
SMP/E for z/OS

Reference

SA23-2276-01

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 519.

This edition applies to IBM SMP/E for z/OS, V3R6 (program number 5655-G44) and to all subsequent releases and
modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 1986, 2014.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures v

Tables vii

About this document ix
SMP/E publications. ix

How to send your comments to IBM . . xi
If you have a technical problem. xi

Summary of changes xiii
Changes made in SMP/E Version 3 Release 6. . . xiii
Changes made in SMP/E Version 3 Release 5. . . xiii
Changes made in SMP/E Version 3 Release 4. . . xiv

Chapter 1. Syntax notation and rules . . 1
How to read the syntax diagrams 1
Syntax rules for MCS and SMPPARM members. . . 2
Syntax rules for XML statements. 3

Chapter 2. SMP/E modification control
statements 5
++APAR MCS 6
++ASSIGN MCS 8
Data element MCS 10
++DELETE MCS. 17
++FEATURE MCS 21
++FUNCTION MCS 23
Hierarchical file system element MCS 26
++HOLD MCS 37
++IF MCS 45
++JAR MCS 47
++JARUPD MCS 54
++JCLIN MCS 59
++MAC MCS. 64
++MACUPD MCS 71
++MOD MCS. 75
++MOVE MCS 84
++NULL MCS 87
++PRODUCT MCS 88
++PROGRAM MCS 91
++PTF MCS 96
++RELEASE MCS 99
++RENAME MCS 104
++SRC MCS. 106
++SRCUPD MCS 111
++USERMOD MCS 114
++VER MCS. 117
++ZAP MCS 123

Chapter 3. Defining control
statements in SMPPARM members . . 127
GIMDDALC control statements 127

GIMEXITS control statements 131
OPCODE control statements 135

Chapter 4. SMP/E data sets and files 139
CLIENT 139
Distribution library (DLIB) 139
INFILE 140
Link library (LKLIB) 140
ORDERSERVER 140
OUTFILE 141
SERVER 141
SMPCLNT 142
SMPCNTL 142
SMPCPATH 143
SMPCSI 143
SMPDATA1 144
SMPDATA2 145
SMPDEBUG 146
SMPDIR 146
SMPDUMMY 146
SMPHOLD 147
SMPHRPT 148
SMPJCLIN 148
SMPJHOME 149
SMPLIST 149
SMPLOG 150
SMPLOGA 150
SMPLTS 151
SMPMTS 152
SMPNTS 153
SMPOBJ 154
SMPOUT 154
SMPPARM 154
SMPPTFIN 155
SMPPTS 156
SMPPTS spill data set 157
SMPPUNCH 158
SMPRPT 158
SMPSCDS 159
SMPSNAP 159
SMPSRVR 160
SMPSTS 160
SMPTLIB 160
SMPTLOAD. 162
SMPWKDIR 163
SMPWRK1 163
SMPWRK2 164
SMPWRK3 164
SMPWRK4 165
SMPWRK6 165
SMPnnnnn 166
SYSIN 166
SYSLIB 166
SYSPRINT 167
SYSPUNCH 168

© Copyright IBM Corp. 1986, 2014 iii

SYSUT1, SYSUT2, and SYSUT3 168
SYSUT4 169
Target library 169
Text library (TXLIB) 169
Zone statement 170

Chapter 5. SMP/E data set entries . . 171
How the data sets are organized 171
How data set entries are organized 173
ASSEM entry (distribution and target zone) . . . 183
BACKUP entries (SMPSCDS) 187
Data element entry (distribution and target zone) 190
DDDEF entry (distribution, target, and global zone) 194
DLIB entry (distribution and target zone) 208
DLIBZONE entry (distribution zone) 212
FEATURE entry (global zone) 215
FMIDSET entry (global zone) 218
GLOBALZONE entry (global zone) 220
Hierarchical file system element entry (distribution
and target zone) 224
HOLDDATA entry (global zone) 234
JAR entry (target and distribution zone) 237
LMOD entry (distribution and target zone) . . . 244
MAC entry (distribution and target zone) 261
MCS entry (SMPPTS). 266
MOD entry (distribution and target zone) 268
MTSMAC entry (SMPMTS). 283
OPTIONS entry (global zone) 285
ORDER entry (global zone). 295
PRODUCT entry (global zone) 298
PROGRAM entry (distribution and target zone) 300
SRC entry (distribution and target zone) 305
STSSRC entry (SMPSTS) 311
SYSMOD entry (distribution and target zone) . . 312
SYSMOD entry (global zone) 326
TARGETZONE entry (target zone) 336
UTILITY entry (global zone) 340
ZONESET entry (global zone) 347

Chapter 6. SMP/E CSI application
programming interface 351
Overview of GIMAPI. 351
QUERY command 351
FREE command 386
VERSION command 387
Programming in C 389
Programming in PL/I 391
Programming in assembler 393
Additional programming considerations 396
Sample programs that use GIMAPI 396

Chapter 7. Writing UNIX shell scripts 407
Designing a shell script for SMP/E processing . . 407

Example shell script 409

Chapter 8. Library change file records 413
Library change file record structure 413
Library change file record types 413
Valid action types 431
Usage recommendations. 432

Chapter 9. SMP/E exit routines 433
RECEIVE exit routine. 433
Retry exit routine 435

Chapter 10. JCL statements required
to invoke SMP/E 437
JOB statement 437
EXEC statement 437
DD statements 439

Chapter 11. Service routines 441
GIMCPTS: SYSMOD compaction service routine 441
GIMDTS: Data transformation service routine . . 444
GIMGTPKG service routine 445
GIMUNZIP file extraction service routine 449
GIMXSID software inventory data service routine 457
GIMXTRX service routine 465
GIMZIP packaging service routine 473

Chapter 12. GIMIAP: Copy utility
invocation program. 497
Control statements used to invoke GIMIAP . . . 497

Appendix A. SMP/E naming
conventions 507
Naming conventions for HOLD reason IDs and
HOLD classes 508
Naming conventions for source IDs 511
Naming conventions for SYSMODs 512

Appendix B. Accessibility 515
Accessibility features 515
Using assistive technologies 515
Keyboard navigation of the user interface 515
Dotted decimal syntax diagrams 515

Notices 519
Policy for unsupported hardware. 520
Minimum supported hardware 521
Programming interface information 521
Trademarks 521

Index 523

iv SMP/E V3R6.0 for z/OS V2R1.0 Reference

Figures

1. Example of using data element MCSs 12
2. Load module structure for ++ZAP examples 125
3. Sample GIMEXITS member provided in

SAMPLIB 134
4. Single-CSI structure 172
5. Multiple-CSI structure 173
6. Global zone: relationships between entries

that control processing 175
7. Target zone and distribution zone:

relationships between entries that control
processing 177

8. Target Zone: Relationships between entries
that define status and structure 179

9. Distribution zone: relationships between
entries that define status and structure . . . 182

10. ASSEM entry: sample LIST output 184
11. ASSEM entry: sample LIST output when

XREF is specified 185
12. ASSEM entry: sample UNLOAD output 186
13. BACKUP entries: sample LIST output 189
14. Data element entry: sample LIST output 192
15. Data element entry: sample LIST output

when XREF is specified 193
16. Data element entry: sample UNLOAD output 193
17. DDDEF entry: sample LIST output for a

target zone 201
18. DDDEF entry: sample LIST output for a

global zone 202
19. DDDEF entry: sample UNLOAD output 203
20. DLIB entry: sample LIST output 210
21. DLIB entry: sample UNLOAD output 210
22. DLIBZONE entry: sample LIST output 214
23. FEATURE entry: sample LIST output 217
24. FMIDSET entry: sample LIST output 218
25. GLOBALZONE entry: sample LIST output 222
26. Hierarchical file system element entry: sample

LIST output 229
27. Hierarchical file system element entry: sample

LIST output when XREF is specified 230
28. Hierarchical file system element entry: sample

LIST output for SHELLSCR entries 231
29. OS21 element entry: sample UNLOAD output 232
30. HOLDDATA entry: sample LIST output when

SYSMOD is not specified 236
31. HOLDDATA listed for SYSMOD entry:

sample LIST output when SYSMOD is
specified 237

32. JAR entry: sample LIST output. 241
33. JAR entry: sample LIST output when XREF is

specified 242
34. Example UNLOAD output for JAR entry 244
35. MAC entry: sample LIST output 263
36. MAC entry: sample LIST output when XREF

is specified 264
37. MAC entry: sample UNLOAD output 265
38. MCS entry: sample LIST output 267

39. MOD entry: sample LIST output (no
cross-zone subentries) 276

40. MOD entry: sample LIST output (cross-zone
entries) 277

41. MOD entry: sample LIST output when XREF
is specified 278

42. MOD entry: sample UNLOAD output (no
cross-zone subentries) 280

43. MOD entry: sample UNLOAD output
(cross-zone subentries) 281

44. OPTIONS entry: sample LIST output 293
45. ORDER entry: sample LIST output 297
46. PRODUCT entry: sample LIST output 300
47. PROGRAM entry: sample LIST output 302
48. PROGRAM entry: sample LIST output when

XREF is specified 303
49. PROGRAM entry: sample UNLOAD output 304
50. SRC entry: sample LIST output 307
51. SRC entry: sample LIST output when XREF is

specified 308
52. SRC entry: sample UNLOAD output 309
53. SYSMOD entry: sample LIST output for a

distribution zone 321
54. SYSMOD entry: sample LIST output for a

target zone 322
55. SYSMOD entry: sample LIST output when

XREF is specified 323
56. SYSMOD entry: sample UNLOAD output 324
57. SYSMOD entry: sample LIST output for a

global zone (Example 1) 333
58. SYSMOD entry: sample LIST output for a

global zone (Example 2) 334
59. SYSMOD entry: sample LIST output when

HOLDDATA is specified 335
60. TARGETZONE entry: sample LIST output 339
61. UTILITY entry: sample LIST output 345
62. ZONESET entry: sample LIST output 348
63. Picture of storage for query output 383
64. Illustration of VER data structure 386
65. C syntax of GIMAPI invocation 389
66. PL/I syntax of GIMAPI invocation 391
67. Assembler syntax of GIMAPI invocation 394
68. Example of alias record type 0 records 415
69. Example of alias record type 1 417
70. Example of continuation record type 0 418
71. Example of element record type 0. 420
72. Example of element record type 1. 422
73. Example of header record type 0 423
74. Example of library record type 0 424
75. Example of library record type 1 425
76. Example of library record type 2 427
77. Example of SYSMOD status records 428
78. Example of SMP/E environment record type

0 429
79. Trailer record type 0 431
80. JCL to call GIMCPTS 441

© Copyright IBM Corp. 1986, 2014 v

81. Sample GIMCPTS job stream 443
82. Sample GIMDTS job stream. 444
83. JCL to call GIMGTPKG 446
84. GIMGTPKG example 447
85. JCL to call GIMUNZIP 449
86. GIMUNZIP example 455
87. Sample RECEIVE job for GIMUNZIP 457
88. JCL to call GIMXSID 458
89. GIMXSID example 460
90. JCL to call GIMXTRX 466
91. Sample input parameter data set for function

LSTTZN 470
92. TARGETZN record. 470
93. Sample input parameter data set for function

BMPTZN 471

94. PRODLIST record 472
95. BITMAP record 473
96. Bitstring section of BITMAP record 473
97. JCL to call GIMZIP 474
98. GIMZIP example 480
99. Package attribute file (GIMPAF.XML) example 485

100. File attribute file (GIMFAF.XML) example for
a sequential data set 494

101. File attribute file example for a UNIX file 494
102. File attribute file example for a VSAM cluster 495
103. JCL to call GIMIAP 502
104. Sample DEIINST job for GIMIAP 504
105. Sample HFSINST job for invoking GIMIAP 505

vi SMP/E V3R6.0 for z/OS V2R1.0 Reference

Tables

1. Publications for IBM SMP/E for z/OS, V3R6 ix
2. MCS statements for data elements 10
3. National language identifiers used for

language-unique elements. 12
4. MCS statements for hierarchical file system

elements 26
5. National language identifiers used for

language-unique elements. 26
6. Default values for UTILITY entries 340
7. Valid entry values 358
8. Valid subentries for the ASSEM entry 359
9. Valid subentries for the data element entries 360

10. Valid subentries for the DDDEF entry 360
11. Valid subentries for the DLIB entry 361
12. Valid subentries for the DLIBZONE entry 361
13. Valid subentries for the FEATURE entry 362
14. Valid subentries for the FMIDSET entry 362
15. Valid subentries for the GLOBALZONE entry 362
16. Valid subentries for hierarchical file system

element entries 363
17. Valid subentries for the HOLDDATA entry 364
18. Valid subentries for the JAR entry 364
19. Valid subentries for the LMOD entry 365
20. Valid subentries for the MAC entry 366
21. Valid subentries for the MOD entry 366
22. Valid subentries for the OPTIONS entry 367
23. Valid subentries for the ORDER entry 369
24. Valid subentries for the PRODUCT entry 370
25. Valid subentries for the PROGRAM entry 370
26. Valid subentries for the SRC entry 371
27. Valid subentries for the SYSMOD entry

(GLOBAL zone). 371
28. Valid subentries for the SYSMOD entry (DLIB

and target zones) 374
29. Valid subentries for the TARGETZONE entry 377

30. Valid subentries for the UTILITY entry 378
31. Valid subentries for the ZONESET entry 378
32. Entry and subentry combinations/output 381
33. QUERY command input parameters 384
34. General SMP/E entry list structure 384
35. General SMP/E entry structure 384
36. General SMP/E subentry structure 385
37. VER pseudo-subentry structure (GLOBAL,

target, and DLIB zone) 386
38. Item list structure 386
39. API version 388
40. Alias record type 0. 414
41. Alias record type 1. 416
42. Continuation record type 0 417
43. Element record type 0. 418
44. Element record type 1. 420
45. Header record type 0 422
46. Library record type 0 423
47. Library record type 1 424
48. Library record type 2 425
49. SYSMOD status record type 0 427
50. SMP/E environment record type 0 429
51. Trailer record type 0 430
52. GIMMPUXP: exit routine parameter list 433
53. RECEIVE exit routine: parameter list values 434
54. RECEIVE exit routine: buffer passed by

UXPPRMAD 434
55. Retry exit routine: parameter list values 436
56. Retry exit routine: parameter list passed by

UXPPRMAD 436
57. GIMXSID record format 461
58. FEATURE record format 462
59. PRODLIST record format 463
60. BITPTF record format 464
61. Summary of SMP/E naming conventions 507

© Copyright IBM Corp. 1986, 2014 vii

viii SMP/E V3R6.0 for z/OS V2R1.0 Reference

About this document

Use this publication when you need to:
v Allocate SMP/E data sets
v Call SMP/E exit routines or service routines
v Code application programs that use SMP/E application programming interfaces
v Code SMP/E modification control statements
v Code SMPPARM members
v Define which utility programs SMP/E can call
v Transform data elements so that they can be packaged inline

SMP/E publications
The IBM SMP/E for z/OS, V3R6 publications are available as PDF files on the
z/OS® Internet Library at http://www.ibm.com/servers/eserver/zseries/zos/
bkserv/.

Table 1 lists the IBM SMP/E for z/OS, V3R6 publications and briefly describes
each one.

For information about z/OS publications and more information about the IBM
SMP/E for z/OS, V3R6 books, see z/OS Information Roadmap.

Table 1. Publications for IBM SMP/E for z/OS, V3R6

Title Description

SMP/E for z/OS Messages, Codes, and Diagnosis, GA32-0883 Explains SMP/E messages and return codes and the
actions to take for each; and how to handle suspected
SMP/E problems.

SMP/E for z/OS Commands, SA23-2275 Explains SMP/E commands and processing in detail.

SMP/E for z/OS Reference, SA23-2276 Explains SMP/E modification control statements, data
sets, exit routines, and programming interfaces in detail
and provides additional SMP/E reference material.

SMP/E for z/OS User's Guide, SA23-2277 Describes how to use SMP/E to install programs and
service.

© Copyright IBM Corp. 1986, 2014 ix

http://www.ibm.com/systems/z/os/zos/
http://www.ibm.com/systems/z/os/zos/bkserv/
http://www.ibm.com/systems/z/os/zos/bkserv/

SMP/E publications

x SMP/E V3R6.0 for z/OS V2R1.0 Reference

How to send your comments to IBM

We appreciate your input on this publication. Feel free to comment on the clarity,
accuracy, and completeness of the information or provide any other feedback that
you have.

Use one of the following methods to send your comments:
1. Send an email to mhvrcfs@us.ibm.com.
2. Send an email from the "Contact us" web page for z/OS (http://

www.ibm.com/systems/z/os/zos/webqs.html).
3. Mail the comments to the following address:

IBM Corporation
Attention: MHVRCFS Reader Comments
Department H6MA, Building 707
2455 South Road
Poughkeepsie, NY 12601-5400
US

4. Fax the comments to us, as follows:
From the United States and Canada: 1+845+432-9405
From all other countries: Your international access code +1+845+432-9405

Include the following information:
v Your name and address.
v Your email address.
v Your telephone or fax number.
v The publication title and order number:

SMP/E V3R6.0 for z/OS V2R1.0 Reference
SA23-2276-01

v The topic and page number that is related to your comment.
v The text of your comment.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute the comments in any way appropriate without incurring any obligation
to you.

IBM or any other organizations use the personal information that you supply to
contact you only about the issues that you submit.

If you have a technical problem
Do not use the feedback methods that are listed for sending comments. Instead,
take one of the following actions:
v Contact your IBM service representative.
v Call IBM technical support.
v Visit the IBM Support Portal at z/OS support page (http://www.ibm.com/

systems/z/support/).

© Copyright IBM Corp. 1986, 2014 xi

http://www.ibm.com/systems/z/os/zos/webqs.html
http://www.ibm.com/systems/z/os/zos/webqs.html
http://www.ibm.com/systems/z/support/
http://www.ibm.com/systems/z/support/

xii SMP/E V3R6.0 for z/OS V2R1.0 Reference

Summary of changes

This document contains terminology, maintenance, and editorial changes to
improve consistency and retrievability. Technical changes or additions to the text
and illustrations are indicated by a vertical line to the left of the change.

Changes made in SMP/E Version 3 Release 6
This document contains information that was previously presented in SMP/E
Reference, SA23-2276-00, which supports z/OS Version 2 Release 1.

For SA23-2276-01

HTTPS is now provided as an additional method for downloading packages; see
“GIMGTPKG service routine” on page 445.

For SA23-2276-16

Minor updates were made.

For SA23-2276-15

New information:
v “Determining the required size of SMPWKDIR” on page 456 was added.

Changed information:
v “++MOD MCS” on page 75 was updated with information about RMODE(31)

and RMOD(31).
v “LMOD entry (distribution and target zone)” on page 244 was updated with

information about RMODE(31) for the LKED ATTRIBUTES subentry.
v “MOD entry (distribution and target zone)” on page 268 was updated with

information about RMODE(31) for the LKED ATTRIBUTES subentry.
v “UTILITY entry (global zone)” on page 340 was updated.
v Various updates were made to include the use of the HOLDDATA operand

Changes made in SMP/E Version 3 Release 5
For SA23-2276-14

Changed information:
v The SYSOUT subentry under the DDDEF entry has been enhanced. For details,

see “DDDEF entry (distribution, target, and global zone)” on page 194.
v Information has been added to Chapter 4, “SMP/E data sets and files,” on page

139.
v Information has been added to “GLOBALZONE entry (global zone)” on page

220.

The "Readers' Comments - We'd Like to Hear from You" section at the back of this
publication has been replaced with a new section “How to send your comments to
IBM” on page xi. The hardcopy mail-in form has been replaced with a page that

© Copyright IBM Corp. 1986, 2014 xiii

provides information appropriate for submitting readers comments to IBM®.

For SA23-2276-13

Changed information:
v In Chapter 2, “SMP/E modification control statements,” on page 5, the following

sections have been updated for corrections:
– “Hierarchical file system element MCS” on page 26
– “++HOLD MCS” on page 37

For SA23-2276-12

New information:
v These sections were updated to include the new FIXCAT or HOLDFIXCAT

subentry:
– “++HOLD MCS” on page 37 and “++RELEASE MCS” on page 99
– “HOLDDATA entry (global zone)” on page 234 and Table 17 on page 364
– “OPTIONS entry (global zone)” on page 285 and Table 22 on page 367
– Table 27 on page 371 and “SYSMOD entry (global zone)” on page 326

v A description has been added for SMPHRPT; see “SMPHRPT” on page 148
v The parameter COMPAT was added to “EXEC statement” on page 437.

Changed information:
v The UTILITY INPUT subentry of “LMOD entry (distribution and target zone)”

on page 244 was updated to state the proper UCLIN syntax when the file is
located in the UNIX file system.

v The description for the SOURCEID operand was updated in the following places
to describe the long SOURCEID support:
– “++ASSIGN MCS” on page 8
– Table 27 on page 371, Table 28 on page 374, and the SOURCEID entry on page

“SOURCEID ” on page 318and “SOURCEID ” on page 330
– Table 61 on page 507

v The SMPOUT DD and the PAGELEN entry (“OPTIONS entry (global zone)” on
page 285 and Table 22 on page 367) were updated to include SMPHRPT as one
of the applicable data sets.

Changes made in SMP/E Version 3 Release 4
For SA23-2276-11

New information:
v A new environment variable (PATH) was added to the list of environment

variables set by SMP/E in“Designing a shell script for SMP/E processing” on
page 407.

v A description of the SMPJHOME DD statement was added in “JCL statements
used in the DEIINST or HFSINST job” on page 502.

Changed information:
v In Chapter 4, “SMP/E data sets and files,” on page 139, the "Use" of the

SMPJHOME DD statement was updated.

xiv SMP/E V3R6.0 for z/OS V2R1.0 Reference

v In Chapter 2, “SMP/E modification control statements,” on page 5, the "++ZAP
MCS" usage note for the NAME statement was updated to add a third way to
code the name statement.

For SA23-2276-10

Changed information:
v In Chapter 4, “SMP/E data sets and files,” on page 139, the data set descriptions

for the SMPWRK1, SMPWRK2, SMPWRK3, SMPWRK4, and SMPWRK6 data
sets were updated.

v In Chapter 5, “SMP/E data set entries,” on page 171, the ORDERRET option
under the ORDER entry has been updated.

v In Chapter 11, “Service routines,” on page 441, syntax notes in the GIMUNZIP
and GIMZIP service routines were updated to clarify that a comment may
appear between a start-tag and its matching end-tag, but never within a tag; the
example of using GIMZIP was updated to include the comment.

Deleted information:
v The following statement in the list of syntax rules in Chapter 1, “Syntax notation

and rules,” on page 1 was removed: "Include at least one blank between each
operand." It is recommended but not required to include the blank.

For SA23-2276-09

Updates were made to support APAR IO03469.

New information:
v Two new data sets, SMPCPATH and SMPJHOME, were added in Chapter 4,

“SMP/E data sets and files,” on page 139.

Summary of changes xv

xvi SMP/E V3R6.0 for z/OS V2R1.0 Reference

Chapter 1. Syntax notation and rules

This chapter explains the syntax notation and rules for SMP/E modification control
statements (MCSs) and OPCODE members used by SMP/E. It describes:
v How to read the notation used to show how control statements should be coded
v The rules to follow when coding control statements

How to read the syntax diagrams
Throughout this publication, the structure defined in this section is used in
describing syntax:
v Read the syntax diagrams from left to right, from top to bottom, following the

path of the line.
The →→─ symbol indicates the beginning of a statement.
The ─→ symbol indicates that the statement syntax is continued on the next line.
The →─ symbol indicates that a statement is continued from the preceding line.
The ─→← symbol indicates the end of a statement.

v Required items appear on the horizontal line (main path).

�� STATEMENT required_item ��

v Optional items appear below the main path.

�� STATEMENT
optional_item

��

v If you can choose from two or more items, they appear in a vertical stack.
If you must choose one of the items, one item of the stack appears on the main
path.

�� STATEMENT required_choice1
required_choice2

��

If choosing one of the items is optional, the entire stack appears below the main
path.

�� STATEMENT
optional_choice1
optional_choice2

��

If one of the optional items is the default, it appears above the main path and
the remaining choices will be shown as follows:

�� STATEMENT
default_choice1

optional_choice2
optional_choice3

��

© Copyright IBM Corp. 1986, 2014 1

v Keywords appear in uppercase (for example, PARM1). They must be spelled
exactly as shown.

v Variables appear in lowercase italics (for example, parmx). They represent
user-supplied names or values.

�� STATEMENT variable ��

v An arrow returning to the left above the main line indicates an item that can be
repeated.

�� STATEMENT � repeatable_item ��

A repeat arrow above a stack indicates that you can make more than one choice
from the stacked items, or repeat a single choice.
– A repeat arrow above a stack of keywords means that you can enter one or

more of the keywords. However, each keyword can be entered only once.
– A repeat arrow above a variable means that you can enter one or more values

for the variable. However, each value can be entered only once.
v If punctuation marks, parentheses, arithmetic operators, or other such symbols

are shown, you must enter them as part of the syntax.
v Sometimes a single substitution represents a set of several parameters. For

example, in the following diagram, the callout Parameter Block can be replaced
by any of the interpretations of the subdiagram that is labeled Parameter Block:.

�� STATEMENT CLAUSE1
Parameter Block

��

Parameter Block:

PARM1
PARM2 PARM3

PARM4

Syntax rules for MCS and SMPPARM members
Follow these rules when you code SMP/E modification control statements (MCS)
and SMPPARM member control statements:
v SMP/E input is case-sensitive. Use uppercase letters to enter all SMP/E

keywords. Enter operands in the same case as the intended operand values.
Enter the text within a comment in any case you prefer.

v Start each statement on a new logical 80-byte record.
For MCSs, do the following:
– Code the “++” for the MCS in columns 1 and 2.
– Code the MCS name on the same line as the “++”.
For OPCODE member control statements, do the following:
– Code the KEY=xxx operand first.
– Do not continue OPCODE member control statements on a subsequent

record.

Syntax notation and rules

2 SMP/E V3R6.0 for z/OS V2R1.0 Reference

Note: Except for these restrictions, the SMP/E MCSs and OPCODE member
control statements can begin and end anywhere up to and including column 72.

v You can code optional information in any order, except where noted in the
syntax and operand descriptions.

v Separate operands and their values with a blank or comma.

Note: Although the syntax diagrams show only commas when indicating the
allowable separator characters for repeating values, one or more blank characters
may be used instead to separate repeating values.

v You can continue a statement on more than one line. SMP/E assumes a
statement is continued if it did not find a period (.) before column 73.

Note:

1. OPCODE members are an exception—they cannot span multiple records.
2. If an operand's value must span multiple lines and that value is delimited by

quotation marks, the value should extend up to and including column 72
and restart on column 1 of the next line. Put a quotation mark before the
value and another after the value, but do not add extra quotation marks
where the value spans lines. Blanks within the quoted value are considered
to be part of the value, including any blanks at the beginning of a
continuation line.

v Start comments with “/*” and end them with “*/”. The first “*/” encountered
after the initial “/*” will end the comment. A comment can appear anywhere
within or after a statement, but should not start before a statement, nor begin in
column 1. (When “/*” starts in column 1, it indicates the end of an input data
set.) A comment after the ending period must start on the same line as the
period. You cannot specify any additional operands or comments after that final
comment. For example, you can code a comment like this:
SET BDY(MVSTST1) /* Comment after period

continued on subsequent
records is okay. */.

However, you should not code a comment like this:
SET BDY(MVSTST1) . /* Comment after period okay */

/* but this comment will give a
syntax error */

This causes a syntax error at the start of the second comment after the period.
v Comments can be in single-byte characters (such as English alphanumeric

characters) or in double-byte characters (such as Kanji).
v End each statement with a period.
v SMP/E completes processing for one statement before it starts processing the

next one.
v SMP/E ignores columns 73 through 80. If data, such as a period, is specified

beyond column 72, SMP/E ignores it and indicates an error in the statement
after the one containing that data.

Syntax rules for XML statements
XML statements may be coded in the CLIENT, SERVER, SYSIN, file attribute, and
package attribute files for use with the GIMZIP and GIMUNZIP service routines.

The following syntax rules apply to XML statements:
v SMP/E ignores columns 73 through 80.

Syntax notation and rules

Chapter 1. Syntax notation and rules 3

v All tags have a starting and ending delimiter specified as <keyword> and
</keyword>, respectively.

v Any tag that does not contain another tag (that is, nested tags) may have an
ending delimiter of either </keyword> or just />.

�� �<start-tag > </end-tag>
attribute="attribute value"

��

�� �<start-tag />
attribute="attribute value"

��

v Comments must must begin with "<!--" and end with "-->". All data between the
"<!--" and the "-->" is ignored. Comments may not be placed inside a tag.

v Any text not contained within comment delimiters is syntax checked.
v Tags are case sensitive; attribute values may be mixed case.
v A tag is not required to start on a new line.
v XML tag names and attribute values may not contain the XML markup

characters, '<', '>', and '&'.

Syntax notation and rules

4 SMP/E V3R6.0 for z/OS V2R1.0 Reference

Chapter 2. SMP/E modification control statements

Each SYSMOD processed by SMP/E is composed of two distinct types of data:
instructions to SMP/E identifying the elements in the SYSMOD and how to install
them, and the actual element replacements or updates. The instructions to SMP/E
consist of a series of control statements, called modification control statements (or
MCSs). This chapter describes the various MCSs that are processed by SMP/E.

Note:

1. Each section describing an individual MCS has examples of SYSMODs
containing that MCS. In the examples, the MCS being described is underlined.
This is done only to make that MCS stand out; it does not imply that any
special processing must be done to enter that data.

2. The examples of MCSs do not show the use of all the operands for each MCS.
When you want to know how to use a particular operand for a specific MCS,
first check the section describing that MCS. If the operand is not shown in an
example there, check the index entry for the desired operand to see which
other MCSs also contain that operand. Then check the examples under those
MCSs. Examples of the use of an operand for one MCS can often illustrate its
use for another MCS.

Building SYSMODs (packaging)

Building SYSMODs (“packaging”) includes combining the appropriate MCS statements with software elements to
create one or more SYSMODs. Depending on the type of SYSMODs you are building and how you plan to distribute
them, packaging can also involve putting the SYSMODs in the proper format on the distribution medium.

Although this book describes the syntax of SMP/E MCS statements, it does not contain all the information you need
to use these statements for packaging SYSMODs.

v To package function SYSMODs and the associated service (PTF SYSMODs and APAR SYSMODs), you must use
this book along with z/OS Packaging Rules, which contains the rules, restrictions, and recommendations for
packaging SYSMODs.

v To package USERMOD SYSMODs, use this book along with SMP/E for z/OS User's Guide , which steps you
through building a USERMOD and provides USERMOD examples that you might find helpful.

© Copyright IBM Corp. 1986, 2014 5

http://publibz.boulder.ibm.com/epubs/pdf/gimpkg80.pdf

++APAR MCS
The ++APAR MCS identifies a service SYSMOD. This type of SYSMOD is a
temporary corrective fix to the elements of target system and distribution libraries.
All other MCSs for this SYSMOD follow this header MCS. For more information
about packaging an APAR fix, see z/OS Packaging Rules.

Syntax

++APAR MCS

�� ++APAR(sysmod_id)
DESCRIPTION(description)

�

�
FILES(number)

RFDSNPFX(relfile_prefix)
REWORK(level)

• ��

Operands

DESCRIPTION
specifies a descriptive name to be associated with this SYSMOD.
v DESCRIPTION can also be specified DESC.
v The DESCRIPTION value can be in single-byte characters (such as English

alphanumeric) or double-byte characters (such as Kanji).
v The DESCRIPTION value can contain up to 64 bytes of data, including

blanks. Extra blanks, as well as leading and trailing blanks, are deleted. (For
double-byte data, the 64-byte maximum includes all shift-in and shift-out
characters, as well as the double-byte characters. Shift-in and shift-out pairs
with only blanks between are compressed).

v The DESCRIPTION value can span multiple 80-byte records. Data must
continue up to and including column 72 and begin in column 1 of the next
line. All data past column 72 is ignored. For single-byte data, the break does
not translate to a blank unless a blank is explicitly coded in column 72 of the
first line or in column 1 of the second line. For double-byte data, each line
must contain both the shift-out and shift-in characters.

v If DESCRIPTION is specified, it must contain at least one non-blank
character.

v If parentheses are included in the text, they must be in matched pairs.

FILES
specifies the number of relative files belonging to this APAR fix. It can be a
decimal number from 1 to 9999. For information about packaging SYSMODs in
relative files, see z/OS Packaging Rules.

Note:

1. Although SMP/E allows you to package APAR fixes in relative files, they
are not generally packaged in this format.

2. If a packager uses a high-level qualifier on RELFILE data sets, the
RFDSNPFX operand on the header MCS (not the RFPREFIX operand on the
RECEIVE command) must be used to identify that high-level qualifier.

REWORK
specifies the level of this SYSMOD, which was reworked for minor changes.
Up to eight numeric characters can be specified.

++APAR MCS

6 SMP/E V3R6.0 for z/OS V2R1.0 Reference

http://publibz.boulder.ibm.com/epubs/pdf/gimpkg80.pdf
http://publibz.boulder.ibm.com/epubs/pdf/gimpkg80.pdf

For SYSMODs supplied by IBM, the REWORK level is yyyyddd, where yyyy is
the year the SYSMOD was reworked and ddd is the Julian date.

REWORK allows an updated SYSMOD to be automatically received again, as
long as it is more recent than the version that has already been received. This
takes the place of rejecting the SYSMOD and receiving it again.

Note: If a SYSMOD appears more than once in the SMPPTFIN data set, the
first occurrence may be received. However, none of the subsequent versions of
the SYSMOD are received, even if their rework level is higher than the one for
the first version of the SYSMOD. (Message GIM40001E is issued for each of the
subsequent versions of the SYSMOD.)

RFDSNPFX
identifies to SMP/E the prefix used in the relative file data set names for this
SYSMOD. SMP/E uses this prefix when allocating data set names for the
SYSMOD's relative files during RECEIVE processing.
v This operand can be specified only if the FILES operand is also specified.
v The RFDSNPFX value specified on the MCS statement must match the

actual prefix used in the data set names for the associated relative files.
For example, if the names of the relative files created for a SYSMOD start
with “IBM”, as in IBM.sysmod_id.F1, the header MCS statement for the
SYSMOD must specify RFDSNPFX(IBM) so SMP/E knows which prefix to
use when allocating the data set names for the SYSMOD's relative files
during RECEIVE processing.

v Following standard data set naming conventions, the prefix can be from 1 to
8 alphanumeric or national ($, #, @) characters or a dash (–).
To enable full Security Server protection for tape data sets and to keep the
tape header within the 17-character limit (including periods), you should
limit the prefix to 1 to 3 characters. If the name exceeds the 17-character
limit, only the rightmost 17 characters are written to the tape header label.

sysmod_id
specifies a unique 7-character system modification identifier for the APAR fix.
See “Naming conventions for SYSMODs” on page 512 for more information.

Examples

Here is an example of a SYSMOD containing a ++APAR statement for a temporary
fix to module IFBMOD01. As the example shows, this fix is needed to answer
APAR AZ12345 on an MVS™ system. The module must be at the service level
provided by PTF UZ00004 for function FXY1040.
++APAR(AZ12345) /* APAR type fix */.
++VER(Z038) FMID(FXY1040) /* for MVS product FXY1040 */

PRE(UZ00004) /* at this service level. */.
++ZAP(IFBMOD01) /* Change to one module */

DISTLIB(AOSFB) /* in this DLIB. */.
...
... IMASPZAP control statements
...

++APAR MCS

Chapter 2. SMP/E modification control statements 7

++ASSIGN MCS
The ++ASSIGN MCS assigns a source identifier (source ID) to one or more
specified SYSMODs, as long as those SYSMODs are in the SMPPTS data set by the
end of RECEIVE processing.

Syntax

++ASSIGN MCS

�� ++ASSIGN SOURCEID (source_id) �

,

TO (sysmod_id) • ��

Operands

SOURCEID
is a 1- to 64-character string identifying the source of the SYSMODs being
processed. SMP/E associates the SOURCEID value with the SYSMODs named
on the ++ASSIGN MCS. The SOURCEID value can consist of any nonblank
character (X'41' through X'FE') except single quotation mark ('), asterisk (*),
percent (%), comma (,), left parenthesis (() and right parenthesis ()).

TO
specifies the SYSMODs with which the source ID is to be associated.

Usage notes
v The source ID specified on the ++ASSIGN statement is added to any source ID

that was assigned to a specified SYSMOD by the RECEIVE command. It is also
added to any source IDs currently associated with a specified SYSMOD that has
already been received.

v ++ASSIGN statements are processed only when the SMPPTFIN data set is
processed.
– If the whole SMPPTFIN data set is processed, all ++ASSIGN statements are

processed.
– If only selected SYSMODs are processed, the ++ASSIGN statements for those

SYSMODs are processed.
++ASSIGN statements are not processed when only the SMPHOLD data set is
being processed.

v The SOURCEID and TO values must be validly specified and cannot be blank or
null. For more information about source ID naming conventions, see “Naming
conventions for source IDs” on page 511.

v The source ID is not assigned to any SYSMODs that are not in the global zone.
v The same SYSMOD cannot appear more than once on a single ++ASSIGN MCS.
v If the same SYSMOD appears on more than one ++ASSIGN MCS, all the source

IDs are associated with the SYSMOD.
v The ++ASSIGN MCS is used in the SMPPTFIN data set and can be placed

between, before, or after SYSMODs, ++FEATURE MCS, or ++PRODUCT MCS.
It must be followed by one of the following: a ++APAR, ++FEATURE,
++FUNCTION, ++PRODUCT, ++PTF, or ++USERMOD MCS; another
++ASSIGN MCS; or an end-of-file. If one of these does not follow, SMP/E does
not receive the SYSMOD being processed, and it skips the ++ASSIGN MCS.

++ASSIGN MCS

8 SMP/E V3R6.0 for z/OS V2R1.0 Reference

Examples

Here are some examples of ++ASSIGN statements for SYSMODs from several
preventive service levels that have been merged into the same ESO tape. A
++ASSIGN MCS has been placed between the groups of SYSMODs to identify
their source:
++ASSIGN SOURCEID(PUT0701) /* service level 0701. */
TO(UZ12345,UZ12346).
++PTF(UZ12345) /* PTF UZ12345 */.
++VER(Z038) FMID(HXP1100) /* for MVS function HXP1100.*/.
++MOD(A) DISTLIB(DN554) /* Update module A. */.
A
++PTF(UZ12346) /* PTF UZ12346 */.
++VER(Z038) FMID(HXP1200) /* for MVS function HXP1200.*/.
++MOD(C) DISTLIB(DN554) /* Update module C. */.
C

•
•
•

++ASSIGN SOURCEID(PUT0702) /* service level 0702. */
TO(UZ12347,UZ12348).
++PTF(UZ12347) /* PTF UZ12347 */.
++VER(Z038) FMID(HXP1100) /* for MVS function HXP1100.*/.
++IF FMID(HXP1200) THEN REQ(UZ12348).
++MOD(D) DISTLIB(DN554) /* Update module D. */.
D
++PTF(UZ12348) /* PTF UZ12348 */.
++VER(Z038) FMID(HXP1200) /* for MVS function HXP1200.*/.
++MOD(A) DISTLIB(AOS12) /* Update module A. */.
A
++MOD(B) DISTLIB(AOS12) /* Update module B. */.
B

•
•
•

++ASSIGN MCS

Chapter 2. SMP/E modification control statements 9

Data element MCS
Data element MCSs describe elements that are not macros, modules, or source.
Data elements have the following characteristics:
v A data element must be a member of a PDS or PDSE (DSORG=PO) or reside in

a sequential data set (DSORG=PS).
v The record format (RECFM) must be F, FA, FM, FS, FB, FBA, FBM, FBS, V, VA,

VM, VB, VBA, VBM, VS, or VBS.
v The LRECL for a data element must be from 1 to 32,654.
v The records can be numbered or unnumbered.
v A VSAM data set can be a data element if it is in REPRO format. However, after

the data is installed by SMP/E, you must run an AMS REPRO job to create the
original form of the VSAM data.

