stores the size of the object.
The system returns the size in this field whenever you specify SAVE or
ACCESS and also specify SIZE. When the system returns control after
executing a SAVE, the value that it returns is the minimum number of blocks
that must be mapped to ensure that the entire object is mapped. If you omit
SIZE or specify SIZE=*, the system does not return the size.

If you specified TYPE=DA for a linear data set object, and you specify SIZE,
the macro returns the current size of the object in the four-byte location that
SIZE designates.

If you specified TYPE=HS for a hiperspace object, and you specify SIZE,
ACCESS returns two sizes in the eight-byte location. The first is the current
size of the hiperspace (in 4K byte units), and the second is the maximum size
of the hiperspace (also in 4K byte units).

Specify SIZE only when you specify ACCESS or SAVE.

,SPAN=addr
,SPAN=*

Specifies the address of a four-byte field containing the number of blocks that
are to be processed by the MAP, RESET, or SAVE services. These services
operate only on a range of contiguous blocks. SPAN indicates how many
blocks are in the range. It is used with OFFSET, which indicates the first block
of the range.

For the RESET and SAVE services, the block range can include noncontiguous
mappings of an object. This lets you reset or save several maps in a single DIV
macro invocation.

For the MAP service, the block range can extend beyond the end of the object,
but it cannot extend beyond the maximum size allowed for the object. You can
create a window that exceeds the size of the object. The maximum span
allowed is (2**20)-1 blocks.

If you omit SPAN or specify SPAN=*, or if the four-byte field contains zero (0),
the system uses the SPAN default value. For the SAVE and RESET services, the
default value is the number of blocks in the object from the specified or
defaulted block to the end of the last mapped range. For the MAP service, the

DIV macro

Chapter 45. DIV — Data-in-virtual 549

default is the current size of the object in blocks, minus the value specified by
OFFSET. If the offset value is beyond the end of the object, the span defaults to
one when you omit SPAN.

Specify SPAN only when you specify MAP, RESET, or SAVE.

,STOKEN=addr
Specifies the address of an eight-byte field that identifies a hiperspace or data
space. STOKEN is valid only with the IDENTIFY, MAP, and UNMAP
parameters. Specify STOKEN with MAP to map a linear data set object onto
data space or hiperspace virtual storage, or to unmap data space or hiperspace
storage.

With MAP, the system maps the permanent object into the data space or
hiperspace that the STOKEN represents. If you do not specify STOKEN, the
mapping applies to the primary address space. With UNMAP, STOKEN
identifies which data space or hiperspace contains the window to be
unmapped.

If you specified TYPE=HS for a hiperspace object, specify STOKEN with
IDENTIFY. The system does not verify the STOKEN until you use the
associated ID with ACCESS.

,TTOKEN=addr
,TTOKEN=*

Assigns ownership of the corresponding ID to a TCB.

To assign ownership to your TCB, code TTOKEN=*, or omit TTOKEN.

To assign ownership to another TCB, code TTOKEN=addr. addr identifies a
16-byte location that contains the TTOKEN of the task to be assigned
ownership. You can assign ownership to another TCB only when the other
TCB and your TCB are in the same chain, and the other TCB is higher in the
chain than your TCB.

,TYPE=DA
,TYPE=HS

TYPE=DA specifies that your program is using a data definition statement to
identify a VSAM linear data set as the data object. The DIV macro does not
support VSAM extended format linear data sets for use as a DIV object for
which the size is greater than 4GB. TYPE=HS specifies that your program is
using STOKEN to identify a hiperspace as the data object. The hiperspace must
be standard type and must be owned by the task issuing the IDENTIFY. Only
the owner of the hiperspace can issue any subsequent ACCESS, MAP, and
SAVE. You can use a nonshared standard hiperspace if no program has ever
issued ALESERV ADD for that hiperspace. You cannot issue ALESERV ADD
for a nonshared standard hiperspace while it is a DIV object.

,PFCOUNT=nnn
Specifies the additional pages the system is to read into real storage on a page
fault. nnn is an unsigned decimal number from 0 to 255. If you specify an
integer greater than 255, the system uses 255. Zero is the default. If you omit
PFCOUNT or specify PFCOUNT=0, the system reads blocks from the data
object one at a time. In any case, the system reads in successive pages only to
the end of the virtual range of the mapped area containing the originally
referenced page.

Use PFCOUNT if your program accesses the mapped object in a sequential
manner. Because you get a page fault the first time you reference each page,
reading into real storage multiple consecutive pages on each page fault might
decrease the number of page faults and improve your program's performance.

DIV macro

550 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

PFCOUNT applies to movement of pages from the object to real storage.

,RELEASE=YES
,RELEASE=NO

Specify RELEASE=YES to release all virtual pages in the reset range. Specify or
default to RELEASE=NO to release only changed pages in the reset range.
RELEASE=NO does not replace unchanged pages in the window with a new
copy of pages from the object. It replaces only changed pages. If another ID
might have changed the object itself while you viewed data in the window,
specify RELEASE=YES to reset all pages. Any subsequent reference to these
pages will cause the system to load a new copy of the data page from the
object.

ABEND codes
The DIV macro might abnormally terminate with abend code X'08B'. See z/OS
MVS System Codes for an explanation and programmer responses.

Return and reason codes
When the system returns control to the caller after the caller invokes the DIV
macro, it supplies a return code in the low-order (rightmost) byte of general
register 15 and a reason code in the two low-order bytes of register 0. After an
unsuccessful completion, the system abnormally ends and supplies an abend code
of X'08B' and a reason code in the two low-order bytes of general register 15. See
z/OS MVS System Codes for a detailed explanation of the reason codes for abend
code X'08B'.

The hexadecimal values of the return and reason codes are shown in the following
table.

Table 52. Return and Reason Codes for the DIV Macro

Hexadecimal
Return Code

Hexadecimal
Reason Code

Meaning and Action

00 None. Meaning: Successful completion.

Action: None.

04 1A Meaning: Program error. The specified range does not
encompass any mapped area of the object.

Action: None required. However, you might want to check
that the specified range for this operation was correct.

04 2D Meaning: The data space has been deleted. However, the
requested operation completed successfully.

Action: None.

04 37 Meaning: Program error. The caller invoked ACCESS. The
ACCESS is successful, but the system is issuing a warning
that the data set was not allocated with a
SHAREOPTIONS(1,3) and that LOCVIEW=MAP was not
specified with ACCESS.

Action: None required. However, to eliminate the
possibility of potential errors, you should allocate the data
set to be used as a DIV object with SHAREOPTIONS(1,3),
or you should specify LOCVIEW=MAP when the DIV
ACCESS is done.

DIV macro

Chapter 45. DIV — Data-in-virtual 551

Table 52. Return and Reason Codes for the DIV Macro (continued)

Hexadecimal
Return Code

Hexadecimal
Reason Code

Meaning and Action

04 43 Meaning: Program error. The specified range has no pages
that have been altered.

Action: None required. However, you might want to check
that the specified range for this operation was correct.

04 44 Meaning: Successful completion. The table is full and there
are more ranges to check.

Action: None required. However, to obtain all of the
information regarding changed pages, you can either retry
the SAVELIST operation with a larger list, or you can
obtain a new OFFSET and SPAN from the last entry in the
returned list, and invoke SAVELIST another time to fill in
the list with additional changed page information.

04 802 Meaning: The caller invoked DIV UNIDENTIFY or
UNACCESS. The function completed successfully, but with
exceptional circumstances.

Action: None required.

04 807 Meaning: Environmental error. Media damage may be
present in allocated DASD space. The damage is beyond
the currently saved portion of the object. The SAVE
completed successfully.

Action: None required. However, do not attempt to
increase the size of this DIV object.

08 0A Meaning: Environmental error. There is another service
currently executing with the specified ID.

Action: Retry the request one or more times until the other
service currently executing for this ID completes.

08 1C Meaning: Environmental error. The object cannot be
accessed at the current time.

Action: Retry the request one or more times until the
operation succeeds.

08 28 Meaning: Program error. The caller tried to access an
empty data set with MODE=READ specified.

Action: None required. If the data set was not expected to
be empty, check return codes from previous DIV operations
to ensure that the data was saved as expected.

08 3E Meaning: Environmental error. The hiperspace object
cannot be accessed at this time. The number of current
READs might exceed the maximum allowed. (If
MODE=READ, the object is already accessed under a
different ID for UPDATE. If MODE=UPDATE, the object is
already accessed under at least one other ID.)

Action: Retry the request one or more times until the
operation succeeds.

08 40 Meaning: Environmental error. The specified MAP range
would extend the data object beyond the installation data
space limits.

Action: Retry the MAP operation with a smaller range
specified, or map this range onto a different DIV object.

DIV macro

552 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Table 52. Return and Reason Codes for the DIV Macro (continued)

Hexadecimal
Return Code

Hexadecimal
Reason Code

Meaning and Action

08 45 Meaning: Environmental error. Storage for the SAVELIST
operation could not be obtained. The DIV request is
rejected.

Action: Retry the request one or more times. If the problem
persists, check with the operator to see if another user in
the installation is causing the problem, or if the entire
installation is experiencing storage constraint problems.

08 801 Meaning: Environmental error. Storage to build the
necessary data-in-virtual control block structure could not
be obtained.

Action: Retry the request one or more times. If the problem
persists, check with the operator to see if another user in
the installation is causing the problem, or if the entire
installation is experiencing storage constraint problems.

08 802 Meaning: System error. I/O driver failure.

Action: Retry the request. If the problem persists, record
the return and reason codes and supply them to the
appropriate IBM support personnel.

08 808 Meaning: System error. I/O from a previous request has
not completed.

Action: Retry the request. If the problem persists, record
the return and reason codes and supply them to the
appropriate IBM support personnel.

0C 17 Meaning: System error. Portions of virtual storage mapping
the object were not addressable, and therefore, could not be
saved. (There was either a paging I/O error or data
occupying a bad real frame.)

Action: Retry the request. If the problem persists, record
the return and reason codes and supply them to the
appropriate IBM support personnel.

0C 21 Meaning: System error. Portions of the object could not be
retained in virtual storage as requested.

Action: Retry the request. If the problem persists, record
the return and reason codes and supply them to the
appropriate IBM support personnel.

0C 803 Meaning: System error. A necessary page table could not
be read into central (also called real) storage.

Action: Retry the request. If the problem persists, record
the return and reason codes and supply them to the
appropriate IBM support personnel.

0C 804 Meaning: System error. Catalog update failed.

Action: Retry the request. If the problem persists, record
the return and reason codes and supply them to the
appropriate IBM support personnel.

0C 806 Meaning: System error. I/O error.

Action: Retry the request. If the problem persists, record
the return and reason codes and supply them to the
appropriate IBM support personnel.

DIV macro

Chapter 45. DIV — Data-in-virtual 553

Example 1
Identify a hiperspace as a data object. The hiperspace's STOKEN is at HSSTOK.
IDENTIFY is to return the ID at DIVOBJID.
DIV IDENTIFY,TYPE=HS,STOKEN=HSSTOK,ID=DIVOBJID

Example 2
Whenever a page fault on a page in the mapped range requires that the system
read the page from the data set object, the system, if possible, preloads up to seven
additional pages, virtually successive to the fault page.
DIV MAP,ID=DIVOBJID,AREA=MAPPTR1,SPAN=SPANVAL,
OFFSET=*,STOKEN=DSSTOK,PFCOUNT=7

DIV - List form

Syntax
The list form of the DIV macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede DIV.

DIV

� One or more blanks must follow DIV.

Valid parameters: (Underlined parameters are those that you must specify.)

IDENTIFY ID, TYPE, DDNAME , STOKEN, CHECKING, TTOKEN

ACCESS ID, MODE, SIZE, LOCVIEW

MAP ID, AREA, OFFSET, SPAN, STOKEN, RETAIN, PFCOUNT

RESET ID, OFFSET, SPAN, RELEASE

SAVE ID, OFFSET, SPAN, SIZE, STOKEN, LISTADDR, LISTSIZE, MF

SAVELIST ID, LISTADDR, LISTSIZE, MF

UNMAP ID, AREA, RETAIN, STOKEN

UNACCESS ID

UNIDENTIFY ID

,ID=addr addr: A-type address

,AREA=addr addr: A-type address

,CHECKING=YES Default: CHECKING=YES

DIV macro

554 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Syntax Description

,CHECKING=NO

,DDNAME=addr addr: A-type address

,LISTADDR=addr addr: RX-type address, or register (2) - (12).

,LISTSIZE=addr addr: RX-type address, or register (2) - (12).

,LOCVIEW=MAP Default: LOCVIEW=NONE

,LOCVIEW=NONE

,MODE=READ Default: None

,MODE=UPDATE

,OFFSET=addr addr: A-type address

,OFFSET=*

,RETAIN=YES Default: RETAIN=NO

,RETAIN=NO

,SIZE=addr addr: A-type address

,SIZE=*

,SPAN=addr addr: A-type address

,SPAN=*

,STOKEN=addr addr: A-type address

,TTOKEN=* Default: TTOKEN=*

,TYPE=DA Default: None

,TYPE=HS

,PFCOUNT=nnn Default: 0

,RELEASE=YES Default: RELEASE=NO

,RELEASE=NO

,MF=L See explanation of parameters if omitted.

DIV macro

Chapter 45. DIV — Data-in-virtual 555

Parameters
,MF=L

Specifies the list form of the DIV macro. The list form generates the DIV
parameter list in line without any executable code or register usage.

DIV - Execute form

Syntax
The execute form of the DIV macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede DIV.

DIV

� One or more blanks must follow DIV.

Valid parameters: (Underlined parameters are those that you must specify.)

IDENTIFY ID, TYPE, DDNAME , STOKEN, CHECKING, TTOKEN

ACCESS ID, MODE, SIZE, LOCVIEW

MAP ID, AREA, OFFSET, SPAN, STOKEN, RETAIN, PFCOUNT

RESET ID, OFFSET, SPAN, RELEASE

SAVE ID, OFFSET, SPAN, SIZE, STOKEN, LISTADDR, LISTSIZE, MF

SAVELIST ID, LISTADDR, LISTSIZE, MF

UNMAP ID, AREA, RETAIN, STOKEN

UNACCESS ID

UNIDENTIFY ID

,ID=addr addr: RX-type address, or register (2) - (12).

,AREA=addr addr: RX-type address, or register (2) - (12).

,CHECKING=YES Default: CHECKING=YES

,CHECKING=NO

,DDNAME=addr addr: RX-type address, or register (2) - (12).

,LISTADDR=addr addr: RX-type address, or register (2) - (12).

DIV macro

556 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Syntax Description

,LISTSIZE=addr addr: RX-type address, or register (2) - (12).

,LOCVIEW=MAP Default: LOCVIEW=NONE

,LOCVIEW=NONE

,MODE=READ Default: None

,MODE=UPDATE

,OFFSET=addr addr: RX-type address, or register (2) - (12).

,OFFSET=*

,RETAIN=YES Default: RETAIN=NO.

,RETAIN=NO

,SIZE=addr addr: RX-type address, or register (2) - (12).

,SIZE=*

,SPAN=addr addr: RX-type address, or register (2) - (12).

,SPAN=*

,STOKEN=addr addr: RX-type address.

,TTOKEN=addr addr: RX-type address, or register (2) - (12).