Any type of data element may be installed in any distribution or target library that
meets these requirements. For example, CLIST data elements can be installed into
variable block target libraries.

When copying a data element during APPLY, ACCEPT, or RESTORE processing, it
may be necessary for SMP/E to perform the copy itself, rather than invoking the
copy utility. SMP/E performs the copy when:
v The target library or distribution library is a sequential data set.
v The data element must be reformatted to be compatible with the target or

distribution library. (For more information about the reformatting of data
elements, see the section on reformatting data elements in the APPLY command
chapter in SMP/E for z/OS Commands)

There are MCSs to replace data elements, just as there are MCSs to replace other
types of elements. (There are no MCSs to update data elements.) Table 2 shows the
MCSs that can be used for data elements.

Table 2. MCS statements for data elements. If an element is provided in only one language,
thex's can be left off the MCS. If an element is provided in more than one language, replace
the x's with the appropriate value from Table 3 on page 12.

MCS Description

++BOOKxxx Online book member

++BSINDxxx Index for an online publications
library (bookshelf)

++CGMxxx Graphics source for an online
book

++CLIST CLIST

++DATA Data not covered by other types

++DATA1–++DATA5 IBM generic data types 1–5

These are for IBM use only, to
define elements that are not
covered by any existing data
types.

++DATA6xxx IBM generic data type 6

This is for IBM use only to define
an element not covered by any
existing data types.

Data element MCS

10 SMP/E V3R6.0 for z/OS V2R1.0 Reference

Table 2. MCS statements for data elements (continued). If an element is provided in only
one language, thex's can be left off the MCS. If an element is provided in more than one
language, replace the x's with the appropriate value from Table 3 on page 12.

MCS Description

++EXEC EXEC

++FONTxxx Printer Font Object Contents
Architecture (FOCA) font

++GDFxxx GDF graphics panel

++HELPxxx Help information (for example, a
member in SYS1.HELP or a dialog
help panel)

++IMGxxx Graphics image for an online
book

++MSGxxx Message member (such as for a
dialog or for a message data set)

++PARM PARMLIB member

++PNLxxx Panel for a dialog

++PROBJxxx Printer object element

++PROC Procedure in PROCLIB

++PRODXML Product XML document

++PRSRCxxx Printer source element

++PSEGxxx Graphics page segment for an
online book

++PUBLBxxx Online publications library
(bookshelf)

++SAMPxxx Sample data, program, or JCL in a
data set for sample code

++SKLxxx File skeleton for a dialog

++TBLxxx Table for a dialog

++TEXTxxx Text

++USER1–++USER5 User-defined data types 1–5

These are for user-defined
elements that are not covered by
any existing data types.

++UTINxxx General utility input

++UTOUTxxx General utility output

Supporting several languages
Some types of elements, such as panels, messages, or text, may have to be
translated into several languages. In these cases, the corresponding MCSs contain
xxx to indicate which language is supported by a given element. Figure 1 on page
12 shows an example where product XX1 must provide both English and French
support for a message module, a panel, a panel message, and a sample element.

Data element MCS

Chapter 2. SMP/E modification control statements 11

Note:

1. The message modules can be in the same distribution library, because the
element names are different.

2. For the panels, dialog messages, and samples, there is a different element type
for each language version of an element. Therefore, the element name can
remain the same for all the languages in which the element is supported.
However, elements with the same name must be installed in different libraries.
(SMP/E does not check whether different types of data elements have the same
name. Likewise, SMP/E does not prevent elements with the same name from
being installed in the same libraries.)

Table 3 shows the xxx values that can be used when the MCS indicates the
language being supported.

Table 3. National language identifiers used for language-unique elements

Value Language Value Language

ARA Arabic HEB Hebrew

CHS Simplified Chinese ISL Icelandic

CHT Traditional Chinese ITA Italian (Italy)

DAN Danish ITS Italian (Switzerland)

DES German (Switzerland) JPN Japanese

DEU German (Germany) KOR Korean

ELL Greek NLB Dutch (Belgium)

ENG English (United Kingdom) NLD Dutch (Netherlands)

ENP Uppercase English NOR Norwegian

ENU English (United States) PTB Portuguese (Brazil)

ESP Spanish PTG Portuguese (Portugal)

FIN Finnish RMS Rhaeto-Romanic

FRA French (France) RUS Russian

FRB French (Belgium) SVE Swedish

FRC French (Canada) THA Thai

++FUNCTION(FXX1101). ++FUNCTION(FXX1102).

++VER(Z038) FMID(EXX1100). ++VER(Z038) FMID(EXX1100).

++MOD(ZZZMOD0E)... message ++MOD(ZZZMOD0F)...
DISTLIB(AZZZMOD1). modules DISTLIB(AZZZMOD1).

++PNLENU(ZZZPNL01)... panels ++PNLFRA(ZZZPNL01)...
DISTLIB(AZZZPNLE) DISTLIB(AZZZPNLF)
SYSLIB(SZZZPNLE). SYSLIB(SZZZPNLF).

++MSGENU(ZZZMSG01)... dialog ++MSGFRA(ZZZMSG01)...
DISTLIB(AZZZMSGE) messages DISTLIB(AZZZMSGF)
SYSLIB(SZZZMSGE). SYSLIB(SZZZMSGF).

++SAMPENU(ZZZSMP01)... samples ++SAMPFRA(ZZZSMP01)...
DISTLIB(AZZZSAME) DISTLIB(AZZZSAMF)
SYSLIB(SZZZSAME). SYSLIB(SZZZSAMF).

Figure 1. Example of using data element MCSs

Data element MCS

12 SMP/E V3R6.0 for z/OS V2R1.0 Reference

Table 3. National language identifiers used for language-unique elements (continued)

Value Language Value Language

FRS French (Switzerland) TRK Turkish

Syntax
The syntax to be used depends on the processing to be done for the element:
v Adding or replacing the element
v Deleting the element

Adding or replacing a data element

Data element MCS

�� ++ element (name)

�

,

ALIAS (alias)

DISTLIB (ddname)
�

�
RELFILE (number)
TXLIB (ddname)
FROMDS (DSN (dsn) NUMBER (n))

VOL (vol) UNIT (unit)

�

�
RMID (sysmod_id) SYSLIB (ddname)

�VERSION (sysmod_id)

• ��

Deleting a data element

Data element MCS

�� ++ element (name) DELETE
DISTLIB (ddname)

�

�

�VERSION (sysmod_id)

• ��

Operands
ALIAS

specifies the alias names for the data element in both the target and
distribution libraries.

You can use ALIAS when data elements of the same type must be defined in
the same zone and must have the same name for programming access. In this
case, you can specify the common name on ALIAS and a unique name as the
data element name.

DELETE
indicates that the element and all of its alias names are to be removed from the
target libraries, the distribution libraries, and the SMP/E data sets.

Note:

1. DELETE is mutually exclusive with all other operands except DISTLIB and
VERSION.

Data element MCS

Chapter 2. SMP/E modification control statements 13

2. If the element statement is in a base function, you may want to use the
DELETE operand on the ++VER MCS to delete the previous release, rather
than on the element statement to delete a specific element.

3. Specification of the DELETE operand results in all alias names of the data
element being deleted along with the data element identified.

DISTLIB
specifies the ddname of the distribution library for the data element.

Note:

1. DISTLIB must be specified if the element has not been previously recorded
on the target zone or distribution zone.

2. If a data element entry already exists in the target zone or distribution zone
and the value currently in that entry does not match that specified in the
DISTLIB operand, the SYSMOD is not applied or accepted.

element
specifies the type of element. Table 2 on page 10 shows the MCSs used for the
various element types.

FROMDS
identifies the partitioned data set that contains this element.

Note: The FROMDS operand and its DSN, NUMBER, VOL, and UNIT
suboperands are included in the MCS generated by the BUILDMCS command.
IBM does not intend the FROMDS operand to be used in manually coded
MCS.

DSN
specifies the dsname of the FROMDS data set. The specified data set name
must conform to standard data set naming conventions and cannot contain
parentheses. The maximum length of the entire name is 44 characters
(including the periods).

NUMBER
specifies a number that SMP/E is to use when assigning a name to the
SMPTLIB data set associated with this FROMDS data set. (This is similar to
the way the relative file number is used in RELFILE processing.)

VOL
specifies, for an uncataloged data set, the volume serial number of the
volume containing the FROMDS data set. If specified, this volume
identifier must be from 1 to 6 alphanumeric characters.

VOL may be omitted for a cataloged data set.

UNIT
specifies, for an uncataloged data set, the UNIT type containing the
FROMDS data set. If specified, the UNIT value must be from 1 to 8
characters and must conform to standard UNIT naming conventions.
SMP/E accepts any nonblank characters specified between the open and
close parentheses, up to a maximum length of 8.

UNIT may be omitted for a cataloged data set.

Note: FROMDS is mutually exclusive with DELETE, RELFILE, and TXLIB.

name
specifies the name of the element to be replaced. The name can contain any
alphanumeric characters and $, #, @, or hex C0.

Data element MCS

14 SMP/E V3R6.0 for z/OS V2R1.0 Reference

RELFILE
specifies which relative file associated with the SYSMOD contains this element.
This operand is required if you provide the element in RELFILE format, rather
than inline or in a TXLIB data set.

Note: RELFILE is mutually exclusive with DELETE, FROMDS, and TXLIB.

RMID
specifies the last PTF that replaced this data element. This operand can be
used only in a service-updated function, and the specified PTF must be
integrated into the function.

Note: RMID is mutually exclusive with DELETE.

SYSLIB
specifies the ddname of the target library for the specified element.

Note: SYSLIB is mutually exclusive with DELETE.

TXLIB
specifies the ddname of the partitioned data set containing the element. This
operand is required if the element is provided in a TXLIB data set rather than
inline or in RELFILE format.

Note:

1. SMPTLIB cannot be used as a value on the TXLIB operand.
2. TXLIB is mutually exclusive with DELETE, FROMDS, and RELFILE.

VERSION
specifies one or more function SYSMODs that currently contain the element.
The function containing the data element statement takes over ownership of
the element from the specified functions.

When VERSION is specified on an element statement, it overrides any
VERSION operand values specified on the ++VER MCS.

Usage notes
v If the element is packaged inline, it must immediately follow the data element

MCS and must not contain any records that start with the characters ++. Neither
FROMDS, nor RELFILE, nor TXLIB can be specified on the data element MCS.

v To be packaged inline, a data element must contain fixed-block-80 records. If the
original format of the element is not fixed-block-80 records, you can use
GIMDTS to transform the element into the required format before packaging it.
Later, when SMP/E installs the element, it is changed back to its original format.
For more information about using GIMDTS, see “GIMDTS: Data transformation
service routine” on page 444.

v If the data element is packaged in a TXLIB data set, the ddname specified on the
TXLIB operand is required during APPLY and ACCEPT processing.

v For information about packaging SYSMODs in RELFILE, TXLIB, or inline
format, see z/OS Packaging Rules.

Examples
The following examples are provided to help you use the data element MCS:

Data element MCS

Chapter 2. SMP/E modification control statements 15

http://publibz.boulder.ibm.com/epubs/pdf/gimpkg80.pdf

Example 1: Packaging a CLIST in a function
Here is an example of a SYSMOD containing a ++CLIST statement to install your
CLIST and have SMP/E track any changes to it. It can be packaged as a function,
as shown in the following example:
++FUNCTION(MYCLST1) /* Function. */.
++VER(Z038) /* For MVS systems. */.
++CLIST(CLIST1) /* Install this CLIST */

TXLIB(NEWSMP) /* from this TXLIB */
DISTLIB(AMACLIB) /* into this DLIB and */
SYSLIB(ISPCLIB) /* this target library. */.

Example 2: Packaging a renamed CLIST
Suppose that, for some reason, you need to rename CLIST1, which was introduced
in “Example 1: Packaging a CLIST in a function.” The new name is to be CLISTX.
You do not need to change anything else about the CLIST. Here is an example of a
SYSMOD containing the data element statements needed to package this renamed
CLIST:
++USERMOD(USR0001) /* User modification */.
++VER(Z038) FMID(MYCLST1) /* to user application. */.
++CLIST(CLIST1) /* Delete the original */

DELETE /* CLIST. */.
++CLIST(CLISTX) /* Add the renamed CLIST */

TXLIB(NEWSMP) /* from this TXLIB */
DISTLIB(AMACLIB) /* into this DLIB and */
SYSLIB(ISPCLIB) /* this target library. */.

You must ensure that the renamed CLIST is in the TXLIB library (NEWSMP) used
to provide SMP/E with the element.

Data element MCS

16 SMP/E V3R6.0 for z/OS V2R1.0 Reference

++DELETE MCS
During APPLY processing, the ++DELETE MCS deletes a load module and any
known alias or symbolic link names from a target library and the associated target
zone. It can also delete alias or symbolic link names without deleting the load
module itself.

During ACCEPT processing, if inline JCLIN was processed, the distribution zone's
entries are updated to reflect the ++DELETE changes. The target libraries and
target zone entries are not updated.

Note: This change is not reversible. You cannot restore the SYSMOD containing
the ++DELETE MCS; therefore, you cannot recreate the deleted load module.

Syntax

++DELETE MCS

�� ++DELETE (name)

�

�

SYSLIB (ALL)
,

ALIAS (alias)
,

SYSLIB (ddname)

• ��

Operands

ALIAS
specifies that only the indicated alias or symbolic link names are to be deleted,
but not the load module.
v An alias name can have up to 1023 characters.

Although a load module residing in a PDSE can have an alias name greater
than 8 characters, the ++DELETE statement cannot be used to delete such an
alias value. To delete such an alias value without deleting the load module,
you need to resupply JCLIN to define the load module without providing an
ALIAS statement for the alias value to be deleted. Make sure to also include
a ++MOD statement for a module in the load module to force SMP/E to
relink the load module.

v Single apostrophes must be used as delimiters for an alias name in these
cases:
– The alias name contains a character that is not uppercase alphabetic,

numeric, national ($, #, or @), slash (/), plus (+), hyphen, period, or
ampersand (&).

– The alias name is continued on another line in the control statement.
Apostrophes used as delimiters do not count as part of the 1023-character
limit.

v If an apostrophe is part of the alias name and is not a delimiter, it needs to
be doubled. These two apostrophes count as 2 characters in the
1023-character limit.

v Characters specified must be in the range X'41' through X'FE'. Unlike the
binder, SMP/E does not support shift-in (X'0F') and shift-out (X'0E')
characters.

++DELETE MCS

Chapter 2. SMP/E modification control statements 17

v When processing the ++DELETE statement, SMP/E uses the alias name as
is, and does not enforce any rules the binder might be using as a result of
the CASE execution parameter.

Note:

1. Do not specify this operand if you also want to delete the load module.
++DELETE without the ALIAS operand automatically deletes any alias or
symbolic link names associated with the load module.

2. When ALIAS is specified, SMP/E checks the ALIAS control statements in
the LMOD entry to verify that the specified name is actually an alias or
symbolic link of the load module. For copied load modules, instead of
looking for ALIAS control statements, SMP/E checks the corresponding
MOD entry's TALIAS subentries.

3. If a valid ALIAS value is specified, SMP/E deletes the alias from all known
target libraries, including any associated side deck library, no matter what
was coded for SYSLIB. SMP/E overrides the SYSLIB value with
SYSLIB(ALL).

4. When you specify ALIAS to delete an alias for a load module, you must
reflect this change using JCLIN. To do this, include a ++JCLIN statement
with JCLIN data containing a link-edit step for the load module, with the
alias deleted from the list of aliases on the link-edit ALIAS statement. This
causes SMP/E to replace the alias list in the LMOD entry.

name
specifies the name of the load module to be deleted.

SYSLIB
specifies the ddname of the target library where the load module resides.
v If ALL is specified, the load module is deleted from all target libraries

defined in the target zone.
v If a single ddname is specified, the load module is deleted only from the

indicated target library.
If the load module or alias is to be deleted from two target libraries, a
second ddname can be specified. However, to make sure the module is
deleted from both libraries, you should use ALL instead.

v For load modules with a SYSLIB allocation (or load modules having a
CALLLIBS subentry), specifying ALL or deleting the load module from all
the target libraries in which it resides, deletes the base version of the load
module from the SMPLTS library.

v For load modules with a side deck library, specifying ALL or deleting the
load module from all the target libraries in which it resides, deletes the
associated definition side deck from the side deck library.

Note: If ALIAS is specified, SMP/E deletes the alias from all known target
libraries, including any associated side deck library, no matter what was coded
for SYSLIB. SMP/E overrides the SYSLIB value with SYSLIB(ALL).

Usage notes
v SYSLIB must always be specified to identify the affected target libraries.
v ALIAS should be specified only if alias names, and not load modules, are to be

deleted.
v ++DELETE statements must follow any ++VER and ++IF statements and must

precede any ++JCLIN or element MCSs.

++DELETE MCS

18 SMP/E V3R6.0 for z/OS V2R1.0 Reference

v Regardless of the order in which ++MOVE, ++RENAME, and ++DELETE
statements are coded in a SYSMOD, they are always processed in this order for
APPLY and ACCEPT:
1. ++MOVE
2. ++RENAME
3. ++DELETE
Afterwards, the ++JCLIN statements are processed, and then the element
statements are processed.

Note: You cannot restore the SYSMOD containing the ++DELETE MCS.

Examples

The following examples are provided to help you use the ++DELETE MCS:

Example 1: Deleting a single load module
Here is an example of a SYSMOD containing a ++DELETE statement that deletes
load module LMODA from SYS1.LINKLIB:
++PTF(UR01234) /* Identify the PTF number. */.
++VER(Z038) FMID(HXY1300) /* For MVS function HXY1300.*/.
++IF (ESY1300) THEN /* If ESY1300 is installed */

REQ(UR12399) /* UR12399 is required. */.
++HOLD(UR01234) /* Hold UR01234. */

FMID(HXY1300) /* For MVS function HXY1300.*/
SYSTEM /* System hold */
REASON(DELETE) /* because of ++DELETE. */
COMMENT(THIS DELETION OF LMODA FROM LINKLIB

IS IRREVERSIBLE).
++DELETE (LMODA) /* Delete load module LMODA */

SYSLIB(LINKLIB) /* from LINKLIB. */.
++JCLIN /* JCLIN follows. */.

•
•
•

++MOD(MODAA) DISTLIB(AOSXX) /* Element MCS statements. */.

Example 2: Deleting an alias from a load module
Assume that IBM has shipped you a PTF that deletes an alias for load module
LMODA. Here is an example of a SYSMOD containing a ++DELETE statement that
deletes an alias from LMODA:
++PTF(UR01235) /* Identify the PTF number. */.
++VER(Z038) FMID(HXY1300) /* For MVS function HXY1300.*/.
++HOLD(UR01235) /* Hold UR01235. */

FMID(HXY1300) /* For MVS function HXY1300.*/
SYSTEM /* System hold */
REASON(DELETE) /* because of ++DELETE. */
COMMENT(THE DELETION OF THE ALIAS FOR LMODA

IS IRREVERSIBLE).
++DELETE (LMODA) /* Identify LMOD LMODA. */

SYSLIB(ALL) /* Process all SYSLIBs. */
ALIAS(OTHNAME) /* Identify alias. */.

++JCLIN /* JCLIN to delete alias. */.
•
•
•

++DELETE MCS

Chapter 2. SMP/E modification control statements 19

Example 3: Deleting an alias from a load module in a UNIX file
system

Assume that IBM has shipped you a PTF that deletes an alias for load module
BPXLMODB, which resides in a UNIX file system. Here is an example of a
SYSMOD containing a ++DELETE statement that deletes an alias from
BPXLMODB:
++PTF(UZ00440) /* Identify the PTF number. */.
++VER(Z038) FMID(HOP1101) /* For MVS function HOP1101.*/.
++HOLD(UZ00440) /* Hold UZ00440. */

FMID(HOP1101) /* For MVS function HOP1101.*/
SYSTEM /* System hold */
REASON(DELETE) /* because of ++DELETE. */
COMMENT(THE DELETION OF THE ALIAS FROM

BPXLMODB IS IRREVERSIBLE).
++DELETE (BPXLMODB) /* Identify LMOD BPXLMODB. */

SYSLIB(ALL) /* Process all SYSLIBs. */
ALIAS(’../nicename’) /* Identify alias. */.

++JCLIN /* JCLIN follows. */.
•
•
•

++MOD(BPXMODAA) DISTLIB(AOSXX) /* Element MCS statements. */.

++DELETE MCS

20 SMP/E V3R6.0 for z/OS V2R1.0 Reference

++FEATURE MCS
The ++FEATURE MCS is used to describe a set of function SYSMODs that are
collectively referred to as a FEATURE. It introduces descriptive information about
a new or replacement set of functions into the global zone. A ++FEATURE MCS
may be associated with an orderable software feature.

Syntax

++FEATURE MCS

�� ++FEATURE (name) DESCRIPTION (description)

�

,

FMID (fmid)

�

� PRODUCT (prodid , vv.rr.mm)
REWORK (level)

• ��

Operands

name
is a 1- to 8-character feature name. It can contain uppercase alphabetic,
numeric, or national characters ($, #, @).

DESCRIPTION
describes the feature that represents this collection of function SYSMODs.
v DESCRIPTION can also be specified as DESC.
v The DESCRIPTION value can be in single-byte characters (such as English

alphanumeric) or double-byte characters (such as Kanji).
v The DESCRIPTION value can contain up to 64 bytes of data, including

blanks. (For double-byte data, the 64-byte maximum includes all shift-in and
shift-out characters, as well as the double-byte characters.) Extra blanks as
well as leading and trailing blanks are deleted.

v The DESCRIPTION value can span multiple 80-byte records. Data must
continue up to and including column 72 and begin in column 1 of the next
line. All data past column 72 is ignored. The break does not translate to a
blank unless a blank is explicitly coded in column 72 of the first line or in
column 1 of the second line.

v The DESCRIPTION value cannot be only blanks.
v If parentheses are included in the text, they must be in matched pairs.

FMID
specifies the list of all function SYSMODs that make up this feature. Each
FMID is 7 characters long and must be a valid SYSMOD ID. That is, it must
contain uppercase alphabetic, numeric, or national characters ($, @, #). If
multiple FMIDs are specified, they must be separated by commas.

PRODUCT
identifies the prodid and vv.rr.mm of the product with which this feature is
associated.

REWORK
is the level of this feature, which was reworked for minor changes. Up to eight
numeric characters can be specified.

For IBM features, the REWORK level is yyyyddd, which is the year followed by
the Julian date (for example, 2008110).

++FEATURE MCS

Chapter 2. SMP/E modification control statements 21

REWORK allows an updated feature to be automatically received again, as
long as it is more recent than the version that has already been received. This
takes the place of rejecting the feature and receiving it again.

Note: If a ++FEATURE statement appears more than once in the SMPPTFIN
data set, the first occurrence may be received. However, none of the
subsequent versions of the ++FEATURE statement are received, even if their
rework level is higher than the one for the first version of the ++FEATURE
statement.

Usage notes
v The ++FEATURE statements are processed only when the SMPPTFIN data set is

processed.
– If the whole SMPPTFIN data set is processed, all ++FEATURE statements are

processed.
– If only selected SYSMODs are processed, SMP/E processes the ++FEATURE

statements that name at least one of the selected SYSMODs in their FMID
operand list.

++FEATURE statements are not processed when only the SMPHOLD data set is
being processed.

v The name, DESCRIPTION, and PRODUCT values are required and cannot be
blank or null.

v The ++FEATURE MCS is used in the SMPPTFIN data set and can be placed
between, before, or after SYSMODs, ++FEATURE MCS, or ++PRODUCT MCS.
If the function SYSMODs identified in the FMID operand of the ++FEATURE
statement have not been previously received, the ++FEATURE statement must
follow these function SYSMODs in the SMPPTFIN data set.
The ++FEATURE statement must be followed by one of the following: a
++APAR, ++ASSIGN MCS, ++FUNCTION, ++PRODUCT, ++PTF, ++USERMOD,
another ++FEATURE MCS, or an end-of-file. If one of these does not follow,
SMP/E skips the ++FEATURE MCS.

Example

Here is an example of a ++FEATURE MCS for the OS/390® product.
++FEATURE(OS325BAS) /* Feature definition */

DESCRIPTION(OS/390 Base Feature) /* Description */
FMID(HBB6605,HMP1B00,JBB66C5,...) /* FMID List */
PRODUCT (5647-A01,2.5.0) /* Owning Product */ .

++FEATURE MCS

22 SMP/E V3R6.0 for z/OS V2R1.0 Reference

++FUNCTION MCS
The ++FUNCTION MCS identifies a SYSMOD as a base function or dependent
function. This type of SYSMOD introduces a new or replacement function into
target system and distribution libraries. All other MCSs follow this header MCS
statement. For more information about packaging a function, see z/OS Packaging
Rules.

Syntax

++FUNCTION MCS

�� ++FUNCTION (sysmod_id)
DESCRIPTION (description)

�

�
FESN (fe_service_number)

�

�
FILES (number)

RFDSNPFX (relfile_prefix)
REWORK (level)

�

� • ��

Operands

DESCRIPTION
specifies a descriptive name to be associated with this SYSMOD. z/OS
Packaging Rules.
v DESCRIPTION can also be specified DESC.
v The DESCRIPTION value can be in single-byte characters (such as English

alphanumeric) or double-byte characters (such as Kanji).
v The DESCRIPTION value can contain up to 64 bytes of data, including

blanks. (For double-byte data, the 64-byte maximum includes all shift-in and
shift-out characters, as well as the double-byte characters.) Extra blanks, as
well as leading and trailing blanks are deleted.

v The DESCRIPTION value can span multiple 80-byte records. Data must
continue up to and including column 72 and begin in column 1 of the next
line. All data past column 72 is ignored. The break does not translate to a
blank unless a blank is explicitly coded in column 72 of the first line or in
column 1 of the second line.

v If DESCRIPTION is specified, it must contain at least one non-blank
character.

v If parentheses are included in the text, they must be in matched pairs.

FESN
is a 7-character field engineering (FE) service number.

FILES
specifies the number of relative files belonging to this function. It can be a
decimal number from 1 to 9999, and is used only if the function is packaged in
relative files, rather than inline or in indirect libraries. For information about
packaging SYSMODs in relative files, see z/OS Packaging Rules.

Note:

1. Functions are generally packaged in relative files to improve SMP/E's
performance when applying and accepting the SYSMOD.

++FUNCTION MCS

Chapter 2. SMP/E modification control statements 23

http://publibz.boulder.ibm.com/epubs/pdf/gimpkg80.pdf
http://publibz.boulder.ibm.com/epubs/pdf/gimpkg80.pdf
http://publibz.boulder.ibm.com/epubs/pdf/gimpkg80.pdf
http://publibz.boulder.ibm.com/epubs/pdf/gimpkg80.pdf
http://publibz.boulder.ibm.com/epubs/pdf/gimpkg80.pdf

2. If a packager uses a high-level qualifier on RELFILE data sets, the
RFDSNPFX operand on the header MCS (not the RFPREFIX operand on the
RECEIVE command) must be used to identify that high-level qualifier.

REWORK
is the level of this SYSMOD, which was reworked for minor changes. Up to
eight numeric characters can be specified.

REWORK is generally used only for SYSMODs supplied by IBM that have
been reworked for minor changes, such as for a service update or to use a
++MOVE, ++RENAME, or ++DELETE MCS. For these SYSMODs, the
REWORK level is yyyyddd, which is the year followed by the Julian date (for
example, 2008110).

REWORK allows an updated SYSMOD to be automatically received again, as
long as it is more recent than the version that has already been received. This
takes the place of rejecting the SYSMOD and receiving it again.

Note: If a SYSMOD appears more than once in the SMPPTFIN data set, the
first occurrence may be received. However, none of the subsequent versions of
the SYSMOD are received, even if their rework level is higher than the one for
the first version of the SYSMOD. (Message GIM40001E is issued for each of the
subsequent versions of the SYSMOD.)

RFDSNPFX
identifies to SMP/E the prefix used in the relative file data set names for this
SYSMOD. SMP/E uses this prefix when allocating data set names for the
SYSMOD's relative files during RECEIVE processing.
v This operand can be specified only if the FILES operand is also specified.
v The RFDSNPFX value specified on the MCS statement must match the

actual prefix used in the data set names for the associated relative files.
For example, if the names of the relative files created for a SYSMOD start
with “IBM”, as in IBM.sysmod_id.F1, the header MCS statement for the
SYSMOD must specify RFDSNPFX(IBM) so SMP/E knows which prefix to
use when allocating the data set names for the SYSMOD's relative files
during RECEIVE processing.

v Following standard data set naming conventions, the prefix can be from 1 to
8 alphanumeric or national ($, #, @) characters or a dash (–).
To enable full Security Server protection for tape data sets and to keep the
tape header within the 17-character limit (including periods), you should
limit the prefix to 1 to 3 characters. If the name exceeds the 17-character
limit, only the rightmost 17 characters are written to the tape header label.

sysmod_id
is a unique 7-character name, or SYSMOD ID, for the function. This ID is also
called a function modification identifier (FMID). For more information, see
“Naming conventions for SYSMODs” on page 512.

Usage notes

A function cannot contain statements that update elements (++MACUPD,
++SRCUPD, and ++ZAP).

++FUNCTION MCS

24 SMP/E V3R6.0 for z/OS V2R1.0 Reference

Examples

Here is an example of a function SYSMOD to be created with a SYSMOD ID of
JXY1040 that is dependent on function JXY1000. The elements and JCL input data
are members of three unloaded partitioned data sets on a tape created using the
relative file method:
++FUNCTION(JXY1040) /* New function SYSMOD */

FILES(3) /* in RELFILE format. */
RFDSNPFX(IBM) /* RELFILE prefix for IBM. */.

++VER(Z038) FMID(JXY1000) /* For MVS function JXY1000.*/.
++JCLIN RELFILE(1) /* JCLIN in RELFILE 1. */.
++MOD(IFBMOD01) /* This module */

DISTLIB(AOSFB) /* for this DLIB */
RELFILE(2) /* is in RELFILE 2. */.

++MOD(IFBMOD02) /* This module */
DISTLIB(AOSFB) /* for this DLIB */
RELFILE(2) /* is in RELFILE 2. */.

++MAC(IFBMAC01) /* This macro */
DISTLIB(AOSMAC) /* for this DLIB */
RELFILE(3) /* is in RELFILE 3. */.

++FUNCTION MCS

Chapter 2. SMP/E modification control statements 25

Hierarchical file system element MCS
The hierarchical file system element MCSs describe elements located in a UNIX file
system. Hierarchical file system elements can have any of the following
characteristics:
v The record format (RECFM) must be F, FA, FM, FB, FBA, FBM, V, VA, VM, VB,

VBA, or VBM.
v Elements with variable-length records cannot contain spanned records.
v The maximum LRECL is 32,654.
v The records can be numbered or unnumbered.

There are MCSs to replace hierarchical file system elements, just as there are MCSs
to replace other types of elements. (There are no MCSs to update hierarchical file
system elements.) Table 4 shows the MCSs that can be used for hierarchical file
system elements. Table 5 shows the xxx values that can be used when the MCS
indicates the language being supported.

Table 4. MCS statements for hierarchical file system elements. If an element is provided in
only one language, the xxx can be left off the MCS. If an element is provided in more than
one language, replace the xxx with the appropriate value from Table 5.

MCS Description

++AIX1 through ++AIX5 Elements to be used by an AIX®

client.

++CLIENT1 through ++CLIENT5 Elements to be used by any client
(intended for clients not described
by other elements types.

++HFSxxx Generic hierarchical file system
element (data not covered by
other types)

++OS21 through ++OS25 Elements to be used by an OS/2
client.

++SHELLSCR UNIX shell script elements.

++UNIX1 through ++UNIX5 Elements to be used by a UNIX
client.

++WIN1 through ++WIN5 Elements to be used by a
Windows client.

Table 5. National language identifiers used for language-unique elements

Value Language Value Language

ARA Arabic HEB Hebrew

CHS Simplified Chinese ISL Icelandic

CHT Traditional Chinese ITA Italian (Italy)

DAN Danish ITS Italian (Switzerland)

DES German (Switzerland) JPN Japanese

DEU German (Germany) KOR Korean

ELL Greek NLB Dutch (Belgium)

ENG English (United Kingdom) NLD Dutch (Netherlands)

ENP Uppercase English NOR Norwegian

ENU English (United States) PTB Portuguese (Brazil)

Hierarchical file system element MCS

26 SMP/E V3R6.0 for z/OS V2R1.0 Reference

Table 5. National language identifiers used for language-unique elements (continued)

Value Language Value Language

ESP Spanish PTG Portuguese (Portugal)

FIN Finnish RMS Rhaeto-Romanic

FRA French (France) RUS Russian

FRB French (Belgium) SVE Swedish

FRC French (Canada) THA Thai

FRS French (Switzerland) TRK Turkish

Syntax

The syntax to be used depends on the processing to be performed for the element:
v Adding or replacing the element
v Deleting the element

Adding or replacing a hierarchical file system element

Hierarchical file system element MCS

�� ++ element (name)
BINARY
TEXT

DISTLIB (ddname)

�

,

LINK (linkname)

�

�
PARM (character_string)

�

�
RELFILE (number)
TXLIB (ddname)
FROMDS (DSN (dsn) NUMBER (n))

VOL (vol) UNIT (unit)

�

�
RMID (sysmod_id) SHSCRIPT (scriptname)

PRE POST

�

�

� �

, ,

SYMLINK (symlinkname) SYMPATH (sympathname)

SYSLIB (ddname)
�

�

�

,

VERSION (sysmod_id)

• ��

Deleting a hierarchical file system element

Hierarchical file system element MCS

�� ++ element (name) DELETE
DISTLIB (ddname)

�

�

�

,

VERSION (sysmod_id)

• ��

Hierarchical file system element MCS

Chapter 2. SMP/E modification control statements 27

Operands
BINARY

indicates that the hierarchical file system copy utility should install the element
into a UNIX file system in binary mode. This means that the element is
installed in its entirety as a data stream, with no breaks for logical records.

Note:

1. BINARY is mutually exclusive with TEXT.
2. When BINARY is specified on the element MCS, SMP/E sets the BINARY

mode indicator in the hierarchical file system element entry. When TEXT is
specified on the element MCS, SMP/E sets the TEXT mode indicator in the
hierarchical file system element entry.
If neither BINARY nor TEXT is specified on the element MCS, SMP/E uses
the mode indicator in the hierarchical file system element entry to tell the
HFS copy utility how to install the element.
If neither BINARY nor TEXT is specified on the element MCS and there is
no mode indicator in the hierarchical file system element entry, the HFS
copy utility determines how to install the element.

3. SMP/E recommends the appropriate value BINARY or TEXT be specified
to ensure that the HFS copy utility uses the correct mode. If no value is
specified, the HFS copy utility chooses either binary or text mode based on
the RECFM of the element to be copied, and it might choose incorrectly.

DELETE
specifies that the hierarchical file system element and all of its link names and
symbolic link names are to be removed from the “target library” (UNIX file
system) and the distribution library.

Note:

1. DELETE is mutually exclusive with all other operands except DISTLIB and
VERSION.

2. If the element statement is in a base function, you may want to use the
DELETE operand on the ++VER MCS to delete the previous release, rather
than on the element statement to delete a specific element.

3. Specification of the DELETE operand results in all link names and symbolic
link names of the element being deleted along with the element identified.

DISTLIB
specifies the ddname of the distribution library for the specified hierarchical
file system element. During ACCEPT processing, SMP/E installs the
hierarchical file system element into the distribution library as a member. (The
distribution library must be a PDS or PDSE; it cannot be part of a UNIX file
system.)

Note:

1. DISTLIB must be specified when the hierarchical file system element is
first installed.

2. If an element entry already exists in the target zone or distribution zone
and the value currently in that entry does not match that specified in the
DISTLIB operand, the SYSMOD is not applied or accepted.

element
specifies the type of element. Table 4 on page 26 shows the MCSs used for the
various hierarchical file system element types.

Hierarchical file system element MCS

28 SMP/E V3R6.0 for z/OS V2R1.0 Reference

FROMDS
identifies the partitioned data set that contains this element.

Note: The FROMDS operand and its DSN, NUMBER, VOL, and UNIT
suboperands are included in the MCS generated by the BUILDMCS command.
IBM does not intend the FROMDS operand to be used in manually coded
MCS.

DSN
specifies the dsname of the FROMDS data set. The specified data set name
must conform to standard data set naming conventions and cannot contain
parentheses. The maximum length of the entire name is 44 characters
(including the periods).

NUMBER
specifies a number that SMP/E is to use when assigning a name to the
SMPTLIB data set associated with this FROMDS data set. (This is similar to
the way the relative file number is used in RELFILE processing.)

VOL
specifies, for an uncataloged data set, the volume serial number of the
volume containing the FROMDS data set. If specified, this volume
identifier must be from 1 to 6 alphanumeric characters.

VOL may be omitted for a cataloged data set.

UNIT
specifies, for an uncataloged data set, the UNIT type containing the
FROMDS data set. If specified, the UNIT value must be from 1 to 8
characters and must conform to standard UNIT naming conventions.
SMP/E accepts any nonblank characters specified between the open and
close parentheses, up to a maximum length of 8.

UNIT may be omitted for a cataloged data set.

Note: FROMDS is mutually exclusive with DELETE, RELFILE, and TXLIB.

LINK
specifies the alternative names by which this hierarchical file system element
can be known in a UNIX file system. The full name is produced by
concatenating the specified linkname with the UNIX file system directory
identified by the SYSLIB subentry. Each linkname is passed to the HFS copy
utility as an execution parameter.

Note:

1. The linkname can be from 1 to 1023 characters.
2. A linkname can be enclosed in single apostrophes ('). A linkname must be

enclosed in single apostrophes if any of the following is true:
v The linkname contains lowercase alphabetic characters.
v The linkname contains a character that is not uppercase alphabetic,

numeric, national ($, #, @), slash (/), plus (+), hyphen, period, or
ampersand (&).

v The linkname spans more than one line in the control statement.
The single apostrophes used to enclose a linkname (the delimiters) do not
count as part of the 1023-character limit.

3. Any apostrophes specified as part of a linkname (not the delimiters) must
be doubled.

Hierarchical file system element MCS

Chapter 2. SMP/E modification control statements 29

Double apostrophes count as two characters in the 1023-character limit.
4. The linkname can include characters X'40' through X'FE'.
5. LINK values are saved and passed to the HFS copy utility as follows:

v If LINK is specified on the element MCS, any values previously saved in
the element entry are overlaid.

v If LINK is not specified on the element MCS and saved values exist in
the hierarchical file system element entry, the saved values are passed to
the HFS copy utility as execution parameters.
If LINK is not specified on the element MCS and there are no saved
values in the hierarchical file system element entry, no linknames are
passed to the HFS copy utility.

name
specifies the name of the hierarchical file system element member. The name
can contain any uppercase alphabetic, numeric, or national ($, #, @) character
and can be 1 to 8 characters long.

PARM
specifies a character string that is to be passed to the hierarchical file system
copy utility as an execution-time parameter. (The values that can be specified
on the PARM operand, such as PATHMODE, are those accepted by the
BPXCOPY utility. See z/OS UNIX System Services Command Reference for a
description of BPXCOPY and the values it accepts.) The maximum length of
this character string is 300 bytes of nonblank data. If any blanks are specified
in the PARM value, they are deleted by SMP/E during processing and do not
count toward the 300-byte maximum.

Note:

1. PARM is an optional operand.
2. The character string can be entered free-form, without regard to blanks

(which are compressed out of the string), and can span multiple 80-byte
records.

3. If parentheses are specified in the PARM value, there must always be a pair
(left and right); otherwise, the results are unpredictable.

4. PARM values are saved and passed to the HFS copy utility as follows:
v If PARM is specified on the element MCS, any values previously saved

in the hierarchical file system element entry are overlaid.
v If PARM is not specified on the element MCS and saved values exist in

the hierarchical file system element entry, the saved values are passed to
the HFS copy utility as execution parameters.
If PARM is not specified on the element MCS and there are no saved
values in the hierarchical file system element entry, no parameters are
saved from the element MCS or passed from the hierarchical file system
element entry to the HFS copy utility.

5. If the UTILITY entry for the HFS copy utility specifies a PARM value, those
parameters are passed to the utility in addition to any parameters saved in
the hierarchical file system element entry.

RELFILE
identifies which relative file associated with the SYSMOD contains this
element. This operand is required if you provide the element in RELFILE
format, rather than inline or in a TXLIB data set.

Note:

Hierarchical file system element MCS

30 SMP/E V3R6.0 for z/OS V2R1.0 Reference

1. The RELFILE value must be a decimal number from 1 to 9999.
2. RELFILE is mutually exclusive with FROMDS and TXLIB.

RMID
specifies the last SYSMOD that replaced this element. This operand can be
used only in a service-updated function, and the specified PTF must be
integrated into the function.

SHSCRIPT
specifies a UNIX shell script, scriptname, to be invoked when the element is
installed in (or deleted from) a directory of a UNIX file system. scriptname can
contain any uppercase alphabetic, numeric, or national ($, #, @) character and
can be 1 to 8 characters long.

A shell script is commonly used to complete the installation of an element. For
example, if the hierarchical file system element is a TAR or PAX file, you can
provide a shell script that performs the necessary steps to restore the file.

scriptname must be the first value to follow the SHSCRIPT operand.

You define the shell script to SMP/E through a ++SHELLSCR statement, which
can be within the same SYSMOD as the hierarchical file system element, or
within a SYSMOD that was processed previously. When the element is itself a
SHELLSCR type, the SHSCRIPT operand must match the name of the element.

You cannot define more than one shell script for an element.

You can follow scriptname with either of two optional values, PRE and POST, to
specify the point in SMP/E processing when the shell script is to be invoked.
The following examples show how you can use the PRE and POST values:
v To run the shell script before the element is copied to a UNIX file system

directory, specify:
SHSCRIPT(scriptname,PRE)

v To run the shell script after the element is copied to a UNIX file system
directory, specify:
SHSCRIPT(scriptname,POST)

or specify no value after scriptname to use POST by default.
v To run the shell script both before and after the element is copied to a UNIX

file system directory, specify:
SHSCRIPT(scriptname,PRE,POST)

If you do not specify a PRE or POST value for the shell script, SMP/E invokes
the shell script after the element is installed in the directory.

When the element is a shell script, PRE is not valid. Also, you cannot specify
the SHSCRIPT operand with the DELETE operand.

SYMLINK
specifies a list of one or more symbolic links, which are file names that can be
used as alternate names for referring to this element in a UNIX file system.
Each linkname listed here is associated with a pathname listed in the
SYMPATH operand. For more information about how the linknames and
pathnames are associated, see the description of the SYMPATH operand and
“Example 3: Packaging a SYSMOD with a symbolic link” on page 35.

The SYMLINK value specified should be a relative path value (that is, it does
not start with a slash ["/"]). When the symbolic link is created, it is created
relative to the pathname of the element's SYSLIB ddname.

Hierarchical file system element MCS

Chapter 2. SMP/E modification control statements 31

SYMLINK must be specified if the SYMPATH operand is specified, otherwise
it must be omitted.

A symbolic linkname can be from one to 1023 characters. Any characters in the
range X'40' through X'FE' may be specified.

The value may be enclosed in single apostrophes. It must be enclosed in single
apostrophes if:
v it is continued to the next line in the MCS, or
v it contains a character that is not uppercase alphabetic, numeric, national ($,

#, @), slash (/), plus (+), hyphen, period, or ampersand (&).

If an apostrophe is a part of the symbolic linkname and is not a delimiter, then
it must be doubled. These two apostrophes count as two characters against the
1023 character limit for a symbolic linkname. The single apostrophes used to
enclose a symbolic linkname do not count against the 1023 character limit.

SYMPATH
specifies a list of one or more pathnames that are associated with symbolic
links identified by the SYMLINK operand. The first pathname in the
SYMPATH operand is associated with the first symbolic link in the SYMLINK
operand, the second pathname with the second symbolic link, and so on. If
there are more symbolic links listed than there are pathnames, then the last
listed pathname is used for the remaining symbolic links. If more pathnames
are specified than symbolic linknames, then the excess pathnames (at the end
of the list) are ignored.

The SYMPATH value specified should be a relative path value. When the
symbolic link is accessed, the system assumes the destination of that link (the
SYMPATH value) is relative to that symbolic link (the SYMLINK value). For
more information about how the pathnames and linknames are associated, see
“Example 3: Packaging a SYSMOD with a symbolic link” on page 35.

SYMPATH must be specified if the SYMLINK operand is specified, otherwise
it must be omitted.

A symbolic pathname can be one to 1023 characters. Any characters in the
range X'40' through X'FE' may be specified.

The value may be enclosed in single apostrophes. It must be enclosed in single
apostrophes, if:
v it is continued to the next line in the MCS, or
v it contains a character that is not uppercase alphabetic, numeric, national ($,

#, @), slash (/), plus (+), hyphen, period, or ampersand (&).

If an apostrophe is a part of the symbolic pathname and is not a delimiter,
then it must be doubled. These two apostrophes count as two characters
against the 1023 character limit for a symbolic pathname. The single
apostrophes used to enclose a symbolic linkname do not count against the 1023
character limit.

SYSLIB
specifies the ddname of the “target library” within the UNIX file system for
the element.

During APPLY processing, the HFS copy utility installs the hierarchical file
system element into a UNIX file system. During RESTORE processing, the HFS
copy utility copies the hierarchical file system element from the distribution
library member into a UNIX file system.

Hierarchical file system element MCS

32 SMP/E V3R6.0 for z/OS V2R1.0 Reference

Note: SYSLIB must be specified when the hierarchical file system element is
first installed.

TEXT
indicates that the hierarchical file system copy utility should install the element
into a UNIX file system in text mode. This means that the element is installed
with breakpoints for logical records.

Note:

1. TEXT is mutually exclusive with BINARY.
2. When TEXT is specified on the element MCS, SMP/E sets the TEXT mode

indicator in the hierarchical file system element entry. When BINARY is
specified on the element MCS, SMP/E sets the BINARY mode indicator in
the hierarchical file system element entry.
If neither BINARY nor TEXT is specified on the element MCS, SMP/E uses
the mode indicator in the hierarchical file system element entry to tell the
HFS copy utility how to install the element.
If neither BINARY nor TEXT is specified on the element MCS and there is
no mode indicator in the hierarchical file system element entry, the HFS
copy utility determines how to install the element.

3. SMP/E recommends the appropriate value BINARY or TEXT be specified
to ensure that the HFS copy utility uses the correct mode. If no value is
specified, the HFS copy utility chooses either binary or text mode based on
the RECFM of the element to be copied, and it might choose incorrectly.

TXLIB
is the ddname of the partitioned data set containing the hierarchical file system
element. This operand is required if the hierarchical file system element is
provided in a data set that the users have access to, rather than inline or in
RELFILE format.

Note:

1. SMPTLIB cannot be used as a value on the TXLIB operand.
2. TXLIB is mutually exclusive with FROMDS and RELFILE.

VERSION
specifies one or more function SYSMODs that currently contain the element.
The function containing the element MCS takes over ownership of the element
from the specified functions.

When VERSION is specified on an element statement, it overrides any
VERSION operand values that might be specified on the ++VER MCS.

Usage notes
v If the hierarchical file system element is packaged inline, it must immediately

follow the hierarchical file system element MCS and must not contain any
records starting with ++. Neither FROMDS, nor RELFILE, nor TXLIB can be
specified on the hierarchical file system element MCS.

v To be packaged inline, a hierarchical file system element must contain
fixed-block–80 records. If the original format of the element is not fixed-block–80
records, you can use GIMDTS to transform the element into the required format
before packaging it. Later, when SMP/E installs the element, it is changed back
to its original format. For more information about using GIMDTS, see “GIMDTS:
Data transformation service routine” on page 444.

Hierarchical file system element MCS

Chapter 2. SMP/E modification control statements 33

v If the hierarchical file system element is packaged in a TXLIB data set, the
ddname specified in the TXLIB operand is required during APPLY and ACCEPT
processing.

v For information about elements packaged in RELFILE format, see z/OS
Packaging Rules.

v A ++HFS MCS can be used to supply a pre-built program object to be placed
into a UNIX file system. A user can do an OGET for an existing program object
in the file system to cause the program object to be placed into an MVS data set
as fixed length records. This data can then be packaged as a ++HFS element
with the BINARY operand. The HFS copy utility can then copy the element into
the file system as a binary entity, which can then be executed.

Examples
The following examples are provided to help you use the hierarchical file system
element MCS:
v “Example 1: Packaging a hierarchical file system element in a function”
v “Example 2: Packaging a renamed hierarchical file system Element”
v “Example 3: Packaging a SYSMOD with a symbolic link” on page 35

Example 1: Packaging a hierarchical file system element in a
function
Here is an example of a SYSMOD containing a hierarchical file system element
statement to install your element and have SMP/E track any changes to it. The
element:
v Uses the Japanese language
v Is to be installed in BINARY mode
v Can also be known by its linkname “USERHFS”
v Is to be processed by shell script “UNTAR” after the element is copied to a

UNIX file system directory.

The element can be packaged in a function, as shown in the following example:
++FUNCTION(MYHFSEL) /* Function. */.
++VER(Z038) /* For MVS SRELs. */.
++HFSJPN(HFSELEM1) /* Install this element */

TXLIB(NEWHFS) /* from this TXLIB */
DISTLIB(ABPXLIB) /* into this DLIB and */
SYSLIB(BPXLIB1) /* this target library. */
BINARY /* Use BINARY mode. */
LINK(’../USERHFS’) /* Define linkname. */
SHSCRIPT(UNTAR,POST) /* Untar the file with the UNTAR exec. */.

To install the function, you need to specify DDDEF entries or DD statements for
the TXLIB, DISTLIB, and SYSLIB data sets. Remember that the SYSLIB data set is
actually a pathname in a UNIX file system. For an example of defining a pathname
in a DDDEF entry, see “Example 10: Defining pathnames in a UNIX file system”
on page 207.

Example 2: Packaging a renamed hierarchical file system
Element
Suppose that, for some reason, you need to rename HFSELEM1, which was
introduced in “Example 1: Packaging a hierarchical file system element in a
function.” The new name is to be HFSELEMX. You do not need to change
anything else about the hierarchical file system element. Here is an example of a

Hierarchical file system element MCS

34 SMP/E V3R6.0 for z/OS V2R1.0 Reference

http://publibz.boulder.ibm.com/epubs/pdf/gimpkg80.pdf
http://publibz.boulder.ibm.com/epubs/pdf/gimpkg80.pdf

SYSMOD containing the hierarchical file system element statements needed to
package this renamed hierarchical file system element:
++USERMOD(USR0001) /* User modification */.
++VER(Z038) FMID(MYHFSEL) /* to user application. */.
++HFSJPN(HFSELEM1) /* Delete the original */

DELETE /* HFS element. */.
++HFSJPN(HFSELEMX) /* Add the renamed element*/

TXLIB(NEWHFS) /* from this TXLIB */
DISTLIB(ABPXLIB) /* into this DLIB and */
SYSLIB(BPXLIB1) /* this target library. */
TEXT /* Use TEXT mode. */
LINK(’../USERHFS’) /* Define linkname. */.

To install the USERMOD, you need to specify DDDEF entries or DD statements for
the TXLIB, DISTLIB, and SYSLIB data sets. Remember that the SYSLIB data set is
actually a pathname in a UNIX file system. For an example of defining a pathname
in a DDDEF entry, see “Example 10: Defining pathnames in a UNIX file system”
on page 207.

You must also ensure that the renamed hierarchical file system element is in the
TXLIB library used to provide SMP/E with the element.

Example 3: Packaging a SYSMOD with a symbolic link
Here is an example of a SYSMOD containing a hierarchical file system element
statement to install your element with a symbolic link. The element:
v Is to be installed in TEXT mode
v Can be known by its linkname “/usr/lpp/gskssl/include/gskssl.h”
v Can also be known by its symbolic link “/usr/include/gskssl.h”.

The element can be packaged in a function, as shown in the following example:
++FUNCTION(SAMPLE) /* Function. */.
++VER(Z038) /* For MVS SRELs. */.
++HFS(GSKAH010) /* Install this element */

RELFILE(2) /* from a RELFILE */
DISTLIB(AGSKHFS) /* into this DLIB and */
SYSLIB(SGSKHFS) /* this target library. */
LINK(’../include/gskssl.h’)

/* Define linkname. */
SYMLINK(’../../../../usr/include/gskssl.h’)

/* Define symbolic link */
SYMPATH(’../../usr/lpp/gskssl/include/gskssl.h’)

/* Define path name. */
PARM(PATHMODE(0,6,4,4))

/* HFS copy utility parameters */
TEXT /* Use TEXT mode. */.

To install the function, you need to specify DDDEF entries or DD statements for
the DISTLIB and SYSLIB data sets. Remember that the SYSLIB data set is actually a
pathname in a UNIX file system. In this example, the DDDEF for SYSLIB must be
defined as follows:
UCLIN.
ADD DDDEF(SGSKHFS) PATH(’/service/usr/lpp/gskssl/IBM/’).
ENDUCLIN.

When SMP/E installs file GSKAH010 into the directory specified on the given
DDDEF entry, the LINK and SYMLINK values will be resolved relative to the
DDDEF directory. The file will then be known by the following absolute path
names in a UNIX file system:

Hierarchical file system element MCS

Chapter 2. SMP/E modification control statements 35

Source Resolved absolute pathname

SMP/E element name /service/usr/lpp/gskssl/IBM/GSKAH010
LINK name /service/usr/lpp/gskssl/include/gskssl.h
SYMLINK name /service/usr/include/gskssl.h

The contents of a symbolic link (SYMLINK) is its associated SYMPATH. In this
case, the contents of the symbolic link is "../../usr/lpp/gskssl/include/gskssl.h".
When a symbolic link is resolved, its content is resolved relative to the symbolic
link itself. That is, the SYMPATH value is relative to the SYMLINK value.
Therefore, in this case, the SYMPATH value resolves to the LINK name,
"/service/usr/lpp/gskssl/include/gskssl.h".

Hierarchical file system element MCS

36 SMP/E V3R6.0 for z/OS V2R1.0 Reference

++HOLD MCS
The ++HOLD MCS identifies a SYSMOD to be placed into exception SYSMOD
status (signifying that special SMP/E processing is required before it can be
applied or accepted). ++HOLD statements can occur within a SYSMOD (internal
HOLDDATA), or they can be read directly from the SMPHOLD file during
RECEIVE processing (external HOLDDATA). For additional information about
processing the ++HOLD statements, see SMP/E for z/OS Commands.

Syntax

++HOLD MCS

�� ++HOLD(sysmod_id) FMID(fmid) REASON (reason_id)
REASON (SYSTEM Reason IDs)

�

�

�

ERROR
,

FIXCAT CATEGORY(category)
RESOLVER(sysmod_id)

SYSTEM
USER

�

�
CLASS(class) DATE(yyddd) COMMENT(text)

COMMENT(Enhanced HOLDDATA text)

• ��

SYSTEM reason IDs used by IBM:

ACTION
AO
DB2BIND
DDDEF
DELETE
DEP
DOC
DOWNLD
EC
ENH
EXIT
EXRF
FULLGEN
IOGEN
IPL
MSGSKEL
MULTSYS
RESTART

Enhanced HOLDDATA text used by IBM:

SMRTDATA (CHGDT (yymmdd))
FIX (sysmod_id) SYMP (symptoms)

Operands

CATEGORY
a 1- to 64-character string that specifies a Fix Category. There can be one or
more Fix Category values. A Fix Category value associates the reason ID APAR
to a particular category of fixes. A Fix Category might be used to identify a

++HOLD MCS

Chapter 2. SMP/E modification control statements 37

group of APAR fixes required to support a particular hardware device, or to
provide a particular software capability, similar to how a Preventive Service
Planning Bucket (PSP-Bucket) identifies a group of APARs. Examples of Fix
Categories used by IBM are
IBM.Device.2094.z/OS

and
IBM.HealthChecker.

The Fix Category values are used during RECEIVE command processing to
create source IDs for the SYSMODs that will resolve the specified reason ID
APAR. During APPLY and ACCEPT command processing the Fix Category
values are used to determine if the HOLDDATA is applicable to the current
command by comparing the values in the HOLDDATA to those in the active
Fix Category interest list. The active Fix Category interest list is specified on
the APPLY and ACCEPT command, or within the active OPTIONS entry.

A category value might contain any nonblank character in the range X'41' -
X'FE' except single quotation mark ('), asterisk (*), percent (%), comma (,), left
parenthesis ((), and right parenthesis ()).

CLASS
a 1- to 7-character string indicating an alternative reason to release an
exception SYSMOD for processing. A class name is specified along with a
reason ID to identify a condition when the reason ID need not be resolved. The
same class name can be specified on any number of ++HOLD statements in
any number of SYSMODs.

These are the specific values currently used by IBM:

Class Explanation

ERREL
The SYSMOD is held for an error reason ID but should be installed
anyway. IBM has determined that the problem the SYSMOD resolves is
significantly more critical than the error reflected by the holding APAR.

HIPER
The SYSMOD is held with a hold class of HIPER (High Impact)

PE The SYSMOD is held with a hold class of “PTF in Error”.

SECINT
The reason ID SYSMOD identifies a fix for a security or integrity error.
HOLDDATA for security or integrity fixes is available through the
System z® Security Portal. Information on registration and accessing
the System z Security Portal is available at http://www.ibm.com/
systems/z/advantages/security/integrity_sub.html. If you are already
registered you can link directly to the IBM Resource Link® Security
Alerts.

UCLREL
UCLIN needed for the SYSMOD has been handled by IBM and no
longer requires your attention.

YR2000
Identifies PTFs that provide Year 2000 function, or fix a Year
2000-related problem.

For additional information, see “Naming conventions for HOLD reason IDs
and HOLD classes” on page 508.

++HOLD MCS

38 SMP/E V3R6.0 for z/OS V2R1.0 Reference

|
|
|
|
|
|
|
|

http://www.ibm.com/systems/z/advantages/security/integrity_sub.html
http://www.ibm.com/systems/z/advantages/security/integrity_sub.html
https://www-304.ibm.com/usrsrvc/account/userservices/jsp/login.jsp?persistPage=true&page=/servers/resourcelink/lib03020.nsf/pages/securityalerts%3FOpenDocument%26start%3D1%26count%3D2000&PD-REFERER=none&error=
https://www-304.ibm.com/usrsrvc/account/userservices/jsp/login.jsp?persistPage=true&page=/servers/resourcelink/lib03020.nsf/pages/securityalerts%3FOpenDocument%26start%3D1%26count%3D2000&PD-REFERER=none&error=

COMMENT(text)
free-form text to be used to describe the problem identified by the REASON
operand. The comments supplied are associated only with the reason ID
supplied. The comments can be in single-byte characters (such as English
alphanumeric characters) or double-byte characters (such as Kanji).

COMMENT(Enhanced HOLDDATA)
contains IBM–supplied Enhanced HOLDDATA, as follows:

SMRTDATA
indicates that the COMMENT operand contains Enhanced HOLDDATA.

CHGDT
specifies the date that the ++HOLD statement was last updated with
Enhanced HOLDDATA. The date is specified as yymmdd, where yy is
the last two digits of the year, mm is the month and dd is the date of
the month.

FIX
identifies the SYSMOD that resolves the held SYSMOD.

SYMP
contains a description of the hold. The description might include
symbols representing symptoms of the problem, a description of the
problem in text form, or a combination of both. The symbols that
represent symptoms identify how the problem affects the held
SYSMOD.

Here is a list of symbols that might appear and their meanings. For a
complete list of the symbols, see Enhanced HOLDDATA for z/OS
(http://service.software.ibm.com/holdata/390holddata.html).

DAL Data loss

DST2007
Daylight Saving Time support

EURO99
Euro currency symbol support

FUL Major function loss

IPL System outage (Requires IPL)

PRF Performance

PRV Pervasive

SYSPLXDS
SYSPLEX data sharing

XSYS Cross-system migration, compatibility, or toleration

YR2000
Year 2000

Bn.n, Tn.n
The Common Vulnerability Scoring System (CVSS) Base and
Temporal scores for the identified security or integrity fix.
Further information about CVSS and a guide to scoring can be
found on the FIRST (Forum of Incident Response and Security
Teams) web site (http://www.first.org/cvss/). Additional
information is available at IBM System z Security Portal
Frequently Asked Questions.

++HOLD MCS

Chapter 2. SMP/E modification control statements 39

|
|
|
|
|
|
|
|

http://www.first.org/cvss/
http://public.dhe.ibm.com/common/ssi/ecm/en/zsq03054usen/ZSQ03054USEN.PDF
http://public.dhe.ibm.com/common/ssi/ecm/en/zsq03054usen/ZSQ03054USEN.PDF

Only the first 57 characters of the SYMP field will be displayed in the
Exception SYSMOD Report generated by the REPORT ERRSYSMODS
command. Parentheses can be used within the field, but they must be
matched pairs.

DATE
specifies the date that the ++HOLD statement was generated. The date is
specified as yyddd, where yy is the last two digits of the year and ddd is the
Julian date.

ERROR, FIXCAT, SYSTEM, or USER
specifies the hold category into which the SYSMOD is to be put. At least one
of the values must be specified.

ERROR
An APAR reported an error in the SYSMOD. The SYSMOD should not
be applied or accepted until the APAR is resolved. A PTF held for this
reason is also called a program error PTF, or PE-PTF. SMP/E
automatically resolves the APAR and allows the SYSMOD to be
applied or accepted when a SYSMOD that either matches or
supersedes the APAR is also applied or accepted. Error holds can be
read only from the SMPHOLD data set.

Note: ERROR can also be specified as ERR.

FIXCAT
An APAR provides a fix for the held SYSMOD and the fix is associated
with one or more Fix Categories. It is optional whether the APAR will
affect processing for the held SYSMOD, based on the APAR's Fix
Categories and the Fix Categories of interest specified by the user. If
any one or more Fix Categories for the APAR match any of those of
interest to the user, then the held SYSMOD will not be applied or
accepted until the APAR is resolved. The APAR is resolved when a
SYSMOD that matches the APAR name, or a SYSMOD that supersedes
the APAR, is applied or accepted. FIXCAT holds can be read only from
the SMPHOLD data set.

See the FIXCAT operand for APPLY and ACCEPT command
processing for details of specifying the Fix Categories of interest.

SYSTEM
Special action outside normal SMP/E processing is required for the
SYSMOD. Examples are SYSMODs requiring a SYSGEN after they are
installed, or SYSMODs requiring the installation of an associated
engineering change (EC) level. System holds can appear in the
SYSMOD itself or in the SMPHOLD data set.

Note: SYSTEM can also be specified as SYS.

USER The SYSMOD requires special processing because of a decision you
have made. User holds can be read only from the SMPHOLD data set.

FMID
specifies the FMID to which the held SYSMOD is applicable. For external
HOLDDATA (a ++HOLD statement not within a SYSMOD), this information
allows SMP/E to receive only those statements associated with FMIDs defined
in the user's global zone. This operand is required.

REASON
a 1- to 7-character string used to help users identify the reason why the

++HOLD MCS

40 SMP/E V3R6.0 for z/OS V2R1.0 Reference

|
|
|

SYSMOD is being put into exception SYSMOD status. The reason IDs that can
be specified depend on the type of hold.

Note: A SYSMOD can contain only one ++HOLD MCS for each required
reason ID.
v An error reason ID is the APAR number that caused the SYSMOD to be

placed in exception status.
v A system reason ID identifies some special processing the SYSMOD requires.

Although SMP/E accepts any 1- to 7-character alphanumeric string as a
system reason ID, these are the values currently used by IBM on ++HOLD
statements:

ID Explanation

ACTION
The SYSMOD needs special handling before or during APPLY
processing, ACCEPT processing, or both.

AO The SYSMOD may require action to change automated operations
procedures and associated data sets and user exits in products or in
customer applications. The PTF cover letter describes any changes
(such as to operator message text, operator command syntax, or
expected actions for operator messages and commands) that can
affect automation routines.

DB2BIND
A DB2® application REBIND is required for the SYSMOD to become
effective.

DDDEF
Data set changes or additions as required.

DELETE
The SYSMOD contains a ++DELETE MCS, which deletes a load
module from the system.

DEP The SYSMOD has a software dependency.

DOC The SYSMOD has a documentation change that should be read
before the SYSMOD is installed.

DOWNLD
Code that is shipped with maintenance that needs to be
downloaded.

DYNACT
The changes supplied by the SYSMOD may be activated
dynamically without requiring an IPL. The HOLD statement
describes the instructions required for dynamic activation. If those
instructions are not followed, then an IPL is required for the
SYSMOD to take effect.

EC The SYSMOD needs a related engineering change.

ENH The SYSMOD contains an enhancement, new option or function. The
HOLD statement provides information to the user regarding the
implementation and use of the enhancement.

EXIT The SYSMOD contains changes that may affect a user exit. For
example, the interface for an exit may be changed, an exit may need
to be reassembled, or a sample exit may be changed.

++HOLD MCS

Chapter 2. SMP/E modification control statements 41

EXRF The SYSMOD must be installed in both the active and the alternative
Extended Recovery Facility (XRF) systems at the same time to
maintain system compatibility. (If you are not running XRF, you
should bypass this reason ID.)

FULLGEN
The SYSMOD needs a complete system or subsystem generation to
take effect.

IOGEN
The SYSMOD needs a system or subsystem I/O generation to take
effect.

IPL The SYSMOD requires an IPL to become effective. For example, the
SYSMOD may contain changes to LPA or NUCLEUS, the changes
may require a CLPA, or a failure to perform an IPL might lead to
catastrophic results, such as could be caused by activation of a
partial fix.

Note: If you plan to perform an IPL with CLPA after the SYSMOD
has been applied, then no further investigation of the HOLD is
required; simply bypass the IPL reason ID. However, if you are not
planning to perform an IPL with CLPA, then the details of the
HOLD statement must be investigated to determine what kind of
actions are required to activate the SYSMOD.

MSGSKEL
This SYSMOD contains message changes that must be compiled for
translated versions of the message changes to become operational on
extended TSO consoles.

If you want to use translated versions of the messages, you must
run the message compiler once for the library containing the English
message outlines, and once for each additional language you want to
be available on your system. For details, see z/OS MVS Planning:
Operations.

If you want to use only the English version of the messages, you do
not need to run the message compiler. You should bypass this reason
ID.

MULTSYS
Identifies fixes that need to be applied to multiple systems, in one of
three cases: preconditioning, coexistence, or exploitation.

RESTART
To become effective, the SYSMOD requires a special subsystem
restart operation. The HOLD statement contains information
regarding the required restart actions.

v A user reason ID is defined by the user.
v A Fix Category reason ID is the SYSMOD ID for the APAR that caused the

SYSMOD to be placed into exception status. The APAR reason ID is
associated to one or more categories of fixes.

For additional information, see “Naming conventions for HOLD reason IDs
and HOLD classes” on page 508.

++HOLD MCS

42 SMP/E V3R6.0 for z/OS V2R1.0 Reference

RESOLVER
Identifies the SYSMOD that resolves the held SYSMOD. More specifically, the
resolving SYSMOD supersedes the reason ID APAR that caused the SYSMOD
to be held.

sysmod_id
If the ++HOLD is being processed from the SMPHOLD data set, sysmod_id
specifies the name of the SYSMOD to be placed into exception SYSMOD status.

If the ++HOLD is internal to a SYSMOD, then sysmod_id specifies either the
SYSMOD that contains the ++HOLD or the originating SYSMOD that
contained the ++HOLD and is now superseded by the current SYSMOD.

This operand is required.

Usage notes
v If the text within the COMMENT operand contains parentheses, they must be in

matched pairs. For example:
COMMENT (ADD ’PARM(COND(5))’ ON THE EXEC)

This works, but the following statements result in an error:
COMMENT (ADD OPENING PARENTHESES ’(’)

or
COMMENT (ADD CLOSING PARENTHESES ’)’)

v The following restrictions apply only to ++HOLD MCSs packaged within a
SYSMOD:
– The only HOLD type allowed is SYSTEM.
– ++HOLD statements must be placed after all ++VER and ++IF statements and

before the first ++JCLIN or element statement.
– The SYSMOD ID on the ++HOLD MCS must match either the SYSMOD

containing the ++HOLD MCS, or the originating SYSMOD that contained the
++HOLD MCS and is now superseded by the current SYSMOD.

Examples

The following examples are provided to help you use the ++HOLD MCS:

Example 1: Noting a special documentation change
Here is an example of a SYSMOD containing a ++HOLD statement. PTF UZ12345,
which is applicable to function FXY1040, introduces a documentation change that
the system operator should know about.

++PTF(UZ12345) /* PTF modification. */.
++VER(Z038) FMID(FXY1040) /* For MVS product FXY1040. */

/* No prerequisites. */.++HOLD (UZ12345) /* Hold this PTF */
FMID(FXY1040) /* for this function */
SYSTEM /* for system processing and*/
REASON(DOC) /* for doc change. */
COMMENT(this PTF changes operator console

message xxx1233. A reply of U is
required to this message).

++MOD(IFBMOD01) /* Change this module */
DISTLIB(AOS12) /* in this DLIB. */.

++HOLD MCS

Chapter 2. SMP/E modification control statements 43

Example 2: Marking a PTF that is in error
When IBM discovers errors in PTFs it has already shipped, it provides information
about these program error PTFs (PE-PTFs) in RETAIN®. To make sure these PTFs
are held, you can use the RETAIN information to build ++HOLD statements for
the PTFs.

Note: In this example, because only ++HOLD statements are being shown, none of
them are underlined.
++HOLD (UZ12345) /* Hold this PTF */

FMID(FXY1040) /* for this function */
ERROR /* for APAR fix. */
REASON(AZ00001) /* APAR is AZ00001. */
COMMENT(this APAR causes loop) /* */.

++HOLD (UZ12345) /* Hold this PTF */
FMID(FXY1040) /* for this function */
ERROR /* for APAR fix. */
REASON(AZ00002) /* APAR is AZ00002. */
COMMENT(this APAR causes 0C4) /* */.

++HOLD (UZ12346) /* Hold this PTF */
FMID(FXY1040) /* for this function */
ERROR /* for APAR fix. */
REASON(AZ00003) /* APAR is AZ00003. */
COMMENT(incorrect output on console) /* */.

++HOLD (UZ12347) /* Hold this PTF */
FMID(FXY1040) /* for this function */
ERROR /* for APAR fix. */
REASON(AZ00004) /* APAR is AZ00004. */

/* Integrity - no comment. */.

Example 3: Specifying a hold class
Here is an example of a SYSMOD containing a ++HOLD statement for a PTF
requiring a change that applies only if a Year 2000-related fix is desired.
++PTF(UZ12345) /* PTF modification. */.
++VER(Z038) FMID(FXY1040) /* For MVS product FXY1040. */

. /* No prerequisites. */
++HOLD (UZ12345) /* Hold this PTF */

FMID(FXY1040) /* for this function */
ERROR /* for APAR fix. */
REASON(AQ19558) /* APAR is AQ19558. */
COMMENT(SMRTDATA(FIX(UQ21725)

SYMP(YR2000) CHGDT(981019)))
CLASS(YR2000) /* This change is required */

/* only for Yr 2000 support.*/.
++MOD(IFBMOD01) /* Change this module */

DISTLIB(AOS12) /* in this DLIB. */.

Example 4: Identifying APARs and their associated fix
categories

Here are some examples of using the ++HOLD FIXCAT MCS to identify APARs
and their associated fix categories.
++HOLD(HBB7730) /* Held FMID */

FMID(HBB7730)
FIXCAT /* Associates an APAR to a fix category */
REASON(AA15968) /* The APAR */
CATEGORY(IBM.Device.2094) /* A fix category */
RESOLVER(UA27113) /* The fixing PTF */.

++HOLD MCS

44 SMP/E V3R6.0 for z/OS V2R1.0 Reference

++IF MCS
The ++IF MCS specifies requisites that must be installed with a SYSMOD if a
certain function is installed. If the specified function is installed in the zone that
SMP/E is trying to install this SYSMOD into, the requisite must also be installed in
that zone; otherwise SMP/E does not install the SYSMOD containing the ++IF
MCS. If the specified function is not yet installed in the zone where SMP/E is
trying to install this SYSMOD, SMP/E saves the information from the ++IF MCS in
case the specified function is installed later.

++IF statements are interpreted, reformatted, and placed in the target zone data set
during APPLY processing and in the distribution zone data set during ACCEPT
processing.

++IF statements can describe dependencies between two products, even if those
products have different SRELs and are defined in different zones. The information
from these statements is used by the REPORT command to identify cross-zone
requisites—that is, conditional requisites needed in one zone because of ++IF
statements in a SYSMOD installed in another zone.

A ++IF statement is associated with the ++VER MCS preceding it in the SYSMOD.
Multiple ++IF statements can be specified following each ++VER MCS.

Syntax

++IF MCS

�� ++IF FMID (sysmod_id)
THEN

�

,

REQ (sysmod_id) • ��

Operands

FMID
specifies the function that is to be checked to determine whether it is installed
in one of the following:
v The target libraries (for APPLY processing)
v The distribution libraries (for ACCEPT processing)

This operand is required. It is not satisfied by superseded FMIDs.

REQ
specifies the SYSMODs that are needed if the function SYSMOD specified on
the FMID operand of the ++IF MCS is installed. This operand is required.

THEN
specifies that the requisite for the ++IF MCS follows.

Usage notes
v The operands must be specified in the order shown in the syntax.
v The function specified for FMID must be different from the SYSMOD ID on the

header statement.

++IF MCS

Chapter 2. SMP/E modification control statements 45

Examples

PTF UZ00004 contains service for elements belonging to function FXY1040. If
function FXY1050 is installed in the same zone, PTF UZ00005 must also be
installed in that zone in order for PTF UZ00004 to be installed successfully. If
function FXY1050 is not presently installed, PTF UZ00005 is not required; however,
SMP/E saves the ++IF MCS in case function FXY1050 is installed in the future.
Then, when FXY1050 is installed, PTF UZ00005 is considered an unsatisfied
conditional requisite that must also be installed.

Here is an example of a SYSMOD containing a ++IF statement to define UZ00005
as a conditional requisite:
++PTF(UZ00004) /* PTF SYSMOD. */.
++VER(Z038) FMID(FXY1040) /* For MVS product FXY1040. */.
++IF FMID(FXY1050) /* If FXY1050 is on, or */

THEN /* when it’s put on later, */
REQ(UZ00005) /* UZ00005 is required. */.

++MOD(IFBMOD01) /* Replace this module */
DISTLIB(AOSFB) /* in this DLIB. */.

++MACUPD(IFBMAC01) /* Update this macro */
DISTLIB(IFBMACS) /* in this DLIB. */.

++IF MCS

46 SMP/E V3R6.0 for z/OS V2R1.0 Reference

++JAR MCS
The ++JAR MCS describes a Java™ ARchive (JAR) file. The Java jar command is
used to construct and update such files in a UNIX file system. JAR elements can
have any of the following characteristics:
v The record format (RECFM) must be F, FA, FM, FB, FBA, FBM, V, VA, VM, VB,

VBA, or VBM.
v Elements with variable-length records cannot contain spanned records.
v The maximum LRECL is 32,654.
v The records can be numbered or unnumbered.

There are MCS statements to replace JAR elements, just as there are MCS
statements to replace other types of elements. The ++JARUPD MCS can be used to
update JAR elements.

Syntax

The syntax to be used depends on the processing to be performed for the element:
v Adding or replacing the element
v Deleting the element

Adding or replacing a JAR element

++JAR MCS

�� ++JAR (name)
DISTLIB (ddname) JARPARM (character_string)

�

�

�

,

LINK (linkname)

PARM (character_string)
�

�
RELFILE (number)
TXLIB (ddname)

FROMDS

RMID (sysmod_id)
�

�
SHSCRIPT (scriptname)

, PRE , POST

�

�
SYMLINK SYSLIB (ddname)

�

,

UMID (sysmod_id)

�

�

�

,

VERSION (sysmod_id)

• ��

FROMDS

FROMDS (DSN (dsn) NUMBER (n))
VOL (vol) UNIT (unit)

++JAR MCS

Chapter 2. SMP/E modification control statements 47

SYMLINK

� �

, ,

SYMLINK (symlinkname) SYMPATH (sympathname)

Deleting a JAR element

++JAR MCS

�� ++JAR (name) DELETE
DISTLIB (ddname)

�

�

�

,

VERSION (sysmod_id)

• ��

Operands
DELETE

specifies that the JAR element and all of its link names and symbolic link
names are to be removed from the “target library” (UNIX file system) and the
distribution library.

Note:

1. DELETE is mutually exclusive with all other operands except DISTLIB and
VERSION.

2. If the element statement is in a base function, you may want to use the
DELETE operand on the ++VER MCS to delete the previous release, rather
than on the element statement to delete a specific element.

3. Specification of the DELETE operand results in all link names and symbolic
link names of the element being deleted along with the element identified.

DISTLIB
specifies the ddname of the distribution library for the specified JAR element.
During ACCEPT processing, SMP/E installs the JAR element into the
distribution library as a member. (The distribution library must be a PDS or
PDSE; it cannot be part of a UNIX file system.)

Note:

1. DISTLIB must be specified when the JAR element is first installed.
2. If an element entry already exists in the target zone or distribution zone

and the value currently in that entry does not match that specified in the
DISTLIB operand, the SYSMOD is not applied or accepted.

FROMDS
identifies the partitioned data set that contains this element.

Note: The FROMDS operand and its DSN, NUMBER, VOL, and UNIT
suboperands are included in the MCS generated by the BUILDMCS command.
IBM does not intend the FROMDS operand to be used in manually coded
MCS.

DSN
specifies the dsname of the FROMDS data set. The specified data set name

++JAR MCS

48 SMP/E V3R6.0 for z/OS V2R1.0 Reference

must conform to standard data set naming conventions and cannot contain
parentheses. The maximum length of the entire name is 44 characters
(including the periods).

NUMBER
specifies a number that SMP/E is to use when assigning a name to the
SMPTLIB data set associated with this FROMDS data set. (This is similar to
the way the relative file number is used in RELFILE processing.)

VOL
specifies, for an uncataloged data set, the volume serial number of the
volume containing the FROMDS data set. If specified, this volume
identifier must be from 1 to 6 alphanumeric characters.

VOL may be omitted for a cataloged data set.