,TTOKEN=* Default: TTOKEN=*

,TYPE=DA Default: None

,TYPE=HS

,PFCOUNT=nnn Default: 0

,RELEASE=YES Default: RELEASE=NO

,RELEASE=NO

,MF=(E,addr)

Parameters
,MF=(E,addr)

Specifies the execute form. In the execute form, DIV will be called using the
parameter list specified by “addr”. “addr” indicates the address of the
parameter list and may be (a) any address that is valid in an RX-type
assembler language instruction or (b) one of the general registers 2 through 12
specified within parentheses. The register may be expressed either symbolically

DIV macro

Chapter 45. DIV — Data-in-virtual 557

or as a decimal number. The specified parameter list will be updated for any
parameters that are specified. Other parameter fields will be unaffected.

DIV - Modify form

Syntax
The modify form of the DIV macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede DIV.

DIV

� One or more blanks must follow DIV.

Valid parameters: (Underlined parameters are those that you must specify.)

IDENTIFY ID, TYPE, DDNAME , STOKEN, CHECKING, TTOKEN

ACCESS ID, MODE, SIZE, LOCVIEW

MAP ID, AREA, OFFSET, SPAN, STOKEN, RETAIN, PFCOUNT

RESET ID, OFFSET, SPAN, RELEASE

SAVE ID, OFFSET, SPAN, SIZE, STOKEN, LISTADDR, LISTSIZE, MF

SAVELIST ID, LISTADDR, LISTSIZE, MF

UNMAP ID, AREA, RETAIN, STOKEN

UNACCESS ID

UNIDENTIFY ID

,ID=addr addr: RX-type address, or register (2) - (12).

,AREA=addr addr: RX-type address, or register (2) - (12).

,CHECKING=YES Default: CHECKING=YES

,CHECKING=NO

,DDNAME=addr addr: RX-type address, or register (2) - (12).

,LISTADDR=addr addr: RX-type address, or register (2) - (12).

,LISTSIZE=addr addr: RX-type address, or register (2) - (12).

DIV macro

558 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Syntax Description

,LOCVIEW=MAP Default: LOCVIEW=NONE

,LOCVIEW=NONE

,MODE=READ Default: None

,MODE=UPDATE

,OFFSET=addr addr: RX-type address, or register (2) - (12).

,OFFSET=*

,RETAIN=YES Default: RETAIN=NO

,RETAIN=NO

,SIZE=addr addr: RX-type address, or register (2) - (12).

,SIZE=*

,SPAN=addr addr: RX-type address, or register (2) - (12).

,SPAN=*

,STOKEN=addr addr: RX-type address

,TTOKEN=addr addr: RX-type address or register (2) - (12).

,TTOKEN=* Default: TTOKEN=*

,TYPE=DA Default: None

,TYPE=HS

,PFCOUNT=nnn Default: 0

,RELEASE=YES Default: RELEASE=NO

,RELEASE=NO

,MF=(M,addr) See explanation of parameters if omitted.

Parameters
,MF=(M,addr)

Specifies the MODIFY form. The modify form of the macro is used to modify
an already defined DIV parameter list. It is the same as the EXECUTE form
except that the data-in-virtual service is not called. The contents of registers 1
and 15 are destroyed.

DIV macro

Chapter 45. DIV — Data-in-virtual 559

DIV macro

560 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Chapter 46. DOM — Delete operator message

Description
The DOM macro deletes an operator message or group of messages from the
display screen of the operator's console and from the list of messages retained by
MVS. When a program no longer requires that a message be displayed or retained,
it issues the DOM macro to delete the message.

When a program issues a WTO or WTOR macro, the system assigns an
identification number to the message and returns this number in register 1 to the
issuing program. When the display of this message is no longer needed, the
issuing program can issue the DOM macro using the identification number that
was returned in register 1.

MVS automatically invokes DOM for a WTOR when it receives the WTOR reply.
You need only invoke DOM for a WTOR if the WTOR becomes obsolete before the
system receives the reply. When the system receives the reply, the message is no
longer highlighted on the MCS console screen. The message is eventually removed
from the screen of an MCS console.

Environment
The requirements for the caller are different for LINKAGE=SVC and
LINKAGE=BRANCH.

If you specify LINKAGE=SVC, the requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Supervisor state or problem state and any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 24- or 31- or 64-bit
ASC mode: Primary
Interrupt Status: Enabled for I/O and external interrupts
Locks: No locks held
Control parameters: Must be in the primary address space

If you specify LINKAGE=BRANCH, the requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Supervisor state with PSW key 0-7
Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 24- or 31-bit
ASC mode: Primary
Interrupt Status: Enabled or disabled for I/O and external interrupts
Locks: The caller may hold locks, but is not required to hold any
Control parameters: Must be in the primary address space.

Programming requirements
None.

© Copyright IBM Corp. 1988, 2013 561

Restrictions
The following restrictions and limitations apply:
v If the caller is executing in a sysplex, do not use SCOPE=SYSTEM, but rather

SCOPE=SYSTEMS. DOM ignores SCOPE=SYSTEM if the caller is executing in a
sysplex.

v For any DOM parameters that allow a register specification, the value must be
right-justified in the register, and the remaining bytes within the register must be
zero.

v Any authorized DOM parameters that are specified by an unauthorized program
will cause a 157 abend. The only authorized parameter is SCOPE.

Register information
After the caller issues the macro, the system might use some registers as work
registers or might change the contents of some registers. When the system returns
control to the caller, the contents of these registers are not the same as they were
before the macro was issued. Therefore, if the caller depends on these registers
containing the same value before and after issuing the macro, the caller must save
these registers before issuing the macro and restore them after the system returns
control.

When control returns to the caller, the general purpose registers (GPRs) contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code if you specified LINKAGE=BRANCH; otherwise, used as a
work register by the system.

Performance implications
None.

Syntax
The DOM macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede DOM.

DOM

� One or more blanks must follow DOM.

MSG=field field: Four-byte value

MSGLIST=list addr list addr: Symbol, RX-type address, or register (1) - (12).

DOM macro

562 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Syntax Description

TOKEN=addr addr: Register (1) - (12), or an RX-type address.

,COUNT=count addr count addr: Register (2) - (12), or an RX-type address.

,SCOPE=SYSTEM Default: SCOPE=SYSTEMS

,SCOPE=SYSTEMS

,LINKAGE=SVC Default: LINKAGE=SVC

,LINKAGE=BRANCH

Parameters
The parameters are explained as follows:

MSG=field
MSGLIST=list addr
TOKEN=addr

MSG=field specifies in register 1 the ID of a single message to be deleted.
Register 1 contains the 32-bit identification number (the DOM id) of a WTO
message to be deleted. Use this as input on the MSG parameter.

MSGLIST=list addr specifies the address of a list of one or more fullwords, each
word containing the 32-bit identification number of a message to be deleted.
You can end the list in one of two ways:
v Use the COUNT parameter to specify how many entries are in the list.
v Turn on the high-order bit in the last entry of the list.

Attention: Do not alter a DOM id from the 32-bit value returned in register 1
by the WTO or WTOR macro, except to turn on the high-order bit (x'80000000')
in the last entry in a list.

TOKEN=addr specifies a field or register containing a 4-byte token that is
associated with messages to be deleted. When you issue WTO or WTOR to
write a message, you can choose a token value, and specify it as an input
parameter to WTO or WTOR through the TOKEN parameter. To issue a DOM
using a TOKEN, ignore the message ID returned by WTO or WTOR in register
1, and specify the token value instead, using the TOKEN parameter when you
issue DOM. TOKEN is an alternate method for identifying messages, which is
independent of the register 1 message ID. Specifying TOKEN with DOM will
delete all messages specified with WTO and that particular TOKEN.

With TOKEN, authorized users may delete any messages originally issued
under the same ASID and system ID. Unauthorized users may delete only
those messages that were originally issued under the same jobstep TCB, ASID,
and system ID. The value of the token may not be the same as the ID that was
returned in register 1 after a WTO or WTOR. TOKEN is mutually exclusive
with MSG, MSGLIST, and COUNT.

,COUNT=count addr
Specifies a field or register containing the 1-byte count of 4-byte message IDs
associated with this request. The count must be from 1 to 60. If you specify
COUNT, do not set the high-order bit on in the last entry of the DOM

DOM macro

Chapter 46. DOM — Delete operator message 563

parameter list. If you specify COUNT in a register, ensure that it is
right-justified and padded with zeros. If you do not specify COUNT, the
message IDs are treated as 32-bit IDs. If an address is used, the address points
to a 1-byte field that contains the count. COUNT is not valid with TOKEN.

,SCOPE=SYSTEM
,SCOPE=SYSTEMS

Specifies how to process the DOM request. If you specify SCOPE=SYSTEMS,
the DOM request is to be communicated to other processors. If you specify
SCOPE=SYSTEM, the DOM request is not to be communicated to other
processors. If you do not specify SCOPE, the DOM request defaults to
SCOPE=SYSTEMS.

You must specify SCOPE=SYSTEMS if you are running in a sysplex.

,LINKAGE=SVC
,LINKAGE=BRANCH

Specifies how DOM will receive control. LINKAGE=SVC specifies that linkage
is by supervisor call, and LINKAGE=BRANCH specifies that linkage is by
branch and link. LINKAGE=SVC is the default.

Use LINKAGE=BRANCH when you cannot issue an SVC.

Return and reason codes
Register 15 contains the following hexadecimal return codes from DOM
LINKAGE=BRANCH:

Table 53. Return Codes for the DOM LINKAGE=BRANCH Macro

Hexadecimal Return
Code

Meaning

00 Meaning: For LINKAGE=BRANCH, processing completed successfully. The
system has accepted the request and will perform the deletion later.

40 Meaning: You issued DOM with LINKAGE=BRANCH, but the system
could not obtain necessary storage. No processing was done.

4C Meaning: You issued DOM with LINKAGE=BRANCH, but the system was
unable to obtain storage for processing. No processing was done. This
return code can occur as a result of unexpected error conditions in system
storage.

There are no return codes from DOM LINKAGE=SVC.

Example 1
Issue a DOM by ID. The ID is in register 2.
R2 EQU 2

DOM MSG=(R2)

Example 2
Issue a DOM by token.

DOM TOKEN=READER
READER DC F’00000320’

Example 3
Issue a DOM by a list of IDs. The count is specified in a register. Use the
branch-entry form of the macro.

DOM macro

564 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

R7 EQU 7

L R7,CURCOUNT NUMBER OF ENTRIES IN LIST
DOM MSGLIST=MYLIST,COUNT=(R7),SCOPE=SYSTEMS,LINKAGE=BRANCH

CURCOUNT DS F
MYLIST DS 60F

DOM macro

Chapter 46. DOM — Delete operator message 565

DOM macro

566 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Chapter 47. DSPSERV — Create, delete, and control data
spaces

Description
The DSPSERV macro creates, deletes, and controls data spaces. A data space is a
range of up to two gigabytes of contiguous virtual storage addresses that a
program can directly manipulate through assembler instructions. Unlike an address
space, a data space can hold only data or programs stored as data. For more
information on data spaces and how to use them, see z/OS MVS Programming:
Extended Addressability Guide.

Use the DSPSERV macro to:
v Create a data space (CREATE parameter and TYPE=BASIC parameter)
v Delete a data space (DELETE parameter)
v Release an area of a data space (RELEASE parameter)
v Increase the current size of a data space (EXTEND parameter)
v Load an area of a data space into central storage (LOAD parameter)
v Take (that is, page out) from central storage an area of a data space (OUT

parameter)
v Back data space virtual pages with 1 MB page frames, if possible

(PAGEFRAMESIZE=1M).

DSPSERV is also described in z/OS MVS Programming: Assembler Services Reference
ABE-HSP, with the exception of the DREF, SCOPE, KEY, CALLERKEY, FPROT, and
DISABLED parameters. These parameters are restricted to supervisor state or PSW
key 0-7 programs.

DSPSERV for hiperspaces

To control the use of hiperspaces, use the variation of the DSPSERV macro described
under Chapter 48, “DSPSERV — Create, delete, and control hiperspaces,” on page 587.

© Copyright IBM Corp. 1988, 2013 567

Environment
The requirements for the caller are:

Environmental factor Requirement
Minimum authorization: To request the following DSPSERV services, a program must

be supervisor state or PSW key 0-7:

v Create a data space with disabled referenced (DREF)
storage or fetch protected (FPROT) storage

v Create and delete a SCOPE=ALL and SCOPE=COMMON
data space

v Assign a storage key to a data space

v Load an area of a SCOPE=ALL or SCOPE=COMMON
data space into central storage

v Page out of central storage an area of a SCOPE=ALL or
SCOPE=COMMON data space

v Extend the current size of a data space it does not own

Problem state programs with PSW key 8-F can request all
other DSPSERV services for data spaces.

Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31- or 64-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts, with the following

exception: can be disabled for I/O and external interrupts if
the caller specifies DSPSERV RELEASE with
DISABLED=YES to release data space pages that reside in
DREF storage

Locks: No locks held, except the CPU lock if the caller specifies
DSPSERV RELEASE with DISABLED=YES to release data
space pages that reside in DREF storage

Control parameters: Must be in the primary address space

Programming requirements
If your program is in AR mode, issue the SYSSTATE ASCENV=AR macro before
you issue DSPSERV. SYSSTATE ASCENV=AR tells the system to generate code
appropriate for AR mode.

If the caller is disabled and specifies DISABLED=YES, the parameter list must be
in fixed or DREF storage.

If you use the RELEASE parameter to specify a range of storage using
INLIST=YES, you must use RANGLIST to specify a range list that is mapped by
the IARDRL macro. For information on the IARDRL macro, see z/OS MVS Data
Areas in z/OS Internet Library at http://www.ibm.com/systems/z/os/zos/
bkserv/.

For information about programs in 64-bit addressing mode (AMODE 64), see z/OS
MVS Programming: Extended Addressability Guide.

Restrictions
None.

DSPSERV macro for data spaces

568 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

Input register information
Before issuing the DSPSERV macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output register information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register
Contents

0 Reason code if the return code in GPR 15 is not 0; otherwise, used as a
work register by the system

1 Used as a work register by the system

2-13 Unchanged

14 Used as a work register by the system

15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
The standard form of the DSPSERV macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede DSPSERV.

DSPSERV

� One or more blanks must follow DSPSERV.

Valid parameters (Required parameters are underlined.)

DSPSERV macro for data spaces

Chapter 47. DSPSERV — Create, delete, and control data spaces 569

Syntax Description

CREATE STOKEN, NAME, TYPE, GENNAME, OUTNAME, BLOCKS, DREF, SCOPE,
CALLERKEY, KEY, FPROT, TTOKEN, ORIGIN, NUMBLKS,BACK,
PAGEFRAMESIZE

RELEASE STOKEN, START, BLOCKS, INLIST, RANGLIST, NUMRANGE, DISABLED

DELETE STOKEN, TTOKEN

EXTEND STOKEN, BLOCKS, VAR, NUMBLKS

LOAD STOKEN, START, BLOCKS

OUT STOKEN, START, BLOCKS

PAGEFRAMESIZE=4K Default: PAGEFRAMESIZE=4K

PAGEFRAMESIZE=1M

,STOKEN=stoken-addr stoken-addr: RX-type address or register (2) - (12).

,TYPE=BASIC Default: TYPE=BASIC

,NAME=name-addr name-addr: RX-type address or register (2) - (12).

,GENNAME=NO Default: GENNAME=NO

,GENNAME=COND

,GENNAME=YES

,OUTNAME=outname-addr outname-addr: RX-type address or register (2) - (12).

,START=start-addr start-addr: RX-type address or register (2) - (12).