UNIT
specifies, for an uncataloged data set, the UNIT type containing the
FROMDS data set. If specified, the UNIT value must be from 1 to 8
characters and must conform to standard UNIT naming conventions.
SMP/E accepts any nonblank characters specified between the open and
close parentheses, up to a maximum length of 8.

UNIT may be omitted for a cataloged data set.

Note: FROMDS is mutually exclusive with DELETE, RELFILE, and TXLIB.

JARPARM
specifies a character string that is to be passed to the jar command as a
command option when updating the JAR file. The maximum length of this
character string is 300 bytes of data.

Only those jar command options that require only the option indicator to be
specified are supported, such as 0 and M. Options requiring additional input
over and above the option indicator are not supported. Examples of
unsupported options are the m and -C options.

Note:

1. The character string can include any non-blank characters (characters x'41'
through x'FE').

2. The JARPARM value is saved and passed to the jar command as follows:
v If JARPARM is specified on the element MCS, any value previously

saved in the JAR element entry is overlaid and the new value is passed
to the jar command.

v If JARPARM is not specified on the element MCS and a saved value
exists in the JAR element entry, then the saved value is passed to the jar
command.

v If JARPARM is not specified on the element MCS and there is no saved
value in the JAR element entry, then no value is saved in the element
entry and no value is passed to the jar command.

LINK
specifies the alternative names by which this JAR element can be known in a
UNIX file system. The full name is produced by concatenating the specified
linkname with a UNIX file system directory identified by the SYSLIB subentry.
Each linkname is passed to the HFS copy utility as an execution parameter.

Note:

++JAR MCS

Chapter 2. SMP/E modification control statements 49

1. The linkname can be from 1 to 1023 characters.
2. A linkname can be enclosed in single apostrophes ('). A linkname must be

enclosed in single apostrophes if any of the following is true:
v The linkname contains lowercase alphabetic characters.
v The linkname contains a character that is not uppercase alphabetic,

numeric, national ($, #, @), slash (/), plus (+), hyphen, period, or
ampersand (&).

v The linkname spans more than one line in the control statement.
The single apostrophes used to enclose a linkname (the delimiters) do not
count as part of the 1023-character limit.

3. Any apostrophes specified as part of a linkname (not the delimiters) must
be doubled.
Double apostrophes count as two characters in the 1023-character limit.

4. The linkname can include characters X'40' through X'FE'.
5. LINK values are saved and passed to the HFS copy utility as follows:

v If LINK is specified on the element MCS, any values previously saved in
the element entry are overlaid.

v If LINK is not specified on the element MCS and saved values exist in
the JAR element entry, the saved values are passed to the HFS copy
utility as execution parameters.
If LINK is not specified on the element MCS and there are no saved
values in the JAR element entry, no linknames are passed to the HFS
copy utility.

name
specifies the name of the JAR element member. The name can contain any
uppercase alphabetic, numeric, or national ($, #, @) character and can be 1 to 8
characters long.

PARM
specifies a character string that is to be passed to the hierarchical file system
copy utility as an execution-time parameter. (The values that can be specified
on the PARM operand, such as PATHMODE, are those accepted by the
BPXCOPY utility. See z/OS UNIX System Services Command Reference for a
description of BPXCOPY and the values it accepts.) The maximum length of
this character string is 300 bytes of nonblank data. If any blanks are specified
in the PARM value, they are deleted by SMP/E during processing and do not
count toward the 300-byte maximum.

Note:

1. PARM is an optional operand.
2. The character string can be entered free-form, without regard to blanks

(which are compressed out of the string), and can span multiple 80-byte
records.

3. If parentheses are specified in the PARM value, there must always be a pair
(left and right); otherwise, the results are unpredictable.

4. PARM values are saved and passed to the HFS copy utility as follows:
v If PARM is specified on the element MCS, any values previously saved

in the JAR element entry are overlaid.
v If PARM is not specified on the element MCS and saved values exist in

the JAR element entry, the saved values are passed to the HFS copy
utility as execution parameters.

++JAR MCS

50 SMP/E V3R6.0 for z/OS V2R1.0 Reference

If PARM is not specified on the element MCS and there are no saved
values in the JAR element entry, no parameters are saved from the
element MCS or passed from the JAR element entry to the HFS copy
utility.

5. If the UTILITY entry for the HFS copy utility specifies a PARM value, those
parameters are passed to the utility in addition to any parameters saved in
the JAR element entry.

RELFILE
identifies which relative file associated with the SYSMOD contains this
element. This operand is required if you provide the element in RELFILE
format, rather than inline or in a TXLIB data set.

Note:

1. The RELFILE value must be a decimal number from 1 to 9999.
2. RELFILE is mutually exclusive with FROMDS and TXLIB.

RMID
specifies the last SYSMOD that replaced this element. This operand can be
used only in a service-updated function, and the specified PTF must be
integrated into the function.

SHSCRIPT
specifies a UNIX shell script, scriptname, to be invoked when the element is
installed in (or deleted from) a directory of a UNIX file system. scriptname can
contain any uppercase alphabetic, numeric, or national ($, #, @) character and
can be 1 to 8 characters long.

A shell script is commonly used to complete the installation of an element. For
example, if the JAR element requires an external link, you can provide a shell
script that performs the necessary steps to create the external link for the JAR
element.

scriptname must be the first value to follow the SHSCRIPT operand.

You define the shell script to SMP/E through a ++SHELLSCR statement, which
can be within the same SYSMOD as the JAR element, or within a SYSMOD
that was processed previously.

You cannot define more than one shell script for an element.

You can follow scriptname with either of two optional values, PRE and POST, to
specify the point in SMP/E processing when the shell script is to be invoked.
The following examples show how you can use the PRE and POST values:
v To run the shell script before the element is copied to a UNIX file system

directory, specify:
SHSCRIPT(scriptname,PRE)

v To run the shell script after the element is copied to a UNIX file system
directory, specify:
SHSCRIPT(scriptname,POST)

or specify no value after scriptname to use POST by default.
v To run the shell script both before and after the element is copied to a UNIX

file system directory, specify:
SHSCRIPT(scriptname,PRE,POST)

If you do not specify a PRE or POST value for the shell script, SMP/E invokes
the shell script after the element is installed in the directory.

++JAR MCS

Chapter 2. SMP/E modification control statements 51

You cannot specify the SHSCRIPT operand with the DELETE operand.

SYMLINK
specifies a list of one or more symbolic links, which are file names that can be
used as alternate names for referring to this element in a UNIX file system.
Each linkname listed here is associated with a pathname listed in the
SYMPATH operand. For more information about how the linknames and
pathnames are associated, see the description of the SYMPATH operand and
“Example 3: Packaging a SYSMOD with a symbolic link” on page 35.

The SYMLINK value specified should be a relative path value (that is, it does
not start with a slash ["/"]). When the symbolic link is created, it is created
relative to the pathname of the element's SYSLIB ddname.

SYMLINK must be specified if the SYMPATH operand is specified, otherwise
it must be omitted.

A symbolic linkname can be from one to 1023 characters. Any characters in the
range X'40' through X'FE' may be specified.

The value may be enclosed in single apostrophes. It must be enclosed in single
apostrophes if:
v it is continued to the next line in the MCS, or
v it contains a character that is not uppercase alphabetic, numeric, national ($,

#, @), slash (/), plus (+), hyphen, period, or ampersand (&).

If an apostrophe is a part of the symbolic linkname and is not a delimiter, then
it must be doubled. These two apostrophes count as two characters against the
1023 character limit for a symbolic linkname. The single apostrophes used to
enclose a symbolic linkname do not count against the 1023 character limit.

SYMPATH
specifies a list of one or more pathnames that are associated with symbolic
links identified by the SYMLINK operand. The first pathname in the
SYMPATH operand is associated with the first symbolic link in the SYMLINK
operand, the second pathname with the second symbolic link, and so on. If
there are more symbolic links listed than there are pathnames, then the last
listed pathname is used for the remaining symbolic links. If more pathnames
are specified than symbolic linknames, then the excess pathnames (at the end
of the list) are ignored.

The SYMPATH value specified should be a relative path value. When the
symbolic link is accessed, the system assumes the destination of that link (the
SYMPATH value) is relative to that symbolic link (the SYMLINK value). For
more information about how the pathnames and linknames are associated, see
“Example 3: Packaging a SYSMOD with a symbolic link” on page 35.

SYMPATH must be specified if the SYMLINK operand is specified, otherwise
it must be omitted.

A symbolic pathname can be one to 1023 characters. Any characters in the
range X'40' through X'FE' may be specified.

The value may be enclosed in single apostrophes. It must be enclosed in single
apostrophes, if:
v it is continued to the next line in the MCS, or
v it contains a character that is not uppercase alphabetic, numeric, national ($,

#, @), slash (/), plus (+), hyphen, period, or ampersand (&).

If an apostrophe is a part of the symbolic pathname and is not a delimiter,
then it must be doubled. These two apostrophes count as two characters

++JAR MCS

52 SMP/E V3R6.0 for z/OS V2R1.0 Reference

against the 1023 character limit for a symbolic pathname. The single
apostrophes used to enclose a symbolic linkname do not count against the 1023
character limit.

SYSLIB
specifies the ddname of the “target library” within the UNIX file system for
the element.

During APPLY processing, the HFS copy utility installs the JAR element into a
UNIX file system. During RESTORE processing, the HFS copy utility copies the
JAR element from the distribution library member into a UNIX file system.

Note: SYSLIB must be specified when the JAR element is first installed.

TXLIB
is the ddname of the partitioned data set containing the JAR element. This
operand is required if the JAR element is provided in a data set that the users
have access to, rather than inline or in RELFILE format.

Note:

1. SMPTLIB cannot be used as a value on the TXLIB operand.
2. TXLIB is mutually exclusive with FROMDS and RELFILE.

UMID
specifies the SYSMODs that have updated this JAR file since it was last
replaced. This operand can be used only in a service-updated function, and the
specified SYSMODs must be integrated into the function.

VERSION
specifies one or more function SYSMODs that currently contain the element.
The function containing the element MCS takes over ownership of the element
from the specified functions.

When VERSION is specified on an element statement, it overrides any
VERSION operand values that might be specified on the ++VER MCS.

Usage notes
v If the JAR element is packaged inline, it must immediately follow the ++JAR

MCS and must not contain any records starting with ++. Neither FROMDS, nor
RELFILE, nor TXLIB can be specified on the ++JAR MCS when the element is
packaged inline.

v To be packaged inline, a JAR file element must contain fixed-block-80 records. To
achieve this, the original element can be extracted from a UNIX file system into
a data set (using the TSO command OGET for example), and then GIMDTS can
be used to transform the element into fixed-block-80 records.

Examples
Here is an example of the ++JAR MCS.
++JAR(ABCTTT) DISTLIB(AABCBIN) SYSLIB(SABCBIN) RELFILE(2)

PARM(PATHMODE(0,6,4,4))
LINK(’../TicTacToe.jar’)
SYMLINK(’../../../../../usr/lib/TicTacToe.jar’)
SYMPATH(’../../usr/lpp/abc/bin/TicTacToe.jar’).

++JAR MCS

Chapter 2. SMP/E modification control statements 53

++JARUPD MCS
The ++JARUPD MCS describes an update to a Java ARchive (JAR) file in a UNIX
file system. The Java jar command is used to construct and update such files in a
UNIX file system. A JARUPD element is itself a Java Archive file, but it contains
only the component files to be added to or replaced in an existing JAR file, as
opposed to a complete replacement for an existing JAR file.

Note:

1. To update JAR files, SMP/E must use the update (u) option of the jar
command, which is provided in version 1.2 of the Java Development Kit (JDK).
Therefore, in order to perform APPLY or ACCEPT command operations for a
SYSMOD that contains JARUPD elements, SMP/E requires the IBM Developer
Kit for OS/390, Java 2 Technology Edition, or its successor. Java 2 Technology
Edition is a no-charge product available for users of OS/390 Version 2 Release 8
and above, or z/OS Version 1 Release 1 and above.
Java must be available in the execution environment for SMP/E. The
SMPJHOME DD statement or DDDEF entry should be used to specify the
directory where Java resides. For example, if Java 1.4, which has been installed
in the /usr/lpp/java/J1.4 directory, should be used, then the following DD
statement should be specified:
//SMPJHOME DD PATH=’/usr/lpp/java/J1.4/’,PATHDISP=KEEP

For additional information about how to set the SMPJHOME value, see
Chapter 4, “SMP/E data sets and files,” on page 139.

2. There is no way to delete component files from a JAR file. ++JARUPD can be
used only to add or replace component files in a JAR file. If component files
must be deleted, then the entire JAR file must be replaced with another JAR file
from which those component files have been removed.

Syntax

++JARUPD MCS

�� ++JARUPD (name)
JARPARM (character_string)

�

�

�

,

LINK (linkname)

PARM (character_string)
�

�
RELFILE (number)
TXLIB (ddname)

•
SYMLINK

��

SYMLINK

� �

, ,

SYMLINK (symlinkname) SYMPATH (sympathname)

++JARUPD MCS

54 SMP/E V3R6.0 for z/OS V2R1.0 Reference

Operands

JARPARM
specifies a character string that is to be passed to the jar command as a
command option when updating the JAR file. The maximum length of this
character string is 300 bytes of data.

Only those jar command options that require only the option indicator to be
specified are supported, such as 0 and M. Options requiring additional input
over and above the option indicator are not supported. Examples of
unsupported options are the m and -C options.

Note:

1. The character string can include any non-blank characters (characters x'41'
through x'FE').

2. The JARPARM value is saved and passed to the jar command as follows:
v If JARPARM is specified on the ++JARUPD, any value previously saved

in the JAR element entry is overlaid and the new value is passed to the
jar command.

v If JARPARM is not specified on the ++JARUPD and a saved value exists
in the JAR element entry, then the saved value is passed to the jar
command.

v If JARPARM is not specified on the ++JARUPD and there is no saved
value in the JAR element entry, then no value is saved in the element
entry and no value is passed to the jar command.

LINK
specifies the alternative names by which this JAR element can be known in a
UNIX file system. The full name is produced by concatenating the specified
linkname with a UNIX file system directory identified by the SYSLIB subentry.
Each linkname is passed to the HFS copy utility as an execution parameter.

Note:

1. The linkname can be from 1 to 1023 characters.
2. A linkname can be enclosed in single apostrophes ('). A linkname must be

enclosed in single apostrophes if any of the following is true:
v The linkname contains lowercase alphabetic characters.
v The linkname contains a character that is not uppercase alphabetic,

numeric, national ($, #, @), slash (/), plus (+), hyphen, period, or
ampersand (&).

v The linkname spans more than one line in the control statement.
The single apostrophes used to enclose a linkname (the delimiters) do not
count as part of the 1023-character limit.

3. Any apostrophes specified as part of a linkname (not the delimiters) must
be doubled.
Double apostrophes count as two characters in the 1023-character limit.

4. The linkname can include characters X'40' through X'FE'.
5. LINK values are saved and passed to the HFS copy utility as follows:

v If LINK is specified on the ++JARUPD, any values previously saved in
the element entry are overlaid.

v If LINK is not specified on the ++JARUPD and saved values exist in the
JAR element entry, the saved values are passed to the HFS copy utility as
execution parameters.

++JARUPD MCS

Chapter 2. SMP/E modification control statements 55

If LINK is not specified on the ++JARUPD and there are no saved values
in the JAR element entry, no linknames are passed to the HFS copy
utility.

name
specifies the name of the JAR element member. The name can contain any
uppercase alphabetic, numeric, or national ($, #, @) character and can be 1 to 8
characters long.

PARM
specifies a character string that is to be passed to the hierarchical file system
copy utility as an execution-time parameter. (The values that can be specified
on the PARM operand, such as PATHMODE, are those accepted by the
BPXCOPY utility. See z/OS UNIX System Services Command Reference for a
description of BPXCOPY and the values it accepts.) The maximum length of
this character string is 300 bytes of nonblank data. If any blanks are specified
in the PARM value, they are deleted by SMP/E during processing and do not
count toward the 300-byte maximum.

Note:

1. PARM is an optional operand.
2. The character string can be entered free-form, without regard to blanks

(which are compressed out of the string), and can span multiple 80-byte
records.

3. If parentheses are specified in the PARM value, there must always be a pair
(left and right); otherwise, the results are unpredictable.

4. PARM values are saved and passed to the HFS copy utility as follows:
v If PARM is specified on the ++JARUPD, any values previously saved in

the JAR element entry are overlaid.
v If PARM is not specified on the ++JARUPD and saved values exist in the

JAR element entry, the saved values are passed to the HFS copy utility as
execution parameters.
If PARM is not specified on the ++JARUPD and there are no saved
values in the JAR element entry, no parameters are saved from the
++JARUPD or passed from the JAR element entry to the HFS copy
utility.

5. If the UTILITY entry for the HFS copy utility specifies a PARM value, those
parameters are passed to the utility in addition to any parameters saved in
the JAR element entry.

RELFILE
identifies which relative file associated with the SYSMOD contains this
element. This operand is required if you provide the element in RELFILE
format, rather than inline or in a TXLIB data set.

Note:

1. The RELFILE value must be a decimal number from 1 to 9999.
2. RELFILE is mutually exclusive with TXLIB.

SYMLINK
specifies a list of one or more symbolic links, which are file names that can be
used as alternate names for referring to this element in a UNIX file system.
Each linkname listed here is associated with a pathname listed in the
SYMPATH operand. For more information about how the linknames and

++JARUPD MCS

56 SMP/E V3R6.0 for z/OS V2R1.0 Reference

pathnames are associated, see the description of the SYMPATH operand and
“Example 3: Packaging a SYSMOD with a symbolic link” on page 35.

The SYMLINK value specified should be a relative path value (that is, it does
not start with a slash ["/"]). When the symbolic link is created, it is created
relative to the pathname of the element's SYSLIB ddname.

SYMLINK must be specified if the SYMPATH operand is specified, otherwise
it must be omitted.

A symbolic linkname can be from one to 1023 characters. Any characters in the
range X'40' through X'FE' may be specified.

The value may be enclosed in single apostrophes. It must be enclosed in single
apostrophes if:
v it is continued to the next line in the MCS, or
v it contains a character that is not uppercase alphabetic, numeric, national ($,

#, @), slash (/), plus (+), hyphen, period, or ampersand (&).

If an apostrophe is a part of the symbolic linkname and is not a delimiter, then
it must be doubled. These two apostrophes count as two characters against the
1023 character limit for a symbolic linkname. The single apostrophes used to
enclose a symbolic linkname do not count against the 1023 character limit.

SYMPATH
specifies a list of one or more pathnames that are associated with symbolic
links identified by the SYMLINK operand. The first pathname in the
SYMPATH operand is associated with the first symbolic link in the SYMLINK
operand, the second pathname with the second symbolic link, and so on. If
there are more symbolic links listed than there are pathnames, then the last
listed pathname is used for the remaining symbolic links. If more pathnames
are specified than symbolic linknames, then the excess pathnames (at the end
of the list) are ignored.

The SYMPATH value specified should be a relative path value. When the
symbolic link is accessed, the system assumes the destination of that link (the
SYMPATH value) is relative to that symbolic link (the SYMLINK value). For
more information about how the pathnames and linknames are associated, see
“Example 3: Packaging a SYSMOD with a symbolic link” on page 35.

SYMPATH must be specified if the SYMLINK operand is specified, otherwise
it must be omitted.

A symbolic pathname can be one to 1023 characters. Any characters in the
range X'40' through X'FE' may be specified.

The value may be enclosed in single apostrophes. It must be enclosed in single
apostrophes, if:
v it is continued to the next line in the MCS, or
v it contains a character that is not uppercase alphabetic, numeric, national ($,

#, @), slash (/), plus (+), hyphen, period, or ampersand (&).

If an apostrophe is a part of the symbolic pathname and is not a delimiter,
then it must be doubled. These two apostrophes count as two characters
against the 1023 character limit for a symbolic pathname. The single
apostrophes used to enclose a symbolic linkname do not count against the 1023
character limit.

TXLIB
is the ddname of the partitioned data set containing the JAR element. This

++JARUPD MCS

Chapter 2. SMP/E modification control statements 57

operand is required if the JAR element is provided in a data set that the users
have access to, rather than inline or in RELFILE format.

Note:

1. SMPTLIB cannot be used as a value on the TXLIB operand.
2. TXLIB is mutually exclusive with RELFILE.

Usage notes
v If the JAR update file is packaged inline, it must immediately follow the

++JARUPD MCS and must not contain any records starting with ++. Neither
RELFILE nor TXLIB can be specified on the MCS when the element is packaged
inline.

v To be packaged inline, a JAR file element must contain fixed-block-80 records. To
do this, the original element can be extracted from a UNIX file system into a
data set (using, for example, the TSO command OGET), and then GIMDTS can
be used to transform the element into fixed-block-80 records.

Examples

Here is an example of the ++JARUPD MCS.
++JARUPD(ABCTTT) JARPARM(0M)

PARM(PATHMODE(0,6,4,4))
LINK(’../TicTacToe.jar’)
SYMLINK(’../../../../../usr/lib/TicTacToe.jar’)
SYMPATH(’../../usr/lpp/abc/bin/TicTacToe.jar’).

++JARUPD MCS

58 SMP/E V3R6.0 for z/OS V2R1.0 Reference

++JCLIN MCS
The ++JCLIN MCS identifies the start of the job control language (JCL) input that
must be processed as part of installing the SYSMOD. The JCLIN input is used to
identify the structure of the target system libraries to SMP/E so that the modules,
macros, and source code being replaced can be installed correctly. Processing of
++JCLIN input during APPLY or ACCEPT is similar to the processing done for the
JCLIN command. For an additional description of JCLIN processing, see SMP/E for
z/OS Commands.

Note: The ++JCLIN MCS does not cause SMP/E to update the target or
distribution libraries; only the entries in the target and distribution zones are
updated. These libraries are updated when SMP/E processes the elements in the
SYSMOD. The element statements in the SYSMOD determine which elements
should be installed and cause SMP/E to invoke the utilities that install the
elements.

Syntax

++JCLIN MCS

�� ++JCLIN
ASM (PGM = asmpgm)

asmproc
CALLLIBS COPY (PGM = copypgm)

copyproc

�

�
LKED (PGM = lkedpgm)

lkedproc
OPCODE (member)

�

�
RELFILE (number)
TXLIB (ddname)
FROMDS (DSN (dsn) NUMBER (n))

VOL (vol) UNIT (unit)

�

�
UPDATE (PGM = updpgm)

updproc

• ��

Operands

ASM
specifies the name of the assembler program or procedure that is used in the
JCLIN data. This operand must be specified if the name is different from those
recognized by SMP/E, which are the program names ASMBLR, ASMA90,
IEUASM, IEV90, and IFOX00, and procedure name ASMS.

CALLLIBS
specifies that SMP/E is to process SYSLIB DD statements in JCLIN link-edit
steps. SYSLIB DD statements are processed only if the CALLLIBS operand is
specified on the JCLIN command or ++JCLIN MCS, or if //*CALLLIBS=YES is
encountered after a job card preceding a link-edit step. If the CALLLIBS
operand or the CALLLIBS comment is not specified, SMP/E ignores any
SYSLIB DD statements it encounters.

COPY
specifies the name of the copy program or procedure that is used in the JCLIN
data. This operand must be specified if the name is different from that
recognized by SMP/E, which is the program name IEBCOPY.

FROMDS
identifies the partitioned data set that contains this element.

++JCLIN MCS

Chapter 2. SMP/E modification control statements 59

Note: The FROMDS operand and its DSN, NUMBER, VOL, and UNIT
suboperands are included in the MCS generated by the BUILDMCS command.
IBM does not intend the FROMDS operand to be used in manually coded
MCS.

DSN
specifies the dsname of the FROMDS data set. The specified data set name
must conform to standard data set naming conventions and cannot contain
parentheses. The maximum length of the entire name is 44 characters
(including the periods).

NUMBER
specifies a number that SMP/E is to use when assigning a name to the
SMPTLIB data set associated with this FROMDS data set. (This is similar to
the way the relative file number is used in RELFILE processing.)

VOL
specifies, for an uncataloged data set, the volume serial number of the
volume containing the FROMDS data set. If specified, this volume
identifier must be from 1 to 6 alphanumeric characters.

VOL may be omitted for a cataloged data set.

UNIT
specifies, for an uncataloged data set, the UNIT type containing the
FROMDS data set. If specified, the UNIT value must be from 1 to 8
characters and must conform to standard UNIT naming conventions.
SMP/E accepts any nonblank characters specified between the open and
close parentheses, up to a maximum length of 8.

UNIT may be omitted for a cataloged data set.

Note: FROMDS is mutually exclusive with DELETE, RELFILE, and TXLIB.

LKED
specifies the name of the link-edit program or procedure that is used in the
JCLIN data. This operand must be specified if the name is different from those
recognized by SMP/E, which are the program names HEWL, HEWLH096,
HEWLKED, IEWBLINK, IEWL, and LINKEDIT, and procedure name LINKS.

OPCODE
identifies an OPCODE member containing control statements identifying
character strings to be treated as OPCODEs or macros.

PGM
specifies a program name (instead of a procedure name) for a utility.

RELFILE
specifies the relative position, within the files associated with this SYSMOD, of
the file containing the JCLIN data as one of its members.

The member in the RELFILE data set containing the JCLIN input data must
match the SYSMOD's SYSMOD ID; for example, the JCLIN for
++PTF(UZ11111) is supplied in member UZ11111 of the unloaded PDS
identified by the RELFILE operand.

Note: RELFILE is mutually exclusive with FROMDS and TXLIB.

TXLIB
specifies the ddname of a partitioned data set containing the JCLIN data as
one of its members.

++JCLIN MCS

60 SMP/E V3R6.0 for z/OS V2R1.0 Reference

The member of the TXLIB data set containing the JCLIN input data must
match the SYSMOD's SYSMOD ID; for example, the JCLIN for
++PTF(UZ11111) is supplied in member UZ11111 of the data set identified by
the TXLIB operand.

Note:

1. SMPTLIB cannot be used as a value on the TXLIB operand.
2. TXLIB is mutually exclusive with FROMDS and RELFILE.

UPDATE
specifies the name of the update program or procedure that is used in the
JCLIN data. This operand must be specified if the name is different from that
recognized by SMP/E, which is the program name IEBUPDTE.

Usage notes
v If the JCLIN data is packaged inline, it must immediately follow the ++JCLIN

MCS and must not contain any records that start with ++. Neither FROMDS,
nor RELFILE, nor TXLIB can be specified on the ++JCLIN MCS.

v If the JCLIN data is packaged in a TXLIB data set, the ddname specified on the
TXLIB operand is required during APPLY and ACCEPT processing.

v For information about packaging SYSMODs in RELFILE format, see z/OS
Packaging Rules.

Examples

For these examples, assume function JXY1040 contains some inline JCLIN, one
module (IFBMOD01), and one macro (IFBMAC01). The same format was used to
package the JCLIN and the elements.

Note: Even though the examples are for a function, they are equally valid for
PTFs, APARs, and USERMODs.

The following examples are provided to help you use the ++JCLIN MCS:

Example 1: ++JCLIN data packaged inline
Here is an example of a SYSMOD containing a ++JCLIN statement for packaging
JCLIN inline:
++FUNCTION(JXY1040) /* Function SYSMOD. */.
++VER(Z038) /* For MVS, no requisites. */.
++JCLIN /* JCLIN is required. */.
//JOB JOB ’accounting info’,MSGLEVEL=(1,1)
//STEP1 EXEC PGM=IEWL
//SYSLMOD DD DSN=SYS1.LINKLIB,DISP=SHR
//AOS12 DD DSN=SYS1.AOS12,DISP=SHR
//SYSLIN DD *
INCLUDE AOS12(IFBMOD01)
ENTRY IFBMOD01
ALIAS IFBMOD01A
NAME IFBMOD01(R)
/*
++MOD(IFBMOD01) /* This module */

DISTLIB(AOS12) /* for this DLIB. */.
...
... object deck for IFBMOD01
...
++MAC(IFBMAC01) /* This macro */

++JCLIN MCS

Chapter 2. SMP/E modification control statements 61

http://publibz.boulder.ibm.com/epubs/pdf/gimpkg80.pdf
http://publibz.boulder.ibm.com/epubs/pdf/gimpkg80.pdf

DISTLIB(AMACLIB) /* for this DLIB. */.
...
... macro replacement for IFBMAC01
...

No special DD statements, other than those for the target and DLIBs, are required
to process this SYSMOD.

During APPLY, SMP/E processes the ++JCLIN data, determines that module
IFBMOD01 gets linked into load module IFBMOD01 (which has an alias), stores
information in the target zone, and then invokes the proper utilities to install the
module and macro.

Example 2: ++JCLIN data packaged in a RELFILE
Here is an example of a SYSMOD containing a ++JCLIN statement for packaging
JCLIN in relative files. No special ++JCLIN operands are required.
++FUNCTION(JXY1040) /* Function SYSMOD */

FILES(3) /* in RELFILE format. */.
++VER(Z038) /* For MVS, no requisites. */.
++JCLIN /* JCLIN is required. */

RELFILE(1) /* Data is in first RELFILE.*/.
++MOD(IFBMOD01) /* This module */

DISTLIB(AOS12) /* for this DLIB */
RELFILE(2) /* is in second RELFILE. */.

++MAC(IFBMAC01) /* This macro */
DISTLIB(AMACLIB)/* for this DLIB */
RELFILE(3) /* is in third RELFILE. */.

The SMPTLIB DD statement is required for the RECEIVE command to load the
RELFILE data sets from tape onto DASD, and at APPLY and ACCEPT, in order to
access the data in the unloaded partitioned data sets on DASD.

Note: Different RELFILE data sets are required for the module and macro, because
they are in different formats (modules must be in load module format, RECFM=U,
while macros are RECFM=FB). Although a separate RELFILE data set was used to
contain the ++JCLIN data, that data could have been put into the data set with the
macros, because both have the same attributes (LRECL=80, RECFM=FB).

Example 3: ++JCLIN data packaged in a TXLIB with a user
utility program name

Here is an example of a SYSMOD containing a ++JCLIN statement for packaging
JCLIN in text libraries. The JCLIN contains assembly steps using a special link-edit
utility, ALTIEWL.
++FUNCTION(JXY1040) /* Function SYSMOD. */.
++VER(Z038) /* For MVS, no requisites. */.
++JCLIN /* JCLIN is required. */

TXLIB(LIB1040) /* Data is in text library. */
LKED(PGM=ALTIEWL) /* Use other link-edit. */.

++MOD(IFBMOD01) /* This module */
DISTLIB(AOS12) /* for this DLIB */
TXLIB(LIB1040) /* is in text library. */.

++MAC(IFBMAC01) /* This macro */
DISTLIB(AMACLIB)/* for this DLIB */
TXLIB(LIB1040) /* is in text library. */.

A DD statement for LIB0104 is required during APPLY and ACCEPT in order for
SMP/E to call the utilities to get the replacements installed into the operating
system libraries. An example of the DD statement is:

++JCLIN MCS

62 SMP/E V3R6.0 for z/OS V2R1.0 Reference

//LIB1040 DD DSN=...

Note: In this case, the replacements for all three elements were put in one data set.
That data set must contain three members: member JXY1040 must be the JCLIN
data, member IFBMOD01 must contain the object deck for module IFBMOD01, and
member IFBMAC01 must contain the replacement for macro IFBMAC01. Because
all have the same formats (that is, RECFM=FB LRECL=80) they can be packaged in
one data set.

Member JXY1040 looks as follows:
//JOB JOB ’accounting info’,MSGLEVEL=(1,1)
//STEP1 EXEC PGM=ALTIEWL
//SYSLMOD DD DSN=SYS1.LINKLIB,DISP=SHR
//AOS12 DD DSN=SYS1.AOS12,DISP=SHR
//SYSLIN DD *
INCLUDE AOS12(IFBMOD01)
ENTRY IFBMOD01
ALIAS IFBMOD01A
NAME IFBMOD01(R)
/*

Note the use of ALTIEWL on the EXEC statement.

++JCLIN MCS

Chapter 2. SMP/E modification control statements 63

++MAC MCS
The ++MAC MCS describes a single macro replacement. It must immediately
precede the macro definition statements when they are within the SYSMOD.

Syntax

The syntax to be used depends on the processing to be done for the element:
v Adding or replacing the element
v Deleting the element

Adding or replacing a macro

++MAC MCS

�� ++MAC (name)

�

,

ASSEM (module) � DISTMOD (ddname)
DISTSRC (ddname)

�

�
DISTLIB (ddname)

�

,

MALIAS (alias) �

,

PREFIX (prefix)

�

�
RELFILE (number)
TXLIB (ddname)
SSI (code)
FROMDS (DSN (dsn) NUMBER (n))

VOL (vol) UNIT (unit)

�

�
RMID (sysmod_id) SYSLIB (ddname)

�

,

UMID (sysmod_id)

�

�

�

,

VERSION (sysmod_id)

• ��

Deleting a macro

++MAC MCS

�� ++MAC (name) DELETE
DISTLIB (ddname)

�

�

�

,

VERSION (sysmod_id)

• ��

Operands
ASSEM

specifies the names of modules to be assembled in addition to those modules
named as GENASM subentries in the MAC entry. The source for the
assemblies is the ASSEM entry, SRC entry, or DISTSRC member whose name
matches the specified ASSEM value. SMP/E looks for a match—first with an
ASSEM entry, then with a SRC entry, and finally with an entry in the DISTSRC

++MAC MCS

64 SMP/E V3R6.0 for z/OS V2R1.0 Reference

data set—and uses the first match it finds. The source must either be known to
SMP/E at the time the ASSEM operand is encountered on the ++MAC
statement, or be included in the same SYSMOD.

Note:

1. APPLY and ACCEPT processing place the specified names into the
SYSMOD entry created on the target zone and distribution zone.

2. If the object deck for the element specified on the ASSEM operand is also
provided by the SYSMOD, the assembly may not occur. (See SMP/E for
z/OS Commands for more information.)

DELETE
specifies that the macro and alias names are to be removed from the target
libraries, distribution libraries, and SMP/E data sets.

Note:

1. DELETE is mutually exclusive with all other operands except DISTLIB and
VERSION.

2. If the element statement is in a base function, you may want to use the
DELETE operand on the ++VER MCS to delete the previous release, rather
than on the element statement to delete a specific element.

DISTLIB
specifies the ddname of the distribution library for the specified macro.

Note:

1. DISTLIB must be specified if the macro has not been previously recorded
on the target zone or distribution zone. If a MAC entry already exists in the
target zone or distribution zone and the value currently in that entry does
not match that specified in the DISTLIB operand, the SYSMOD is not
applied or accepted, unless that SYSMOD also used the ++MOVE MCS to
change the DISTLIB to that new value.

2. You cannot use SYSPUNCH as the DISTLIB. It is used by SMP/E and other
products to process assembled modules.

DISTMOD
specifies the ddname of the link-edit distribution library for those modules
specified in the ASSEM operand. During ACCEPT processing, the object code
from the assembler is link-edited to the library specified.

DISTSRC
specifies the ddname of the library containing the additional assembly or
source to be assembled. The additional assembly or source must be specified in
the ASSEM operand.

FROMDS
identifies the partitioned data set that contains this element.

Note: The FROMDS operand and its DSN, NUMBER, VOL, and UNIT
suboperands are included in the MCS generated by the BUILDMCS command.
IBM does not intend the FROMDS operand to be used in manually coded
MCS.

DSN
specifies the dsname of the FROMDS data set. The specified data set name

++MAC MCS

Chapter 2. SMP/E modification control statements 65

must conform to standard data set naming conventions and cannot contain
parentheses. The maximum length of the entire name is 44 characters
(including the periods).

NUMBER
specifies a number that SMP/E is to use when assigning a name to the
SMPTLIB data set associated with this FROMDS data set. (This is similar to
the way the relative file number is used in RELFILE processing.)

VOL
specifies, for an uncataloged data set, the volume serial number of the
volume containing the FROMDS data set. If specified, this volume
identifier must be from 1 to 6 alphanumeric characters.

VOL may be omitted for a cataloged data set.

UNIT
specifies, for an uncataloged data set, the UNIT type containing the
FROMDS data set. If specified, the UNIT value must be from 1 to 8
characters and must conform to standard UNIT naming conventions.
SMP/E accepts any nonblank characters specified between the open and
close parentheses, up to a maximum length of 8.

UNIT may be omitted for a cataloged data set.

Note: FROMDS is mutually exclusive with DELETE, RELFILE, SSI, and
TXLIB.

MALIAS
specifies the alias names for the macro in both the target system and the
distribution libraries.

Note: MALIAS must be specified on the ++MAC MCS even if ALIAS was
specified on the COPY SELECT statement. MALIAS is required for the
RECEIVE command to properly handle aliases in RELFILEs. During RECEIVE
processing, SMP/E copies RELFILEs to SMPTLIB data sets. All element
members and their associated aliases are copied. Because JCLIN is not
processed during RECEIVE, the aliases must be identified on the MCS to get
RECEIVE to copy the aliases.

You can use MALIAS when two or more macros that must be defined in the
same zone must have the same name for programming access. For example,
you can use MALIAS if several products have a help macro whose name must
match the name of the command processing module it describes. You can
specify HELP on MALIAS and a unique element name as the macro name.

name
specifies the name of the macro member in the distribution library and,
optionally, in the target system library. The name can contain any
alphanumeric characters and $, #, @, or hex C0.

PREFIX
specifies the first characters (prefix) of the names of modules to be assembled
in addition to those modules named as GENASM subentries in the target zone
MAC entry. The prefix values must contain no more than 7 characters.

The full module names are determined by comparing the prefix with the target
zone or distribution zone MOD entry names.

The source for the assembly is the ASSEM entry, SRC entry, or DISTSRC
member whose name matches a MOD entry name beginning with one of the

++MAC MCS

66 SMP/E V3R6.0 for z/OS V2R1.0 Reference

specified prefixes. SMP/E looks for a match—first with an ASSEM entry, then
with a SRC entry, finally with an entry in the DISTSRC data set—and uses the
first match it finds. The source must either be known to SMP/E at the time the
PREFIX operand is encountered on the ++MAC statement, or be included in
the same SYSMOD.

Note: If the object deck for an element selected by the PREFIX operand is also
provided by the SYSMOD, the assembly may not occur. (See SMP/E for z/OS
Commands for more information.)

RELFILE
identifies which relative file associated with the SYSMOD contains this
element.This operand is required if you provide the element in RELFILE
format, rather than inline or in a TXLIB data set.

Note: RELFILE is mutually exclusive with FROMDS and TXLIB.

RMID
specifies the last SYSMOD that replaced this macro. This operand may be used
only in a service-updated function, and the specified PTF must be integrated
into the function.

SSI
specifies eight hexadecimal digits of system status information. This
information is placed in the directory of the target system library or SMPMTS
or SMPSTS during APPLY processing, and in the distribution library during
ACCEPT processing, as four packed hexadecimal bytes of user data. See the
IEBUPDTE program description in z/OS DFSMSdfp Utilities.

Note: This operand is ignored if text is located in a library, as is the case when
either the FROMDS, RELFILE, or TXLIB operand is specified.

SYSLIB
specifies the ddname of the target library, if the macro exists in one. APPLY
and RESTORE processing update this library.

Note: If a MAC entry already exists in the target zone or distribution zone and
the value currently in that entry does not match that specified in the SYSLIB
operand, SMP/E ignores the SYSLIB value in the SYSMOD being installed,
unless that SYSMOD also used the ++MOVE MCS to change the SYSLIB to
that new value.

TXLIB
is the ddname of the partitioned data set containing the macro.This operand is
required if the macro is provided in a data set that the users have access to,
rather than inline or in RELFILE format.