,BACK=31 Default: BACK=31 (for PAGEFRAMESIZE=4K)

,BACK=64 Default: BACK=64 (for PAGEFRAMESIZE=1M)

,BLOCKS=(max-addr,init-addr) max-addr: RX-type address or register (2) - (12).

,BLOCKS=(max,init) init-addr: RX-type address or register (2) - (12).

,BLOCKS=max max: Number up to 524288.

,BLOCKS=(0,init) init: Number up to 524288.

,BLOCKS=0 0 specifies the installation default size.

,BLOCKS=(0,init-addr) Default for CREATE: BLOCKS=0

,BLOCKS=(size-addr) size-addr: RX-type address or register (2) - (12).

,BLOCKS=(size) size: Number up to 524288.

,DREF=NO Default: DREF=NO

,DREF=YES

DSPSERV macro for data spaces

570 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Syntax Description

,SCOPE=SINGLE Default: SCOPE=SINGLE

,SCOPE=ALL

,SCOPE=COMMON

,CALLERKEY Default: CALLERKEY

,KEY=key-addr key-addr: RX-type address or register (2) - (12).

,FPROT=YES Default: FPROT=YES

,FPROT=NO

,TTOKEN=ttoken-addr ttoken-addr: RX-type address or register (2) - (12).

,ORIGIN=origin-addr origin-addr: RX-type address or register (2) - (12).

,NUMBLKS=numblks-addr numblks-addr: RX-type address or register (2) - (12).

,INLIST=NO Default: INLIST=NO

,INLIST=YES

,RANGLIST=rangelist_addr rangelist_addr: RS-type address or register (2) - (12). Required with
INLIST=YES

,NUMRANGE=numrange_addr numrange_addr: RS-type address or register (2) - (12). Default:
NUMRANGE=1

,VAR=NO Default: VAR=NO

,VAR=YES

,DISABLED=NO Default: DISABLED=NO

,DISABLED=YES

,PLISTVER=IMPLIED_VERSION Default: IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=plistver plistver: 0

,HIDEZERO=NO Default: HIDEZERO=NO

,HIDEZERO=YES

,MF=S

DSPSERV macro for data spaces

Chapter 47. DSPSERV — Create, delete, and control data spaces 571

The CREATE, RELEASE, DELETE, EXTEND, LOAD, and OUT parameters, which
designate the services of the DSPSERV macro, are mutually exclusive. You can
select only one.

Parameters
The parameters are explained as follows:

CREATE
Requests that the system create a data space. Creating a data space is
somewhat like issuing a GETMAIN for storage. The entire data space is in the
same storage key. When you specify CREATE, you must specify the NAME
and STOKEN parameters.

Optional parameters when you create a data space are: TYPE, OUTNAME,
GENNAME, BLOCKS, DREF, SCOPE, CALLERKEY, KEY, FPROT, TTOKEN,
ORIGIN, NUMBLKS, BACK and PAGEFRAMESIZE.

RELEASE
Requests that the system resources used to contain the user's data be returned
to the system. Although the data contained in the virtual storage is discarded,
the user's virtual storage itself remains and is available for further use. When
you specify RELEASE, you must also specify STOKEN to identify the data
space, and the START and BLOCKS parameters to identify the beginning and
the length of the area to be returned to the system.

A supervisor state or key 0-7 program can release any data space it owns or
created, if its home or primary address space is the same as the owner's. A
problem state program can release any data space it owns or created.

The caller must own the data space, and the caller's PSW key must be zero or
equal to the key of the storage the system is to release. Otherwise, the system
abends the caller. Note that no exception to the caller's PSW key being zero or
equal to the key of the storage to be released is made for a storage-protection
override.

If your program is disabled for I/O and external interrupts, use
DISABLED=YES; otherwise, use DISABLED=NO (the default). DSPSERV
RELEASE with DISABLED=YES is valid only to release data space pages that
reside in DREF storage.

Use DSPSERV RELEASE instead of using the MVCL instruction for these
reasons:
v DSPSERV RELEASE is faster than MVCL for very large areas.
v Pages that are released through DSPSERV RELEASE do not occupy space in

real or auxiliary storage.

DELETE
Requests that the system delete a data space. STOKEN is the only required
parameter on the DELETE request. TTOKEN is optional.

A problem state or key 8-F program can delete any data space it owns,
providing its PSW key matches the storage key of the data space.

A supervisor state or key 0-7 program can delete any data space it owns or
created, if its home or primary address space is the same as the owner's.

EXTEND
Requests that the system increase the current size of a data space. Use
EXTEND only for a data space that was created with an initial size smaller
than a maximum size. Before a caller can reference storage beyond the current

DSPSERV macro for data spaces

572 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

size, the caller must use EXTEND to increase the storage that is available. If a
caller references data space storage beyond the current size, the system rejects
the request; it terminates the caller with an 0C4 abend code.

STOKEN (identifying the data space) and BLOCKS (specifying the size of the
increase) are required on the EXTEND request. VAR (requesting a variable
extension) and NUMBLKS (requesting the size of the extension) are optional
parameters.

If the caller is problem state with PSW key 8 through F, any TCB can extend a
data space that was created by any other TCB within the same address space.

If the caller is in supervisor state with PSW key 0 through 7, the TCB that
represents the caller can be in any address space.

The system rejects the EXTEND request if you specified VAR=NO (or took the
default) and the extended size would:
v Exceed the maximum size specified when the data space was created.
v For a data space with a storage key greater than 7, extend the cumulative

data space and hiperspace totals beyond the installation limits for the
owning address space.

LOAD
Requests that the system load some areas of a data space into central storage.
The system fills the request depending on how many central storage frames
are available. When you specify LOAD, you must also specify the STOKEN,
START, and BLOCKS parameters.

OUT
Tells the system that it can page some areas of a data space out of central
storage. When you specify OUT, you must also specify the STOKEN, START,
and BLOCKS parameters.

PAGEFRAMESIZE=4K
Backs data space virtual pages with 4 KB page frames at first reference.

PAGEFRAMESIZE=1M
Backs data space virtual pages with pageable 1 MB page frames at first
reference. If pageable 1 MB page frames are not available at first reference, 4K
page frames are used. If DEFINE IOON is later performed against pages
backed with pageable 1 MB page frames, the pages are always backed above 2
GB. PAGEFRAMESIZE=1M is only valid for TYPE=BASIC data spaces. Refer to
the BACK=64 and TYPE parameters for additional information.

,BACK=31
,BACK=64

Specifies the backing attributes of data space pages when defined as IOON
(fixed). Specifying ,BACK=31 backs the data space pages with frames that
reside below 2 gigabytes when defined IOON. Specifying,BACK=64 backs the
data space pages by frames that reside either above or below 2 gigabytes when
defined as IOON. Data spaces that are created by specifying
PAGEFRAMESIZE=1M can only be backed by frames that reside above 2
gigabytes when defined as IOON. If ,BACK=31 is specified with
PAGEFRAMESIZE=1M, the ,BACK=31 specification is ignored and the MNOTE
ASMA254I message is generated, with the text PAGEFRAMESIZE=1M
CANNOT BE SPECIFIED WITH BACK=31.

,STOKEN=stoken-addr
Specifies the address of the eight-byte STOKEN for the data space.

DSPSERV macro for data spaces

Chapter 47. DSPSERV — Create, delete, and control data spaces 573

DSPSERV CREATE returns the STOKEN as output. STOKEN is required input
for all other DSPSERV services.

,TYPE=BASIC
Specifies that the system should create a data space rather than a hiperspace.
TYPE=BASIC is the default.

,NAME=name-addr
Specifies the address of the eight-byte variable or constant that contains the
name of the data space. NAME is required for DSPSERV CREATE.

Data space names are from one to eight bytes long. They can contain letters,
numbers, and @, #, and $, but they cannot contain embedded blanks. Names
that contain fewer than eight bytes must be left-justified and padded on the
right with blanks.

Data space and hiperspace names must be unique within the home address
space of the owner. No other data space or hiperspace in the home address
space can have the same name. Therefore, in choosing names for your data
spaces, you must avoid using the same names that IBM uses for data spaces.
IBM uses the following names for data spaces and hiperspaces:
v Names that begin with A through I.
v Names that begin with SYSAxxxx through SYSIxxxx.
v Names that begin with numbers or the characters SYSDS.

Use the following names for your data spaces:
v Problem state programs can use data space names that begin with @, #, $, or

the letters J through Z, with the exception of SYS. The system abends
problem state programs that begin names with SYS.

v Supervisor state programs and programs with PSW key 0 - 7 can use data
space names that begin with @, #, $, or the letters J through Z. In addition,
they can use names that begin with SYSJ through SYSZ. The system abends
programs that begin names with SYSDS.
Use names that begin with SYSJ through SYSZ to ensure that the names of
the data spaces that belong to supervisor state programs and programs with
PSW key 0 - 7 do not conflict with the names of data spaces that belong to
problem state programs.

To ensure that the names for your data spaces are unique, ask the system to
generate a unique name. See the GENNAME parameter.

,GENNAME=NO
,GENNAME=COND
,GENNAME=YES

Specifies whether or not you want the system to generate a name for the data
space to ensure that all names are unique within the address space. The system
generates a name by adding a 5-character prefix (consisting of a numeral
followed by four characters) to the first three characters of the name you
supply on the NAME parameter. For example, if you supply ‘XYZDATA’ on
the NAME parameter, the name becomes ‘nCCCCXYZ’ where ‘n’ is the
numeral, ‘CCCC’ is the 4-character string generated by the system, and XYZ
comes from the name you supplied on NAME. See NAME for more
information about naming conventions.

GENNAME=NO
The system does not generate a name. You must supply a name unique
within the address space. GENNAME=NO is the default.

DSPSERV macro for data spaces

574 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

GENNAME=COND
The system generates a unique name only if you supply a name that is
already being used. Otherwise, the system uses the name you supply.

GENNAME=YES
The system takes the name you supply on the NAME parameter and
makes it unique.

If you want the system to return the unique name it generates, use the
OUTNAME parameter.

,OUTNAME=outname-addr
Specifies the address of the eight-byte variable where the system returns the
data space name it generated if you specify GENNAME=YES or
GENNAME=COND. The OUTNAME parameter is optional on DSPSERV
CREATE.

,START=start-addr
Specifies the address of a four-byte variable containing the beginning address
of a block of storage in a data space. The address must be on a four-kilobyte
boundary. START is required on RELEASE, LOAD, and OUT requests.

,BLOCKS=(max-addr,init-addr)
,BLOCKS=(max,init)
,BLOCKS=max
,BLOCKS=(0,init)
,BLOCKS=0
,BLOCKS=(0,init-addr)
,BLOCKS=size-addr
,BLOCKS=size

Specifies the size of the data space or the size of an area within the data space.

BLOCKS=size-addr in MVS/SP3.1.0 is incompatible with BLOCKS=(size-addr) in
MVS/SP3.1.0e and later releases in the case where size-addr is a register. If you
coded BLOCKS=(register) in MVS/SP3.1.0, and then recompile the program to
run on later releases of MVS, you must change the specification to
BLOCKS=((register)) before you recompile.

For a CREATE request, specifies the maximum size (in blocks) to which the
data space can expand (max-addr or max) and the initial size of the data space
(init-addr or init.). A block is a unit of 4K bytes. You cannot extend the data
space beyond its maximum size.

max-addr specifies the address of a field that contains the maximum size of the
data space to be created. max is the number of blocks (up to 524,288) to be
used for the data space.

init-addr specifies the address of the initial size of the data space. init is the
number of blocks to be used as the initial size. If the initial size you specify
exceeds or equals the maximum size, then the initial size becomes the
maximum size.

0 specifies the default size, either the installation default or the IBM-defined
default. The IBM-defined default maximum is 239 blocks. Your installation can
use the installation exit IEFUSI to change the IBM default. The system returns
the maximum size at the location identified by NUMBLKS.

If you do not code the BLOCKS parameter on the CREATE request, the default
is BLOCKS=0, setting the initial size and the maximum size equal to the
installation (or IBM) default.

DSPSERV macro for data spaces

Chapter 47. DSPSERV — Create, delete, and control data spaces 575

For a RELEASE request, BLOCKS is a required parameter that defines
contiguous storage (in blocks of 4K bytes) that the system is to release
(size-addr or size). The minimum size is 1 block and the maximum is 524,288
blocks (2 gigabytes).

For an EXTEND request, BLOCKS is a required parameter that defines the
amount of increase of the current size of the data space.

For LOAD and OUT requests, BLOCKS is a required parameter that defines
the amount of data space storage that the system is to load into central storage
or page out of central storage.

For CREATE and EXPAND requests, for data spaces created with
PAGEFRAMESIZE=1M where the BLOCKS specification does not result in the
current size of the data space being a multiple of 256 blocks, the current partial
last segment of the data space is backed by 4K pages at first reference. This
ensures that the user cannot access 4K pages beyond the current end of the
data space.

BLOCKS=size-addr in MVS/SP3.1.0 is incompatible with BLOCKS=(size-addr) in
MVS/SP3.1.0e and later releases in the case where size-addr is a register. If you
coded BLOCKS=(register) in MVS/SP3.1.0, and then recompile the program to
run on later releases of MVS, you must change the specification to
BLOCKS=((register)) before you recompile.

,DREF=NO
,DREF=YES

Specifies whether (YES) or not (NO) disabled programs can reference the data
space. If you specify NO, only enabled programs can reference the data space.
If a disabled program references the data space, the system might abend the
program. If you specify YES, both an enabled and a disabled program can
reference the data space.

DREF is an optional parameter when you create a data space. The default,
DREF=NO, specifies that only enabled programs can reference the data space.

,SCOPE=SINGLE
,SCOPE=ALL
,SCOPE=COMMON

Specifies whether the data space is a SCOPE=SINGLE, SCOPE=ALL, or a
SCOPE=COMMON data space. A SCOPE=SINGLE data space may be
referenced only by the owning address space. SCOPE=ALL and
SCOPE=COMMON data spaces can be referenced by programs in many
address spaces.

Any program can create and delete SCOPE=SINGLE data spaces. Only
supervisor state or PSW key 0-7 programs can create and delete SCOPE=ALL
and SCOPE=COMMON data spaces.

The address space that contains an owner of a SCOPE=ALL or
SCOPE=COMMON data space must be nonswappable.

SCOPE is an optional parameter for DSPSERV CREATE; the default is
SCOPE=SINGLE.

,CALLERKEY
,KEY=key-addr

Specifies the address of the eight-bit variable or constant that contains the
storage key of the data space to be created. The key must be in bits 0-3 of the
field. The system ignores bits 4-7. CALLERKEY specifies that the data space
have the storage key that matches the PSW key of the caller.

DSPSERV macro for data spaces

576 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

The KEY parameter is optional on DSPSERV CREATE. CALLERKEY is the
default.

,FPROT=YES
,FPROT=NO

Specifies whether the data space should (YES) or should not (NO) be
fetch-protected. If you specify YES, the entire data space is fetch-protected.
Fetch protection means a program must be in the key of the data space storage
(or key 0) to reference data in the data space.

FPROT is an optional parameter for DSPSERV CREATE. The default,
FPROT=YES, specifies that the data space is fetch-protected.

,TTOKEN=ttoken-addr
Specifies the address of the TTOKEN, the 16-byte variable or constant that
identifies the TCB that is (for the CREATE request) to become the owner of the
data space or is (for the DELETE request) the owner of the data space. Use this
parameter when you assign ownership of a data space or when you delete a
data space that belongs to another task. A program can assign ownership of a
data space only when it creates it.

Before a program creates a data space and assigns ownership, it must know
the TTOKEN of the TCB that is to be the new owner. The new owner must
reside in the caller's home or primary address space.