Note:

1. SMPTLIB cannot be used as a value on the TXLIB operand.
2. TXLIB is mutually exclusive with FROMDS and RELFILE.

UMID
specifies the SYSMODs that have updated this macro since it was last replaced.
This operand can be used only in a service-updated function, and the specified
PTFs must be integrated into the function.

++MAC MCS

Chapter 2. SMP/E modification control statements 67

VERSION
specifies one or more function SYSMODs that currently contain the element.
The function containing the ++MAC MCS will take over ownership of the
element from the specified functions.

When VERSION is specified on an element statement, it overrides any
VERSION operand values that might be specified on the ++VER MCS.

Usage notes
v If the macro is packaged inline, it must immediately follow the ++MAC MCS

and must not contain any records that start with ++. Neither FROMDS, nor
RELFILE, nor TXLIB can be specified on the ++MAC MCS.

v If the macro is packaged in a TXLIB data set, the ddname specified in the TXLIB
operand is required during APPLY and ACCEPT processing.

v For information about elements packaged in RELFILE format, see z/OS
Packaging Rules.

v If the ++MAC MCS is for an inner macro (a macro referred to by another macro
instruction that resides in the macro library), the modules that require
reassembly must be specified in the ASSEM operand list.

v If the macro resides in a target library (rather than the SMPMTS), the target
library should be included in the SYSLIB DD concatenation for assemblies
during APPLY processing.For additional information about SYSLIB requirements,
see SMP/E for z/OS User's Guide and SMP/E for z/OS Commands.

Examples
The following examples are provided to help you use the ++MAC MCS.

Example 1: Replacing a macro through a USERMOD
Assume you want to replace a macro, named YOURMAC, that is part of a product
you own, named YOURPROD. You have updated a copy of the macro in a text
library, TSO.NEWSMP.MACLIB. Here is an example of a SYSMOD containing a
++MAC statement to build a USERMOD that installs the changes:
++USERMOD(USR0001) /* User modification */.
++VER(Z038) FMID(HUSR003) /* for your product */.
++MAC(YOURMAC) /* to replace this macro. */

TXLIB(NEWSMP) /* Macro is in this TXLIB. */.

In this example, you have just applied another piece of service to the YOURPROD
macro, but YOURPROD is still the owner of the macro. If you attempt to install
some vendor-supplied service (that is, a PTF) to that macro, SMP/E issues an error
message indicating that your user modification will be regressed, and will not
install that service until the BYPASS(ID) operand is used.

Another method of installing the new macro is for you to assume ownership for
the macro by using the VERSION operand. Assume you already have a user
function, JXY1040, installed, and you want to transfer ownership of the SMP/E
macro to your function. The following SYSMOD contains a ++MAC statement to
do that:
++USERMOD(USR0001) /* User modification */.
++VER(Z038) FMID(JXY1040) /* for user application */.
++MAC(GIMOPCDE) /* to replace this macro. */

VERSION() /* Version SMP/E. */
TXLIB(NEWSMP) /* Macro is in this TXLIB. */.

++MAC MCS

68 SMP/E V3R6.0 for z/OS V2R1.0 Reference

http://publibz.boulder.ibm.com/epubs/pdf/gimpkg80.pdf
http://publibz.boulder.ibm.com/epubs/pdf/gimpkg80.pdf

If after the installation of this SYSMOD any subsequent IBM service modifies this
macro, the replacement or update from the IBM service is not selected. It is your
responsibility to provide continued modifications for the macro. Thus, this method
of updating an element should be used carefully.

In both examples, because the new macro exists in a TXLIB, the following DD
statement is required during APPLY and ACCEPT:
//NEWSMP DD DSN=TSO.NEWSMP.MACLIB,DISP=SHR

Example 2: Deleting a macro
Assume you have installed one of your application programs as function
HUSR001. The function contains macro USRMAC01, which is no longer required.
Here is an example of a SYSMOD containing a ++MAC statement to delete the
macro from the target and distribution libraries:
++USERMOD(USR0001) /* User modification */.
++VER(Z038) FMID(HUSR001) /* for user application. */.
++MAC(USRMAC01) /* Delete this macro. */

DELETE /* */.

Example 3: Adding a new macro
Assume you have installed one of your application programs as function
HUSR001. A new macro USRMAC02 is required, and it has these requirements:
v The macro is to be put into SYS1.USRMACS in the target zone.
v The macro is to be put into SYS1.AUSRMACS in the distribution zone.
v The macro is to be installed with an alias of TERMINAL.
v After being installed, modules USRASM01, USRASM02, USRSRC01, and

USRSRC02 are to be assembled. USRASM01 and USRASM02 already exist as
assembler entries in the CSI, and USRSRC01 and USRSRC02 exist as source
entries in the CSI.

Here is an example of a SYSMOD containing a ++MAC statement defining all this
information:
++USERMOD(USR0002) /* User modification */.
++VER(Z038) FMID(HUSR001) /* for user application. */.
++MAC(USRMAC02) /* Add this macro */

DISTLIB(AUSRMACS) /* to this DLIB */
SYSLIB(USRMACS) /* and to this tgt lib */
MALIAS(TERMINAL)/* with this alias. */
ASSEM(USRASM01, /* Assemble these modules. */

USRASM02, /* */
USRSRC01, /* */
USRSRC02) /* */

/* Inline text follows. */.
...
... macro USRMAC02 goes here
...

Example 4: Packaging a renamed macro
Suppose that, for some reason, you need to rename macro USRMAC02, which was
introduced in “Example 3: Adding a new macro.” The new name is to be
USRMACXX. You do not need to change anything else about the macro. Here is an
example of a SYSMOD containing the ++MAC statements needed to package this
renamed macro:
++USERMOD(USR0003) /* User modification */.
++VER(Z038) FMID(HUSR001) /* to user application. */

PRE(USR0002) /* Base on previous USERMOD.*/.
++MAC(USRMAC02) /* Delete the original */

DELETE /* macro. */.

++MAC MCS

Chapter 2. SMP/E modification control statements 69

++MAC(USRMACXX) /* Add the renamed macro */
DISTLIB(AUSRMACS) /* to this DLIB */
SYSLIB(USRMACS) /* and to this tgt lib */
MALIAS(TERMINAL)/* with this alias. */
ASSEM(USRASM01, /* Assemble these modules. */

USRASM02, /* */
USRSRC01, /* */
USRSRC02) /* */

/* Inline text follows. */.
...
... macro USRMACXX goes here
...

++MAC MCS

70 SMP/E V3R6.0 for z/OS V2R1.0 Reference

++MACUPD MCS
The ++MACUPD MCS describes a single macro update within a PTF, an APAR fix,
or a USERMOD. It must immediately precede the macro update statements within
the SYSMOD.

Syntax

++MACUPD MCS

�� ++MACUPD (name)

�

�

,

ASSEM (module)

DISTMOD (ddname)
DISTSRC (ddname)

�

�
DISTLIB (ddname)

�

,

MALIAS (alias) �

,

PREFIX (prefix)

�

�
SYSLIB (ddname)

• ��

Operands

ASSEM
specifies the names of modules to be assembled in addition to those named as
GENASM subentries in the MAC entry. The source for the assemblies is the
ASSEM entry, SRC entry, or DISTSRC member whose name matches the
specified ASSEM value. SMP/E looks for a match—first with an ASSEM entry,
then with a SRC entry, and finally with an entry in the DISTSRC data set—and
uses the first match it finds. The source must either be known to SMP/E at the
time the ASSEM operand is encountered on the ++MACUPD statement, or be
included in the same SYSMOD.

Note:

1. APPLY and ACCEPT processing place the specified names into the
SYSMOD entry created on the target zone and distribution zone.

2. If the object deck for the element specified on the ASSEM operand is also
provided by the SYSMOD, the assembly may not occur. For more
information, see the section on assemblies in the APPLY command chapter
in SMP/E for z/OS Commands.

DISTLIB
specifies the ddname of the distribution library for the specified macro.

Note:

1. DISTLIB must be specified if the macro has not been previously recorded
on the target zone or distribution zone. If a MAC entry already exists in the
target zone or distribution zone, and the value currently in that entry does
not match that specified in the DISTLIB operand, the SYSMOD is not
applied or accepted.

2. You cannot use SYSPUNCH as the DISTLIB. It is used by SMP/E and other
products to process assembled modules.

++MACUPD MCS

Chapter 2. SMP/E modification control statements 71

DISTMOD
specifies the ddname of the link-edit distribution library for the modules
specified in the ASSEM operand. During ACCEPT processing, the object code
from the assembler is link-edited to the library specified.

DISTSRC
specifies the ddname of the library containing the additional assembly or
source to be assembled. The additional assembly or source must be specified in
the ASSEM operand.

MALIAS
specifies the alias names for the macro in both the target system and
distribution libraries.

You can use MALIAS when two or more macros that must be defined in the
same zone must have the same name for programming access. For example,
you can use MALIAS if several products have a help macro whose name must
match the name of the command processing module it describes. You can
specify HELP on MALIAS and a unique element name as the macro name.

name
specifies the name of the macro member in the distribution library and,
optionally, in the target system library. The name can contain any
alphanumeric characters and $, #, @, or hex C0.

PREFIX
specifies the first characters (prefix) of the names of modules to be assembled
in addition to those modules named as GENASM subentries in the target zone
MAC entry. The prefix values must be 7 characters or less.

The full module names are determined by comparing the prefix with the target
zone or distribution zone MOD entry names.

The source for the assembly is the ASSEM entry, SRC entry, or DISTSRC
member whose name matches a MOD entry name beginning with one of the
specified prefixes. SMP/E looks for a match—first with an ASSEM entry, then
with a SRC entry, and finally with an entry in the DISTSRC data set—and uses
the first match it finds. The source must be either known to SMP/E at the time
the PREFIX operand is encountered on the ++MACUPD statement, or be
included in the same SYSMOD.

Note: If the object deck for the element specified on the PREFIX operand is
also provided by the SYSMOD, the assembly may not occur. For more
information, see the section on assemblies in the APPLY command chapter in
SMP/E for z/OS Commands.

SYSLIB
specifies the ddname of the target library, if the macro exists in one. APPLY
and RESTORE processing update this library.

Usage notes
v If a SYSMOD containing a ++MACUPD statement attempts to change the

ownership (FMID) of the element (with the VERSION operand), the SYSMOD
cannot be installed.

v The changes for the macro must immediately follow the ++MACUPD MCS and
must not contain any records that start with ++.

v If the macro resides in a target library (rather than the SMPMTS), that target
library should be included in the SYSLIB DD concatenation for assemblies

++MACUPD MCS

72 SMP/E V3R6.0 for z/OS V2R1.0 Reference

during APPLY processing. For additional information about SYSLIB
requirements, see SMP/E for z/OS User's Guide and SMP/E for z/OS Commands.

v The only IEBUPDTE control statements allowed in a SYSMOD are ./ CHANGE
and ./ ENDUP.

v The only IEBUPDTE CHANGE operand SMP/E checks is NAME, which must
specify the same element as the ++MACUPD MCS. Other CHANGE operands
may produce undesired results and are used at your own risk. For example, if
you code UPDATE=INPLACE, SMP/E may update the distribution library.
Once the distribution libraries are changed, there is no way to remove the
updates.

v SMP/E does not support a continuation of the ./ CHANGE statement.
v SMP/E generates any ./ ALIAS statements needed and places them in the

IEBUPDTE input data following the last text statement. The ./ ALIAS control
statements are generated only for macro updates.

v When processing multiple updates to the same lines in a given macro, SMP/E
uses the ./ CHANGE statement from the last update to the lines.

v If an APAR fix or USERMOD updates a macro that causes an assembly, SMP/E
sets the ASSEMBLY indicator in the MOD entry for the assembled module. This
can cause a problem when additional service that does not know about the
macro change is installed at the same time as the APAR or USERMOD—for
example, if you are installing your own USERMOD and IBM-supplied PTFs with
the same APPLY command. In such cases, because the ASSEMBLY indicator is
set, the module is reassembled, but does not contain the macro changes from the
APAR or USERMOD. To prevent these assemblies, you can reset the ASSEMBLY
indicator using UCLIN after installing the APAR or USERMOD.

Examples

Assume you want to update macro IFBMAC02, which resides in distribution
library IFBMACS. Because of this change, module IFBSRC01 must be reassembled.
Module IFBSRC01 exists as a source in distribution library SYS1.IFBSRC, and as an
object module in distribution library SYS1.AOS23. The macro and the modules are
part of JXY1040, a user-written function. Here is an example of a SYSMOD
containing a ++MACUPD statement to make the necessary changes:
++PTF(USR0001) /* Preventive service */.
++VER(Z038) FMID(JXY1040) /* for user product. */.
++MACUPD(IFBMAC02) /* Update this macro */

DISTLIB(IFBMACS)/* in this DLIB. */
ASSEM(IFBSRC01) /* Assemble this source. */
DISTSRC(IFBSRC) /* Source is here. */
DISTMOD(AOS23) /* Assembled SRC goes here. */.

./ CHANGE name=IFBMAC02

... IEBUPDTE control cards and data

...

In this example, DD statements are required when the SYSMOD is applied to
define the target libraries for the macro and the load module to be updated as a
result of the assembly. For example, if the modules in SYS1.AOS23 (the assembled
module's distribution library) were copied to SYS1.LINKLIB and the source in
SYS1.IFBSRC (the source element's distribution library) were copied to
SYS1.CHGLIB, the following DD statements are needed:
//LINKLIB DD DSN=SYS1.LINKLIB...
//CHGLIB DD DSN=SYS1.CHGLIB...

In this example, the following DD statements are needed when the SYSMOD is
being accepted to define the distribution libraries:

++MACUPD MCS

Chapter 2. SMP/E modification control statements 73

//IFBMACS DD DSN=SYS1.IFBMACS... (macro DLIB)
//IFBSRC DD DSN=SYS1.IFBSRC... (source DLIB for assembly)
//AOS23 DD DSN=SYS1.AOS23... (DLIB for module assembled)

++MACUPD MCS

74 SMP/E V3R6.0 for z/OS V2R1.0 Reference

++MOD MCS
The ++MOD MCS describes a single module replacement. It must immediately
precede the module definition statements when they are within the SYSMOD. You
should use the ++MOD MCS when you want to provide the object form of a
module. If you want to provide the source form and have it assembled when the
SYSMOD is installed, use the ++SRC MCS instead.

Syntax

The syntax to be used depends on the processing to be done for the element:
v Adding or replacing the element
v Deleting the element

Adding or replacing a module

++MOD MCS

�� ++MOD (name)

�

,

CSECT (csect)
�

DALIAS (alias)
,

TALIAS (alias)

�

�
DISTLIB (ddname)

�

,

LEPARM (leparm)

�

�
LKLIB (ddname)
RELFILE (number)
TXLIB (ddname)
FROMDS (DSN (dsn) NUMBER (n))

VOL (vol) UNIT (unit)

�

�

�

,

LMOD (lmod)

RMID (sysmod_id)

�

,

UMID (sysmod_id)

�

�

�

,

VERSION (sysmod_id)

• ��

Deleting a module

++MOD MCS

�� ++MOD (name) DELETE

�

,

CSECT (csect)

DISTLIB (ddname)
�

�

�

,

VERSION (sysmod_id)

• ��

++MOD MCS

Chapter 2. SMP/E modification control statements 75

Operands
CSECT

lists all the CSECTs contained in the module. This operand is required if the
module contains more than one CSECT or if the CSECT name is different from
the module name on the ++MOD MCS.
v If no CSECT name is specified, SMP/E assumes that the module contains

only one CSECT, whose name matches the module name on the ++MOD
MCS.

v If CSECT is specified, it must include all the CSECTs contained in the
module, even if one of them has the same name as the module.

Note:

1. A CSECT name can contain from 1 to 8 characters. The name can contain
any characters except the following:
v Comma ,
v Left parenthesis (
v Right parenthesis)
v Blank

2. Comments are not allowed within a CSECT name. For example, the
following is not allowed:
CSECT (/* this is a csect name */ CSECT01)

The comment is interpreted as part of the CSECT name, instead of a
comment.

3. Even if CSECT is not specified on the ++MOD MCS used to create a MOD
entry, CSECT information is saved if CSECT is specified on subsequent
++MOD statements that update the MOD entry.

DALIAS
is the alias name of a module that has an alias in the distribution library, but
not in the target library. This might be used if the module is included under its
alias name during system generation.

Note: DALIAS is mutually exclusive with TALIAS.

DELETE
indicates that the module and alias names are to be removed from the target
libraries, distribution libraries, and SMP/E data sets.

In order to DELETE a module, the FMID on the SYSMOD must match the
FMID of the module. If the module has no FMID associated with it, then the
SYSMOD will delete the module. If the FMID of the module does not match
the FMID on the SYSMOD, then the SYSMOD will not delete the module,
because the specified FMID does not own the module.

Note: DELETE is mutually exclusive with all other operands except CSECT,
DISTLIB, and VERSION.

DISTLIB
specifies the ddname of the distribution library for the specified module.

Note:

1. This operand must be specified if the module has not been previously
recorded on the target zone or distribution zone. If a MOD entry already
exists in the target zone or distribution zone and the value currently in that

++MOD MCS

76 SMP/E V3R6.0 for z/OS V2R1.0 Reference

entry does not match that specified in the DISTLIB operand, the SYSMOD
is not applied or accepted, unless that SYSMOD also used the ++MOVE
MCS to change the DISTLIB to that new value.

2. You cannot use SYSPUNCH as the DISTLIB. It is used by SMP/E and other
products to process assembled modules.

FROMDS
identifies the partitioned data set that contains this element.

Note: The FROMDS operand and its DSN, NUMBER, VOL, and UNIT
suboperands are included in the MCS generated by the BUILDMCS command.
IBM does not intend the FROMDS operand to be used in manually coded
MCS.

DSN
specifies the dsname of the FROMDS data set. The specified data set name
must conform to standard data set naming conventions and cannot contain
parentheses. The maximum length of the entire name is 44 characters
(including the periods).

NUMBER
specifies a number that SMP/E is to use when assigning a name to the
SMPTLIB data set associated with this FROMDS data set. (This is similar to
the way the relative file number is used in RELFILE processing.)

VOL
specifies, for an uncataloged data set, the volume serial number of the
volume containing the FROMDS data set. If specified, this volume
identifier must be from 1 to 6 alphanumeric characters.

VOL may be omitted for a cataloged data set.

UNIT
specifies, for an uncataloged data set, the UNIT type containing the
FROMDS data set. If specified, the UNIT value must be from 1 to 8
characters and must conform to standard UNIT naming conventions. IBM
SMP/E for z/OS, V3R6 accepts any nonblank characters specified between
the open and close parentheses, up to a maximum length of 8.

UNIT may be omitted for a cataloged data set.

Note: FROMDS is mutually exclusive with DELETE, LKLIB, RELFILE, and
TXLIB.

LEPARM
specifies link-edit utility attributes for the module. Any of the following values
can be specified:

AC(1) ALIGN2 AMODE(24)
AMOD(24)
AMODE(31)
AMOD(31)
AMODE(64)
AMOD(64)
AMODE(ANY)
AMOD(ANY)
AMODE(MIN)
AMOD(MIN)

COMPAT(LKED)
COMPAT(PM1)
COMPAT(PM2)
COMPAT(PM3)
COMPAT(PM4)

DC �

++MOD MCS

Chapter 2. SMP/E modification control statements 77

� FETCHOPT (PACK , PRIME)
NOPACK NOPRIME

FILL (nn) HOBSET �

� MAXBLK (nnnnn) NE NOCALL
NCAL

OL OVLY �

� REFR RENT REUS
REUS(REFR) REUS(RENT) REUS(SERIAL)

REUS(NONE)

RMODE(31)
RMOD(31)
RMODE(24)
RMOD(24)
RMODE(ANY)
RMOD(ANY)
RMODE(SPLIT)
RMOD(SPLIT)

SCTR �

� UPCASE(YES)
UPCASE(NO)

Note:

1. The LEPARM values from the ++MOD MCS are associated with a load
module entry only if the module was copied, not link-edited, into the target
libraries. (The COPY indicator is set in the load module entry.) If the load
module was link-edited, JCLIN must be used to change its link-edit utility
attributes.

2. During APPLY processing of a ++MOD MCS with LEPARMs, the LEPARM
options are saved not in the MOD entry created, but in the LMOD entry.
During ACCEPT processing, the MOD entry is created with the LEPARMs
present. The target zone MOD entry can contain the LEPARM options
through either UCLIN or the copying of the distribution zone to a target
zone.

3. All LEPARM attributes may also be specified in the format ‘attribute=value’.
For example, FILL(nn) may also be specified as FILL=nn.

4. The previously listed link-edit attributes are the only attributes that can be
specified on the LEPARM operand. If any other attributes are specified, a
syntax error will result during RECEIVE processing.

5. The LEPARM values of DCBS, LET, LIST, XCAL, and XREF are recognized
by SMP/E, but are not saved. Specifying them on the ++MOD MCS does
not cause them to be passed to the link-edit utility.

6. RMODE(31) is a synonym for RMODE(ANY).

For more information about how the LEPARM operand is processed, see the
chapters on ACCEPT and APPLY processing in SMP/E for z/OS Commands.
These attributes are described in full in “MOD entry (distribution and target
zone)” on page 268.

LKLIB
is the ddname of the partitioned data set containing the link-edited format of
the object module. This operand is required if the module is provided in a data
set, rather than inline or on a tape.

Note: LKLIB is mutually exclusive with FROMDS, RELFILE, and TXLIB.

LMOD
lists existing load modules that are to contain the module. If any of the names
specified are not already LMOD subentries in the target zone MOD entry, they
are added during APPLY processing.

Note:

++MOD MCS

78 SMP/E V3R6.0 for z/OS V2R1.0 Reference

1. LMOD can be used only to add a module to an existing load module.
2. LMOD cannot be used to create a new load module. Nor can it be used if

any link-edit control statements must be added or changed to add the
module to an existing load module. However, you can use JCLIN data to
create a new load module and to add or change link-edit control
statements.

3. If an LMOD entry does not exist for one of the load modules specified,
sufficient information is not available to create one. Thus, when the MOD is
to be link-edited during APPLY processing, an error message is issued, and
no link-edit is performed for that load module.

name
specifies the name of the module in the distribution library and, optionally, in
the target library. The name can contain any alphanumeric characters and $, #,
@, or hex C0.

RELFILE
identifies which relative file associated with the SYSMOD contains this
module.This operand is required if you provide the element in RELFILE
format, rather than inline or in a LKLIB or TXLIB data set.

Note:

1. RELFILE is mutually exclusive with FROMDS, LKLIB, and TXLIB.
2. If an object module is provided in RELFILE format, it must be in

link-edited format.

RMID
specifies the last SYSMOD that replaced this module. This operand can be
used only in a service-updated function, and the specified PTF must be
integrated into the function.

TALIAS
specifies one or more alias names for the module. The aliases exist in the
distribution library and the target library.

You can use TALIAS for a module that was copied from a distribution library
into a target library (defined by JCLIN data as a copied module), but not for
one that is link-edited (defined by JCLIN data as a link-edited module).

Note: TALIAS must be specified on the ++MOD MCS even if ALIAS was
specified on the COPY SELECT statement. TALIAS is required for the
RECEIVE command to properly handle aliases in RELFILEs. During RECEIVE
processing, SMP/E copies RELFILEs to SMPTLIB data sets. All element
members and their associated aliases are copied. Because JCLIN is not
processed during RECEIVE, the aliases must be identified on the MCS to get
RECEIVE to copy the aliases.

Likewise, to specify an alias for a copied load module, you must use the
TALIAS operand on the ++MOD statement for that load module.(To specify an
alias for a link-edited load module, do not use TALIAS. You must identify that
alias using an ALIAS link-edit control statement in the JCLIN that defined the
load module. For more information, see SMP/E for z/OS Commands.)

Note: TALIAS is mutually exclusive with DALIAS.

TXLIB
is the ddname of the partitioned data set containing an object module that has

++MOD MCS

Chapter 2. SMP/E modification control statements 79

not been link-edited. This operand is required if the module is provided in a
TXLIB data set rather than inline, in a FROMDS data set, in a LKLIB data set,
or in RELFILE format.

Note:

1. SMPTLIB cannot be used as a value on the TXLIB operand.
2. TXLIB is mutually exclusive with FROMDS, LKLIB, and RELFILE.

UMID
specifies the SYSMODs that have updated this module since it was last
replaced. This operand can be used only in a service-updated function, and the
specified PTFs must be integrated into the function.

VERSION
specifies one or more function SYSMODs that currently contain the element.
The function containing the ++MOD MCS takes over ownership of the element
from the specified functions.

When VERSION is specified on an element statement, it overrides any
VERSION operand values specified on the ++VER MCS.

Usage notes
v If the module is packaged inline, it must immediately follow the ++MOD MCS

and must not contain any records that start with ++. Neither FROMDS, LKLIB,
RELFILE, nor TXLIB may be specified.

v If the module is packaged in a TXLIB data set, the ddname specified on the
TXLIB operand is required during APPLY and ACCEPT processing.

v If the module is in an LKLIB data set, the ddname specified in the LKLIB
operand is required during APPLY and ACCEPT processing. Module
replacements in an LKLIB data set must be in load module format (that is,
processed by the link-edit utility).

v For information about packaging SYSMODs in RELFILE, TXLIB, or inline
format, see z/OS Packaging Rules.

v There are several ways to associate a module with a load module:
– The DISTLIB library can be totally copied into the target library.
– JCLIN can identify the module as part of one or more load modules.
– The LMOD operand on the ++MOD MCS can indicate the associated load

module.
If SMP/E cannot identify the load module associated with a given module, it
does not update the target libraries during APPLY processing. Instead, it issues
warning message GIM43401W.

Examples
The following examples are provided to help you use the ++MOD MCS:

Example 1: Adding a new module to an existing load module
Module IFBMOD01 is a new module that is to be placed in the distribution library
SYS1.AOSFB and is to be link-edited with the existing load module IEEFRQ in the
target system library SYS1.LINKLIB. Module IFBMOD01 contains two CSECTs,
IFBCST01 and IFBCST02. Here is an example of a SYSMOD containing a ++MOD
statement to do this:
++USERMOD(USR0001) /* User modification */.
++VER(Z038) FMID(JXY1040) /* to user application. */.
++MOD(IFBMOD01) /* Add this module */

++MOD MCS

80 SMP/E V3R6.0 for z/OS V2R1.0 Reference

http://publibz.boulder.ibm.com/epubs/pdf/gimpkg80.pdf

DISTLIB(AOSFB) /* to this DLIB at ACCEPT, */
LMOD(IEEFRQ) /* to this LMOD at apply. */
CSECT(IFBCST01 /* Module has two CSECTs. */

IFBCST02) /* */.
...
... object deck for IFBMOD01
...

The following DD statement is needed at APPLY time to define the operating
system load module library:
//LINKLIB DD DSN=SYS1.LINKLIB,DISP=OLD

When the SYSMOD is accepted, the following DD statement is needed to define
the distribution library for this module:
//AOSFB DD DSN=SYS1.AOSFB,DISP=OLD

Example 2: Specifying link-edit utility attributes with LEPARM
For this example, assume you have installed a product, FXY1040, packaged in
RELFILE format. The package contained a module, IFBMOD01, that was identified
by inline JCLIN as being installed as follows:
1. It was copied from the distribution library, AOS12, to the target system library,

LPALIB.
2. It was linked with several other modules to form a load module, IFBLMDXX,

in LINKLIB.
3. It was linked, by itself, to form a load module, named IFBLMDX1, in LINKLIB.

The JCLIN in the initial function was as follows:
//JOB JOB ’accounting info’,MSGLEVEL=(1,1)
//COPY1 EXEC PGM=IEBCOPY
//AOS12 DD DSN=SYS1.AOS12,DISP=SHR
//LPALIB DD DSN=SYS1.LPALIB,DISP=SHR
//SYSIN DD *
COPY INDD=AOS12,OUTDD=LPALIB
SELECT M=(IFBMOD01)
/*
//LINK1 EXEC PGM=IEWL,PARM=’REUS’
//AOS12 DD DSN=SYS1.AOS12,DISP=SHR
//SYSLMOD DD DSN=SYS1.LINKLIB,DISP=SHR
//SYSLIN DD *

INCLUDE AOS12(IFBMOD01)
INCLUDE AOS12(IFBMOD0A,IFBMOD0B,IFBMOD0C)
ENTRY IFBMOD01
NAME IFBLMDXX(R)

/*
//LINK2 EXEC PGM=IEWL
//AOS12 DD DSN=SYS1.AOS12,DISP=SHR
//SYSLMOD DD DSN=SYS1.LINKLIB,DISP=SHR
//SYSLIN DD *

INCLUDE AOS12(IFBMOD01)
NAME IFBLMDX1(R)

/*

The target zone now contains the following entries:
1. MOD entry for IFBMOD01, having LMOD subentries of IFBMOD01 (from the

copy step), IFBLMDXX (from the first link step), and IFBLMDX1 (from the
second link step).

2. LMOD entry for IFBMOD01, (created from the SELECT statement of the copy
step), indicating that the load module was copied during installation. The

++MOD MCS

Chapter 2. SMP/E modification control statements 81

LMOD entry does not have any link-edit utility parameters yet, because SMP/E
copied IFBMOD01 from the RELFILE data sets, and, thus, had no need to
obtain the link parameters.

3. LMOD entry for IFBLMDXX (created from the first link step), with link-edit
attributes of REUS.

4. LMOD entry for IFBLMDX1 (created from the second link step), with link-edit
attributes of STD (because no special parameters were specified).

Now assume a PTF to replace module IFBMOD01 is required. Module IFBMOD01
has link-edit utility attributes of REUS and RENT. Here is an example of a
SYSMOD containing a ++MOD statement to do this:
++PTF(UZ12345) /* PTF */.
++VER(Z038) FMID(FXY1040) /* for this function. */.
++MOD(IFBMOD01) /* Replace IFBMOD01 */

DISTLIB(AOS12) /* in this DLIB. */
LEPARM(RENT /* Reentrant */

REUS) /* and reusable. */.
...
... object deck for IFBMOD01
...

When the PTF is applied, SMP/E processes the LEPARM as follows:
1. Because LMOD IFBMOD01 was copied from the DLIB module, it is updated

using the LEPARM values from the ++MOD MCS.
2. LMOD IFBLMDXX link-edit attributes remain as they are. This is because the

link-edit utility attributes of each module within the load module have no
bearing on the link-edit utility attributes of the load module; and, in this case,
they are not the same. One of the other modules in IFBLMDXX must have a
more restrictive set of link-edit attributes, thus forcing the load module to have
that restrictive set of attributes.

3. LMOD IFBLMDX1 link-edit attributes remain as they are, for the same reason
that load module IFBLMDXX attributes did not change. This is true even
though load module IFBLMDX1 is composed of only the one DLIB module. As
long as the load module was identified by a link-edit step, SMP/E assumes
that the load module may contain multiple DLIB modules.

Note: The only way to change the link-edit attributes of a load module that
was link-edited during initial installation is to provide JCLIN input to identify
the new link-edit attributes.

Example 3: Packaging a renamed module
Suppose that, for some reason, you need to rename module IFBMOD01, which was
introduced in “Example 1: Adding a new module to an existing load module” on
page 80. The new name is to be IFBMODXX. You do not need to change anything
else about the module. Here is an example of a SYSMOD containing the ++MOD
statements needed to package this renamed module:
++USERMOD(USR0002) /* User modification */.
++VER(Z038) FMID(JXY1040) /* to user application. */

PRE(USR0001) /* Base on previous USERMOD.*/.
++MOD(IFBMOD01) /* Delete the original */

DELETE /* module. */.
++MOD(IFBMODXX) /* Add the renamed module */

DISTLIB(AOSFB) /* to this DLIB at ACCEPT, */
LMOD(IEEFRQ) /* to this LMOD at apply. */
CSECT(IFBCST01 /* Module has two CSECTs. */

++MOD MCS

82 SMP/E V3R6.0 for z/OS V2R1.0 Reference

IFBCST02) /* */.
...
... object deck for IFBMODXX
...

Note: When packaging a renamed module, you must ensure that this module is
included in the appropriate load modules, either through JCLIN or the LMOD
operand on the ++MOD statement, as in this example.

The following DD statement is needed at APPLY time to define the operating
system load module library:
//LINKLIB DD DSN=SYS1.LINKLIB,DISP=OLD

When the SYSMOD is accepted, the following DD statement is needed to define
the distribution library for this module:
//AOSFB DD DSN=SYS1.AOSFB,DISP=OLD

Example 4: Deleting a module
If you need to delete a module, here is an example of a SYSMOD containing the
++MOD statement:
++USERMOD(USR0004) /* User modification */.
++VER(Z038) FMID(JXY1040) /* to user application. */.
++MOD(IFBMOD0Z) /* Delete the module */

DELETE /* from DLIB AOSFB - entry */
DISTLIB(AOSFB) /* for DLIB must be AOSFB. */.

Note: When packaging a SYSMOD to delete a module, no object deck is required.
The previous example is a complete SYSMOD, and does not require any other
SMP/E elements in the SYSMOD.

For more information about the processing done when a module is deleted, see the
section on deleting elements in SMP/E for z/OS Commands.

++MOD MCS

Chapter 2. SMP/E modification control statements 83

++MOVE MCS
The ++MOVE MCS moves a macro, a module, a source, or a load module (and any
known aliases) from one library to another. The associated target or distribution
zone is automatically updated to show that the entry has been deleted from the
old library and added to the new one.

Note: You cannot use ++MOVE to move a load module from one path to another
path in a UNIX file system if symbolic links have been defined for that load
module.

Syntax

The syntax to be used depends on the type of library involved:
v Moving to a different distribution library (DISTLIB)
v Moving to a different target library (SYSLIB)

Moving to another DISTLIB

++MOVE MCS

�� ++MOVE (name) DISTLIB (ddname) TODISTLIB (ddname) MAC
MOD
SRC

�

�

�FMID (sysmod_id)

• ��

Moving to another SYSLIB

++MOVE MCS

�� ++MOVE (name) SYSLIB (ddname) TOSYSLIB (ddname) �

�

�

MAC

SRC
FMID (sysmod_id)

LMOD

• ��

Operands
DISTLIB

specifies the ddname of the distribution library in which the member resides.

FMID
specifies the FMID that owns the element. This is used when the current
owner of the element is different from the FMID specified on the ++VER MCS.
Up to 10 SYSMOD IDs can be specified.

Note: FMID is mutually exclusive with LMOD.

MAC, MOD, SRC, or LMOD
specifies the type of member to be moved.

++MOVE MCS

84 SMP/E V3R6.0 for z/OS V2R1.0 Reference

v If DISTLIB and TODISTLIB are specified, MAC, MOD, or SRC is valid.
v If SYSLIB and TOSYSLIB are specified, MAC, SRC, or LMOD is valid.

Note: LMOD is mutually exclusive with FMID.

name
specifies the name of the element or load module to be moved.

SYSLIB
specifies the ddname of the target library in which the member resides.

TODISTLIB
specifies the ddname of the distribution library to which the member is to be
moved. This must be specified if DISTLIB is specified.

TOSYSLIB
specifies the ddname of the target library to which the member is to be moved.
This must be specified if SYSLIB is specified.

Usage notes
v The member and library operands are required. You must specify the member

name, the set of libraries affected by the move, and the member type.
v ++MOVE statements must follow any ++VER and ++IF statements and must

precede any element MCSs.
v Regardless of the order in which ++MOVE, ++RENAME, and ++DELETE

statements are coded in a SYSMOD, they are processed in the following order:
– APPLY and ACCEPT

1. ++MOVE
2. ++RENAME
3. ++DELETE

– RESTORE

1. ++RENAME
2. ++MOVE

Afterwards, ++JCLIN statements are processed, and then element statements.
v You must use the FMID operand to identify all possible owners of an element to

be moved.
Using the FMID operand does not imply that the owner of the element is being
changed. You can change ownership only by specifying the VERSION operand
on the ++VER MCS or on the element statement. Even if you are changing the
owner of the element, you must specify the FMID operand, because the element
is moved before its ownership is changed. For more information about the
VERSION operand, see “++VER MCS” on page 117.

v A ++MOVE MCS can move a member to a given library from one library at a
time. If a member exists in more than one library, you must use additional
++MOVE or ++DELETE statements to process the additional copies. For more
information about ++DELETE statements, see “++DELETE MCS” on page 17.

v If a ++MOVE MCS changes the DLIB for an element that is also being replaced,
the element MCS must specify the new DLIB.

Examples
Assume IBM ships you a PTF that moves module MODAA from its current
distribution library to a new library, and also moves load module LMODA from its

++MOVE MCS

Chapter 2. SMP/E modification control statements 85

current target library to a new one. Here is an example of a SYSMOD containing
++MOVE statements that makes these changes:
++PTF(UR01234) /* Identify the PTF number */.
++VER(Z038) FMID(HXY1300) /* for MVS function HXY1300.*/.
++IF (ESY1300) THEN /* If ESY1300 is installed */

REQ(UR12399) /* UR12399 is required. */.
++MOVE (MODAA) /* Move module MODAA */

DISTLIB(AOS11) /* from DLIB AOS11 */
TODISTLIB(AOSXX) MOD /* to DLIB AOSXX. */.

++MOVE (LMODA) /* Move load module LMODA */
SYSLIB(LINKLIB) /* from LINKLIB */
TOSYSLIB(LPALIB) LMOD /* to LPALIB. */.

•
•
•

++MOD(MODAA) DISTLIB(AOSXX) /* Element MCS statements. */.

++MOVE MCS

86 SMP/E V3R6.0 for z/OS V2R1.0 Reference

++NULL MCS
The ++NULL MCS is valid only in the SMPHOLD data set. It provides no SMP/E
function other than allowing all service tapes to be built with the same format,
even though a function may have no exception SYSMOD data for a particular
month.

Syntax

++NULL MCS

�� ++NULL • ��

++NULL MCS

Chapter 2. SMP/E modification control statements 87

++PRODUCT MCS
The ++PRODUCT MCS is used to describe information about a product. It
introduces descriptive information about a new or replacement product into the
global zone.

Syntax

++PRODUCT MCS

�� ++PRODUCT (prodid , vv.rr.mm) DESCRIPTION (description) �

� �

,

SREL (srel)

�

,

PRODSUP ((prodid,vv.rr.mm))

�

�
URL (product_url) VENDOR (vendor_name) REWORK (level)

• ��

Operands

The PRODUCT is identified by the combination of the prodid and the vv.rr.mm
values.

prodid
is a 1- to 8-character product identifier. It can contain uppercase alphabetic,
numeric, and national ($, #, @) characters. It may also contain one or more
dashes (-). For IBM products, the prodid is assumed to be the IBM program
product number (5647-A01, for example).

vv.rr.mm
specifies the version, release, and modification level of this PRODUCT. It is 5
to 8 characters long in the form vv.rr.mm. The version (vv), release (rr), and
modification (mm) values must be one or two numeric characters separated by
a period ('.'). SMP/E will insert leading zeros to each section of the vv.rr.mm
value that is one character long. That is, 2.5.0 will become 02.05.00 when
stored.

DESCRIPTION
a text description of the product.
v DESCRIPTION can also be specified as DESC.
v The DESCRIPTION value can be in single-byte characters (such as English

alphanumeric) or double-byte characters (such as Kanji).
v The DESCRIPTION value can contain up to 64 bytes of data, including

blanks. (For double-byte data, the 64-byte maximum includes all shift-in and
shift-out characters, as well as the double-byte characters.) Extra blanks as
well as leading and trailing blanks are deleted.

v The DESCRIPTION value can span multiple 80-byte records. Data must
continue up to and including column 72 and begin in column 1 of the next

++PRODUCT MCS

88 SMP/E V3R6.0 for z/OS V2R1.0 Reference

line. All data past column 72 is ignored. The break does not translate to a
blank unless a blank is explicitly coded in column 72 of the first line or in
column 1 of the second line.

v The DESCRIPTION value cannot be only blanks.
v If parentheses are included in the text, they must be in matched pairs.