If you do not specify TTOKEN, the system assumes the caller is to be the
owner of the data space.

A problem state program with PSW key 8 - F can use the TTOKEN parameter
only on the CREATE request and only to assign ownership to its own task or
its job step task.

An SRB cannot own a data space. It can create one, but it must assign the data
space to a TCB. The system abends SRB mode callers if they do not include the
TTOKEN parameter on create requests.

,ORIGIN=origin-addr
Specifies the address of the four-byte variable that contains the lowest address
(either zero or 4096) of the new data space. The system returns the beginning
address of the data space at origin-addr. The system tries to start all data spaces
at origin zero; on some processors, however, the origin is 4096. ORIGIN is an
optional parameter for DSPSERV CREATE.

,NUMBLKS=numblks-addr
Specifies the address of the four-byte area where the system returns one of the
following:
v For DSPSERV CREATE, the maximum size (in blocks) of the newly-created

data space
v For DSPSERV EXTEND, the size by which the system extended the data

space

The NUMBLKS parameter is an optional parameter on DSPSERV CREATE and
DSPSERV EXTEND.

If, when you create a data space, you specify BLOCKS=0 or do not specify the
BLOCKS parameter, the system uses the default that your installation
established in the installation exit IEFUSI. The system returns this default value
at numblks-addr.

,VAR=YES

DSPSERV macro for data spaces

Chapter 47. DSPSERV — Create, delete, and control data spaces 577

,VAR=NO
Specifies whether or not your request for the system to extend the amount of
storage available in a data space is a variable request. When you use DSPSERV
EXTEND for a data space, the system might not be able to extend the data
space the amount you request because that amount might cause the system to
exceed one of the following:
v The maximum size of the data space, as specified on the BLOCKS parameter

when the data space was created.
v For a data space with storage key 8 - F, the limit of combined data space and

hiperspace storage with storage key 8 - F for an address space. (The
installation established this limit on the IEFUSI installation exit, or took the
IBM default.)

If you specify VAR=YES (the variable request) and the system cannot satisfy
your request, the system extends the data space to one of the following sizes,
depending on which is smaller:
v The maximum size specified on the BLOCKS parameter when the data space

was created
v The largest size that would still keep the combined total of data space and

hiperspace storage within the limits established by the installation for an
address space

If you specify VAR=NO (the default), the system:
v Abends the caller if the extended size would exceed the maximum size

specified when the data space was created
v Rejects the request if the data space has storage key 8 - F and the request

would extend the cumulative data space and hiperspace totals beyond the
installation limits for an address space

If you use the NUMBLKS parameter, the system returns the size by which the
system extends the data space.

,INLIST=NO
,INLIST=YES

Specifies whether a range is included (YES). The default is INLIST=NO. If you
specify YES, you must also specify the RANGLIST parameter.

,RANGLIST=rangelist-addr
Specifies the name (RS-type) or address (in register 2-12) of an input fullword
that contains the address of the range list. The range list consists of a number
of entries (as specified by NUMRANGE) where each entry is 8 bytes long. A
mapping of each entry is provided through the mapping macro IARDRL. If
you specify DISABLED=YES or a NUMRANGE value greater that 16, the range
list must be in fixed storage.

,NUMRANGE=numrange_addr
Specifies the name (RS-type) or address (in register 2-12) of an optional
parameter that provides the number of entries in the supplied RANGLIST,
supplied through the RANGLIST parameter. For unauthorized callers, the
maximum value is 16. The default is 1. If you specify INLIST=YES, you must
specify RANGLIST.

,DISABLED=NO
,DISABLED=YES

Specifies that the caller is enabled for I/O and external interrupts
(DISABLED=NO) or disabled for these interrupts (DISABLED=YES).
DISABLED=NO is the default.

DSPSERV macro for data spaces

578 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

DISABLED=YES is valid only with DSPSERV RELEASE to release data space
pages that reside in DREF storage. If you issue RELEASE and DISABLED=YES
for a non-DREF data space, you receive an abend X'01D' with reason code
X'020B'.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=plistver

Specifies the version of the macro. PLISTVER determines which parameter list
the system generates. PLISTVER is an optional input parameter on all forms of
the macro, including the list form. When using PLISTVER, specify it on all
macro forms used for a request and with the same value on all of the macro
forms. The values are:
v IMPLIED_VERSION, which is the lowest version that allows all parameters

specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.
If you can tolerate the size change, IBM recommends that you always
specify PLISTVER=MAX on the list form of the macro. Specifying MAX
ensures that the list-form parameter list is always long enough to hold all
the parameters you might specify on the execute form; in this way, MAX
ensures that the parameter list does not overwrite nearby storage.

v 0, supports all parameters except those specifically referenced in higher
versions.

v 1, supports all parameters from version 0 and the BLOCKS(Positional_2)
parameter.

To code, specify in this input parameter one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 0-1.

,HIDEZERO=NO
,HIDEZERO=YES

An optional keyword input that specifies whether the system hides page 0 of
the data space so that references to that page do not succeed. Regardless, the
data space starts at the returned origin, and the number of blocks requested, if
available, are allocated. HIDEZERO=NO is the default.
v HIDEZERO=NO indicates not to hide page 0.
v HIDEZERO=YES indicates to hide page 0. The returned origin indicates the

lowest address that may be used which will be x'1000'. When
PageFrameSize=1M is in effect:
– The first segment is backed by 4K pages.
– If performance is critical, avoid using any address below X'100000'.

,MF=S
Specifies the standard form of DSPSERV. The standard form places the
parameters into an in-line parameter list.

ABEND codes
DSPSERV might abnormally terminate with abend code X'01D'. See z/OS MVS
System Codes for an explanation and programmer response.

DSPSERV macro for data spaces

Chapter 47. DSPSERV — Create, delete, and control data spaces 579

Return and reason codes
Hexadecimal return and reason codes from DSPSERV CREATE are shown in the
following table.

Table 54. Return and Reason Codes for the DSPSERV CREATE Macro

Hexadecimal
Return Code

Hexadecimal
Reason Code

Meaning and Action

00 None Meaning: DSPSERV CREATE completed successfully.

Action: None.

04 xx000Cxx Meaning: Program error. DSPSERV CREATE completed
successfully. You specified a size of 2 gigabytes (524,288
blocks). However, because the processor did not support a
data space with zero origin, a data space of one less block
(524,287 blocks) was created.

Action: None required. However, you should verify that
your program correctly accounts for the nonzero origin of
the data space.

08 xx0005xx Meaning: Program error. Creation of the data space would
violate installation criteria. See the IEFUSI installation exit
in z/OS MVS Installation Exits.

Action: Check with your system programmer for local
restrictions on the creation and use of data spaces.

08 xx0009xx Meaning: Program error. The specified data space name is
not unique within the address space.

Action: Check that the data space name is not already in
use by another active data space. Change the data space
name or specify the GENNAME parameter on the
DSPSERV macro to get the system to generate a unique
name.

08 xx0012xx Meaning: Environmental error. The system's set of
generated names for data spaces and hiperspaces has been
temporarily exhausted.

Action: Retry the job one or more times during a period of
lower system usage. If the problem persists, consult your
system programmer, who might be able to tune the system
so that more names are available for use.

0C xx0006xx Meaning: Environmental error. The system cannot create
any additional data spaces at this time because of a
shortage of resources.

Action: Retry the job one or more times during a period of
lower system usage. If the problem persists, consult your
system programmer, who might be able to tune the system
so that resources are no longer exhausted.

See also the description of the MAXCAD parameter in the
IEASYSxx parmlib member in z/OS MVS Initialization and
Tuning Reference.

0C xx0007xx Meaning: System error. The system cannot obtain
addressability to its data structures.

Action: Record the return and reason codes and supply
them to the appropriate IBM support personnel.

Hexadecimal return and reason codes from DSPSERV EXTEND are shown in the
following table.

DSPSERV macro for data spaces

580 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Table 55. Return and Reason Codes for the DSPSERV EXTEND Macro

Hexadecimal
Return Code

Hexadecimal
Reason Code

Meaning and Action

00 None Meaning: DSPSERV EXTEND completed successfully.

Action: None.

08 xx0502xx Meaning: Environmental error. Extending the data space
would cause the data space and hiperspace limits for the
address space to be exceeded.

Action: Check with your system programmer, who might
be able to tune the system so that the function is made
available to your program.

08 xx0503xx Meaning: Program error. You are using VAR=YES to
extend the current size of the data space; however, the data
space is already the maximum size.

Action: None required. However, if your program requires
more storage, you should consider creating an additional
data space.

The caller of DSPSERV does not receive any return codes for the RELEASE,
DELETE, LOAD, and OUT services.

Example 1
Create a data space named TEMP with a size of 10 million bytes.
DSP1 DSPSERV CREATE,NAME=DSPCNAME,STOKEN=DSPCSTKN,

BLOCKS=DSPBLCKS,ORIGIN=DSPCORG
*
DSPCNAME DC CL8’TEMP ’ DATA SPACE NAME
DSPCSTKN DS CL8 DATA SPACE STOKEN
DSPCORG DS F DATA SPACE ORIGIN RETURNED
DSPCSIZE EQU 10000000 10 MILLION BYTES OF STORAGE
DSPBLCKS DC A((DSPCSIZE+4095)/4096) NUMBER OF BLOCKS NEEDED FOR
* A 10 MILLION BYTE DATA SPACE

Example 2
Release 9 ranges of storage in a data space with a previously built range list.

LA 5,RANGELST
ST 5,RNGLSTPT
LA, 5,RNGLSTPT

DSP2 DSPSERV RELEASE,STOKEN=DSPCSTKN,DISABLED=NO,INLIST=YES,
NUMRANGE=NUMRANGS,RANGLIST=(5)

*
RNGLSTPT DS F RANGE LIST ADDRESS
DSPCSTKN DS CL8 DATA SPACE STOKEN
NUMRANGS DC F’9’ NUMBER OF RANGES TO PROCESS
RANGELST DS CL256 STORAGE FOR MAX NUMBER OF RANGES
DRLMAP DS 0F THIS CREATES A DSECT

IARDRL MAPPING MACRO

DSPSERV - List form
Use the list form of the DSPSERV macro to construct a nonexecutable control
program parameter list.

DSPSERV macro for data spaces

Chapter 47. DSPSERV — Create, delete, and control data spaces 581

Syntax
The list form of the DSPSERV macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede DSPSERV.

DSPSERV

� One or more blanks must follow DSPSERV.

,PLISTVER=IMPLIED_VERSION Default: IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=plistver plistver: 0

,MF=(L,list addr) list addr: Symbol.

,MF=(L,list addr,attr) attr: 1- to 60-character input string. Default: 0D

Parameters
The parameters are explained as follows:

,MF=(L,list addr)
,MF=(L,list addr,attr)

Specifies the list form of the DSPSERV macro.

list addr defines the area that the system is to use for the parameter list.

attr is an optional 1- to 60-character input string, which can contain any value
that is valid on an assembler DS pseudo-op. You can use this parameter to
force boundary alignment of the parameter list. If you do not code attr, the
system provides a value of 0D, which forces the parameter list to a
doubleword boundary.

DSPSERV - Execute form
The execute form of the DSPSERV macro can refer to and modify the parameter
list constructed by the list form of the macro.

Syntax
The execute form of the DSPSERV macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

DSPSERV macro for data spaces

582 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Syntax Description

� One or more blanks must precede DSPSERV.

DSPSERV

� One or more blanks must follow DSPSERV.

Valid parameters (Required parameters are underlined.)

CREATE STOKEN, NAME, TYPE, GENNAME, OUTNAME, BLOCKS, DREF, SCOPE,
CALLERKEY, KEY, FPROT, TTOKEN, ORIGIN, NUMBLKS, BACK,
PAGEFRAMESIZE

RELEASE STOKEN, START, BLOCKS, INLIST, RANGLIST, NUMRANGE, DISABLED

DELETE STOKEN, TTOKEN

EXTEND STOKEN, BLOCKS, VAR, NUMBLKS

LOAD STOKEN, START, BLOCKS

OUT STOKEN, START, BLOCKS

,STOKEN=stoken-addr stoken-addr: RX-type address or register (2) - (12).

,TYPE=BASIC Default: TYPE=BASIC

,NAME=name-addr name-addr: RX-type address or register (2) - (12).

,GENNAME=NO Default: GENNAME=NO

,GENNAME=COND

,GENNAME=YES

,OUTNAME=outname-addr outname-addr: RX-type address or register (2) - (12).

PAGEFRAMESIZE=4K Default: PAGEFRAMESIZE=4K

PAGEFRAMESIZE=1M

,START=start-addr start-addr: RX-type address or register (2) - (12).

,BACK=31 Default: BACK=31 (for PAGEFRAMESIZE=4K)

,BACK=64 Default: BACK=64 (for PAGEFRAMESIZE=1M)

,BLOCKS=(max-addr,init-addr) max-addr: RX-type address or register (2) - (12).

,BLOCKS=(max,init) init-addr: RX-type address or register (2) - (12).

,BLOCKS=max max: Number up to 524288.

,BLOCKS=(0,init) init: Number up to 524288.

,BLOCKS=0 0 specifies the installation default size.

,BLOCKS=(0,init-addr) Default for CREATE: BLOCKS=0

DSPSERV macro for data spaces

Chapter 47. DSPSERV — Create, delete, and control data spaces 583

Syntax Description

,BLOCKS=(size-addr) size-addr: RX-type address or register (2) - (12).

,BLOCKS=(size) size: Number up to 524288.

,DREF=NO Default: DREF=NO

,DREF=YES

,SCOPE=SINGLE Default: SCOPE=SINGLE

,SCOPE=ALL

,SCOPE=COMMON

,CALLERKEY Default: CALLERKEY

,KEY=key-addr key-addr: RX-type address or register (2) - (12).

,FPROT=YES Default: FPROT=YES

,FPROT=NO

,TTOKEN=ttoken-addr ttoken-addr: RX-type address or register (2) - (12).

,ORIGIN=origin-addr origin-addr: RX-type address or register (2) - (12).

,NUMBLKS=numblks-addr numblks-addr: RX-type address or register (2) - (12).

,INLIST=NO Default: INLIST=NO

,INLIST=YES

,RANGLIST=rangelist-addr rangelist-addr: RS-type address or register (2) - (12). Required with
INLIST=YES.

,NUMRANGE=numrange-addr numrange-addr: RS-type address or register (2) - (12). Default:
NUMRANGE=1

,VAR=NO Default: VAR=NO

,VAR=YES

,DISABLED=NO Default: DISABLED=NO

,DISABLED=YES

,PLISTVER=IMPLIED_VERSION Default: IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=plistver plistver: 0

DSPSERV macro for data spaces

584 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Syntax Description

,MF=(E,list addr) list addr: RX-type address or register (2) - (12).

,MF=(E,list addr,COMPLETE)

The parameters are explained under the standard form of the DSPSERV macro
with the following exception:

,MF=(E,list addr)
Specifies the execute form of the DSPSERV macro. list addr defines the area that
the system uses for the parameter list.

COMPLETE specifies that the system is to check for required parameters and
supply optional parameters that are not specified.

DSPSERV macro for data spaces

Chapter 47. DSPSERV — Create, delete, and control data spaces 585

DSPSERV macro for data spaces

586 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Chapter 48. DSPSERV — Create, delete, and control
hiperspaces

Description
The DSPSERV macro creates, deletes, and controls hiperspaces. A hiperspace is a
range of up to two gigabytes of contiguous virtual storage addresses that a
program can use as a buffer. A hiperspace can hold user data and programs stored
as data. Data is not directly addressable; to manipulate data in a hiperspace, you
use the HSPSERV macro to bring the data into the address space in blocks of 4K
bytes.