SREL
specifies the system or subsystem releases on which the PRODUCT can be
installed. Each SREL value must be four alphanumeric characters, usually one
alphabetic character followed by three numeric characters. These are the
systems and subsystems defined by IBM, with their SRELs:

System
SREL

DB2 P115

CICS® C150

IMS™ P115

MVS Z038

NCP P004

The list of SRELs is used during RECEIVE processing to determine whether a
PRODUCT should be received.

PRODSUP
indicates which PRODUCTs are superseded (replaced) by this PRODUCT. It is
a list of prodid,vv.rr.mm values for the PRODUCTs being superseded. The
combination of prodid and vv.rr.mm determines the uniqueness of an entry in
the PRODSUP operand list.

The PRODSUP operand must not specify a prodid,vv.rr.mm combination
matching the prodid,vv.rr.mm combination of the ++PRODUCT statement on
which it is specified.

URL
specifies a uniform resource locator (URL) that can be used to obtain
additional information about this product.
v The URL can be in single-byte characters (such as English alphanumeric) or

double-byte characters (such as Kanji).
v The URL can contain up to 256 bytes of data, excluding blanks. (For

double-byte data, the 256-byte maximum includes all shift-in and shift-out
characters, as well as the double-byte characters.) All blanks including
leading and trailing blanks are deleted.

v The URL can span multiple 80-byte records. Data must continue up to and
including column 72 and begin in column 1 of the next line. All data past
column 72 is ignored, including blanks. The break does not translate to a
blank.

v The URL cannot be only blanks.
v If parentheses are included in the text, they must be in matched pairs.

VENDOR
specifies the name of the vendor supplying the product.
v The VENDOR can be in single-byte characters (such as English

alphanumeric) or double-byte characters (such as Kanji).
v The VENDOR can contain up to 64 bytes of data, including blanks. (For

double-byte data, the 64-byte maximum includes all shift-in and shift-out

++PRODUCT MCS

Chapter 2. SMP/E modification control statements 89

characters, as well as the double-byte characters.) Extra blanks as well as
leading and trailing blanks are deleted.

v The VENDOR can span multiple 80-byte records. Data must continue up to
and including column 72 and begin in column 1 of the next line. All data
past column 72 is ignored. The break does not translate to a blank unless a
blank is explicitly coded in column 72 of the first line or in column 1 of the
second line.

v The VENDOR cannot be only blanks.
v If parentheses are included in the text, they must be in matched pairs.

REWORK

is the level of this ++PRODUCT MCS, which was reworked for minor changes.
Up to eight numeric characters can be specified.
REWORK is generally used only for ++PRODUCT statements supplied by IBM
that have been reworked for minor changes. For these ++PRODUCT
statements, the REWORK level is yyyyddd, which is the year followed by the
Julian date (for example, 2008110).
REWORK allows an updated ++PRODUCT MCS to be automatically received
again, as long as it is more recent than the version that has already been
received. This takes the place of rejecting the ++PRODUCT MCS and receiving
it again.

Note: If a ++PRODUCT MCS appears more than once in the SMPPTFIN data
set, the first occurrence may be received. However, none of the subsequent
versions of the ++PRODUCT MCS are received, even if their rework level is
higher than the one for the first version of the ++PRODUCT MCS.

Usage notes
v The ++PRODUCT statements are processed whenever the SMPPTFIN data set is

processed. This is true whether only selected SYSMODs are being processed or
the entire SMPPTFIN data set is being processed.
++PRODUCT statements are not processed when only the SMPHOLD data set is
being processed.

v The prodid, vv.rr.mm, DESCRIPTION, and SREL values are required and cannot
be blank or null.

v The ++PRODUCT MCS is used in the SMPPTFIN data set and can be placed
between, before, or after SYSMODs, ++FEATURE MCS, or ++PRODUCT MCS. It
must be followed by one of the following: a ++APAR, ++ASSIGN MCS,
++FEATURE MCS, ++FUNCTION, ++PTF, ++USERMOD, another ++PRODUCT
MCS, or an end-of-file. If one of these does not follow, SMP/E does not receive
the SYSMOD being processed and it skips the ++PRODUCT MCS.

Example

Here is an example of a ++PRODUCT MCS for a product called OS/390.
++PRODUCT(5647-A01,2.5.0) /* Product definition */

DESCRIPTION(OS/390) /* Description */
URL(http://www.S390.ibm.com/os390/) /* URL */
SREL(Z038) /* SREL value */
PRODSUP((5645-001,01.04.00)) /* Product sups */
VENDOR(IBM) /* Product Vendor */.

++PRODUCT MCS

90 SMP/E V3R6.0 for z/OS V2R1.0 Reference

++PROGRAM MCS
The ++PROGRAM MCS describes a program element (a pre-built load module or a
program object). It must immediately precede the load module or program object
when they are within the SYSMOD. Use the ++PROGRAM when you want to ship
executables as program parts. If you want to provide the object form of the
module, use the ++MOD MCS instead. JCLIN is not used to define the program
element.

Syntax

The syntax to be used depends on the processing to be performed for the element:
v Adding or replacing the element
v Deleting the element

Adding or replacing a program element

Program element MCS

�� ++PROGRAM (name)

�

,

ALIAS (alias)

DISTLIB (ddname)
�

�
RELFILE (number)
LKLIB (ddname)
FROMDS (DSN (dsn) NUMBER (n))

VOL (vol) UNIT (unit)

�

�
RMID (sysmod_id) SYSLIB (ddname)

�

,

VERSION (sysmod_id)

• ��

Deleting a program element

Program element MCS

�� ++PROGRAM (name) DELETE
DISTLIB (ddname)

�

�

�

,

VERSION (sysmod_id)

• ��

Operands
ALIAS

specifies an alternate name for the program object or load module.

DELETE
specifies that the program element and all aliases are to be removed from the
target library and the distribution library.

Note:

1. DELETE is mutually exclusive with all other operands except DISTLIB and
VERSION.

++PROGRAM MCS

Chapter 2. SMP/E modification control statements 91

2. If the element statement is in a base function, you may want to use the
DELETE operand on the ++VER MCS to delete the previous release, rather
than on the element statement to delete a specific element.

3. Specification of the DELETE operand results in all aliases of the program
element being deleted along with the program element identified.

DISTLIB
specifies the ddname of the distribution library for the specified program
element. During ACCEPT processing, SMP/E installs the program element into
the distribution library as a member. (The distribution library must be a PDS
or PDSE; it cannot be part of a UNIX file system.)

Note:

1. DISTLIB must be specified when the program element is first installed.
2. If a program element entry already exists in the target zone or distribution

zone and the value currently in that entry does not match that specified in
the DISTLIB operand, the SYSMOD is not applied or accepted.

FROMDS
identifies the partitioned data set that contains this element.

Note: The FROMDS operand and its DSN, NUMBER, VOL, and UNIT
suboperands are included in the MCS generated by the BUILDMCS command.
IBM does not intend the FROMDS operand to be used in manually coded
MCS.

DSN
specifies the dsname of the FROMDS data set. The specified data set name
must conform to standard data set naming conventions and cannot contain
parentheses. The maximum length of the entire name is 44 characters
(including the periods).

NUMBER
specifies a number that SMP/E is to use when assigning a name to the
SMPTLIB data set associated with this FROMDS data set. (This is similar to
the way the relative file number is used in RELFILE processing.)

VOL
specifies, for an uncataloged data set, the volume serial number of the
volume containing the FROMDS data set. If specified, this volume
identifier must be from 1 to 6 alphanumeric characters.

VOL may be omitted for a cataloged data set.

UNIT
specifies, for an uncataloged data set, the UNIT type containing the
FROMDS data set. If specified, the UNIT value must be from 1 to 8
characters and must conform to standard UNIT naming conventions.
SMP/E accepts any nonblank characters specified between the open and
close parentheses, up to a maximum length of 8.

UNIT may be omitted for a cataloged data set.

Note: FROMDS is mutually exclusive with DELETE, RELFILE, and LKLIB.

LKLIB
is the ddname of the partitioned data set containing the program element. This
operand is required if the program element is provided in a data set to which
the users have access, rather than inline or in RELFILE format.

++PROGRAM MCS

92 SMP/E V3R6.0 for z/OS V2R1.0 Reference

Note:

1. SMPTLIB cannot be used as a value on the LKLIB operand.
2. LKLIB is mutually exclusive with FROMDS and RELFILE.

name
specifies the name of the program element member. The name can contain any
uppercase alphabetic, numeric, or national ($, #, @) character and can be 1 to 8
characters long.

RELFILE
identifies which relative file associated with the SYSMOD contains this
element. This operand is required if you provide the element in RELFILE
format, rather than inline or in a LKLIB data set.

Note:

1. The RELFILE value must be a decimal number from 1 to 9999.
2. RELFILE is mutually exclusive with FROMDS and LKLIB.

RMID
specifies the last SYSMOD that replaced this program element. This operand
can be used only in a service-updated function, and the specified PTF must be
integrated into the function.

SYSLIB
specifies the ddname of the target library for the program element. (The target
library must be a PDS or PDSE; it cannot be part of a UNIX file system.)

During APPLY processing, the copy utility installs the program element into
the target library. During RESTORE processing, the copy utility copies the
program element from the distribution library member into the target library.

Note: SYSLIB must be specified when the program element is first installed.

VERSION
specifies one or more function SYSMODs that currently contain the element.
The function containing the element MCS takes over ownership of the element
from the specified functions.

When VERSION is specified on an element statement, it overrides any
VERSION operand values that might be specified on the ++VER MCS.

Usage notes
v The target and distribution libraries for a program element must be a PDS (for

pre-built load module) or a PDSE (for a program object).
v If the program element is packaged inline, it must immediately follow the

++PROGRAM MCS and must not contain any records starting with ++. Neither
FROMDS, nor RELFILE, nor LKLIB can be specified on the ++PROGRAM
MCS.

v To be packaged inline, a program element must be unloaded along with its
aliases into a sequential data set and then transformed into the required
fixed-block-80 record format before it is packaged (see “Examples” on page 94
for a discussion of doing this). Later, when SMP/E installs the element, it is
changed back to its original format. For more information about using GIMDTS,
see “GIMDTS: Data transformation service routine” on page 444.

v If the program element is packaged in a LKLIB data set, the ddname specified in
the LKLIB operand is required during APPLY and ACCEPT processing.

++PROGRAM MCS

Chapter 2. SMP/E modification control statements 93

v For information about packaging program objects or pre-built load modules, see
z/OS Packaging Rules.

Examples
Suppose you have a partitioned data set whose members contain a pre-built load
module (LMODABC) and two aliases (ALIAS1 and ALIAS2). Further, suppose that
you want to package LMODABC and its aliases inline in a PTF. The steps to
package and install pre-built load module LMODABC in a PTF are as follows:

Step 1: Unload the partitioned data set member LMODABC and its aliases to
create a sequential, VS format, data set.
//JOBx JOB ...
//STEP1 EXEC PGM=IEBCOPY,REGION=512K
//SYSPRINT DD SYSOUT=*
//SYSUT3 DD UNIT=SYSDA,SPACE=(TRK,(5,1))
//SYSUT4 DD UNIT=SYSDA,SPACE=(TRK,(5,1))
//INPUT DD DSN=userid.TEST.LOAD,DISP=SHR
//OUTPUT DD DSN=userid.UNLOAD.DATA,DISP=(NEW,CATLG),
// SPACE=(CYL,(20,10),RLSE),UNIT=SYSDA
//SYSIN DD *

COPY OUTDD=OUTPUT,INDD=INPUT
SELECT MEMBER=LMODABC
SELECT MEMBER=ALIAS1
SELECT MEMBER=ALIAS2

/*

Step 2: Transform the unloaded data set into fixed-block-80 type records by using
the SMP/E provided service routine GIMDTS.
//JOBx JOB ...
//TFORM EXEC PGM=GIMDTS
//* ----- GIMDTS IS AN SMP/E LOAD MODULE.
//SYSPRINT DD SYSOUT=*
//*
//* ----- INPUT TO BE TRANSFORMED - RECFM=VS
//*
//SYSUT1 DD DSN=userid.UNLOAD.DATA,DISP=SHR
//*
//* ----- OUTPUT - RECFM=FB
//*
//SYSUT2 DD DSN=userid.FB80.DATA,DISP=OLD

Step 3: Place the fixed block 80 records inline in the PTF following the
++PROGRAM MCS that identifies the element and its aliases to SMP/E.
++PTF(PTF0001).
++VER(Z038) FMID(DC00001).
++PROGRAM(LMODABC) ALIAS(ALIAS1,ALIAS2) DISTLIB(TGTLIB)

SYSLIB(VEND001).

...
Place the data transformed by GIMDTS here.

...

Step 4: APPLY the PTF to install LMODABC and its aliases into the appropriate
target library.
SET BDY(TGT1).
APPLY PTF(PTF0001).

During the APPLY step, SMP/E retransforms the inline data back into a variable
spanned (VS) sequential data set. SMP/E then invokes the copy utility to copy the

++PROGRAM MCS

94 SMP/E V3R6.0 for z/OS V2R1.0 Reference

http://publibz.boulder.ibm.com/epubs/pdf/gimpkg80.pdf

retransformed data into the target library. The program element and aliases are
copied using a COPYMOD and SELECT statements.

After the APPLY, the target library contains LMODABC and its aliases.

++PROGRAM MCS

Chapter 2. SMP/E modification control statements 95

++PTF MCS
The ++PTF MCS identifies a service SYSMOD. This type of SYSMOD can replace
or update elements in target and distribution libraries, such as for a permanent
correction, or it can add new elements. All other MCSs for this SYSMOD follow
this header MCS. For more information about packaging a PTF, see z/OS
Packaging Rules.

Syntax

++PTF MCS

�� ++PTF (sysmod_id)
DESCRIPTION (description)

�

�
FILES (number)

RFDSNPFX (relfile_prefix)
REWORK (level)

�

� • ��

Operands

DESCRIPTION
specifies a descriptive name to be associated with this SYSMOD. z/OS
Packaging Rules.
v DESCRIPTION can also be specified DESC.
v The DESCRIPTION value can be in single-byte characters (such as English

alphanumeric) or double-byte characters (such as Kanji).
v The DESCRIPTION value can contain up to 64 bytes of data, including

blanks. (For double-byte data, the 64-byte maximum includes all shift-in and
shift-out characters, as well as the double-byte characters.) Extra blanks, as
well as leading and trailing blanks are deleted.

v The DESCRIPTION value can span multiple 80-byte records. Data must
continue up to and including column 72 and begin in column 1 of the next
line. All data past column 72 is ignored. The break does not translate to a
blank unless a blank is explicitly coded in column 72 of the first line or in
column 1 of the second line.

v If DESCRIPTION is specified, it must contain at least one non-blank
character.

v If parentheses are included in the text, they must be in matched pairs.

FILES
specifies the number of relative files belonging to this PTF. It can be a decimal
number from 1 to 9999. For information about packaging SYSMODs in relative
files, see z/OS Packaging Rules.

Note:

1. Although SMP/E allows you to package PTFs in relative files, they are not
generally packaged in this format.

2. If a packager uses a high-level qualifier on RELFILE data sets, the
RFDSNPFX operand on the header MCS (not the RFPREFIX operand on the
RECEIVE command) must be used to identify that high-level qualifier.

++PTF MCS

96 SMP/E V3R6.0 for z/OS V2R1.0 Reference

http://publibz.boulder.ibm.com/epubs/pdf/gimpkg80.pdf
http://publibz.boulder.ibm.com/epubs/pdf/gimpkg80.pdf
http://publibz.boulder.ibm.com/epubs/pdf/gimpkg80.pdf
http://publibz.boulder.ibm.com/epubs/pdf/gimpkg80.pdf
http://publibz.boulder.ibm.com/epubs/pdf/gimpkg80.pdf

REWORK
specifies the level of this SYSMOD, which has been reworked for minor
changes. Up to eight numeric characters can be specified.

For SYSMODs supplied by IBM, the REWORK level is yyyyddd, where yyyy is
the year the SYSMOD was reworked and ddd is the Julian date.

REWORK allows an updated SYSMOD to be automatically received again, as
long as it is more recent than the version that has already been received. This
takes the place of rejecting the SYSMOD and receiving it again.

Note: If a SYSMOD appears more than once in the SMPPTFIN data set, the
first occurrence may be received. However, none of the subsequent versions of
the SYSMOD are received, even if their rework level is higher than the one for
the first version of the SYSMOD. (Message GIM40001E is issued for each of the
subsequent versions of the SYSMOD.)

RFDSNPFX
identifies to SMP/E the prefix used in the relative file data set names for this
SYSMOD. SMP/E uses this prefix when allocating data set names for the
SYSMOD's relative files during RECEIVE processing.
v This operand can be specified only if the FILES operand is also specified.
v The RFDSNPFX value specified on the MCS statement must match the

actual prefix used in the data set names for the associated relative files.
For example, if the names of the relative files created for a SYSMOD start
with “IBM”, as in IBM.sysmod_id.F1, the header MCS statement for the
SYSMOD must specify RFDSNPFX(IBM) so SMP/E knows which prefix to
use when allocating the data set names for the SYSMOD's relative files
during RECEIVE processing.

v Following standard data set naming conventions, the prefix can be from 1 to
8 alphanumeric or national ($, #, @) characters or a dash (–).
To enable full Security Server protection for tape data sets and to keep the
tape header within the 17-character limit (including periods), you should
limit the prefix to 1 to 3 characters. If the name exceeds the 17-character
limit, only the rightmost 17 characters are written to the tape header label.

sysmod_id
specifies a unique 7-character system modification identifier for the PTF. For
more information, see “Naming conventions for SYSMODs” on page 512.

Usage notes

If you want to update IBM-supplied code, you should use the ++USERMOD MCS
rather than the ++PTF MCS. For more information, see “++USERMOD MCS” on
page 114.

Examples

A PTF is required that replaces module IFBMOD01 for function FXY1040. The
prerequisite service SYSMOD for the module is PTF UZ00004. The APAR incident
fixed by this PTF is AZ12345. Here is an example of a SYSMOD containing a
++PTF statement to accomplish this:
++PTF(UZ00006) /* Identify the PTF number. */.
++VER(Z038) FMID(FXY1040) /* for MVS function FXY1040 */

PRE(UZ00004) /* with a prerequisite. */
SUP(AZ12345) /* Fixes one APAR. */.

++MOD(IFBMOD01) /* This module */

++PTF MCS

Chapter 2. SMP/E modification control statements 97

DISTLIB(AOSFB) /* from this DLIB. */.
...
... object deck for IFBMOD01
...

++PTF MCS

98 SMP/E V3R6.0 for z/OS V2R1.0 Reference

++RELEASE MCS
The ++RELEASE MCS removes a previously held SYSMOD from exception
SYSMOD status. ++RELEASE statements are processed by the RECEIVE command.

Syntax

++RELEASE MCS

�� ++RELEASE(sysmod_id) ERROR
FIXCAT
USER
SYSTEM

REASON(reason_id)
REASON(Reason-ID)

FMID(fmid) �

�
DATE(yyddd)

• ��

SYSTEM reason IDs used by IBM:

ACTION
AO
DB2BIND
DDDEF
DELETE
DEP
DOC
DOWNLD
EC
ENH
EXIT
EXRF
FULLGEN
IOGEN
IPL
MSGSKEL
MULTSYS
RESTART

Operands

ERROR, FIXCAT, SYSTEM, or USER
specifies the hold category from which the SYSMOD is to be removed. You
must specify one of these categories.

ERROR
An APAR reported an error in the SYSMOD. The SYSMOD should not
be applied or accepted until the APAR is resolved. A PTF held for this
reason is also called a program error PTF, or PE-PTF. SMP/E
automatically resolves the APAR and allows the SYSMOD to be
applied or accepted when a SYSMOD that either matches or
supersedes the APAR is also applied or accepted. Error holds can be
read only from the SMPHOLD data set.

Note: ERROR can also be specified as ERR.

FIXCAT
An APAR provides a fix for the held SYSMOD and the fix is associated
with one or more Fix Categories. It is optional whether the APAR will
affect processing for the held SYSMOD, based on the APAR's Fix
Categories and the Fix Categories of interest specified by the user. If

++RELEASE MCS

Chapter 2. SMP/E modification control statements 99

any one or more Fix Categories for the APAR match any of those of
interest to the user, then the held SYSMOD will not be applied or
accepted until the APAR is resolved. The APAR is resolved when a
SYSMOD that matches the APAR name, or a SYSMOD that supersedes
the APAR, is applied or accepted. FIXCAT holds can be read only from
the SMPHOLD data set.

See the FIXCAT operand for APPLY and ACCEPT command
processing for details of specifying the Fix Categories of interest.

SYSTEM
Special action outside normal SMP/E processing is required for the
SYSMOD. Examples are SYSMODs requiring a SYSGEN after they are
installed, or SYSMODs requiring the installation of an associated
engineering change (EC) level. System holds can appear in the
SYSMOD itself or in the SMPHOLD data set.

Note: SYSTEM can also be specified as SYS.

USER The SYSMOD requires special processing because of a decision you
have made. User holds can be read only from the SMPHOLD data set.

DATE
specifies the date that the ++HOLD MCS was generated.

FMID
specifies the FMID to which the held SYSMOD is applicable. For external
HOLDDATA (a ++HOLD statement not within a SYSMOD), this information
allows SMP/E to receive only those statements associated with FMIDs defined
in the user's global zone. This operand is required.

REASON
identifies the HOLD reason ID that is to be removed from the SYSMOD. This
field is required.
v An error reason ID is the number of the APAR that caused the SYSMOD to be

placed in exception status.
v A fix category reason ID is the SYSMOD ID for the APAR that caused the

SYSMOD to be placed into exception status.
v A system reason ID is a 1- to 7-character string used to identify some special

processing the SYSMOD requires. These are the specific values currently
used by IBM:

ID Explanation

ACTION
The SYSMOD needs special handling before or during APPLY
processing, ACCEPT processing, or both.

AO The SYSMOD may require action to change automated operations
procedures and associated data sets and user exits in products or in
customer applications. The PTF cover letter describes any changes
(such as to operator message text, operator command syntax, or
expected actions for operator messages and commands) that can
affect automation routines.

DB2BIND
A DB2 application REBIND is required for the SYSMOD to become
effective.

DDDEF
Data set changes or additions as required.

++RELEASE MCS

100 SMP/E V3R6.0 for z/OS V2R1.0 Reference

DELETE
The SYSMOD contains a ++DELETE MCS, which deletes a load
module from the system.

DEP The SYSMOD has a software dependency.

DOC The SYSMOD has a documentation change that should be read
before the SYSMOD is installed.

DOWNLD
Code that is shipped with maintenance that needs to be
downloaded.

DYNACT
The changes supplied by the SYSMOD may be activated
dynamically without requiring an IPL. The HOLD statement
describes the instructions required for dynamic activation. If those
instructions are not followed, then an IPL is required for the
SYSMOD to take effect.

EC The SYSMOD needs a related engineering change.

ENH The SYSMOD contains an enhancement, new option or function. The
HOLD statement provides information to the user regarding the
implementation and use of the enhancement.

EXIT The SYSMOD contains changes that may affect a user exit. For
example, the interface for an exit may be changed, an exit may need
to be reassembled, or a sample exit may be changed.

EXRF The SYSMOD must be installed in both the active and the alternative
Extended Recovery Facility (XRF) systems at the same time to
maintain system compatibility. (If you are not running XRF, you
should bypass this reason ID.)

FULLGEN
The SYSMOD needs a complete system or subsystem generation to
take effect.

IOGEN
The SYSMOD needs a system or subsystem I/O generation to take
effect.

IPL The SYSMOD requires an IPL to become effective. For example, the
SYSMOD may contain changes to LPA or NUCLEUS, the changes
may require a CLPA, or a failure to perform an IPL might lead to
catastrophic results, such as could be caused by activation of a
partial fix.

Note: If you plan to perform an IPL with CLPA after the SYSMOD
has been applied, then no further investigation of the HOLD is
required; simply bypass the IPL reason ID. However, if you are not
planning to perform an IPL with CLPA, then the details of the
HOLD statement must be investigated to determine what kind of
actions are required to activate the SYSMOD.

MSGSKEL
This SYSMOD contains message changes that must be compiled for
translated versions of the message changes to become operational on
extended TSO consoles.

++RELEASE MCS

Chapter 2. SMP/E modification control statements 101

If you want to use translated versions of the messages, you must
run the message compiler once for the library containing the English
message outlines, and once for each additional language you want to
be available on your system. For details, see z/OS MVS Planning:
Operations.

If you want to use only the English version of the messages, you do
not need to run the message compiler. You should bypass this reason
ID.

MULTSYS
Identifies fixes that need to be applied to multiple systems, in one of
three cases: preconditioning, coexistence, or exploitation.

RESTART
To become effective, the SYSMOD requires a special subsystem
restart operation. The HOLD statement contains information
regarding the required restart actions.

v A user reason ID is defined by the user.

For additional information, see “Naming conventions for HOLD reason IDs
and HOLD classes” on page 508.

sysmod_id
specifies that SMP/E is to remove the identified SYSMOD from exception
SYSMOD status. This operand is required.

Usage notes
v ++RELEASE statements are not allowed within a SYSMOD. They are allowed

only in SMPHOLD.
v ++RELEASE statements unconditionally remove a SYSMOD from exception

status and should, therefore, be used with caution. To install a SYSMOD that is
currently in exception status, you should probably not create and process a
++RELEASE statement, but rather use the appropriate BYPASS operand of the
APPLY or ACCEPT command.

v ++RELEASE statements do not affect ++HOLD statements within a SYSMOD
(internal HOLDDATA). However, SMP/E can ignore this internal HOLDDATA
during APPLY or ACCEPT processing if BYPASS(HOLDSYS) or
BYPASS(HOLDUSER) is specified.

Examples

The following examples are provided to help you use the ++RELEASE MCS:

Example 1: Removing a SYSMOD from HOLDUSER status
Here is an example of a ++HOLD statement that holds the PTF until after some
event (such as new hardware) occurs:
++HOLD (UZ12345) /* Put this PTF */

FMID(FXY1040) /* for this function */
USER /* into hold user status */
REASON(CPU0A) /* for CPU 0A update. */
COMMENT(I DO NOT WANT THIS TO GO ON

UNTIL AFTER THE CPU CHANGE) /* */.

When the CPU change is made, the following sample ++RELEASE statement
allows the PTF to be installed:

++RELEASE MCS

102 SMP/E V3R6.0 for z/OS V2R1.0 Reference

++RELEASE (UZ12345) /* Remove this PTF */
FMID(FXY1040) /* for this function */
USER /* from hold user status */
REASON(CPU0A) /* for CPU 0A update. */.

That PTF is now eligible for normal installation.

Example 2: Incorrect use of ++RELEASE
Assume the following ++HOLD MCS was processed as part of the normal
preventive service installation:
++HOLD (UZ12345) /* Put this PTF */

FMID(FXY1040) /* for this function */
ERROR /* into hold error status */
REASON(AZ12345) /* for the APAR. */
COMMENT(WHEN RUNNING PRODUCT XYZ and OC4

ABEND MAY OCCUR) /* */.

You are running one system with product XYZ installed and one without product
XYZ. The PTF provides a fix for another problem you are encountering on the
system without product XYZ; so you want to install this PTF on that system. Here
is an example of a ++RELEASE statement that lets you apply PTF UZ12345
without having to use the BYPASS operand:
++RELEASE (UZ12345) /* Remove this PTF */

FMID(FXY1040) /* for this function */
ERROR /* from hold error status */
REASON(AZ12345) /* for the APAR. */.

The risk with this method of processing is that SMP/E no longer has any record of
PTF UZ12345 being in exception status. Therefore, the next time any modifications
are installed on the system with product XYZ installed, the PTF is installed,
introducing a potential 0C4 problem into that system.

The correct way to install the PTF on the system without product XYZ is to use the
following command:
SET BDY(MVSTST1) /* Process MVSTST1 tgt zone.*/.
APPLY S(UZ12345) /* Process the PTF. */

BYPASS(HOLDERR(AZ12345)) /* Bypass known error.*/.

Now the PTF is installed on one system, but SMP/E still remembers that it is in
hold error status and does not allow it to be installed on any other system.

Note: Any other applicable operand (FORFMID, SOURCEID, and so on) can be
used in place of the SELECT or S operand.

Example 3: A ++RELEASE statement with a FIXCAT HOLD
Here is an example of the use of the FIXCAT hold category on a ++RELEASE
statement:
++RELEASE (HBB7720) /* Remove this PTF */

FMID(HBB7720) /* for this function */
REASON(AK18603) /* for this APAR */
FIXCAT /* from fix category hold status */
DATE(06231) /* on this date */.

++RELEASE MCS

Chapter 2. SMP/E modification control statements 103

++RENAME MCS
During APPLY processing, the ++RENAME MCS renames a load module in all the
target libraries and the LMOD entry in the target zone. It also updates the LMOD
subentry of the MOD entry for each module in the load module. For load modules
having a CALLLIBS subentry (or having a SYSLIB allocation), SMP/E also renames
the base version of the load module in the SMPLTS library. For load modules
having a side deck library subentry, SMP/E also renames the definition side deck
in the side deck library.

During ACCEPT processing, if inline JCLIN was processed, the distribution zone
entries are updated to reflect the ++RENAME changes. The target libraries and
target zone entries are not updated.

Note:

1. You cannot use ++RENAME to rename a load module for which symbolic links
have been defined.

2. You cannot use ++RENAME to rename macros, modules, source, or other
elements. SMP/E does, however, support these ways to rename an element:
v For elements other than modules, you must use an element MCS statement

to delete the original element, and another element MCS statement to
reintroduce it using the new name. You can do both of these steps in the
same SYSMOD. For examples, see the descriptions of the various element
MCS statements in this chapter.

v For modules, you must use a ++MOD statement to delete the original
module, and another ++MOD statement to reintroduce it using the new
name. In addition, you must ensure that the renamed module is included in
the appropriate load modules, either through JCLIN or the LMOD operand
on the ++MOD statement. You can do all of these steps in the same
SYSMOD. For an example, see “Example 3: Packaging a renamed module”
on page 82 in this chapter.

Syntax

++RENAME MCS

�� ++RENAME (old_name) TONAME (new_name) • ��

Operands

old_name
specifies the name of the load module to be renamed.

TONAME
specifies the new name for the load module.

Usage notes
v There are no optional operands. You must specify the load module name and its

new name.
v ++RENAME statements must follow any ++VER and ++IF statements, and must

precede any element MCSs.
v Regardless of the order in which ++MOVE, ++RENAME, and ++DELETE

statements are coded in a SYSMOD, they are processed in the following order:
– APPLY and ACCEPT

++RENAME MCS

104 SMP/E V3R6.0 for z/OS V2R1.0 Reference

1. ++MOVE
2. ++RENAME
3. ++DELETE

– RESTORE

1. ++RENAME
2. ++MOVE

++JCLIN statements are processed next, followed by element statements.

Examples

Here is an example of a SYSMOD containing a ++RENAME statement renaming
load module LMODA:
++PTF(UR01234) /* Identify the PTF number. */.
++VER(Z038) FMID(HXY1300) /* For MVS function HXY1300.*/.
++IF (ESY1300) THEN /* If ESY1300 is installed */

REQ(UR12399) /* UR12399 is required. */.
++RENAME (LMODA) /* Rename load module LMODA */

TONAME(LMODBB) /* to LMODBB. */.
++JCLIN /* JCLIN follows. */.

•
•
•

++MOD(MODAA) DISTLIB(AOSXX) /* Element MCS statements. */.

++RENAME MCS

Chapter 2. SMP/E modification control statements 105

++SRC MCS
The ++SRC MCS describes a single source replacement. It must immediately
precede the source definition statements when they are within the SYSMOD.

You should use the ++SRC MCS when you want to provide the source form of a
module and have it get assembled when the SYSMOD is installed. If you want to
provide the object form of the module, use the ++MOD MCS instead.

Syntax

The syntax to be used depends on the processing to be done for the element:
v Adding or replacing the element
v Deleting the element

Adding or replacing source

++SRC MCS

�� ++SRC (name)
DISTLIB (ddname) DISTMOD (ddname)

�

�
RELFILE (number)
TXLIB (ddname)
SSI (code)
FROMDS (DSN (dsn) NUMBER (n))

VOL (vol) UNIT (unit)

�

�
RMID (sysmod_id) SYSLIB (ddname)

�

,

UMID (sysmod_id)

�

�

�

,

VERSION (sysmod_id)

• ��

Deleting source

++SRC MCS

�� ++SRC (name) DELETE
DISTLIB (ddname)

�

�

�

,

VERSION (sysmod_id)

• ��

Operands
DELETE

indicates that the source is to be removed from the target libraries, distribution
libraries, and SMP/E data sets.

Note: DELETE is mutually exclusive with all other operands except DISTLIB
and VERSION.

++SRC MCS

106 SMP/E V3R6.0 for z/OS V2R1.0 Reference

DISTLIB
specifies the ddname of the distribution library for the specified source.

Note: DISTLIB must be specified if the source has not been previously
recorded on the target zone or distribution zone. If a SRC entry already exists
in the target zone or distribution zone, and the value currently in that entry
does not match that specified in the DISTLIB operand, the SYSMOD is not
applied or accepted, unless that SYSMOD also used the ++MOVE MCS to
change the DISTLIB to that new value.

DISTMOD
specifies the ddname of the link-edit distribution library for the assembled
source code. During ACCEPT processing, the object code from the assembler is
link-edited to the library specified.

FROMDS
identifies the partitioned data set that contains this element.

Note: The FROMDS operand and its DSN, NUMBER, VOL, and UNIT
suboperands are included in the MCS generated by the BUILDMCS command.
IBM does not intend the FROMDS operand to be used in manually coded
MCS.

DSN
specifies the dsname of the FROMDS data set. The specified data set name
must conform to standard data set naming conventions and cannot contain
parentheses. The maximum length of the entire name is 44 characters
(including the periods).

NUMBER
specifies a number that SMP/E is to use when assigning a name to the
SMPTLIB data set associated with this FROMDS data set. (This is similar to
the way the relative file number is used in RELFILE processing.)

VOL
specifies, for an uncataloged data set, the volume serial number of the
volume containing the FROMDS data set. If specified, this volume
identifier must be from 1 to 6 alphanumeric characters.

VOL may be omitted for a cataloged data set.

UNIT
specifies, for an uncataloged data set, the UNIT type containing the
FROMDS data set. If specified, the UNIT value must be from 1 to 8
characters and must conform to standard UNIT naming conventions. IBM
SMP/E for z/OS, V3R6 accepts any nonblank characters specified between
the open and close parentheses, up to a maximum length of 8.

UNIT may be omitted for a cataloged data set.

Note: FROMDS is mutually exclusive with DELETE, RELFILE, SSI, and
TXLIB.

name
specifies the name of the source in the distribution library and, optionally, in
the target library. The name can contain any alphanumeric characters and $, #,
@, or hex C0.

RELFILE
identifies which relative file associated with the SYSMOD contains this

++SRC MCS

Chapter 2. SMP/E modification control statements 107

element. This operand is required if you provide the element in RELFILE
format, rather than inline or in a TXLIB data set.

Note:

1. SMPTLIB cannot be used as a value on the TXLIB operand.
2. RELFILE is mutually exclusive with FROMDS and TXLIB.

RMID
specifies the last SYSMOD that replaced this source. This operand can be used
only in a service-updated function, and the specified PTF must be integrated
into the function.

SSI
specifies eight hexadecimal digits of system status information. This
information is placed in the directory of the target system library or SMPMTS
or SMPSTS during APPLY processing, and in the distribution library during
ACCEPT processing, as four packed hexadecimal bytes of user data. See the
IEBUPDTE program description in z/OS DFSMSdfp Utilities.

Note: This operand is ignored if text is located in a library, as is the case when
either the FROMDS, RELFILE, or TXLIB operand is specified.

SYSLIB
specifies the ddname of the target library, if the source module exists in one.
APPLY and RESTORE processing update this library.

Note: If a SRC entry already exists in the target zone or distribution zone and
the value currently in that entry does not match that specified in the SYSLIB
operand, SMP/E ignores the SYSLIB value in the SYSMOD being installed,
unless that SYSMOD also used the ++MOVE MCS to change the SYSLIB to
that new value.

TXLIB
is the ddname of the partitioned data set containing the source. This operand
is required if the module is provided in a data set the users have access to,
rather than inline or in RELFILE format.

Note:

1. SMPTLIB cannot be used as a value on the TXLIB operand.
2. TXLIB is mutually exclusive with FROMDS and RELFILE.

UMID
specifies the UMIDs of the source. This operand can be used only in function
SYSMODs and specifies the PTF service level of the source (the set of
SYSMODs that have updated this source since it was last replaced).

VERSION
specifies one or more function SYSMODs that currently contain the element.
The function containing the ++SRC MCS takes over ownership of the element
from the specified functions.

When VERSION is specified on an element statement, it overrides any
VERSION operand values that might be specified on the ++VER MCS.

Usage notes
v If the source is packaged inline, it must immediately follow the ++SRC MCS and

must not contain any records starting with ++. Neither FROMDS, nor RELFILE,
nor TXLIB can be specified.

++SRC MCS

108 SMP/E V3R6.0 for z/OS V2R1.0 Reference

v If the source is in a TXLIB data set, the ddname specified on the TXLIB operand
is required during APPLY and ACCEPT processing.

v For information about packaging SYSMODs in RELFILE, TXLIB, or inline
format, see z/OS Packaging Rules.

Examples
The following examples are provided to help you use the ++SRC MCS:

Example 1: Adding a new source to the system
A replacement for the source IFBSRC01 is in a partitioned data set referred to by
the ddname REPLACE. The distribution library for the source is SYS1.IFBSRC;
SYS1.AOS23 is the distribution library for the module, IFBSRC01, resulting from
the assembly of the source, IFBSRC01.

Here is an example of a SYSMOD containing a ++SRC statement that causes
SMP/E to install the source code, assemble it, and save the resulting module in the
DLIBs:
++USERMOD(USR0001) /* User modification */.
++VER(Z038) FMID(FXY1040) /* for user function in MVS.*/.
++SRC(IFBSRC01) /* Replace source */

DISTLIB(IFBSRC) /* in this DLIB. */
DISTMOD(AOS23) /* MOD goes in this DLIB. */
TXLIB(REPLACE) /* Replacement SRC is here. */.

The following DD statements are required when the SYSMOD is applied:
//REPLACE DD DSN=...
//SMPSTS DD DSN=SYS1.SMPSTS,DISP=OLD

plus whatever other DD statements are required based on which load modules the
assembled source is to be linked to. These load modules should be identified by
JCLIN, either as a separate step or within the SYSMOD itself. Assuming the load
module was composed of only this one module, the following ++JCLIN MCS can
be added to the SYSMOD after the ++VER statement.
++JCLIN. /* JCLIN to get SRC linked. */
//JOB1 JOB ’accounting info’,MSGLEVEL=(1,1)
//STEP1 EXEC PGM=IEBCOPY
//AOS23 DD DSN=SYS1.AOS23,DISP=SHR
//LPALIB DD DSN=SYS1.LPALIB,DISP=SHR
//SYSIN DD *
COPY INDD=AOS23,OUTDD=LPALIB
SELECT M=(IFBSRC01)
/*

In this case, you also need the following DD statement when the SYSMOD is
applied:
//LPALIB DD DSN=SYS1.LPALIB,DISP=OLD

The following DD statements are required when the SYSMOD is accepted:
//REPLACE DD DSN=...
//IFBSRC DD DSN=SYS1.IFBSRC,DISP=OLD
//AOS23 DD DSN=SYS1.ASO23,DISP=OLD

Example 2: Packaging renamed source
Suppose that, for some reason, you need to rename source IFBSRC01, which was
introduced in “Example 1: Adding a new source to the system.” The new name is
to be USRSRCXX. You do not need to change anything else about the source.
Because the original source was linked by JCLIN, you must provide updated

++SRC MCS

Chapter 2. SMP/E modification control statements 109

http://publibz.boulder.ibm.com/epubs/pdf/gimpkg80.pdf

JCLIN to link the renamed version of the source. Here is an example of a SYSMOD
containing the ++SRC statements and JCLIN needed to package this renamed
source:
++USERMOD(USR0002) /* User modification */.
++VER(Z038) FMID(FXY1040) /* for user function in MVS.*/

PRE(USR0001) /* Base on previous USERMOD.*/.
++SRC(IFBSRC01) /* Delete the original */

DELETE /* source. */.
++SRC(USRSRCXX) /* Add renamed source */

DISTLIB(IFBSRC) /* to this DLIB. */
DISTMOD(AOS23) /* MOD goes in this DLIB. */
TXLIB(REPLACE) /* Replacement SRC is here. */.

...
++JCLIN. /* JCLIN to get SRC linked. */
//JOB1 JOB ’accounting info’,MSGLEVEL=(1,1)
//STEP1 EXEC PGM=IEBCOPY
//AOS23 DD DSN=SYS1.AOS23,DISP=SHR
//LPALIB DD DSN=SYS1.LPALIB,DISP=SHR
//SYSIN DD *
COPY INDD=AOS23,OUTDD=LPALIB

SELECT M=(USRSRCXX)
/*

You must ensure that the renamed source is in the TXLIB library (REPLACE) used
to provide SMP/E with the element.

The following DD statements are required when the SYSMOD is applied:
//REPLACE DD DSN=...
//SMPSTS DD DSN=SYS1.SMPSTS,DISP=OLD
//LPALIB DD DSN=SYS1.LPALIB,DISP=OLD

The following DD statements are required when the SYSMOD is accepted:
//REPLACE DD DSN=...
//IFBSRC DD DSN=SYS1.IFBSRC,DISP=OLD
//AOS23 DD DSN=SYS1.AOS23,DISP=OLD

++SRC MCS

110 SMP/E V3R6.0 for z/OS V2R1.0 Reference

++SRCUPD MCS
The ++SRCUPD MCS describes a single set of source update statements within a
PTF, an APAR fix, or a USERMOD. It must immediately precede the source update
statements within the SYSMOD.

Syntax

++SRCUPD MCS

�� ++SRCUPD (name)
DISTLIB (ddname) DISTMOD (ddname)

�

�
SYSLIB (ddname)

• ��

Operands

name
specifies the name of the source in the distribution library and, optionally, in
the target library. The name can contain any alphanumeric characters and $, #,
@, or hex C0.

DISTLIB
specifies the ddname of the distribution library for the specified source.

Note: DISTLIB must be specified if the source has not been previously
recorded on the target zone or distribution zone. If a SRC entry already exists
in the target zone or distribution zone, and the value currently in that entry
does not match that specified in the DISTLIB operand, the SYSMOD is not
applied or accepted.

DISTMOD
specifies the ddname of the link-edit distribution library for the assembled
source code. During ACCEPT processing, the object code from the assembler is
link-edited to the library specified.

SYSLIB
specifies the ddname of the target library, if the source exists in one. APPLY
and RESTORE processing update this library.

Usage notes
v If a SYSMOD containing a ++SRCUPD statement attempts to change the

ownership (FMID) of the element (with the VERSION operand), the SYSMOD
cannot be installed.

v The changes for the source must immediately follow the ++SRCUPD MCS and
must not contain any records starting with ++.

v The only IEBUPDTE control statements allowed in a SYSMOD are ./ CHANGE
and ./ ENDUP.

v The only IEBUPDTE CHANGE operand that SMP/E checks is NAME, which
must specify the same element as the ++SRCUPD MCS. Other CHANGE
operands may produce undesired results and are used at your own risk. For
example, if you code UPDATE=INPLACE, SMP/E may update the distribution
library. Once the distribution libraries are changed, there is no way to remove
the updates.

v When processing multiple updates to the same lines in a given source module,
SMP/E uses the ./ CHANGE statement from the last update to the lines.

++SRCUPD MCS

Chapter 2. SMP/E modification control statements 111

v SMP/E does not support a continuation of the ./ CHANGE statement.

Examples

The following examples are provided to help you use the ++SRCUPD MCS:

Example 1: Updating an existing source
Here is an example of a SYSMOD containing a ++SRCUPD statement to make a
modification to an IBM source module, in this case module JESMOD01, which is
part of product EJS1102:
++USERMOD(MY00001) /* User modification */.
++VER(Z038) FMID(EJS1102) /* for MVS JES. */

PRE(UZ12345) /* Current service level. */.
++SRCUPD(JESMOD01) /* Update this JES MOD. */

/* DISTLIB already known. */.
./ CHANGE NAME=JESMOD01

LA R1,MYPARM 00001000
BALR MYPGM 00001100

MYPGM EQU * 00500000
... 00500100
... 00500200
B R14 00500300

Example 2: Making subsequent source updates
Assume that, after installing the modification given in the first example, you need
to make another modification. Assume the following lines had to be changed:

... 00500150
BALR MYPGM2 00500160

MYPGM2 EQU * 00600000
... 00600100
... 00600200
B R14 00600300

You have two choices as to the method of building the second modification:
1. The first method is to build the second SYSMOD to contain only the newly

changed lines of code, and then specify the PRE operand in both the current
IBM service level and the previous user modification.

2. The second method is to build the second SYSMOD to contain all the user
modifications to this module; then specify the PRE operand in the current IBM
service level and supersede the previous user modification.

Here is an example of a SYSMOD for the first method:
++USERMOD(MY00002) /* User modification */.
++VER(Z038) FMID(EJS1102) /* for MVS JES. */

PRE(UZ12345 /* Current service level */
MY00001) /* plus previous USERMOD. */.

++SRCUPD(JESMOD01) /* Update this JES MOD. */
/* DISTLIB already known. */.

./ CHANGE NAME=JESMOD01
... 00500150
BALR MYPGM2 00500160

MYPGM2 EQU * 00600000
... 00600100
... 00600200
B R14 00600300

Here is an example of a SYSMOD for the second method:

++SRCUPD MCS

112 SMP/E V3R6.0 for z/OS V2R1.0 Reference

++USERMOD(MY00002) /* User modification */.
++VER(Z038) FMID(EJS1102) /* for MVS JES. */

PRE(UZ12345) /* Current service level. */
SUP(MY00001) /* Supersede previous usermod.*/.

++SRCUPD(JESMOD01) /* Update this JES MOD. */
/* DISTLIB already known. */.

./ CHANGE NAME=JESMOD01
LA R1,MYPARM 00001000
BALR MYPGM 00001100

MYPGM EQU * 00500000
... 00500100
BALR MYPGM2 00500160
... 00500200
B R14 00500300
... 00500150

MYPGM2 EQU * 00600000
... 00600100
... 00600200
B R14 00600300

The advantages to the second method are that all modifications to one source are
contained in a single SYSMOD, and if that SYSMOD has to be restored or
re-applied, processing is much more efficient.

Note: The SMP/E ++SRCUPD MCS is the same for both methods; only the ++VER
MCS and the actual update control cards change.

++SRCUPD MCS

Chapter 2. SMP/E modification control statements 113

++USERMOD MCS
The ++USERMOD MCS identifies a user modification. This type of SYSMOD can
be used to add user-defined functions or to replace or update elements for
IBM-supplied code in the target or distribution libraries. All other MCSs for this
SYSMOD follow this header MCS. For more information about packaging a
USERMOD, see z/OS Packaging Rules.

Syntax

++USERMOD MCS

�� ++USERMOD (sysmod_id)
DESCRIPTION (description)

�

�
FILES (number)

RFDSNPFX (relfile_prefix)
REWORK (level)

�

� • ��

Operands

DESCRIPTION
specifies a descriptive name to be associated with this SYSMOD. z/OS
Packaging Rules.
v DESCRIPTION value can also be specified DESC.
v The DESCRIPTION value can be in single-byte characters (such as English

alphanumeric) or double-byte characters (such as Kanji).
v The DESCRIPTION value can contain up to 64 bytes of data, including

blanks. (For double-byte data, the 64-byte maximum includes all shift-in and
shift-out characters, as well as the double-byte characters.) Extra blanks, as
well as leading and trailing blanks are deleted.

v The DESCRIPTION value can span multiple 80-byte records. Data must
continue up to and including column 72 and begin in column 1 of the next
line. All data past column 72 is ignored. The break does not translate to a
blank unless a blank is explicitly coded in column 72 of the first line or in
column 1 of the second line.

v If DESCRIPTION is specified, it must contain at least one non-blank
character.

v If parentheses are included in the text, they must be in matched pairs.

FILES
specifies the number of relative files belonging to this USERMOD. It can be a
decimal number from 1 to 9999. For information about packaging SYSMODs in
relative files, see z/OS Packaging Rules.

Note:

1. Although SMP/E allows you to package USERMODs in relative files, they
are not generally packaged in this format.

2. If a packager uses a high-level qualifier on RELFILE data sets, the
RFDSNPFX operand on the header MCS (not the RFPREFIX operand on the
RECEIVE command) must be used to identify that high-level qualifier.

++USERMOD MCS

114 SMP/E V3R6.0 for z/OS V2R1.0 Reference

http://publibz.boulder.ibm.com/epubs/pdf/gimpkg80.pdf
http://publibz.boulder.ibm.com/epubs/pdf/gimpkg80.pdf
http://publibz.boulder.ibm.com/epubs/pdf/gimpkg80.pdf
http://publibz.boulder.ibm.com/epubs/pdf/gimpkg80.pdf

REWORK
specifies the level of this SYSMOD, which was reworked for minor changes.
Up to eight numeric characters can be specified.

For SYSMODs supplied by IBM, the REWORK level is yyyyddd, where yyyy is
the year the SYSMOD was reworked and ddd is the Julian date.

REWORK allows an updated SYSMOD to be automatically received again, as
long as it is more recent than the version that has already been received. This
takes the place of rejecting the SYSMOD and receiving it again.

Note: If a SYSMOD appears more than once in the SMPPTFIN data set, the
first occurrence may be received. However, none of the subsequent versions of
the SYSMOD are received, even if their rework level is higher than the one for
the first version of the SYSMOD. (Message GIM40001E is issued for each of the
subsequent versions of the SYSMOD.)

RFDSNPFX
identifies to SMP/E the prefix used in the relative file data set names for this
SYSMOD. SMP/E uses this prefix when allocating data set names for the
SYSMOD's relative files during RECEIVE processing.
v This operand can be specified only if the FILES operand is also specified.
v The RFDSNPFX value specified on the MCS statement must match the

actual prefix used in the data set names for the associated relative files.
For example, if the names of the relative files created for a SYSMOD start
with “IBM”, as in IBM.sysmod_id.F1, the header MCS statement for the
SYSMOD must specify RFDSNPFX(IBM) so SMP/E knows which prefix to
use when allocating the data set names for the SYSMOD's relative files
during RECEIVE processing.

v Following standard data set naming conventions, the prefix can be from 1 to
8 alphanumeric or national ($, #, @) characters or a dash (–).
To enable full Security Server protection for tape data sets and to keep the
tape header within the 17-character limit (including periods), you should
limit the prefix to 1 to 3 characters. If the name exceeds the 17-character
limit, only the rightmost 17 characters are written to the tape header label.

sysmod_id
specifies a unique 7-character system modification identifier for the
USERMOD. For more information, see “Naming conventions for SYSMODs”
on page 512.

Usage notes

If you have updated an element, SYSMODs other than functions cannot replace it
unless you explicitly allow them to by bypassing MODID checking. However, if
you install a function, it may overlay your user modifications. SMP/E issues a
warning message when it detects this condition.

Examples

A source (IFBSRC02) owned by function SYSMOD FXY1040 is to be modified. Your
modification requires a service level provided UZ00007; you are only updating, not
replacing, the source. You have chosen a SYSMOD ID of MY00001. Here is an
example of a SYSMOD containing a ++SRCUPD statement that accomplishes this:
++USERMOD(MY00001) /* USERMOD number */.
++VER(Z038) FMID(FXY1040) /* for function FXY1040 */

PRE(UZ00007) /* at this service level. */.

++USERMOD MCS

Chapter 2. SMP/E modification control statements 115

++SRCUPD(IFBSRC02) /* Update this source */
DISTLIB(IFBSRC) /* in this DLIB. */.

./ CHANGE NAME=IFBSRC02

...

... update control cards

...

For additional examples of USERMODs, see “++SRCUPD MCS” on page 111 and
SMP/E for z/OS User's Guide.

++USERMOD MCS

116 SMP/E V3R6.0 for z/OS V2R1.0 Reference

++VER MCS
The ++VER MCS describes the environment required for receiving and installing a
SYSMOD. A SYSMOD must contain a separate ++VER MCS for each environment
to which it applies. At least one ++VER MCS must be present in a SYSMOD, and a
maximum of 255 ++VER statements are allowed for each SYSMOD.

Syntax

++VER MCS

�� �

,

++VER (srel)

�

,

DELETE (sysmod_id)

FMID (sysmod_id)
�

�

�

,

NPRE (sysmod_id) �

,

PRE (sysmod_id)

�

�

�

,

REQ (sysmod_id) �

,

SUP (sysmod_id)

�

�

�

,

VERSION (sysmod_id)

• ��

Operands

DELETE
indicates which function SYSMODs should be deleted when this function is
installed. These functions are permanently deleted and cannot be restored.

DELETE can be specified only in function SYSMODs.

The same SYSMOD can be specified on both DELETE and SUP. This cleans up
entries for the deleted function, and, at the same time, allows SYSMODs that
name the deleted function as a requisite to still be installed.

SYSMODs specified in the DELETE operand do not have to be specified in
VERSION operands of ++VER, ++MAC, ++SRC, or ++MOD statements.

For additional information about the effect of DELETE during APPLY and
ACCEPT processing, see SMP/E for z/OS Commands.

FMID
FMID identifies the function to which a SYSMOD applies. FMID must be
specified for all SYSMODs except base functions.

The following considerations relate to the FMID operand:

++VER MCS

Chapter 2. SMP/E modification control statements 117

v Unlike prerequisites specified by the PRE operand, the functional
prerequisite specified by the FMID operand is satisfied only by the specified
SYSMOD. It is not satisfied by another SYSMOD that supersedes that
function.

v When specified on the ++VER MCS for a function, FMID defines the
function as a dependent function. In this case, FMID indicates that the
elements supplied by the dependent function SYSMOD are functionally
higher than the specified base function.
A function cannot be both a base function and a dependent function.
Therefore, if a base function contains more than one ++VER MCS, none of
them can specify the FMID operand. Likewise, if a dependent function
contains more than one ++VER MCS, all of them must specify the FMID
operand.

v When specified on the ++VER MCS for a non-function SYSMOD, FMID
indicates the functional level of all elements in the SYSMOD.

v SMP/E RECEIVE processing does not receive a dependent function unless
the FMID of the base is already present in the global zone or BYPASS(FMID)
is specified. For more information about packaging of dependent SYSMODs,
refer to RECEIVE processing in SMP/E for z/OS Commands.

NPRE
indicates which function SYSMODs cannot exist in the same zone as this
function. These are negative prerequisite SYSMODs. The current SYSMOD
cannot be applied or accepted if any of the listed SYSMODs are already
present.

This operand has no effect on RECEIVE eligibility.

NPRE can only be specified within a function SYSMOD.

PRE
indicates which SYSMODs are prerequisites for this SYSMOD. A prerequisite
SYSMOD must either be already installed, or must be installed concurrently
with this SYSMOD. For additional information about how prerequisites are
resolved during APPLY and ACCEPT processing, see SMP/E for z/OS
Commands.

If a SYSMOD replaces an existing element, the PRE operand must specify the
previous SYSMOD that replaced the element (RMID) and all the SYSMODs
that have updated the element (UMIDs) since it was last replaced.

If a SYSMOD updates an existing element, the PRE operand must specify the
previous SYSMOD that replaced the element. It should also specify the last
SYSMOD that updated the element since then.

This operand has no effect on RECEIVE eligibility.

REQ
indicates which SYSMODs are requisites for this SYSMOD. The specified
SYSMOD must either be already installed, or must be installed concurrently
with this SYSMOD. If the specified SYSMOD also specifies this SYSMOD as a
requisite, these two SYSMODs are corequisites, and neither can be installed
independently; they must be installed within the same APPLY and ACCEPT
command. For additional information about how requisites are resolved during
APPLY and ACCEPT processing, see SMP/E for z/OS Commands.

This operand has no effect on RECEIVE eligibility.

srel
specifies the system or subsystem release on which the SYSMOD can be

++VER MCS

118 SMP/E V3R6.0 for z/OS V2R1.0 Reference

installed. The SREL must contain four alphanumeric characters, usually one
alphabetic character followed by three numeric characters. These are the
systems and subsystems defined by IBM, with their SRELs:

System
SREL

DB2 P115

CICS C150

IMS P115

MVS Z038

NCP P004

The SREL is used during RECEIVE processing to determine whether a
SYSMOD should be received. For more information about how the SREL
operand is processed, see SMP/E for z/OS Commands.

SUP
indicates which SYSMODs are superseded (contained in and replaced) by this
SYSMOD. For example, it may specify one or more APARs fixed in the element
modifications supplied with this SYSMOD.

For functions, the same SYSMOD can be specified on both DELETE and SUP.
This cleans up entries for the deleted function, and, at the same time, allows
SYSMODs that name the deleted function as a requisite to still be installed.

For PTFs, APARs, and USERMODs to properly supersede another SYSMOD,
all the elements in the superseded SYSMOD must be contained in either the
superseding SYSMOD or a SYSMOD from the requisite set for the superseding
SYSMOD (unless the element is being deleted by the superseding SYSMOD).

VERSION
indicates functions whose elements should be considered functionally lower
than the elements contained in this SYSMOD. It specifies one or more function
SYSMODs that currently contain the element. The function containing the
++VER MCS takes over ownership of all the elements from the specified
functions.

When VERSION is specified on an element statement, it overrides any
VERSION operand values specified on the ++VER MCS.

Note: A SYSMOD containing an element update (++MACUPD, ++SRCUPD, or
++ZAP) cannot change the ownership of the element. The ownership can be
changed (with the ++VER VERSION operand) only if the SYSMOD provides a
replacement for the element.

Usage notes
v You can build a SYSMOD that can be processed by previous versions of SMP/E,

as well as this version of SMP/E. For service SYSMODs, this construction
requires at least two ++VER statements, one processable by previous versions of
SMP/E and the other processable by this version of SMP/E. The SRELs in these
++VER statements must be different, so the SYSMOD can be processed correctly
by the applicable version of SMP/E.

v A SYSMOD cannot contain multiple ++VER statements that have identical SREL
and FMID values, because SMP/E would not be able to determine which ++VER
MCS to use in doing the remaining applicability checking during APPLY and
ACCEPT processing.

++VER MCS

Chapter 2. SMP/E modification control statements 119

v You cannot specify the same SYSMOD more than once on a single ++VER
operand. Likewise, you generally cannot specify the same SYSMOD on more
than one operand. However, you can specify the same SYSMOD on VERSION
and another operand (except FMID). You can also specify the same SYSMOD on
the DELETE and SUP operands.

v Corequisite SYSMODs (which are related through the REQ operand) that are
applicable to the same FMID cannot have elements in common. Because the
REQ operand implies no service hierarchy, SMP/E cannot determine which
SYSMOD has the highest service level of the common elements. When the
relationship between the SYSMODs containing the common elements is defined
through the REQ operand, SMP/E issues an error or warning message.
– If the requisites have an element in common and each contains a replacement

for the element, ID check processing fails and neither of the requisites is
installed, unless BYPASS(ID) is specified.

– If the requisites have an element in common and each contains an update for
the element, ID check processing issues a warning message for the requisites.
Generally, the requisites are both installed. However, SMP/E does not allow
multiple ZAPs for the same module to be processed by the same APPLY
command. If this is the case, neither of the requisites is installed; they must
be processed by separate APPLY commands.

Examples

The following examples are provided to help you use the ++VER MCS:

Example 1: Defining base and dependent functions
Assume you want to package one of your user applications as a function so you
can use SMP/E in installing and maintaining it. You also have an optional
enhancement to that product you want to package. The base function has two
modules, USRMOD01 and USRMOD02, which are in link-edit format and reside in
the library pointed to by the USRLIBXX DD statement. The optional enhancement
changes USRMOD02 and depends on the base application being present. Here are
examples of SYSMODs for these functions:
++FUNCTION(EUSR001) /* Base application */.
++VER(Z038) /* for MVS version. */.
++MOD(USRMOD01) /* Has this MOD */

DISTLIB(AOS12) /* in this DLIB. */
LKLIB(USRLIBXX) /* Replacement is here */.

++MOD(USRMOD02) /* Has this MOD */
DISTLIB(AOS12) /* in this DLIB. */
LKLIB(USRLIBXX) /* Replacement is here. */.

++FUNCTION(FUSR011) /* Dependent function */.
++VER(Z038) /* for MVS version. */

FMID(EUSR001) /* Base application must be
present. */.

++MOD(USRMOD02) /* Has this MOD */
DISTLIB(AOS12) /* in this DLIB. */
LKLIB(USRLIBXX) /* Replacement is here. */.

++MOD(USRMOD03) /* Has this MOD */
DISTLIB(AOS12) /* in this DLIB. */
LKLIB(USRLIBXX) /* Replacement is here. */.

The dependent function, FUSR011, specifies the base function on its FMID
operand. This means the base function must be present in order for the dependent
function to be installed. The FMID operand also indicates that if the two functions

++VER MCS

120 SMP/E V3R6.0 for z/OS V2R1.0 Reference

have any elements in common, the version in the dependent product is the one
that is to be installed. The dependent product has now assumed ownership of
those elements.

Example 2: Defining intersecting dependent functions
Assume you want to add another dependent function for the base function defined
in the preceding example. It works whether or not the other dependent function is
installed. Here is an example of a SYSMOD containing a ++VER statement to
define the relationship between the dependent functions:
++FUNCTION(FUSR012) /* Dependent function */.
++VER(Z038) /* for MVS version. */

FMID(EUSR001) /* Base application must be
present. */

VERSION(FUSR011) /* If present is at higher
functional level. */.

++MOD(USRMOD02) /* Has this MOD */
DISTLIB(AOS12) /* in this DLIB. */
LKLIB(USRLIBXX) /* Replacement is here. */.

++MOD(USRMOD04) /* Has this MOD */
DISTLIB(AOS12) /* in this DLIB. */
LKLIB(USRLIBXX) /* Replacement is here. */.

After this function is installed, module USRMOD02 is the version from function
FUSR012, no matter what the former functional level was.

Example 3: Deleting a previous level of a function
Assume you want to provide a new level of the base function defined in the first
example. It includes both of the dependent functions for the original base function.
Here is an example of a SYSMOD containing a ++VER statement deleting the
previous level of the function:
++FUNCTION(EUSR002) /* New base application */.
++VER(Z038) /* for MVS version. */

DELETE(EUSR001) /* Delete prev level. */.
++MOD(USRMOD01) /* Has this MOD */

DISTLIB(AOS12) /* in this DLIB. */
LKLIB(USRLIBXX) /* Replacement is here. */.

++MOD(USRMOD02) /* Has this MOD */
DISTLIB(AOS12) /* in this DLIB. */
LKLIB(USRLIBXX) /* Replacement is here. */.

++MOD(USRMOD03) /* Has this MOD */
DISTLIB(AOS12) /* in this DLIB. */
LKLIB(USRLIBXX) /* Replacement is here. */.

++MOD(USRMOD04) /* Has this MOD */
DISTLIB(AOS12) /* in this DLIB. */
LKLIB(USRLIBXX) /* Replacement is here. */.

After the new function is installed, all references to SYSMODs EUSR001, FUSR011,
and FUSR012 are deleted from the target zone and distribution zone (except the
SYSMOD entry for EUSR001, which indicates it was deleted by EUSR002).

This SYSMOD does not require the previous level of the base function to be
installed. The DELETE operand just says that if that previous function was
installed, SMP/E should delete it before installing the new level. For more
information about delete processing for the APPLY and ACCEPT commands, see
SMP/E for z/OS Commands.

++VER MCS

Chapter 2. SMP/E modification control statements 121

Example 4: Deleting a function without replacing it (dummy
delete)

Assume you no longer need a particular function, and you want to delete it from
your system. First, you must make sure that no other functions depend on the
function you want to delete. Once you have done this, you need to define a
dummy function SYSMOD that deletes the function you want to delete. You then
receive, apply, and accept the dummy function, and run UCLIN to delete the
SYSMOD entries for the deleted function and for the dummy function.

For example, assume you are ready to delete function MYFUNC1 using dummy
function DELFUNC. MYFUNC1 is applicable to SREL Z038 and is installed in
target zone TGT1 and distribution zone DLIB1. Here is an example of the dummy
function:
++FUNCTION(DELFUNC) /* Any valid unique SYSMOD ID. */.
++VER(Z038) /* For SREL Z038 (MVS products). */

DELETE(MYFUNC1) /* Deletes MYFUNC1. */.

These are the commands you use to receive and install the dummy function, and
to delete the SYSMOD entries for the dummy function and the deleted function:
SET BDY(GLOBAL) /* Set to global zone. */.
RECEIVE S(DELFUNC) /* Receive the function. */.
SET BDY(TGT1) /* Set to applicable target. */.
APPLY S(DELFUNC) /* Apply to delete old */

/* function. */.
SET BDY(DLIB1) /* Set to applicable DLIB. */.
ACCEPT S(DELFUNC) /* Accept to delete old */

/* function. */.
SET BDY(TGT1) /* Set to applicable target. */.
UCLIN.
DEL SYSMOD(DELFUNC) /* Delete SYSMOD entries for */.
DEL SYSMOD(MYFUNC1) /* dummy and old function. */.
ENDUCL.
SET BDY(DLIB1) /* Set to applicable DLIB. */.
UCLIN.
DEL SYSMOD(DELFUNC) /* Delete SYSMOD entries for */.
DEL SYSMOD(MYFUNC1) /* dummy and old function. */.
ENDUCL /* */.

When you accept the dummy function, SMP/E automatically deletes the associated
SYSMOD entry from the global zone and the MCS entry from the SMPPTS.

To complete the cleanup, you should also use the REJECT command to delete any
SYSMODs and HOLDDATA applicable to the dummy function and the old
function. In addition, you should delete the FMIDs from the GLOBALZONE entry
to prevent SMP/E from receiving any SYSMODs or HOLDDATA applicable to
either of those functions. Here are examples of the commands you can use to do
this.
SET BDY(GLOBAL) /* Set to global zone. */.
REJECT HOLDDATA NOFMID /* Reject SYSMODs, HOLDDATA */

PRODUCT /* PRODUCT information */
DELETEFMID /* for the deleted functions.*/
(DELFUNC MYFUNC1) /* Delete the FMIDs from the */

/* GLOBALZONE entry. */.

Note: If you delete a function that used totally copied libraries, there will be DLIB
entries left in the zone after the deletion, which may cause problems if this
function is later reinstalled. You should run UCLIN to delete the leftover DLIB
entries to ensure that SMP/E will create new DLIB entries that point to the proper
libraries when a new copy of the function is installed.

++VER MCS

122 SMP/E V3R6.0 for z/OS V2R1.0 Reference

++ZAP MCS
The ++ZAP MCS describes a module update within a PTF, APAR fix, or
USERMOD. It must precede the IMASPZAP statements within the SYSMOD.

Syntax

++ZAP

�� ++ZAP (name)

�

•
DALIAS (alias) DISTLIB (ddname)

,

TALIAS (alias)

��

Operands

DALIAS
is the alias name of a module that has an alias in the distribution library, but
not in the target library. This might be used if the module is included under its
alias name during system generation.

Note: DALIAS is mutually exclusive with TALIAS.

DISTLIB
specifies the ddname of the distribution library for the specified module.

Note: This operand must be specified if the module has not been previously
recorded on the target zone or distribution zone. If a MOD entry already exists
in the target zone or distribution zone and the value currently in that entry
does not match that specified in the DISTLIB operand, the SYSMOD is not
applied or accepted.

name
specifies the name of the module member in the distribution library and,
optionally, in the target system library. The name can contain any
alphanumeric characters and $, #, @, or hex C0.

Note: If the module to be updated has been assembled, specify the name of
the assembled module, not the CSECT name.

TALIAS
identifies all the alias names of a module that has aliases in both the target and
distribution libraries.

You can use TALIAS for a module that was copied from a distribution library
into a target library (defined by JCLIN data as a copied module), but not for
one that is link-edited (defined by JCLIN data as a link-edited module).
TALIAS must be specified on the ++MOD MCS even if ALIAS was specified
on the COPY SELECT statement.

Note: TALIAS is mutually exclusive with DALIAS.

Usage notes
v If a SYSMOD containing a ++ZAP statement attempts to change the ownership

(FMID) of the element (with the VERSION operand), the SYSMOD cannot be
installed.

++ZAP MCS

Chapter 2. SMP/E modification control statements 123

v The changes for the module must immediately follow the ++ZAP MCS and must
not contain any records that start with ++.

v The only IMASPZAP control statements allowed in a SYSMOD are:

Control statements
ABSDUMP DUMP NAME VER
ABSDUMPT DUMPT REP VERIFY
BASE IDRDATA SETSSI *(comment)

v An EXPAND control statement in link-edit utility format can be placed within
IMASPZAP input to allow lengthening of control sections. The EXPAND
statement must follow the NAME statement. For the syntax and description of
the EXPAND statement, see z/OS MVS Program Management: User's Guide and
Reference. All control statements must begin in or after column 2.

v Expand type IMASPZAP processing cannot be performed against a noneditable
(NE) module.

v Any SETSSI statements placed in the input stream for expand-type IMASPZAP
processing must be in a form acceptable to both IMASPZAP and the link-edit
utility; that is, they must begin in column 2 or after. The SSI statements must
follow the EXPAND statements.

v The name specified on the ++ZAP MCS must be the same as the name of the
distribution library module. The CSECT value on the IMASPZAP NAME
statement must be the same as the load module's CSECT name. That CSECT
name is usually the same as the distribution library name, but it can be different.
For example, if the module to be updated has been assembled, the ++ZAP
statement should specify the name of the assembled module, not the CSECT
name.
The LIST LMOD statement produces a target zone listing of link-edit utility
control statements that might have changed the CSECT name of the member. A
link-edit map may be helpful in other cases where the names differ.

v The IMASPZAP NAME statement can optionally be coded as follows:
NAME csect-name

or

NAME lmod-name csect-name

or

NAME lmod-name csect-name class-name

The coding of one operand assumes that operand to be a CSECT name for the
module referred to in the ++ZAP statement. In this case, all load modules
containing the module named in the ++ZAP statement are processed by
IMASPZAP.
Two operands can be specified, in which case the second operand is assumed to
be a CSECT name. The first operand is assumed to be a valid load module
containing the module named in the ++ZAP statement. In this case, only the
indicated load module is processed by IMASPZAP.
Three operands can also be specified, in which case the first two operands are as
described in the previous paragraphs. The third operand indicates, for program
objects only, the class of text that you want to modify. The default is B_text. If
you want to omit the CSECT name and supply a class-name, code a single
asterisk for the CSECT name, followed by the class-name.

v When using IMASPZAP on an assembled module, be careful: The modification
identifier is updated, but not the modification of any associated macros.

++ZAP MCS

124 SMP/E V3R6.0 for z/OS V2R1.0 Reference

It is not recommended that you use IMASPZAP to modify assembled modules.
An assembled module modified by IMASPZAP does not cause updating of the
distribution library during accept processing; therefore, a subsequently generated
system does not contain the IMASPZAP modification.
A more satisfactory method of updating assembled modules is to update the
macros that generate them.

v SMP/E processing does not save a backup copy of the nucleus during apply
processing when the nucleus is modified by a SYSMOD containing a
non-expand-type IMASPZAP modification.

v Only one ZAP can be applied to a module by a single APPLY command. If you
need to install several ZAPs for a given module, each one must be packaged
separately and installed by a separate APPLY command.

v If you need to install a ++ZAP change on a live system library and that library
uses library lookaside (LLA), virtual lookaside facility (VLF), or both, you must
do some setup work before installing the change. Otherwise, the change might
not take effect, even after installation. See z/OS MVS Initialization and Tuning
Guide for guidance on:
– Removing libraries from LLA and VLF control
– Refreshing LLA and VLF

Note: Installing a change on a live system is not recommended.

Examples

The examples in this section are based on the load module structure shown in
Figure 2.

The following examples show how ++ZAP statements can be used to update
modules, load modules, and CSECTs within modules:

Example 1: Changing all load modules that contain the same
module

Assume you want to change CSECT2 in module MOD1, which is in both LMODA
and LMODB. Here is an example of a SYSMOD that accomplishes this by
specifying the CSECT name on the NAME statement without including any load
module names:

Load Module Name Load Module Name
Module Name Module Name

CSECT Name CSECT Name

LMODA LMODB
MOD1 MOD1

CSECT1 CSECT1
CSECT2 CSECT2
CSECT3 CSECT3

MOD2 MOD2
MOD2 MOD2

MOD3
MOD3

MOD4
MOD4

Figure 2. Load module structure for ++ZAP examples

++ZAP MCS

Chapter 2. SMP/E modification control statements 125

++USERMOD(MYMOD01).
++VER(Z038) FMID(FXY1000).
++ZAP(MOD1).

NAME CSECT2
VER 000D FF4160
REP 000D FE4160

Example 2: Changing the only load module that contains a
given module

Assume you want to change CSECT MOD3 in module MOD3, which is only in
LMODA. Here is an example of a SYSMOD that accomplishes this by specifying
the CSECT name on the NAME statement without including any load module
names:
++USERMOD(MYMOD02).
++VER(Z038) FMID(FXY1000).
++ZAP(MOD3).

NAME MOD3
VER 000A 00
REP 000A FF

Example 3: Changing one of several load modules that
contain a given module

Assume you want to change CSECT2 in module MOD1, which is in both LMODA
and LMODB. You want to update only the version in LMODB. Here is an example
of a SYSMOD that accomplishes this by specifying both the load module name and
the CSECT name on the NAME statement.
++USERMOD(MYMOD03).
++VER(Z038) FMID(FXY1000).
++ZAP(MOD1).

NAME LMODB CSECT2
VER 0000 00
REP 0000 FF

Example 4: Expanding a module
Assume you want to update CSECT3 with an EXPAND request. CSECT3 is in
module MOD1, which is in both LMODA and LMODB. Here is an example of a
SYSMOD that accomplishes this by specifying the CSECT name on the NAME
statement and on an EXPAND statement.
++USERMOD(MYMOD04).
++VER(Z038) FMID(FXY1000).
++ZAP(MOD1).

NAME CSECT3
VER 000D FF
REP 000D FE
EXPAND CSECT3(4)

++ZAP MCS

126 SMP/E V3R6.0 for z/OS V2R1.0 Reference

Chapter 3. Defining control statements in SMPPARM members

The SMPPARM data set can contain members that allow you to customize SMP/E
as follows:

Member name
Use

GIMDDALC
Defines data sets to be dynamically allocated

GIMEXITS
Defines exit routines

GIMOPCDE
Defines macro and assembler operation codes

GIMDDALC control statements
SMPPARM member GIMDDALC is used to specify data sets that are to be
dynamically allocated by SMP/E. The following types of data sets may be
specified in GIMDDALC:
v Data sets to be allocated to a SYSOUT class (or to the terminal for foreground

execution)
v Data sets to be allocated as temporary data sets
v SMPTLIB data sets

During any attempt to allocate a data set, SMP/E first looks for a DD statement
specified in the job. If no DD statement was specified, SMP/E then looks for a
DDDEF entry in the zone. If no DDDEF entry was found, SMP/E then checks to
see if there is an SMPPARM data set. If so, and there is a GIMDDALC member
within it, SMP/E looks for a GIMDDALC control statement for the corresponding
ddname.

Syntax

SYSOUT data sets

�� DD (ddname) SYSOUT (class)
* , TERM

• ��

SMPWRKn and SYSUTn data sets

�� DD (ddname)
BLOCK (size)
CYLINDERS
TRACKS

SPACE (primary , secondary)
�

�
DIR (nnnn) UNIT (type) VOLUME (volid)

�

�
DATACLAS (name) MGMTCLAS (name) STORCLAS (name)

�

© Copyright IBM Corp. 1986, 2014 127

�
DSNTYPE (LIBRARY)

PDS

• ��

SMPTLIB data sets

�� DD (SMPTLIB)
TRACKS

SPACE (primary , secondary)

�

�
DIR (nnnn)

• ��

Operands
DD identifies the ddname of the data set to be allocated.

v ddname can be from 1 to 8 alphanumeric (A through Z, and 0 through 9), or
national characters (@,#, or $), and must start with an alphabetic or national
character.

v The DD operand must be the first operand specified on a GIMDDALC
control statement.

BLOCK(size), CYLINDERS, or TRACKS
specifies the space units to be used in allocating the data set: blocks, cylinders,
or tracks. size is the size of each block to be allocated, and can be from 1 to 5
decimal digits. To specify the number of these units, use the SPACE operand.

BLOCK can be specified as BLK, CYLINDERS can be specified as CYL, and
TRACKS can be specified as TRK.

DATACLAS
specifies the name of a data class to be used for allocating a data set managed
by SMS.

The data class can be from 1 to 8 alphanumeric characters (A through Z and 0
through 9) or national characters (@, #, $).

DIR
specifies the number of directory blocks to allocate.

The number can contain from 1 to 4 decimal digits.

DSNTYPE
specifies the type of partitioned data set to be created.

LIBRARY
indicates a PDSE is to be created.

PDS indicates a PDS is to be created.

MGMTCLAS
specifies the name of a management class to be used for allocating a data set
managed by SMS.

The management class can be from 1 to 8 alphanumeric characters (A through
Z and 0 through 9) or national characters (@, #, $).

SPACE
specifies the primary and secondary space allocation for a data set. To specify
the units for the space allocation, use one of the BLOCK, CYLINDERS, or
TRACKS operands.

GIMDDALC statements

128 SMP/E V3R6.0 for z/OS V2R1.0 Reference

v The primary and secondary values can contain from 1 to 4 decimal digits, and
the two values must be separated by a comma or a blank.

v The units of primary and secondary space allocation for SMPTLIB data sets is
always tracks.

STORCLAS
specifies the name of a storage class to be used for allocating a data set
managed by SMS.

The storage class can be from 1 to 8 alphanumeric characters (A through Z and
0 through 9) or national characters (@, #, $).

SYSOUT
specifies the output class for SYSOUT data sets.
v The class value must be 1 alphabetic or numeric character (A through Z and

0 through 9).
v An asterisk (*) indicates the class from the OUTPUT DD statement is to be

used. If no OUTPUT DD statement is found, the system default message
class is used.

v TERM indicates if SMP/E is executing in the foreground, the data set is to
be allocated to the terminal.

v SYSOUT is mutually exclusive with all other operands except DD.
v You can not specify SYSOUT for SMPTLIB data sets.

UNIT
specifies the UNIT type the data set is to reside on.

UNIT can be any nonblank 1 to 8 character string.