Supervisor state or PSW key 0 through 7 programs have a choice of creating a
standard hiperspace or an ESO hiperspace. The standard hiperspace is backed
with real storage and auxiliary storage, if necessary. The HSTYPE=SCROLL
parameter creates a standard hiperspace. The ESO hiperspace is backed only with
real storage. HSTYPE=CACHE creates an ESO hiperspace. For more information
on hiperspaces and how to use them, see z/OS MVS Programming: Extended
Addressability Guide. To learn the restrictions for the use of hiperspaces, see the
description of the HSPSERV macro.

Use the DSPSERV macro to:
v Create a hiperspace (CREATE parameter and TYPE=HIPERSPACE parameter)
v Delete a hiperspace (DELETE parameter)
v Release an area of a hiperspace (RELEASE parameter)
v Increase the current size of a hiperspace (EXTEND parameter)

DSPSERV is also described in z/OS MVS Programming: Assembler Services Reference
ABE-HSP, with the exception of the KEY, CALLERKEY, TTOKEN, HSTYPE,
SHARE, DISABLED, and CASTOUT parameters. These parameters are restricted to
supervisor state or PSW key 0-7 programs.

Environment
Requirements for the caller are:

Environmental factor Requirement
Minimum authorization: To request the following DSPSERV services, a program must

be supervisor state or PSW key 0-7:

v Create and delete an ESO or a shared standard hiperspace

v Release storage in a shared or ESO hiperspace

v Extend the current size of a shared or ESO hiperspace

v Assign a storage key to a hiperspace

v Assign hiperspace ownership to a TCB

DSPSERV for data spaces

To control the use of data spaces, use the variation of the DSPSERV macro described
under Chapter 47, “DSPSERV — Create, delete, and control data spaces,” on page 567.

© Copyright IBM Corp. 1988, 2013 587

Environmental factor Requirement

Problem state programs with PSW key 8-F can request all
other DSPSERV services.

Dispatchable unit mode: Task or SRB
Cross memory mode: Any PASN, any HASN, any SASN
AMODE: 31-or 64-bit
ASC mode: Primary or access register (AR)
Interrupt status: Enabled for I/O and external interrupts, with the following

exception: can be disabled for I/O and external interrupts if
the caller specifies DSPSERV RELEASE with
DISABLED=YES to release an ESO (HSTYPE=CACHE)
hiperspace

Locks: No locks held, except the CPU lock if the caller specifies
DSPSERV RELEASE with DISABLED=YES to release an ESO
(HSTYPE=CACHE) hiperspace

Control parameters: Must be in the primary address space

Programming requirements
If your program is in AR mode, issue the SYSSTATE ASCENV=AR macro before
you issue DSPSERV. SYSSTATE ASCENV=AR tells the system to generate code
appropriate for AR mode.

If the caller is disabled and specifies DISABLED=YES, the parameter list must be
in fixed or disabled reference (DREF) storage.

If you use the RELEASE parameter to specify a range of storage using
INLIST=YES, you must use RANGLIST to specify a range list that is mapped by
the IARDRL macro. For information on the IARDRL macro, see z/OS MVS Data
Areas in z/OS Internet Library at http://www.ibm.com/systems/z/os/zos/
bkserv/.

For information about programs in 64-bit addressing mode (AMODE 64), see z/OS
MVS Programming: Extended Addressability Guide.

Restrictions
None.

Input register information
Before issuing the DSPSERV macro, the caller does not have to place any
information into any register unless using it in register notation for a particular
parameter, or using it as a base register.

Output register information
When control returns to the caller, the general purpose registers (GPRs) contain:

Register
Contents

0 Reason code if the return code in GPR 15 is not 0; otherwise, used as a
work register by the system

1 Used as a work register by the system

2-13 Unchanged

DSPSERV macro for hiperspaces

588 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

14 Used as a work register by the system

15 Return code

When control returns to the caller, the access registers (ARs) contain:

Register
Contents

0-1 Used as work registers by the system

2-13 Unchanged

14-15 Used as work registers by the system

Some callers depend on register contents remaining the same before and after
issuing a service. If the system changes the contents of registers on which the caller
depends, the caller must save them before issuing the service, and restore them
after the system returns control.

Performance implications
None.

Syntax
The standard form of the DSPSERV macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede DSPSERV.

DSPSERV

� One or more blanks must follow DSPSERV.

Valid parameters (Required parameters are underlined.)

CREATE STOKEN, NAME, TYPE, HSTYPE, CASTOUT, SHARE GENNAME,
OUTNAME, BLOCKS, CALLERKEY, KEY, FPROT, TTOKEN, ORIGIN, and
NUMBLKS

RELEASE STOKEN, START, BLOCKS, INLIST, RANGLIST, NUMRANGE, DISABLED

DELETE STOKEN, TTOKEN

EXTEND STOKEN, BLOCKS, VAR, NUMBLKS

,STOKEN=stoken-addr stoken-addr: RX-type address or register (2) - (12).

,TYPE=HIPERSPACE

,HSTYPE=SCROLL Default: HSTYPE=SCROLL

,HSTYPE=CACHE

DSPSERV macro for hiperspaces

Chapter 48. DSPSERV — Create, delete, and control hiperspaces 589

Syntax Description

,SHARE=NO Default: SHARE=NO

,SHARE=YES Note: SHARE is valid only if you specify HSTYPE=SCROLL.

,CASTOUT=YES Default: CASTOUT=YES

,CASTOUT=NO Note: CASTOUT is valid only if you specify HSTYPE=CACHE.

,NAME=name-addr name-addr: RX-type address or register (2) - (12).

,GENNAME=NO Default: GENNAME=NO

,GENNAME=COND

,GENNAME=YES

,OUTNAME=outname-addr outname-addr: RX-type address or register (2) - (12).

,START=start-addr start-addr: RX-type address or register (2) - (12).

,BLOCKS=(max-addr,init-addr) max-addr: RX-type address or register (2) - (12).

,BLOCKS=(max,init) init-addr: RX-type address or register (2) - (12).

,BLOCKS=max max: Number up to 524288.

,BLOCKS=(0,init) init: Number up to 524288.

,BLOCKS=0 0 specifies the installation default size.

,BLOCKS=(0,init-addr) Default for CREATE: BLOCKS=0

,BLOCKS=(size-addr) size-addr: RX-type address or register (2) - (12).

,BLOCKS=(size) size: Number up to 524288.

,CALLERKEY Default: CALLERKEY

,KEY=key-addr key-addr: RX-type address or register (2) - (12).

,FPROT=YES Default: FPROT=YES

,FPROT=NO

,TTOKEN=ttoken-addr ttoken-addr: RX-type address or register (2) - (12).

,ORIGIN=origin-addr origin-addr: RX-type address or register (2) - (12).

,NUMBLKS=numblks-addr numblks-addr: RX-type address or register (2) - (12).

,INLIST=NO Default: INLIST=NO

,INLIST=YES

DSPSERV macro for hiperspaces

590 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Syntax Description

,RANGLIST=rangelist_addr rangelist_addr: RS-type address or register (2) - (12). Required with
INLIST=YES

,NUMRANGE=numrange_addr numrange_addr: RS-type address or register (2) - (12). Default:
NUMRANGE=1

,VAR=NO Default: VAR=NO

,VAR=YES

,DISABLED=NO Default: DISABLED=NO

,DISABLED=YES Note: DISABLED=YES is valid only if you specify DSPSERV RELEASE with
HSTYPE=CACHE.

,PLISTVER=IMPLIED_VERSION Default: IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=plistver plistver: 0

,MF=S

The CREATE, RELEASE, DELETE, and EXTEND parameters, which designate the
services of the DSPSERV macro, are mutually exclusive. You can select only one.

Parameters
The parameters are explained as follows:

CREATE
Requests that the system create a hiperspace. Creating a hiperspace is
somewhat like issuing a GETMAIN for storage. The entire hiperspace is in the
same storage key. When you specify CREATE, you must also specify the
NAME, TYPE=HIPERSPACE, and STOKEN parameters. To create an ESO or a
shared standard hiperspace, your program must be supervisor state or have
PSW key 0 - 7.

Optional parameters when you create a hiperspace are: HSTYPE, CASTOUT,
GENNAME, OUTNAME, BLOCKS, KEY, CALLERKEY, FPROT, TTOKEN,
ORIGIN, SHARE, and NUMBLKS.

RELEASE
Requests that the system resources used to contain the user's data be returned
to the system. Although the data contained in the virtual storage is discarded,
the user's virtual storage itself remains and is available for further use. When
you specify RELEASE, you must also specify STOKEN to identify the
hiperspace, and the START and BLOCKS parameters to identify the beginning
and the length of the area to be returned to the system.

A problem state or PSW key 8 - F caller must own the hiperspace, and its PSW
key must be zero or equal to the key of the storage the system is to release. A
supervisor state or PSW key 0 - 7 caller must have its home or primary

DSPSERV macro for hiperspaces

Chapter 48. DSPSERV — Create, delete, and control hiperspaces 591

address space the same as the owner's home address space, and its PSW key
must be zero or equal to the key of the storage the system is to release.

If your program is disabled for I/O and external interrupts, use
DISABLED=YES; otherwise, use DISABLED=NO (the default). DSPSERV
RELEASE with DISABLED=YES is valid only to release an ESO
(HSTYPE=CACHE) hiperspace.

Pages that are released through DSPSERV RELEASE do not occupy space in
real or auxiliary storage. These pages are available for further use and contain
hexadecimal zeros.

DELETE
Requests that the system delete a hiperspace. STOKEN is the only required
parameter on the DELETE request. TTOKEN is optional.

A problem state or key 8-F program can delete any hiperspace it owns and for
which its PSW key matches the key of the hiperspace.

A supervisor state or key 0-7 program can delete any hiperspace it owns and
other hiperspaces, if its home or primary address space is the same as the
owner's.

EXTEND
Requests that the system increase the current size of a hiperspace. Use
EXTEND only for a hiperspace that was created with an initial size smaller
than a maximum size. Before a caller can reference storage beyond the current
size, the caller must use EXTEND to increase the storage that is available. If a
caller references hiperspace storage beyond the current size, the system rejects
the request; it terminates the caller with an 0C4 abend code.

STOKEN (identifying the hiperspace) and BLOCKS (specifying the size of the
increase) are required on the EXTEND request. VAR (requesting a variable
extension) and NUMBLKS (requesting the size of the extension) are optional
parameters.

If the caller is problem state and PSW key 8 through F, it must own the
hiperspace. Otherwise, the TCB that represents the caller must be in the home
or primary address of the owner of the hiperspace.

The system rejects the EXTEND request if you specified VAR=NO (or took the
default) and the extended size would:
v Exceed the maximum size specified when the hiperspace was created.
v For a hiperspace with a storage key greater than 7, extend the cumulative

data space and hiperspace totals beyond the installation limits for the
owning address space.

,STOKEN=stoken-addr
Specifies the address of the eight-byte STOKEN for the hiperspace. DSPSERV
CREATE returns the STOKEN as output. STOKEN is required input for all
other DSPSERV requests.

,TYPE=HIPERSPACE
Specifies that the system is to create a hiperspace rather than a data space.

,HSTYPE=SCROLL
,HSTYPE=CACHE

Specifies the type of hiperspace the system is to create: HSTYPE=SCROLL
creates a standard hiperspace, the type of storage area that your program can
scroll through. HSTYPE=CACHE creates an ESO hiperspace, one that acts as a
high-speed cache for storing data. HSTYPE=SCROLL is the default.

DSPSERV macro for hiperspaces

592 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

,SHARE=NO
,SHARE=YES

Specifies whether the system is to create a nonshared standard hiperspace
(SHARE=NO) or a shared standard hiperspace (SHARE=YES). This parameter
is valid only if you specify HSTYPE=SCROLL. When you specify
HSTYPE=SCROLL, SHARE=NO is the default.

Generally, a program can share a nonshared standard hiperspace only with
programs that are dispatched in the owner's home address space. However, a
program not dispatched in the owner's home address space and using an
ALET, can access this nonshared standard hiperspace through the owner's
home PASN-AL. A program can share a shared standard hiperspace with
programs that are dispatched in any address space.

,CASTOUT=YES
,CASTOUT=NO

Specifies that the system is to persist (CASTOUT=NO) or not persist
(CASTOUT=YES) in retaining a copy of the data in the hiperspace. The
CASTOUT parameter is valid only if you specify HSTYPE=CACHE. When you
specify HSTYPE=CACHE, CASTOUT=YES is the default.

When the system needs the real storage for its own needs, it is less likely to
take the real storage from a hiperspace created with CASTOUT=NO than from
one created with CASTOUT=YES.

CASTOUT=YES indicates that the system can discard the data when it needs
the real storage for other purposes. CASTOUT=NO specifies that the system is
to give the data in the ESO hiperspace more priority when searching for pages
to remove from real storage when a shortage arises.

Note: Specifying CASTOUT=NO places a heavy demand on real storage. The
system might discard the pages regardless of CASTOUT=NO. For example, if
the system swaps out the address space that owns the hiperspace, it discards
pages without regard to CASTOUT. (To prevent the loss due to a swapped-out
address space, make the address space that owns the hiperspace
nonswappable.)

,NAME=name-addr
Specifies the address of the eight-byte variable or constant that contains the
name of the hiperspace. NAME is required for DSPSERV CREATE.

Hiperspace™ names are from one to eight bytes long. They can contain letters,
numbers, and @, #, and $, but they cannot contain embedded blanks. Names
that contain fewer than eight bytes must be left-justified and padded on the
right with blanks.

Names of hiperspaces and data spaces must be unique within the home
address space of the owner. No other hiperspace or data space in the home
address space can have the same name. Therefore, in choosing names for your
hiperspaces, you must avoid using the same names that IBM uses for data
spaces and hiperspaces. IBM uses the following names:
v Names that begin with A through I.
v Names that begin with SYSAxxxx through SYSIxxxx.
v Names that begin with numbers or the characters SYSDS.

Use the following names for your hiperspaces:
v Problem state programs can use hiperspace names that begin with @, #, $, or

the letters J through Z, with the exception of SYS. The system abends
problem state programs that begin names with SYS.

DSPSERV macro for hiperspaces

Chapter 48. DSPSERV — Create, delete, and control hiperspaces 593

v Supervisor state programs and programs with PSW key 0 - 7 can use
hiperspace names that begin with @, #, $, or the letters I through Z. In
addition, they can use names that begin with SYSJ through SYSZ. The
system abends programs that begin names with SYSDS.
Use names that begin with SYSJ through SYSZ to ensure that the names of
the hiperspaces that belong to supervisor state programs and programs with
PSW key 0 - 7 do not conflict with the names of hiperspaces that belong to
problem state programs.

To ensure that the names for your hiperspaces are unique, use the GENNAME
parameter to generate a unique name.

,GENNAME=NO
,GENNAME=COND
,GENNAME=YES

Specifies whether or not you want the system to generate a name for the
hiperspace to ensure that all names are unique within the address space. The
system generates a name by adding a 5-character prefix (consisting of a
numeral followed by four characters) to the first three characters of the name
you supply on the NAME parameter (or the whole name if it has three or
fewer characters). For example, if you supply ‘XYZDATA’ on the NAME
parameter, the name becomes ‘nCCCCXYZ’ where ‘n’ is the numeral, ‘CCCC’ is
the 4-character string generated by the system, and XYZ comes from the name
you supplied on NAME. See NAME for more information about naming
conventions.

GENNAME=NO
The system does not generate a name. You must supply a name unique
within the address space. GENNAME=NO is the default.

GENNAME=COND
The system generates a unique name only if you supply a name that is
already being used. Otherwise, the system uses the name you supply.

GENNAME=YES
The system takes the name you supply on the NAME keyword and
makes it unique.

If you want the system to return the unique name it generates, use the
OUTNAME parameter.

,OUTNAME=outname-addr
Specifies the address of the eight-byte variable where the system returns the
name it generates for the hiperspace if you specify GENNAME=YES or
GENNAME=COND. The OUTNAME parameter is optional on DSPSERV
CREATE.

,START=start-addr
Specifies the address of a four-byte variable containing the beginning address
of a block of storage in a hiperspace. The address must be on a four-kilobyte
boundary. A block is a unit of 4K bytes. START is required on a RELEASE
request.

,BLOCKS=(max-addr,init-addr)
,BLOCKS=(max,init)
,BLOCKS=max
,BLOCKS=(0,init)
,BLOCKS=0
,BLOCKS=(0,init-addr)
,BLOCKS=size-addr

DSPSERV macro for hiperspaces

594 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

,BLOCKS=size
Specifies the address of a four-byte variable that contains the size of the
hiperspace or the size of an area within the hiperspace.

For a CREATE request, specifies the maximum size (in blocks) to which the
hiperspace can expand (max-addr or max) and the initial size of the hiperspace
(init-addr or init.). A block is a unit of 4K bytes. You cannot extend the
hiperspace beyond its maximum size.

max-addr specifies the address of a field that contains the maximum size of the
hiperspace to be created. max is the number of blocks (up to 524,288) to be
used for the hiperspace.

init-addr specifies the address of the initial size of the hiperspace. init is the
number of blocks to be used as the initial size. If the initial size you specify
exceeds or equals the maximum size, then the initial size becomes the
maximum size.

0 specifies the default size, either the installation default or the IBM-defined
default. The IBM-defined default maximum is 239 blocks. Your installation can
use the installation exit IEFUSI to change the IBM default. The system returns
the maximum size at the location identified by NUMBLKS.

If you do not code the BLOCKS parameter on the CREATE request, the default
is BLOCKS=0, setting the initial size and the maximum size equal to the
installation (or IBM) default.

For a RELEASE request, BLOCKS and START are required parameters that
define contiguous storage (in 4K blocks) that the system is to release. BLOCKS
specifies the size of an area to be released (size-addr or size). The minimum size
is 1 block and the maximum is 524,288 blocks (2 gigabytes).

For an EXTEND request, BLOCKS is a required parameter that defines the
amount of increase to the current size of the hiperspace.

,CALLERKEY
,KEY=key-addr

Specifies the address of the eight-bit variable or constant that contains the
storage key of the hiperspace to be created. The key must be in bits 0-3 of the
field. The system ignores bits 4-7. CALLERKEY specifies that the hiperspace is
to have the storage key that matches the PSW key of the caller.

The KEY parameter is optional on DSPSERV CREATE. CALLERKEY is the
default.

,FPROT=YES
,FPROT=NO

Specifies whether the hiperspace should (YES) or should not (NO) be
fetch-protected. If you specify YES, the entire hiperspace is fetch-protected.
Fetch protection means a program must be in the key of the hiperspace storage
(or key 0) to reference data in the hiperspace.

FPROT is an optional parameter for DSPSERV CREATE. The default,
FPROT=YES, specifies that the hiperspace is fetch-protected.

,TTOKEN=ttoken-addr
Specifies the address of the TTOKEN, the 16-byte variable or constant that
identifies the TCB that is (for the CREATE request) to become the owner of the
hiperspace or is (for the DELETE request) the owner of the hiperspace. Use
this parameter when you assign ownership of a hiperspace or when you delete
a hiperspace that belongs to another task. A program can assign ownership of
a hiperspace only when it creates it.

DSPSERV macro for hiperspaces

Chapter 48. DSPSERV — Create, delete, and control hiperspaces 595

Before a program creates a hiperspace and assigns ownership, it must know
the TTOKEN of the TCB that is to be the new owner. The new owner must
reside in the caller's home or primary address space.

If you do not specify TTOKEN, the system assumes the caller is the owner.

An SRB cannot own a hiperspace. A program that the SRB represents can
create one, but it must assign the hiperspace to a TCB. The system abends SRB
mode callers if they do not include the TTOKEN parameter on create requests.

,ORIGIN=origin-addr
Specifies the address of the four-byte variable that contains the lowest address
(either zero or 4096) of the new hiperspace. The system returns the beginning
address of the hiperspace at origin-addr. The system tries to start all hiperspaces
at origin zero; on some processors, however, the origin is 4096. ORIGIN is an
optional parameter for DSPSERV CREATE.

,NUMBLKS=numblks-addr
Specifies the address of the four-byte area where the system returns one of the
following:
v For DSPSERV CREATE, the maximum size (in blocks) of the newly-created

hiperspace
v For DSPSERV EXTEND, the size by which the system extended the

hiperspace

The NUMBLKS parameter is an optional parameter on DSPSERV CREATE and
DSPSERV EXTEND.

If, when you create a hiperspace, you specify BLOCKS=0 or do not specify the
BLOCKS parameter, the system uses the default that your installation
established in the installation exit IEFUSI.

,VAR=YES
,VAR=NO

Specifies whether or not your request for the system to extend the amount of
storage available in a hiperspace is a variable request. When you use DSPSERV
EXTEND for a hiperspace, the system might not be able to extend the
hiperspace the amount you request because that amount might cause the
system to exceed one of the following:
v The maximum size of the hiperspace, as specified on the BLOCKS parameter

when the hiperspace was created.
v For a hiperspace with storage key 8 - F, the limit of combined data space

and hiperspace storage with storage key 8 - F for an address space. (The
installation established this limit on the IEFUSI installation exit, or took the
IBM default.)

If you specify VAR=YES (the variable request) and the system is unable to
satisfy the request, the system extends the hiperspace to one of the following
sizes, depending on which is smaller:
v The maximum size specified on the BLOCKS parameter when the hiperspace

was created
v The largest size that would still keep the combined total of data space and

hiperspace storage within the limits established by the installation for an
address space

If you specify VAR=NO (the default), the system:
v Abends the caller if the extended size would exceed the maximum size

specified when the hiperspace was created

DSPSERV macro for hiperspaces

596 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

v Rejects the request if the hiperspace has storage key 8 - F and the request
would extend the cumulative data space and hiperspace totals beyond the
installation limits for an address space

If you use the NUMBLKS parameter, the system returns the size by which the
system extends the hiperspace.

,INLIST=NO
,INLIST=YES

Specifies whether a range is included (YES). The default is INLIST=NO. If you
specify YES, you must also specify the RANGLIST parameter.

,RANGLIST=rangelist-addr
Specifies the name (RS-type) or address (in register 2-12) of an input fullword
that contains the address of the range list. The range list consists of a number
of entries (as specified by NUMRANGE) where each entry is 8 bytes long. A
mapping of each entry is provided through the mapping macro IARDRL. If
you specify DISABLED=YES or a NUMRANGE value greater that 16, the range
list must be in fixed storage.

,NUMRANGE=numrange_addr
Specifies the name (RS-type) or address (in register 2-12) of an optional
parameter that provides the number of entries in the supplied RANGLIST,
supplied through the RANGLIST parameter. For unauthorized callers, the
maximum value is 16. The default is 1. If you specify INLIST=YES, you must
specify RANGLIST.

,DISABLED=NO
,DISABLED=YES

Specifies that the caller is enabled for I/O and external interrupts
(DISABLED=NO) or disabled for these interrupts (DISABLED=YES).
DISABLED=NO is the default.

DISABLED=YES is valid only with DSPSERV RELEASE to release an ESO
(HSTYPE=CACHE) hiperspace. If you issue RELEASE and DISABLED=YES for
a standard (HSTYPE=SCROLL) hiperspace, you receive an abend X'01D' with
reason code X'020B'.

,PLISTVER=IMPLIED_VERSION
,PLISTVER=MAX
,PLISTVER=plistver

Specifies the version of the macro. PLISTVER determines which parameter list
the system generates. PLISTVER is an optional input parameter on all forms of
the macro, including the list form. When using PLISTVER, specify it on all
macro forms used for a request and with the same value on all of the macro
forms. The values are:
v IMPLIED_VERSION, which is the lowest version that allows all parameters

specified on the request to be processed. If you omit the PLISTVER
parameter, IMPLIED_VERSION is the default.

v MAX, if you want the parameter list to be the largest size currently possible.
This size might grow from release to release and affect the amount of
storage that your program needs.
If you can tolerate the size change, IBM recommends that you always
specify PLISTVER=MAX on the list form of the macro. Specifying MAX
ensures that the list-form parameter list is always long enough to hold all
the parameters you might specify on the execute form; in this way, MAX
ensures that the parameter list does not overwrite nearby storage.

v 0, if you use the currently available parameters.

DSPSERV macro for hiperspaces

Chapter 48. DSPSERV — Create, delete, and control hiperspaces 597

To code, specify in this input parameter one of the following:
v IMPLIED_VERSION
v MAX
v A decimal value of 0

,MF=S
Specifies the standard form of DSPSERV. The standard form places the
parameters into an in-line parameter list.

ABEND codes
DSPSERV might abnormally terminate with abend code X'01D'. See z/OS MVS
System Codes for more information.

Return and reason codes
Hexadecimal return and reason codes from DSPSERV CREATE are shown in the
following table.

Table 56. Return and Reason Codes for the DSPSERV CREATE Macro

Hexadecimal Return
Code

Hexadecimal Reason
Code

Meaning and Action

00 None Meaning: DSPSERV CREATE completed
successfully.

Action: None.

04 xx000Cxx Meaning: Program error. DSPSERV CREATE
completed successfully. You specified a size of
2-gigabytes (524,288 blocks). However, because
the processor did not support a hiperspace with
zero origin, a hiperspace of one less block
(524,287 blocks) was created.

Action: None required. However, you should
verify that your program correctly accounts for
the nonzero origin of the hiperspace.

08 xx0005xx Meaning: Program error. Creation of the
hiperspace would violate installation criteria. See
the IEFUSI installation exit in z/OS MVS
Installation Exits.

Action: Check with your system programmer for
local restrictions on the creation and use of
hiperspaces.

08 xx0009xx Meaning: Program error. The specified
hiperspace name is not unique within the
address space.

Action: Check that the hiperspace name is not
already in use by another active hiperspace.
Change the hiperspace name or specify the
GENNAME parameter on the DSPSERV macro to
get the system to generate a unique name.

08 xx0010xx Meaning: Environmental error. ESO hiperspace
creation was rejected because there is no real
storage on the system.

Action: Determine if an ESO hiperspace is
required. If not, modify the program to specify a
standard rather than an ESO hiperspace. If an
ESO hiperspace is required, run the program on
another system with real storage installed.

DSPSERV macro for hiperspaces

598 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Table 56. Return and Reason Codes for the DSPSERV CREATE Macro (continued)

Hexadecimal Return
Code

Hexadecimal Reason
Code

Meaning and Action

08 xx0012xx Meaning: Environmental error. The system's set
of generated names for data spaces and
hiperspaces has been temporarily exhausted.

Action: Retry the job one or more times during a
period of lower system usage. If the problem
persists, consult your system programmer, who
might be able to tune the system so that
resources are no longer exhausted.

0C xx0006xx Meaning: Environmental error. The system
cannot create any additional hiperspaces at this
time because of a shortage of resources.

Action: Retry the job one or more times during a
period of lower system usage. If the problem
persists, consult your system programmer, who
might be able to tune the system so that
resources are no longer exhausted.

0C xx0007xx Meaning: System error. The system cannot obtain
addressability to its own hiperspaces.

Action: Record the return and reason codes and
supply them to the appropriate IBM support
personnel.

Hexadecimal return and reason codes from DSPSERV EXTEND are shown in the
following table.

Table 57. Return and Reason Codes for the DSPSERV EXTEND Macro

Hexadecimal Return
Code

Hexadecimal Reason
Code

Meaning and Action

00 None Meaning: DSPSERV EXTEND completed
successfully.

Action: None.

08 xx0502xx Meaning: Environmental error. Extending the
hiperspace size would cause the data space and
hiperspace limits for the address space to be
exceeded.

Action: Check with your system programmer,
who might be able to tune the system so that the
function is made available to your program.

08 xx0503xx Meaning: Program error. You are using
VAR=YES to extend the current size of the
hiperspace; however, the hiperspace is already
the maximum size.

Action: None required. However, if your
program requires more storage, you should
consider creating an additional hiperspace.

The caller of DSPSERV does not receive any return codes for the RELEASE and
DELETE services.

Example 1
Create a hiperspace named TEMP with a size of 10 million bytes.

DSPSERV macro for hiperspaces

Chapter 48. DSPSERV — Create, delete, and control hiperspaces 599

DSP1 DSPSERV CREATE,NAME=HSPCNAME,STOKEN=HSPCSTKN, X
TYPE=HIPERSPACE,BLOCKS=HSPBLCKS,ORIGIN=HSPCORG

* .
HSPCNAME DC CL8’TEMP ’ HIPERSPACE NAME
HSPCSTKN DS CL8 HIPERSPACE STOKEN
HSPCORG DS F HIPERSPACE ORIGIN RETURNED
HSPCSIZE EQU 10000000
HSPBLCKS DC A((HSPCSIZE+4095)/4096) NUMBER OF BLOCKS NEEDED FOR
* A 10 MILLION BYTE HIPERSPACE

Example 2
Release 9 ranges of storage in a data space with a previously built range list.

LA 5,RANGELST
ST 5,RNGLSTPT
LA, 5,RNGLSTPT

DSP2 DSPSERV RELEASE,STOKEN=DSPCSTKN,DISABLED=NO,INLIST=YES,
NUMRANGE=NUMRANGS,RANGLIST=(5)

*
RNGLSTPT DS F RANGE LIST ADDRESS
DSPCSTKN DS CL8 DATA SPACE STOKEN
NUMRANGS DC F’9’ NUMBER OF RANGES TO PROCESS
RANGELST DS CL256 STORAGE FOR MAX NUMBER OF RANGES
DRLMAP DS 0F THIS CREATES A DSECT

IARDRL MAPPING MACRO

DSPSERV - List form
Use the list form of the DSPSERV macro to construct a nonexecutable control
program parameter list.

Syntax
The list form of the DSPSERV macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede DSPSERV.

DSPSERV

� One or more blanks must follow DSPSERV.

,PLISTVER=IMPLIED_VERSION Default: IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=plistver plistver: 0

,MF=(L,list addr) list addr: Symbol.

,MF=(L,list addr,attr) attr: 1- to 60-character input string. Default: 0D

DSPSERV macro for hiperspaces

600 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Parameters
The parameters are explained as follows:

,MF=(L,list addr)
,MF=(L,list addr,attr)

Specifies the list form of the DSPSERV macro. list addr defines the area that the
system is to use for the parameter list.

attr is an optional 1- to 60-character input string, which can contain any value
that is valid on an assembler DS pseudo-op. You can use this parameter to
force boundary alignment of the parameter list. If you do not code attr, the
system provides a value of 0D, which forces the parameter list to a
doubleword boundary.

DSPSERV - Execute form
The execute form of the DSPSERV macro can refer to and modify the parameter
list constructed by the list form of the macro.

Syntax
The execute form of the DSPSERV macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede DSPSERV.

DSPSERV

� One or more blanks must follow DSPSERV.

Valid parameters (Required parameters are underlined.)

CREATE STOKEN, NAME, TYPE, HSTYPE, SHARE, CASTOUT, GENNAME,
OUTNAME, BLOCKS, CALLERKEY, KEY, FPROT, TTOKEN, ORIGIN, and
NUMBLKS

RELEASE STOKEN, START, BLOCKS, INLIST, RANGLIST, NUMRANGE, DISABLED

DELETE STOKEN, TTOKEN

EXTEND STOKEN, BLOCKS, VAR, NUMBLKS

,STOKEN=stoken-addr stoken-addr: RX-type address or register (2) - (12).

,TYPE=HIPERSPACE

,HSTYPE=SCROLL Default: HSTYPE=SCROLL

,HSTYPE=CACHE

,SHARE=NO Default: SHARE=NO

DSPSERV macro for hiperspaces

Chapter 48. DSPSERV — Create, delete, and control hiperspaces 601

Syntax Description

,SHARE=YES Note: SHARE is valid only if you specify HSTYPE=SCROLL.

,CASTOUT=YES Default: CASTOUT=YES

,CASTOUT=NO Note: CASTOUT is valid only if you specify HSTYPE=CACHE.

,NAME=name-addr name-addr: RX-type address or register (2) - (12).

,GENNAME=NO Default: GENNAME=NO

,GENNAME=COND

,GENNAME=YES

,OUTNAME=outname-addr outname-addr: RX-type address or register (2) - (12).

,START=start-addr start-addr: RX-type address or register (2) - (12).

,BLOCKS=(max-addr,init-addr) max-addr: RX-type address or register (2) - (12).

,BLOCKS=(max,init) init-addr: RX-type address or register (2) - (12).

,BLOCKS=max max: Number up to 524288.

,BLOCKS=(0,init) init: Number up to 524288.

,BLOCKS=0 0 specifies the installation default size.

,BLOCKS=(0,init-addr) Default for CREATE: BLOCKS=0

,BLOCKS=(size-addr) size-addr: RX-type address or register (2) - (12).

,BLOCKS=(size) size: Number up to 524288.

,KEY=key-addr key-addr: RX-type address or register (2) - (12).

,CALLERKEY Default: CALLERKEY

,FPROT=YES Default: FPROT=YES

,FPROT=NO

,TTOKEN=ttoken-addr ttoken-addr: RX-type address or register (2) - (12).

,ORIGIN=origin-addr origin-addr: RX-type address or register (2) - (12).

,NUMBLKS=numblks-addr numblks-addr: RX-type address or register (2) - (12).

,INLIST=NO Default: INLIST=NO

,INLIST=YES

,RANGLIST=rangelist-addr rangelist-addr: RS-type address or register (2) - (12). Required with
INLIST=YES.

DSPSERV macro for hiperspaces

602 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Syntax Description

,NUMRANGE=numrange-addr numrange-addr: RS-type address or register (2) - (12). Default:
NUMRANGE=1

,VAR=NO Default: VAR=NO

,VAR=YES

,DISABLED=NO Default: DISABLED=NO

,DISABLED=YES Note: DISABLED=YES is valid only if you specify DSPSERV RELEASE with
HSTYPE=CACHE.

,PLISTVER=IMPLIED_VERSION Default: IMPLIED_VERSION

,PLISTVER=MAX

,PLISTVER=plistver plistver: 0

,MF=(E,list addr) list addr: RX-type address or register (2) - (12).

,MF=(E,list addr,COMPLETE)

Parameters
The parameters are explained under the standard form of the DSPSERV macro
with the following exception:

,MF=(E,list addr)
,MF=(E,list addr,COMPLETE)

Specifies the execute form of the DSPSERV macro. list addr defines the area that
the system uses for the parameter list.

COMPLETE specifies that the system is to check for required parameters and
supply optional parameters that are not specified.

DSPSERV macro for hiperspaces

Chapter 48. DSPSERV — Create, delete, and control hiperspaces 603

DSPSERV macro for hiperspaces

604 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Chapter 49. DYNALLOC — Dynamic allocation

Description
Use the DYNALLOC macro to invoke dynamic allocation functions. Before
attempting to use this macro, you must read the chapters “Dynamic Allocation”
and “Requesting Dynamic Allocation Functions” in z/OS MVS Programming:
Authorized Assembler Services Guide, for complete information on DYNALLOC.

Environment
Requirements for the caller are:

Environmental factor Requirement
Minimum authorization: Problem state or supervisor state, and any PSW key
Dispatchable unit mode: Task
Cross memory mode: PASN=HASN=SASN
AMODE: 24- or 31- or 64-bit
ASC mode: Primary
Interrupt status: Enabled for I/O and external interrupts
Locks: No requirement
Control parameters: Must be in the primary address space

Programming requirements
The calling program must include the following mapping macros to construct the
SVC 99 parameter list:
v IEFZB4D0
v IEFZB4D2

See z/OS MVS Programming: Authorized Assembler Services Guide for details on
constructing the parameter list.

Restrictions
See z/OS MVS Programming: Authorized Assembler Services Guide for programming
restrictions and limitations.

Register information
On entry to the macro, general purpose register 1 must contain the address of a
pointer to the SVC 99 parameter list structure. See z/OS MVS Programming:
Authorized Assembler Services Guide for a detailed description of the parameter list.

After the caller issues the macro, the system might use some registers as work
registers or might change the contents of some registers. When the system returns
control to the caller, the contents of these registers are not the same as they were
before the caller issued the macro. Therefore, if the caller depends on these
registers containing the same value before and after issuing the macro, the caller
must save these registers before issuing the macro and restore them after the
system returns control.

When control is returned to the calling program the GPRs contain:

© Copyright IBM Corp. 1988, 2013 605

Register
Contents

0-1 Used as work registers by the system

2-14 Unchanged

15 Return code

Performance implications
There are no performance implications when the restrictions and limitations are all
met.

Syntax
The DYNALLOC macro is written as follows:

Syntax Description

name name: Symbol. Begin name in column 1.

� One or more blanks must precede DYNALLOC

DYNALLOC

� One or more blanks must follow DYNALLOC

Parameters
There are no parameters for DYNALLOC.

Return and reason codes
When control returns from DYNALLOC, GPR 15 contains a return code. The
return codes and associated reason codes are described in z/OS MVS Programming:
Authorized Assembler Services Guide.

DYNALLOC macro

606 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Appendix. Accessibility

Accessible publications for this product are offered through the z/OS Information
Center, which is available at www.ibm.com/systems/z/os/zos/bkserv/.

If you experience difficulty with the accessibility of any z/OS information, please
send a detailed message to mhvrcfs@us.ibm.com or to the following mailing
address:

IBM Corporation
Attention: MHVRCFS Reader Comments
Department H6MA, Building 707
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Accessibility features

Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use software products successfully. The major
accessibility features in z/OS enable users to:
v Use assistive technologies such as screen readers and screen magnifier software
v Operate specific or equivalent features using only the keyboard
v Customize display attributes such as color, contrast, and font size.

Using assistive technologies
Assistive technology products, such as screen readers, function with the user
interfaces found in z/OS. Consult the assistive technology documentation for
specific information when using such products to access z/OS interfaces.

Keyboard navigation of the user interface
Users can access z/OS user interfaces using TSO/E or ISPF. Refer to z/OS TSO/E
Primer, z/OS TSO/E User's Guide, and z/OS ISPF User's Guide Vol I for information
about accessing TSO/E and ISPF interfaces. These guides describe how to use
TSO/E and ISPF, including the use of keyboard shortcuts or function keys (PF
keys). Each guide includes the default settings for the PF keys and explains how to
modify their functions.

Dotted decimal syntax diagrams
Syntax diagrams are provided in dotted decimal format for users accessing the
z/OS Information Center using a screen reader. In dotted decimal format, each
syntax element is written on a separate line. If two or more syntax elements are
always present together (or always absent together), they can appear on the same
line, because they can be considered as a single compound syntax element.

Each line starts with a dotted decimal number; for example, 3 or 3.1 or 3.1.1. To
hear these numbers correctly, make sure that your screen reader is set to read out
punctuation. All the syntax elements that have the same dotted decimal number
(for example, all the syntax elements that have the number 3.1) are mutually

© Copyright IBM Corp. 1988, 2013 607

http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

exclusive alternatives. If you hear the lines 3.1 USERID and 3.1 SYSTEMID, you
know that your syntax can include either USERID or SYSTEMID, but not both.

The dotted decimal numbering level denotes the level of nesting. For example, if a
syntax element with dotted decimal number 3 is followed by a series of syntax
elements with dotted decimal number 3.1, all the syntax elements numbered 3.1
are subordinate to the syntax element numbered 3.

Certain words and symbols are used next to the dotted decimal numbers to add
information about the syntax elements. Occasionally, these words and symbols
might occur at the beginning of the element itself. For ease of identification, if the
word or symbol is a part of the syntax element, it is preceded by the backslash (\)
character. The * symbol can be used next to a dotted decimal number to indicate
that the syntax element repeats. For example, syntax element *FILE with dotted
decimal number 3 is given the format 3 * FILE. Format 3* FILE indicates that
syntax element FILE repeats. Format 3* * FILE indicates that syntax element *
FILE repeats.

Characters such as commas, which are used to separate a string of syntax
elements, are shown in the syntax just before the items they separate. These
characters can appear on the same line as each item, or on a separate line with the
same dotted decimal number as the relevant items. The line can also show another
symbol giving information about the syntax elements. For example, the lines 5.1*,
5.1 LASTRUN, and 5.1 DELETE mean that if you use more than one of the
LASTRUN and DELETE syntax elements, the elements must be separated by a
comma. If no separator is given, assume that you use a blank to separate each
syntax element.

If a syntax element is preceded by the % symbol, this indicates a reference that is
defined elsewhere. The string following the % symbol is the name of a syntax
fragment rather than a literal. For example, the line 2.1 %OP1 means that you
should refer to separate syntax fragment OP1.

The following words and symbols are used next to the dotted decimal numbers:
v ? means an optional syntax element. A dotted decimal number followed by the ?

symbol indicates that all the syntax elements with a corresponding dotted
decimal number, and any subordinate syntax elements, are optional. If there is
only one syntax element with a dotted decimal number, the ? symbol is
displayed on the same line as the syntax element, (for example 5? NOTIFY). If
there is more than one syntax element with a dotted decimal number, the ?
symbol is displayed on a line by itself, followed by the syntax elements that are
optional. For example, if you hear the lines 5 ?, 5 NOTIFY, and 5 UPDATE, you
know that syntax elements NOTIFY and UPDATE are optional; that is, you can
choose one or none of them. The ? symbol is equivalent to a bypass line in a
railroad diagram.

v ! means a default syntax element. A dotted decimal number followed by the !
symbol and a syntax element indicates that the syntax element is the default
option for all syntax elements that share the same dotted decimal number. Only
one of the syntax elements that share the same dotted decimal number can
specify a ! symbol. For example, if you hear the lines 2? FILE, 2.1! (KEEP), and
2.1 (DELETE), you know that (KEEP) is the default option for the FILE keyword.
In this example, if you include the FILE keyword but do not specify an option,
default option KEEP will be applied. A default option also applies to the next
higher dotted decimal number. In this example, if the FILE keyword is omitted,
default FILE(KEEP) is used. However, if you hear the lines 2? FILE, 2.1, 2.1.1!

608 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

(KEEP), and 2.1.1 (DELETE), the default option KEEP only applies to the next
higher dotted decimal number, 2.1 (which does not have an associated
keyword), and does not apply to 2? FILE. Nothing is used if the keyword FILE
is omitted.

v * means a syntax element that can be repeated 0 or more times. A dotted
decimal number followed by the * symbol indicates that this syntax element can
be used zero or more times; that is, it is optional and can be repeated. For
example, if you hear the line 5.1* data area, you know that you can include one
data area, more than one data area, or no data area. If you hear the lines 3*, 3
HOST, and 3 STATE, you know that you can include HOST, STATE, both
together, or nothing.

Note:

1. If a dotted decimal number has an asterisk (*) next to it and there is only one
item with that dotted decimal number, you can repeat that same item more
than once.

2. If a dotted decimal number has an asterisk next to it and several items have
that dotted decimal number, you can use more than one item from the list,
but you cannot use the items more than once each. In the previous example,
you could write HOST STATE, but you could not write HOST HOST.

3. The * symbol is equivalent to a loop-back line in a railroad syntax diagram.
v + means a syntax element that must be included one or more times. A dotted

decimal number followed by the + symbol indicates that this syntax element
must be included one or more times; that is, it must be included at least once
and can be repeated. For example, if you hear the line 6.1+ data area, you must
include at least one data area. If you hear the lines 2+, 2 HOST, and 2 STATE,
you know that you must include HOST, STATE, or both. Similar to the * symbol,
the + symbol can only repeat a particular item if it is the only item with that
dotted decimal number. The + symbol, like the * symbol, is equivalent to a
loop-back line in a railroad syntax diagram.

Appendix. Accessibility 609

610 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Notices

This information was developed for products and services offered in the U.S.A. or
elsewhere.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 1988, 2013 611

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

Site Counsel
IBM Corporation
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

COPYRIGHT LICENSE:

This information might contain sample application programs in source language,
which illustrate programming techniques on various operating platforms. You may
copy, modify, and distribute these sample programs in any form without payment
to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the
operating platform for which the sample programs are written. These examples
have not been thoroughly tested under all conditions. IBM, therefore, cannot
guarantee or imply reliability, serviceability, or function of these programs. The
sample programs are provided "AS IS", without warranty of any kind. IBM shall
not be liable for any damages arising out of your use of the sample programs.

Policy for unsupported hardware
Various z/OS elements, such as DFSMS, HCD, JES2, JES3, and MVS, contain code
that supports specific hardware servers or devices. In some cases, this
device-related element support remains in the product even after the hardware
devices pass their announced End of Service date. z/OS may continue to service
element code; however, it will not provide service related to unsupported
hardware devices. Software problems related to these devices will not be accepted

612 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

for service, and current service activity will cease if a problem is determined to be
associated with out-of-support devices. In such cases, fixes will not be issued.

Minimum supported hardware
The minimum supported hardware for z/OS releases identified in z/OS
announcements can subsequently change when service for particular servers or
devices is withdrawn. Likewise, the levels of other software products supported on
a particular release of z/OS are subject to the service support lifecycle of those
products. Therefore, z/OS and its product publications (for example, panels,
samples, messages, and product documentation) can include references to
hardware and software that is no longer supported.
v For information about software support lifecycle, see: IBM Lifecycle Support for

z/OS (http://www.ibm.com/software/support/systemsz/lifecycle/)
v For information about currently-supported IBM hardware, contact your IBM

representative.

Programming interface information
This information is intended to help the customer to code macros that are available
to authorized assembler language programs. This information documents intended
programming interfaces that allow the customer to write programs to obtain
services of z/OS.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at "Copyright and
trademark information" at http://www.ibm.com/legal/copytrade.shtml.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Notices 613

http://www.ibm.com/software/support/systemsz/lifecycle/
http://www.ibm.com/software/support/systemsz/lifecycle/
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

614 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

Index

A
accessibility 607

contact IBM 607
features 607

addressing mode and the services 2
ALESERV macro 27
ALET qualification

of parameters 4
AR () mode

description 3
ASC (address space control) mode

defining 3
ASCRE macro 43
ASDES macro 55
ASEXT macro 59
assistive technologies 607
ATSET macro 63
ATTACH and ATTACHX macros 67
authorization index

extracting 95
reserving 103
setting 131

authorization table
setting 63

AXEXT macro 95
AXFRE macro 99
AXRES macro 103
AXREXX macro 107, 129
AXSET macro 131

B
BPXEKDA macro 137
BPXESMF macro 143

C
callable service

coding 16
CALLDISP macro 149
CALLRTM macro 153
cell pool service 267
CHANGKEY macro 163

limitations with IARVSERV
macro 163

CIRB macro 167
CMDAUTH macro 171
CNZMXURF macro 177
CNZQUERY macro 181
coding the callable services 16
coding the macros 13
COFCREAT macro 191
COFDEFIN macro 201
COFIDENT macro 209
COFNOTIF macro 217
COFPURGE macro 227
COFREMOV macro 233
COFRETRI macro 239
COFSDONO macro 247
CONFCHG macro 253

console ID
locating 177

continuation line 15
CPF macro 259
CPOOL macro 267
CPU ID

retrieving 285
CSRSI 285
CSRUNIC macro 301
CSVAPF macro 313
CSVDYLPA macro 327
CSVDYNEX macro 367
CSVDYNL macro 439
CTRACE macro 491
CTRACECS macro 509
CTRACEWR macro 515

D
DAT-OFF linkage 523
DATOFF macro 523
DEQ macro 529
DIV macro 541
DLF object

explicitly deleting 247
DOM macro 561
DSPSERV macro for data spaces 567
DSPSERV macro for hiperspaces 587
DYNALLOC macro 605

I
IARVSERV macro

use with CHANGKEY macro 163
interruption request block

creating 167

K
kernal data access

interface 137
keyboard

navigation 607
PF keys 607
shortcut keys 607

M
macro

coding 13
forms 11
level

selecting 1
sample 14
selecting level 1
user parameter, passing 4
X-macros

using 11

N
navigation

keyboard 607
Notices 611

O
operator message

deleting 561

P
processor ID

retrieving 285

R
requesting processing

group of instructions 301
retained DLF object

explicitly deleting 247

S
sending comments to IBM xix
serially reusable resource

releasing 529
service

ALET qualification 4
summary 17

services
addressing mode 2
ASC mode

defining 3
using 1

shortcut keys 607
Summary of changes xxi
system information service

retrieve system information 285

U
user interface

ISPF 607
TSO/E 607

user parameter
passing 4

V
virtual storage protection key

changing 163
VLF (virtual lookaside facility)

creating 191
defining a class 201
identifying user 209
macros

COFCREAT 191

© Copyright IBM Corp. 1988, 2013 615

VLF (virtual lookaside facility) (continued)
macros (continued)

COFDEFIN 201
COFIDENT 209
COFNOTIF 217
COFPURGE 227
COFREMOV 233
COFRETRI 239

notification of change 217
object

purging 227
removing 233
retrieving 239

X
X-macros

using 11

616 z/OS V2R1.0 MVS Authorized Assembler Services Reference ALE-DYN

����

Product Number: 5650-ZOS

Printed in USA

SA23-1372-00

	Contents
	Figures
	Tables
	About this information
	Who should use this information
	How to use this information
	z/OS information

	How to send your comments to IBM
	If you have a technical problem

	z/OS Version 2 Release 1 summary of changes
	Chapter 1. Using the services
	Compatibility of MVS macros
	Addressing mode (AMODE)
	Address space control (ASC) mode
	ALET qualification
	User parameters

	Telling the system about the execution environment
	Specifying a macro version number
	How to request a macro version using PLISTVER
	Hints for using PLISTVER

	Register use
	Handling return codes and reason codes
	Handling program errors
	Handling environmental and system errors

	Using X-macros
	Macro forms
	Conventional list form macros
	Alternative list form macros

	Coding the macros
	Continuation lines

	Coding the callable services
	Including equate (EQU) statements
	Link-editing linkage-assist routines

	Service summary

	Chapter 2. ALESERV — Control entries in the access list
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return codes
	Example

	ALESERV - List form
	Syntax
	Parameters

	ALESERV - Execute form
	Syntax
	Parameters

	Chapter 3. ASCRE — Create address spaces
	Description
	Environment
	Programming requirements
	Restrictions
	Register information
	Performance implications
	Other implications
	Syntax
	Parameters
	Return and reason codes
	Example

	ASCRE - List form
	Syntax
	Parameters

	ASCRE - Execute form
	Syntax
	Parameters

	Chapter 4. ASDES — Terminate an address space
	Description
	Environment
	Programming requirements
	Output register information
	Syntax
	Parameters
	Return and reason codes

	Chapter 5. ASEXT — Extract address space parameters
	Description
	Environment
	Programming requirements
	Restrictions
	Register information
	Performance implications
	Syntax
	Parameters
	Return and reason codes

	Chapter 6. ATSET — Set authorization table
	Description
	Related macros
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return codes
	Examples

	Chapter 7. ATTACH and ATTACHX — Create a subtask
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return codes
	Example 1
	Example 2
	Example 3
	Example 4

	ATTACHX - Create a subtask
	Syntax
	Parameters
	Example 1
	Example 2

	ATTACH and ATTACHX - List form
	Syntax
	Parameters

	ATTACH and ATTACHX - Execute form
	Syntax
	Parameters

	Chapter 8. AXEXT — Extract authorization index
	Description
	Related macros
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return codes
	Examples

	Chapter 9. AXFRE — Free authorization index
	Description
	Related macros
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return codes
	Examples

	Chapter 10. AXRES — Reserve authorization index
	Description
	Related macros
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return codes
	Examples

	Chapter 11. AXREXX - System REXX services
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes
	Examples

	Chapter 12. AXSET — Set authorization index
	Description
	Related macros
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return codes
	Examples

	Chapter 13. BCPii — Base control program internal interface services
	Chapter 14. BPXEKDA — Kernel data access
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	Return codes

	BPXEKDA - List form
	Syntax
	Parameters

	BPXEKDA - Execute form
	Syntax
	Parameters

	Chapter 15. BPXESMF — Collect z/OS UNIX process accounting data
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return codes
	Example

	BPXESMF - List form
	BPXESMF - Execute form

	Chapter 16. CALLDISP — Pass control to another ready task
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	Abend codes
	Return and reason codes
	Example 1
	Example 2

	Chapter 17. CALLRTM — Call recovery termination manager
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return codes
	Example 1
	Example 2
	Example 3
	Example 4

	Chapter 18. CHANGKEY — Change virtual storage protection key
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes
	Example 1
	Example 2

	Chapter 19. CIRB - Create interruption request block
	Description
	Environment
	Register information
	Syntax
	Parameters
	Abend codes
	Return and reason codes
	Example 1
	Example 2

	Chapter 20. CMDAUTH — Command authorization service
	Description
	Environment
	Restrictions
	Register information
	Programming requirements
	Performance implications

	CMDAUTH - List form
	Syntax
	Parameters

	CMDAUTH - Execute form
	Syntax
	Parameters
	Return codes
	Example

	Chapter 21. CNZMXURF — UCME look-up service macro
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes
	Example 1
	Example 2

	Chapter 22. CNZQUERY — Consoles query
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes
	Example

	Chapter 23. COFCREAT — Create a VLF object
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes

	COFCREAT - List form
	Syntax
	Parameters

	COFCREAT - Execute form
	Syntax
	Parameters

	Chapter 24. COFDEFIN — Define a VLF class
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes

	COFDEFIN - List form
	Syntax
	Parameters

	COFDEFIN - Execute form
	Syntax
	Parameters

	Chapter 25. COFIDENT — Identify a VLF user
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes

	COFIDENT - List form
	Parameters

	COFIDENT - Execute form
	Syntax
	Parameters

	Chapter 26. COFNOTIF — Notify VLF
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes

	COFNOTIF - List form
	Syntax
	Parameters

	COFNOTIF - Execute form
	Syntax
	Parameters

	Chapter 27. COFPURGE — Purge a VLF class
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes

	COFPURGE - List form
	Syntax
	Parameters

	COFPURGE - Execute form
	Syntax
	Parameters

	Chapter 28. COFREMOV — Remove a VLF user
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes

	COFREMOV - List form
	Syntax
	Parameters

	COFREMOV - Execute form
	Syntax
	Parameters

	Chapter 29. COFRETRI — Retrieve a VLF object
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes

	COFRETRI - List form
	Syntax
	Parameters

	COFRETRI - Execute form
	Syntax
	Parameters

	Chapter 30. COFSDONO — Delete a DLF (data lookaside facility) object
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes

	COFSDONO - List form
	Syntax
	Parameters

	COFSDONO - Execute form
	Syntax
	Parameters

	Chapter 31. CONFCHG — Request notification of I/O configuration changes
	Description
	Environment
	Restrictions
	Register information
	Programming requirements
	Performance implications
	Syntax
	Parameters
	Return codes
	Example 1
	Example 2

	CONFCHG - List form
	Syntax
	Parameters

	CONFCHG - Execute form
	Syntax
	Parameters

	Chapter 32. CPF — Manage a command prefix
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications

	CPF - List form
	Syntax

	CPF - Execute form
	Syntax
	ABEND codes
	Return and reason codes
	Example

	Chapter 33. CPOOL — Perform cell pool services
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return codes
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	Example 6

	CPOOL - List form
	Syntax
	Parameters

	CPOOL - Execute form
	Syntax
	Parameters

	Chapter 34. CSRSI — System information service
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	Return codes

	CSRSIC C/370 header file

	Chapter 35. CSRUNIC — Unicode instruction services
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return codes
	Examples
	Operation:

	Chapter 36. CSVAPF — Control the list of APF-authorized libraries
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5

	CSVAPF - List form
	Parameters

	CSVAPF - Execute form
	Parameters

	Chapter 37. CSVDYLPA — Provide dynamic LPA services
	Description
	Return and reason codes
	Examples
	Example 1
	Example 2

	REQUEST=ADD option of CSVDYLPA
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes
	Example

	REQUEST=DELETE option of CSVDYLPA
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes
	Example

	REQUEST=DEFLPAWAIT option of CSVDYLPA
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return codes
	Examples

	REQUEST=QUERYDYN option of CSVDYLPA
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return codes
	Examples

	REQUEST=QUERYDEFLPA option of CSVDYLPA
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return codes
	Examples

	Chapter 38. CSVDYNEX — Provide dynamic exits services
	Description
	Input register information for CSVDYNEX
	Output register information for CSVDYNEX
	Performance implications

	Define an exit
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Syntax
	Parameters
	ABEND codes
	Return and reason codes
	Example

	Add an exit routine to an exit
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Syntax
	Parameters
	ABEND codes
	Return and reason codes
	Example

	Change the state of an exit routine
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Syntax
	Parameters
	ABEND codes
	Return and reason codes
	Example

	Delete an exit routine from an exit
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Syntax
	Parameters
	ABEND codes
	Return and reason codes
	Example

	Remove the definition of an exit
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Syntax
	Parameters
	ABEND codes
	Return and reason codes
	Example

	Change the attributes of an exit
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Syntax
	Parameters
	ABEND codes
	Return and reason codes
	Example

	List information about one or more exits
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Syntax
	Parameters
	ABEND codes
	Return and reason codes
	Example

	Call one or more exit routines at an exit
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Syntax
	Parameters
	ABEND codes
	Return and reason codes
	Example

	Provide recovery for an exit routine that abnormally ended
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Syntax
	Parameters
	ABEND codes
	Return and reason codes
	Example

	Determine whether an exit routine exists for an exit
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Syntax
	Parameters
	ABEND codes
	Return and reason codes
	Example

	Replace an exit routine for an exit
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Syntax
	Parameters
	ABEND codes
	Return and reason codes
	Example

	Return and reason codes
	Examples of the CSVDYNEX macro
	Example 1
	Example 2
	Example 3
	Example 4
	Example 5
	Example 6
	Example 7
	Example 8
	Example 9
	Example 10

	CSVDYNEX - List form
	Parameters

	CSVDYNEX - Modify form
	Parameters

	CSVDYNEX - Execute form
	Parameters

	Chapter 39. CSVDYNL — Provide dynamic LNKLST services
	REQUEST=DEFINE option of CSVDYNL
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes
	Examples

	REQUEST=ADD option of CSVDYNL
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes
	Examples

	REQUEST=DELETE option of CSVDYNL
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes
	Examples

	REQUEST=UNDEFINE option of CSVDYNL
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes
	Examples

	REQUEST=TEST option of CSVDYNL
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes
	Examples

	REQUEST=LIST option of CSVDYNL
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes
	Examples

	REQUEST=UPDATE option of CSVDYNL
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes
	Examples

	REQUEST=QUERYDYN option of CSVDYNL
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return codes
	Examples

	Return and reason codes
	Examples
	Example 1:

	Chapter 40. CTRACE — Define a user application to the component trace service
	Description
	Environment
	Programming requirements
	Restrictions
	Register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes
	Example

	CTRACE - List form
	Syntax
	Parameters

	CTRACE - Execute form
	Syntax
	Parameters

	Chapter 41. CTRACECS — Setting fields in the trace buffer writer control area
	Description
	Environment
	Programming requirements
	Restrictions
	Register information
	Performance implications
	Syntax
	Parameters
	Return and reason codes
	Example 1
	Example 2
	Example 3
	Example 4

	Chapter 42. CTRACEWR — Write a full trace buffer to DASD or tape
	Description
	Environment
	Programming requirements
	Restrictions
	Register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes
	Example

	CTRACEWR - List form
	Syntax
	Parameters

	CTRACEWR - Execute form
	Syntax
	Parameters

	Chapter 43. DATOFF — DAT-OFF linkage
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return codes
	Examples

	Chapter 44. DEQ — Release a serially reusable resource
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes
	Example 1
	Example 2
	Example 3
	Example 4

	DEQ—List form
	Parameters

	DEQ - Execute form
	Parameters

	Chapter 45. DIV — Data-in-virtual
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes
	Example 1
	Example 2

	DIV - List form
	Syntax
	Parameters

	DIV - Execute form
	Syntax
	Parameters

	DIV - Modify form
	Syntax
	Parameters

	Chapter 46. DOM — Delete operator message
	Description
	Environment
	Programming requirements
	Restrictions
	Register information
	Performance implications
	Syntax
	Parameters
	Return and reason codes
	Example 1
	Example 2
	Example 3

	Chapter 47. DSPSERV — Create, delete, and control data spaces
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes
	Example 1
	Example 2

	DSPSERV - List form
	Syntax
	Parameters

	DSPSERV - Execute form
	Syntax

	Chapter 48. DSPSERV — Create, delete, and control hiperspaces
	Description
	Environment
	Programming requirements
	Restrictions
	Input register information
	Output register information
	Performance implications
	Syntax
	Parameters
	ABEND codes
	Return and reason codes
	Example 1
	Example 2

	DSPSERV - List form
	Syntax
	Parameters

	DSPSERV - Execute form
	Syntax
	Parameters

	Chapter 49. DYNALLOC — Dynamic allocation
	Description
	Environment
	Programming requirements
	Restrictions
	Register information
	Performance implications
	Syntax
	Parameters
	Return and reason codes

	Appendix. Accessibility
	Accessibility features
	Using assistive technologies
	Keyboard navigation of the user interface
	Dotted decimal syntax diagrams

	Notices
	Policy for unsupported hardware
	Minimum supported hardware
	Programming interface information
	Trademarks

	Index
	A
	B
	C
	D
	I
	K
	M
	N
	O
	P
	R
	S
	U
	V
	X