VOLUME
specifies the volume serial number of the volume the data set is to reside on.

The volume serial number can be from 1 to 6 alphanumeric characters (A
through Z and 0 through 9).

Syntax notes
1. GIMDDALC control statements must each start on a new line.
2. GIMDDALC control statements may be continued on more than one line.

SMP/E assumes a statement is continued if it did not find a period (.) before
column 73.

3. SMP/E ignores columns 73 through 80. If data, such as a period, is specified
beyond column 72, SMP/E will ignore it and indicate an error in the control
statement following the one containing the data.

4. GIMDDALC control statements may contain comments. Comments start with /*
and end with */. The first */ encountered after the initial /* will end the
comment. A comment can appear anywhere within a statement. A comment
after the ending period must start on the same line as the period, and you
cannot start any additional comments after that final comment. For example,
you can code a comment like this:
DD(SMPTLIB) SPACE(5,5) DIR(20). /* Comment after period continued

on subsequent lines is OK. */

However, you cannot code a comment like this:
DD(SMPTLIB) SPACE(5,5) DIR(20). /* Comment after period OK, */

/* but starting another comment
causes a syntax error. */

GIMDDALC statements

Chapter 3. Defining control statements in SMPPARM members 129

This causes a syntax error at the start of the second comment after the period.
5. Only one GIMDDALC control statement is allowed for a single data set.
6. At least one operand (other than DD) must be specified on each GIMDDALC

control statement.
7. For SMPTLIB, only the SPACE, TRACKS, and DIR operands are allowed.

Sample GIMDDALC member
The following is a sample GIMDDALC member. The member is named
GIMDDALC and is shipped with SMP/E in the SAMPLIB target library.
/*

* *
* Licensed Materials - Property of IBM *
* 5650-ZOS 5655-G44 *
* (C) Copyright IBM Corp. 1999, 2013 *
* *

* *
* GIMDDALC -- Sample GIMDDALC member for the SMPPARM data set *
* *

This sample member is a model to assist the SMP/E user in constructing
a GIMDDALC member specifically for their use. A user should copy this
sample into the GIMDDALC member of a data set. That data set is then
defined to SMP/E using the SMPPARM ddname either using a DD statement
in the SMP/E job, or using a DDDEF entry.

The GIMDDALC member contains information used to dynamically allocate
three kinds of data sets:

1. Data sets to be allocated to a SYSOUT class (or to the terminal
for foreground execution),

2. Data sets to be allocated as temporary data sets, and
3. SMPTLIB data sets.

During any attempt to allocate a ddname, SMP/E will first look for a
DD statement specified in the job. If no DD statement was specified,
SMP/E will look for a DDDEF entry in the zone. If no DDDEF entry was
found, SMP/E will then go to member GIMDDALC in the SMPPARM data set.
If there is an SMPPARM data set, and there is a GIMDDALC member within
it, SMP/E will look for an appropriate control statement.

NOTE: The allocation values in the control statements of this sample
member are not intended to be recommendations for the actual
values you should use and will not be appropriate for all users
and all environments.

See the "SMP/E Reference" for details on the syntax of the control
statements and on the use of member GIMDDALC.

* *
* CHANGE_ACTIVITY *
* *
* --- *
* FLAG REASON RELEASE DATE ORG DESCRIPTION *
* ---- ------- ------- -------- --- -------------------------------- *
* $L0= ACE0029 29.00 03/12/99 KJQ: ALTERNATE CUSTOMIZATION *
* *

* CHANGE FLAG KEY: M@PNC *
* WHERE: *
* *

GIMDDALC statements

130 SMP/E V3R6.0 for z/OS V2R1.0 Reference

* M= MULTIPLE P= DCRS = D,E,F,G N= 0-9,A-Z C= A = ADD *
* FOR DELETE RMPS = H,I,J,K (USE ’0’ ONLY C = CHANGE *
* FLAGS ONLY LINE = L,M,N,O WHEN ELEMENT P = COPY *
* PTMS = P,Q,R,S IS BEING M = MOVE *
* APARS = 0-9 CREATED) D = DELETE *

DEFINE ALLOCATIONS FOR SYSOUT DATA SETS
*/

DD(SMPOUT) SYSOUT(2,TERM).
DD(SMPLIST) SYSOUT(2).
DD(SMPRPT) SYSOUT(2).
DD(SMPSNAP) SYSOUT(2).
DD(SYSPRINT) SYSOUT(*).
DD(LNKPRINT) SYSOUT(*) /* LNKPRINT IS DEFINED IN THE LKED UTILITY ENTRY

AND WILL BE USED FOR LINK-EDIT OUTPUT */.
DD(CPYPRINT) SYSOUT(*) /* CPYPRINT IS DEFINED IN THE COPY UTILITY ENTRY

AND WILL BE USED FOR IEBCOPY OUTPUT */.
DD(SYSUDUMP) SYSOUT(2).
DD(SMPPUNCH) SYSOUT(B).
DD(SMPDEBUG) SYSOUT(2). /*

DEFINE ALLOCATIONS FOR TEMPORARY DATA SETS
*/

DD(SMPWRK1) BLOCK(3120) SPACE(364,380) DIR(111) UNIT(SYSALLDA).
DD(SMPWRK2) BLOCK(3120) SPACE(364,380) DIR(111) UNIT(SYSALLDA).
DD(SMPWRK3) BLOCK(3120) SPACE(364,380) DIR(111) UNIT(SYSALLDA).
DD(SMPWRK4) BLOCK(3120) SPACE(364,380) DIR(111) UNIT(SYSALLDA).
DD(SMPWRK6) BLOCK(3120) SPACE(364,380) DIR(111) UNIT(SYSALLDA).
DD(SYSUT1) BLOCK(3120) SPACE(380,760) UNIT(SYSALLDA).
DD(SYSUT2) BLOCK(3120) SPACE(380,760) UNIT(SYSALLDA).
DD(SYSUT3) BLOCK(3120) SPACE(380,760) UNIT(SYSALLDA).
DD(SYSUT4) TRACKS SPACE(1,1) UNIT(SYSALLDA).
DD(SYSPUNCH) TRACKS SPACE(25,10) DIR(10) UNIT(SYSALLDA).
DD(SMPTLOAD) TRACKS SPACE(50,20) DIR(16) UNIT(SYSALLDA). /*

DEFINE ALLOCATIONS FOR SMPTLIB DATA SETS. THIS SAMPLE SMPTLIB
ALLOCATION CORRESPONDS TO SMP/E’S DEFAULT SMPTLIB ALLOCATION.

*/
DD(SMPTLIB) TRACKS SPACE(0,0) DIR(0).

GIMEXITS control statements
SMP/E provides support for two exit points in SMP/E command processing. You
can write exit routine programs that receive control at those exit points to:
v process statements from SMPPTFIN during the RECEIVE command, and
v control retry processing when data sets run out of space during ACCEPT,

APPLY, GZONEMERGE, LINK LMODS, LINK MODULE, RECEIVE, or
RESTORE processing.

The GIMEXITS member of the SMPPARM data set contains control statements
used to identify the exit routine programs to be given control at those SMP/E exit
points. It is the presence of the control statement that indicates to SMP/E that an
exit routine program is to be called at the appropriate exit point during SMP/E
processing. The statements not only identify the exit routine program, but also
allow you to identify the data set that contains the exit routine program. This
eliminates the need to copy the exit routines into the new MIGLIB or LINKLIB
data sets; the exit routines can reside in almost any authorized data set you desire.

GIMDDALC statements

Chapter 3. Defining control statements in SMPPARM members 131

Syntax

GIMEXITS control statement

�� EXIT (RECEIVE)
RETRY

MODNAME (name)
DATASET (dataset)

. ��

Operands
EXIT

identifies the SMP/E exit point that will pass control to the exit routine
defined on the MODNAME operand of this control statement. Valid values
are:

RECEIVE
indicates the RECEIVE command exit point will pass control to the exit
routine.

RETRY
indicates the RETRY exit point will pass control to the exit routine.

The EXIT operand must be the first operand specified on a GIMEXITS control
statement.

MODNAME
specifies the name of the exit routine to receive control during SMP/E
execution at the identified exit point. The exit routine must be a load module
residing in an authorized library. If the DATASET operand is not specified,
SMP/E uses the system search order for programs to locate the exit routine.
See the topic “The Search Order the System uses for Programs” in z/OS MVS
Initialization and Tuning Guide for more information.

The name can be from 1 to 8 alphanumeric characters (A through Z and 0
through 9) or national characters (@, #, $). MODNAME is a required operand.

DATASET
specifies the data set name of a load library in which the exit routine resides.
The data set must be cataloged and it must be an authorized library. If the
DATASET operand is not specified, SMP/E uses the system search order for
programs to locate the exit routine. See the topic “The Search Order the System
uses for Programs” in z/OS MVS Initialization and Tuning Guide for more
information.

The data set name must conform to standard naming conventions for data sets.
Each part of the name must contain from 1 to 8 alphanumeric characters (A
through Z and 0 through 9) or dash (-), separated from the other parts by a
period (.), with no intervening blanks. The first character of each part must not
be numeric or dash, and the maximum length of the entire name is 44
characters (including the periods).

Syntax notes
1. GIMEXITS control statements must each start on a new line.
2. GIMEXITS control statements may be continued on more than one line. SMP/E

assumes a statement is continued if it did not find a period (.) before column
73.

3. SMP/E ignores columns 73 through 80. If data, such as a period, is specified
beyond column 72, SMP/E will ignore it and indicate an error in the control
statement following the one containing the data.

GIMEXITS Statements

132 SMP/E V3R6.0 for z/OS V2R1.0 Reference

4. GIMEXITS control statements may contain comments. Comments start with /*
and end with */. The first */ encountered after the initial /* will end the
comment. A comment can appear anywhere within a statement. A comment
after the ending period must start on the same line as the period, and you
cannot start any additional comments after that final comment. For example,
you can code a comment like this:
EXIT(RECEIVE) MODNAME(MYRECEX). /* Comment after period continued

on subsequent lines is OK. */

However, you cannot code a comment like this:
EXIT(RECEIVE) MODNAME(MYRECEX). /* Comment after period OK, */

/* but starting another comment
causes a syntax error. */

This causes a syntax error at the start of the second comment after the period.
5. Only one GIMEXITS control statement is allowed for a single exit point.

Sample GIMEXITS member
The following is a sample GIMEXITS member. The member is named named
GIMEXITS and is shipped with SMP/E in the SAMPLIB target library.

GIMEXITS Statements

Chapter 3. Defining control statements in SMPPARM members 133

/*

* *
* Licensed Materials - Property of IBM *
* 5650-ZOS 5655-G44 *
* (C) Copyright IBM Corp. 1999, 2013 *
* *

* *
* GIMEXITS -- Sample GIMEXITS member for the SMPPARM data set *
* *

This sample member is a model to assist the SMP/E user in constructing
a GIMEXITS member specifically for their use. A user should copy this
sample into the GIMEXITS member of a data set. That data set is then
defined to SMP/E using the SMPPARM ddname either using a DD statement
in the SMP/E job, or using a DDDEF entry.

The GIMEXITS member contains information used to identify the exit
routines which are to get control during SMP/E processing at specific
exit points:

RECEIVE The RECEIVE exit point allows you to scan statements in the
SMPPTFIN data set during RECEIVE command execution.

RETRY The RETRY exit point enables you to control SMP/E’s RETRY
processing when a data set runs out of space during APPLY,
ACCEPT, RESTORE, and LINK command execution.

See the "SMP/E Reference for details on the syntax of the control
statements and on the use of member GIMEXITS.

* *
* CHANGE_ACTIVITY *
* *
* --- *
* FLAG REASON RELEASE DATE ORG DESCRIPTION *
* ---- ------- ------- -------- --- -------------------------------- *
* $L0= ACE2900 29.00 03/12/99 KJQ: ALTERNATE CUSTOMIZATION *
* *

* CHANGE FLAG KEY: M@PNC *
* WHERE: *
* *
* M= MULTIPLE P= DCRS = D,E,F,G N= 0-9,A-Z C= A = ADD *
* FOR DELETE RMPS = H,I,J,K (USE ’0’ ONLY C = CHANGE *
* FLAGS ONLY LINE = L,M,N,O WHEN ELEMENT P = COPY *
* PTMS = P,Q,R,S IS BEING M = MOVE *
* APARS = 0-9 CREATED) D = DELETE *

*/
EXIT(RECEIVE) MODNAME(MYRECEX) DATASET(SMPE.EXITS.LOAD). /*

Define exit routine MYRECEX in data set SMPE.EXITS.LOAD
to get control during SMP/E RECEIVE command processing.

*/
EXIT(RETRY) MODNAME(MYRTYEX) DATASET(SMPE.EXITS.LOAD). /*

Define exit routine MYRTYEX in data set SMPE.EXITS.LOAD
to get control during SMP/E RETRY processing.

*/

Figure 3. Sample GIMEXITS member provided in SAMPLIB

GIMEXITS Statements

134 SMP/E V3R6.0 for z/OS V2R1.0 Reference

OPCODE control statements
During JCLIN processing, SMP/E scans the SMPJCLIN input, which consists of
various job steps calling system utilities. To determine the structure of the target
system, SMP/E specifically looks at copy steps, link-edit steps, and assembly steps.

As SMP/E scans inline assembly steps, it looks at each assembler instruction to
determine whether the instruction is a macro invocation or an OPCODE. If SMP/E
determines that this is a macro invocation, it builds a MAC entry in the target zone
and defines the connection between the macro and the assembly in which the
macro was found. As a result, when that macro is later changed by the installation
of a SYSMOD, SMP/E can cause all the assemblies that used that macro to be
redone.

SMP/E uses GIMOPCDE members to determine whether an assembler instruction
is a macro invocation or an OPCODE.

SMP/E provides you with a default set of OPCODE definitions that identifies all
the known standard assembler OPCODEs. You can define your own members to
identify additional OPCODE values or macro names by using the sample
GIMOPCDE member SMP/E supplied for you. If you define your own member,
you must allocate the SMPPARM data set. You can specify the name of one of
these user-defined GIMOPCDE members on the JCLIN command or on the
++JCLIN statement to have SMP/E pick up this additional information. The data
from this other GIMOPCDE member is merged with the data from the default set
of OPCODE definitions. If duplicate data is specified, the user-specified member
has priority.

SMP/E uses the following method to determine whether an assembler instruction
is an OPCODE or a macro:
v SMP/E looks for a user-allocated SMPPARM data set.
v If SMPPARM is not found, SMP/E uses the default set of OPCODE definitions.

If SMPPARM is found and there is a user-defined GIMOPCDE member specified
on the JCLIN statement or in the ++JCLIN MCS, then SMP/E searches for the
specified member in SMPPARM. If it finds that member, it will look first in that
member for a definition of the character string.

v If the user-defined GIMOPCDE member specified is not found, SMP/E searches
SMPPARM for the GIMOPCDE member. If it finds the GIMOPCDE member, it
will look only in that member for a definition of the character string. (The
GIMOPCDE member, if it exists in SMPPARM, will completely override
SMP/E's default set of OPCODE definitions.)

v If the GIMOPCDE member is not found, SMP/E uses the default set of
OPCODE definitions.

v If the character string is not defined in either the SMPPARM data set or the
default set, SMP/E considers it to be a macro.

For additional information about how SMP/E processes assembler input as JCLIN,
see “++JCLIN MCS” on page 59.

OPCODE statements

Chapter 3. Defining control statements in SMPPARM members 135

Syntax

GIMOPCDE member control statements

�� KEY = name
TYPE = OPCODE

TYPE = MACRO
• ��

Operands
KEY

identifies a character string for SMP/E to check for when scanning assembler
entries during JCLIN processing, either during the JCLIN command or when
applying a SYSMOD with inline JCLIN.

name can be any alphanumeric character string from one to eight characters in
length.

TYPE
specifies how SMP/E treats that character string when it is encountered. The
following values may be specified:

OPCODE
specifies that SMP/E treats the specified character string as a valid
assembler OPCODE.

Note: OPCODE can also be specified as OP.

MACRO
indicates that SMP/E treats the specified character string as the name of a
macro.

Note: MACRO can also be specified as MAC.

Note:

1. The TYPE operand can be specified only once per control statement.
2. If the TYPE operand is not specified, the default is TYPE=OPCODE.

Usage notes
v Either a blank or a comma can be used to separate the operands.
v Comments are permitted, subject to the next restriction.
v An OPCODE control statement cannot span multiple lines. The complete control

statement, including comments, must be contained on a single line.
v If, during JCLIN processing, SMP/E encounters a string specified in one of the

OPCODE control statements, and the OPCODE control statement specifies that
the string is to be treated as a macro, SMP/E builds a MAC entry in the target
zone and connects that MAC entry to the ASSEM entry built for the current
assembly. For a further description of JCLIN processing as related to the
GIMOPCDE members, see SMP/E for z/OS Commands.

Examples
The following examples are provided to help you use OPCODE statements.

OPCODE statements

136 SMP/E V3R6.0 for z/OS V2R1.0 Reference

Example 1: Defining a new OPCODE for special assemblers
Some licensed programs use a version of the assembler supplied with their
product rather than the standard assembler. Often, this assembler recognizes
special OPCODEs. When SMP/E is processing JCLIN containing assembler steps
that use these OPCODEs, you do not want SMP/E creating target zone macro
entries for them. To avoid this situation, create a special GIMOPCDE member
containing appropriate control statements to define those OPCODEs to SMP/E.

The following is an example of an GIMOPCDE member containing three control
statements to define the three-character strings, OP1, OPCD1, and OPCODE01 as
special assembler OPCODEs:
KEY=OP1 TYPE=OPCODE.
KEY=OPCD1 TYPE=OP.
KEY=OPCODE01 TYPE=OPCODE.

Example 2: Overriding an SMP/E-defined OPCODE
You may provide your own GIMOPCDE member to override SMP/E's default set
of OPCODE definitions by using the sample GIMOPCDE member provided for
you. This sample member contains a control statement identifying PUNCH as a
character string that should be treated as an assembler OPCODE. You may have
constructed a PUNCH macro and now want SMP/E to recognize PUNCH as a
macro name. This can be done by adding the following control statement to an
GIMOPCDE member and then specifying that member on the JCLIN command or
++JCLIN statement:
KEY=PUNCH TYPE=MACRO /* override type to macro */.

OPCODE statements

Chapter 3. Defining control statements in SMPPARM members 137

OPCODE statements

138 SMP/E V3R6.0 for z/OS V2R1.0 Reference

Chapter 4. SMP/E data sets and files

This chapter describes the data sets that are used to process SMP/E commands.
These data sets are listed by the ddnames for the data sets required by each
SMP/E command. According to the type of data set, you can define it with a
DDDEF entry, a DD statement, or with GIMDDALC control statements in
SMPPARM member GIMDDALC. For more information about DDDEF entries, see
“DDDEF entry (distribution, target, and global zone)” on page 194. For more
information about SMPPARM member GIMDDALC, see Chapter 3, “Defining
control statements in SMPPARM members,” on page 127. For more information
about dynamic allocation, see SMP/E for z/OS User's Guide.

CLIENT
ddname

Specified by the user.

Use The CLIENT data set contains information about the local z/OS system
such as how to navigate a local FTP firewall and HTTP proxy server, in
addition to the location of Java application classes and Java debug options.
This information is used by the RECEIVE FROMNETWORK and RECEIVE
ORDER commands, as well as the GIMGTPKG service routine. The
contents of the CLIENT data set are described in the RECEIVE chapter in
SMP/E for z/OS Commands.

Attributes
Sequential or member of a partitioned data set; LRECL=80, RECFM=F or
FB.

Device
Direct access.

Note: This data set may reside in a UNIX file system. Specify
PATHOPTS(ORDONLY) and either FILEDATA=TEXT or FILEDATA=BINARY on
the DD statement if it is to reside in a UNIX file system. For simplicity,
FILEDATA=TEXT is preferred, and ensure the newline character (X'15') marks the
end of each line. If you use FILEDATA=BINARY, you must ensure that each line
is padded with blanks to the 80-byte record length because there is no end of
record marker in binary data.

Distribution library (DLIB)
ddname

The ddname for a distribution library should match the low-level qualifier
of the data set name. For example, the ddname for SYS1.AMACLIB should
be AMACLIB.

Use Distribution libraries (DLIBs) contain updated versions of macros, source,
and modules that were shipped by IBM and stored during ACCEPT
processing. They are used during system generation to build the target
libraries, so you should keep them at a tested functional and service level.
They are also used during RESTORE processing to replace elements in the
target libraries. You must provide a DDDEF entry or DD statement for
each distribution library that is being processed.

© Copyright IBM Corp. 1986, 2014 139

Attributes
Partitioned.

Device
Direct access only.

INFILE
ddname

The ddname for an INFILE data set cannot be the same as the ddname for
any other data sets used by SMP/E. Other than this, there are no
restrictions.

Use The INFILE data set is a sequential data set containing a zone that is to be
loaded by the ZONEIMPORT command. The ddname of this sequential
data set is specified on the INFILE operand of the ZONEIMPORT
command. The zone in the INFILE data set can be used in two ways:
v To recreate a zone that was destroyed
v To recreate a zone on another CSI data set

You must use the ZONEEXPORT command to create the INFILE data set.
(This same data set is called the OUTFILE data set when it is created by
the ZONEEXPORT command.)

Attributes
Sequential; no DCB parameters are required.

If the INFILE data set is on tape, there may be more than one volume for
an exported data set. Remember to specify all the volume serial numbers
on the INFILE DD statement.

Device
Tape or direct access.

Note: BLKSIZE must not exceed 32760.

Link library (LKLIB)
ddname

The ddname for a link library must match the LKLIB value on the element
MCS. For example, the ddname for the link library on statement
++MOD(MODA) LKLIB(LIBX) must be LIBX.

Use Link libraries contain replacements for object modules in link-edited
format. They are used when the modules are provided in partitioned data
sets rather than inline or in relative files.

Attributes
Partitioned.

Device
Direct access only.

ORDERSERVER
ddname

Specified by the user.

Use The ORDERSERVER data set contains information about the IBM
Automated Delivery Request server used by the RECEIVE ORDER

Distribution library (DLIB)

140 SMP/E V3R6.0 for z/OS V2R1.0 Reference

command. The contents of the ORDERSERVER are described in the
RECEIVE chapter in SMP/E for z/OS Commands.

Attributes
Sequential or member of a partitioned data set; LRECL=80, RECFM=F or
FB.

Device
Direct access.

Note: This data set may reside in a UNIX file system. Specify
PATHOPTS(ORDONLY) and either FILEDATA=TEXT or FILEDATA=BINARY on
the DD statement if it is to reside in a UNIX file system. For simplicity,
FILEDATA=TEXT is preferred, and ensure the newline character (X'15') marks the
end of each line. If you use FILEDATA=BINARY, you must ensure that each line
is padded with blanks to the 80-byte record length because there is no end of
record marker in binary data.

OUTFILE
ddname

The ddname for an OUTFILE data set cannot be the same as the ddname
for any other data sets used by SMP/E. Other than this, there are no
restrictions.

Use The OUTFILE data set is a sequential data set containing a zone copied by
the ZONEEXPORT command. The ddname of this sequential data set is
specified on the OUTFILE operand. The zone in the OUTFILE data set can
be used in two ways:
v As a backup copy, to recreate a zone that was destroyed
v As a transportable copy, to recreate a zone on another CSI data set

You must use the ZONEIMPORT command to process the OUTFILE data
set. (This same data set is called the INFILE data set when it is processed
by the ZONEIMPORT command.)

Attributes
Sequential; no DCB parameters are required.

Device
Tape or direct access.

Note: BLKSIZE must not exceed 32760.

SERVER
ddname

Specified by the user.

Use The SERVER data set contains information about a TCP/IP connected host
running an FTP or HTTP(S) server.

Attributes
Sequential or member of a partitioned data set; LRECL=80, RECFM=F or
FB.

Device
Direct access.

ORDERSERVER

Chapter 4. SMP/E data sets and files 141

|

Note: This data set may reside in a UNIX file system. Specify
PATHOPTS(ORDONLY) and either FILEDATA=TEXT or FILEDATA=BINARY on
the DD statement if it is to reside in a UNIX file system. For simplicity,
FILEDATA=TEXT is preferred, and ensure the newline character (X'15') marks the
end of each line. If you use FILEDATA=BINARY, you must ensure that each line
is padded with blanks to the 80-byte record length because there is no end of
record marker in binary data.

SMPCLNT
ddname

SMPCLNT

Use The SMPCLNT data set contains information about the local z/OS system
such as how to navigate a local FTP firewall, the location of Java
application classes and Java debug options. This information is used by the
GIMGTPKG service routine, and has the same contents as the CLIENT
data set. The contents of the CLIENT data set are described in the
RECEIVE chapter in SMP/E for z/OS Commands.

Attributes
Sequential or member of a partitioned data set; LRECL=80, RECFM=F or
FB.

Device
Direct access.

Note: This data set may reside in a UNIX file system. Specify
PATHOPTS(ORDONLY) and either FILEDATA=TEXT or FILEDATA=BINARY on
the DD statement if it is to reside in a UNIX file system. For simplicity,
FILEDATA=TEXT is preferred, and ensure the newline character (X'15') marks the
end of each line. If you use FILEDATA=BINARY, you must ensure that each line
is padded with blanks to the 80-byte record length because there is no end of
record marker in binary data.

SMPCNTL
ddname

SMPCNTL.

Use The SMPCNTL data set contains the SMP/E commands to be processed.

Attributes
Sequential; LRECL=80, BLKSIZE=multiple of 80, RECFM=FB.

Device
Card, tape, direct access, or terminal.

Note:

1. BLKSIZE must not exceed 32760.
2. This data set may reside in a UNIX file system. Specify

PATHOPTS(ORDONLY) and either FILEDATA=TEXT or FILEDATA=BINARY
on the DD statement if it is to reside in a UNIX file system. For simplicity,
FILEDATA=TEXT is preferred, and ensure the newline character (X'15') marks
the end of each line. If you use FILEDATA=BINARY, you must ensure that
each line is padded with blanks to the 80-byte record length because there is no
end of record marker in binary data.

SERVER

142 SMP/E V3R6.0 for z/OS V2R1.0 Reference

SMPCPATH
ddname

SMPCPATH

Use The SMPCPATH (SMP/E classpath) is a directory in the UNIX file system
that contains SMP/E Java application classes. The classes are used by
RECEIVE ORDER processing to communicate with the IBM Automated
Delivery Request server, and by the RECEIVE command and GIMGTPKG,
GIMZIP, and GIMUNZIP service routines to calculate SHA-1 hash values
when ICSF is not available. The default location for SMPCPATH is
/usr/lpp/smp/classes/.

Attributes
Existing directory in the UNIX file system.

Device
Direct access only.

Note:

1. SMPCPATH can be specified using a DD statement or a DDDEF entry. If a
value is not specified, the default path of /usr/lpp/smp/classes/ is used.

2. For additional information about how to specify the location of the Java
runtime, see “Options that affect Java,” in the “Preparing to use Internet service
retrieval” chapter in SMP/E for z/OS User's Guide.

SMPCSI
ddname

SMPCSI.

Use The data set specified by the ddname SMPCSI is the CSI containing the
global zone. (This data set is also known as the master CSI.) The CSI is the
database used by SMP/E to record status and other information about the
various target and distribution libraries being supported.

Attributes
VSAM; RECORDSIZE(24 143), KEYS(24 0).

Device
Direct access only.

Note:

1. The low-level qualifier of the data set name must be CSI.
2. If you have used IBM SMP/E for z/OS, V3R6 to update a CSI data set, you

might not be able to process that data set with previous releases of SMP/E. For
more information, see the migration section in SMP/E for z/OS User's Guide.

3. When running on systems with the required level of Data Facility Product
(DFP), SMP/E automatically takes advantage of the local shared resource (LSR)
feature of VSAM. This reduces the number of times SMP/E must access data
when it is reading CSI data sets. As a result, SMP/E performance is improved
for commands such as APPLY, APPLY CHECK, ACCEPT, ACCEPT CHECK,
and especially LIST.

4. CSI data sets should usually be allocated dynamically. However, you may want
to use the batch local shared resources (BLSR) subsystem with expanded

SMPCPATH

Chapter 4. SMP/E data sets and files 143

storage hiperspaces (instead of SMP/E's implementation of LSR) to improve
SMP/E performance during APPLY and ACCEPT processing for a large
number of changes.
To do this, you use JCL statements instead of dynamic allocation to define the
CSI data sets containing the zones required for processing. For each CSI data
set, you need to provide two DD statements:
v The first DD statement is used by SMP/E to enqueue on the data set (to

protect it from simultaneous updates) and to trigger batch LSR. This DD
statement uses the DDNAME parameter to point to the second DD
statement.

v The second DD statement is used by batch LSR to open the CSI data set.
Both DD statements must specify the same DSN value. The following example
shows how this can be done:
//SMPCSI DD DSN=dataset1.CSI,DISP=SHR,
// SUBSYS=(BLSR,’DDNAME=MYSMPCSI’,
// ’HBUFND=value’,’HBUFNI=value’)
//MYSMPCSI DD DSN=dataset1.CSI,DISP=SHR
//*
//tgtzone DD DSN=dataset2.CSI,DISP=SHR,
// SUBSYS=(BLSR,’DDNAME=MYTGT1’,
// ’HBUFND=value’,’HBUFNI=value’)
//MYTGT1 DD DSN=dataset2.CSI,DISP=SHR

In this example, note that:
v If the target zone and global zone exist in the same CSI, dataset1 and dataset2

refer to the same data set.
v HBUFND and HBUFNI are used instead of BUFND and BUFNI to indicate

the use of hiperspace in expanded storage (if available).
v tgtzone is the name of the target zone specified on the SET BDY command to

be processed.
v The DSN parameter must be specified on all DD statements to ensure

internal enqueue protection.
5. For more information about using the EXEC statement to specify the CSI data

set containing the global zone, see SMP/E for z/OS User's Guide.
6. For information about the target and distribution zones in a CSI data set, see

“Zone statement” on page 170.

SMPDATA1
ddname

SMPDATA1.

Use The SMPDATA1 data set is used to store library change file records. The
library change file records are written by SMP/E during APPLY or
RESTORE processing when the CHANGEFILE subentry of the OPTIONS
entry is set to YES. For more information about library change file records,
see Chapter 8, “Library change file records,” on page 413.

Attributes
Sequential; BLKSIZE=1069–32670, RECFM=VB, DISP=MOD.
v To have the system determine the optimal block size for the data set,

specify BLKSIZE=0.
v If you specify a non-zero BLKSIZE that is less than 1069, SMP/E uses a

default of 8800.

SMPCSI

144 SMP/E V3R6.0 for z/OS V2R1.0 Reference

v DISP=MOD must be specified to maintain a cumulative history of
SMP/E ‘delta’ processing.

v If a DISP other than MOD is specified by the user, SMP/E uses it.
v SMP/E uses LRECL=1065 in allocating the SMPDATA1 data set.

Device
Direct access only.

Note:

1. The SMPDATA1 data set can only be defined to SMP/E with a DD statement
or a DDDEF.

2. The SMPDATA1 DD statement or DDDEF must be defined to each target zone
to enable ‘delta’ processing to occur for that target zone.

3. Do not concatenate SMPDATA1 data sets.
4. Do not allocate the SMPDATA1 data set as a path in a UNIX file system.

The SMPDATA1 DDDEF can also be defined with the SMP/E Administration
dialogs.

SMPDATA2
ddname

SMPDATA2.

Use The SMPDATA2 data set is used to store the library change file records
when the SMPDATA1 data set becomes full. This type of processing is
called spill processing. The library change records are written by SMP/E
during APPLY or RESTORE processing. For more information about library
change file records, see Chapter 8, “Library change file records,” on page
413.

Attributes
Sequential; BLKSIZE=1069–32760, RECFM=VB, DISP=MOD.
v To have the system determine the optimal block size for the data set,

specify BLKSIZE=0.
v If you specify a non-zero BLKSIZE that is less than 1069, SMP/E uses a

default of 8800.
v DISP=MOD must be specified.
v If a DISP other than MOD is specified, SMP/E will use it.
v SMP/E will use LRECL=1065 in allocating the SMPDATA2 data set.

Device
Direct access only.

Note:

1. The SMPDATA2 data set can only be defined to SMP/E with a DD statement
or a DDDEF.

2. The SMPDATA2 DD statement or DDDEF must be defined to each target zone
to enable spill processing to occur for that target zone.

3. Do not concatenate SMPDATA2 data sets.
4. Do not allocate the SMPDATA2 data set as a path in a UNIX file system.
5. The size of the SMPDATA2 data set will vary depending on how the user

intends to manage it.

SMPDATA1

Chapter 4. SMP/E data sets and files 145

6. As is the case with SMPLOG data set, the user is responsible for managing the
contents and space.

The SMPDATA2 DDDEF can also be defined with the SMP/E Administration
dialogs.

SMPDEBUG
ddname

SMPDEBUG.

Use The SMPDEBUG data set contains a dump that was requested by the
DEBUG command. Depending on the operands specified, it may contain
(1) a dump of SMP/E control blocks and storage areas associated with the
specified dump points, or (2) a dump of the VSAM RPL control block and
additional RPL information for the specified SMP/E function.

Attributes
Sequential; LRECL=121, BLKSIZE=multiple of 121, RECFM=FBA,
DISP=MOD.

Device
SYSOUT, printer, direct access, tape, or terminal.

Note:

1. BLKSIZE must not exceed 32760.
2. This data set may reside in a UNIX file system. Specify FILEDATA=TEXT and

PATHOPTS(OWRONLY,OAPPEND) on the DD statement for this data set, if it
is to reside in a UNIX file system.

SMPDIR
ddname

SMPDIR.

Use The SMPDIR directory identifies the name of a path to be allocated in a
UNIX file system. The name is not a complete pathname; it is the directory
under which the files produced by GIMZIP are stored.

Attributes
Existing directory within a UNIX file system.

Device
Direct access.

Note:

1. The SMPDIR directory must be defined with a DD statement.
2. The SMPDIR directory must be defined as a directory in a UNIX file system.
3. The size of the SMPDIR directory depends on the size of the package files

produced by GIMZIP.

SMPDUMMY
ddname

SMPDUMMY

Use SMPDUMMY is intended for use as the definition side deck library for a

SMPDATA2

146 SMP/E V3R6.0 for z/OS V2R1.0 Reference

load module when the IMPORT statements associated with a DLL are not
wanted. It allows the SYSDEFSD DD statement to be allocated as a
DUMMY data set.

When any of the following SYSDEFSD DD statements is encountered in
the link edit JCLIN input stream:
//SYSDEFSD DD DSN=SMPDUMMY,DISP=xxx

(where SMPDUMMY may be the lowest-level qualifier of
a multi-qualifier data set name)

-or-
//SYSDEFSD DD DSN=NULLFILE

(where NULLFILE must be a single-word parameter)
-or-

//SYSDEFSD DD DUMMY

the SIDE DECK LIBRARY subentry for the load module will be set to
SMPDUMMY. When needed for processing, SMP/E will dynamically
allocate SMPDUMMY as a DUMMY data set. Any existing SMPDUMMY
DDDEF entry or GIMDDALC statement will be ignored. If SMPDUMMY
was previously allocated outside of SMP/E, SMP/E will free the
SMPDUMMY DD and reallocate it as a DUMMY data set.

Attributes
DUMMY.

Device
None.

Note: The SMPDUMMY ddname is intended only for association with the SIDE
DECK LIBRARY subentry for load modules. SMP/E does not prohibit its
specification for other library ddnames with the various input methods (MCS,
UCLIN, JCLIN, and so on). However, SMPDUMMY will always be allocated by
SMP/E as "DD DUMMY". Therefore, the results are unpredictable, in that they
depend on each utility's ability to handle a DUMMY data set.

SMPHOLD
ddname

SMPHOLD.

This may refer to an actual data set, or it may refer to a file on a tape (such
as file 4 on an ESO tape).

Use SMPHOLD contains ++HOLD and ++RELEASE statements to be processed
by the RECEIVE command.

Attributes
Sequential; LRECL=80, BLKSIZE=multiple of 80, RECFM=FB.

Device
Direct access or tape.

Note:

1. BLKSIZE must not exceed 32760.
2. This data set may reside in a UNIX file system. Specify

PATHOPTS(ORDONLY) and either FILEDATA=TEXT or FILEDATA=BINARY
on the DD statement if it is to reside in a UNIX file system. For simplicity,
FILEDATA=TEXT is preferred, and ensure the newline character (X'15') marks

SMPDUMMY

Chapter 4. SMP/E data sets and files 147

the end of each line. If you use FILEDATA=BINARY, you must ensure that
each line is padded with blanks to the 80-byte record length because there is no
end of record marker in binary data.

SMPHRPT
ddname

SMPHRPT

Use The SMPHRPT data set is an alternate report data set. If SMPHRPT is
allocated, the HOLD reports that are generated during RECEIVE, APPLY,
ACCEPT and REPORT SYSMODS processing are directed to this data set
while other reports are directed to SMPRPT.

Attributes
Sequential; LRECL=121, BLKSIZE=multiple of 121, RECFM=FBA,
DISP=MOD.

Device
SYSOUT, printer, direct access, tape, or terminal.

Note:

1. BLKSIZE cannot exceed 32760.
2. If SMPHRPT is not allocated, all report output goes to the SMPRPT data set. If

SMPRPT is not allocated, all report output goes to the SMPOUT data set.
3. If SMPHRPT is allocated to a data set, the disposition must be MOD, because

SMP/E opens and closes the SMPHRPT DD statement at each SET command. If
the disposition is SHR or OLD, SMPHRPT contains only the reports from the
last set of commands that is processed before the end of SMP/E processing.

4. The SMPHRPT ddname can be allocated to a file in the UNIX file system.
Specify FILEDATA=TEXT and PATHOPTS(OWRONLY, OAPPEND) on the
DD statement if the SMPHRPT ddname is allocated to a file in the UNIX file
system. If OAPPEND is not specified, SMPHRPT contains only the reports from
the last set of commands that is processed before the end of SMP/E processing.

SMPJCLIN
ddname

SMPJCLIN.

Use The SMPJCLIN data set contains a job stream of assembly, link-edit, and
copy job steps. This data is typically the stage 1 output from the most
recent full or partial system generation, but it may be other data in a
similar format, such as output from the SMP/E GENERATE command.
This job stream is used as input to the JCLIN command to update or create
entries in a target zone.

Attributes
Sequential; LRECL=80, BLKSIZE=multiple of 80, RECFM=FB.

Device
Card, tape, direct access, or terminal.

Note:

1. BLKSIZE must not exceed 32760.
2. This data set may reside in a UNIX file system. Specify

PATHOPTS(ORDONLY) and either FILEDATA=TEXT or FILEDATA=BINARY

SMPHOLD

148 SMP/E V3R6.0 for z/OS V2R1.0 Reference

on the DD statement if it is to reside in a UNIX file system. For simplicity,
FILEDATA=TEXT is preferred, and ensure the newline character (X'15') marks
the end of each line. If you use FILEDATA=BINARY, you must ensure that
each line is padded with blanks to the 80-byte record length because there is no
end of record marker in binary data.

SMPJHOME
ddname

SMPJHOME

Use SMPJHOME (SMP/E JAVAHOME) is a directory in the UNIX file system
that contains the Java runtime. SMP/E uses Java classes during RECEIVE
ORDER processing to communicate with the IBM Automated Delivery
Request server, and by the RECEIVE command and GIMGTPKG, GIMZIP,
and GIMUNZIP service routines to calculate SHA-1 hash values when
ICSF is not available.

SMP/E requires the Java runtime directory when either of the following
conditions applies.
v When SMP/E is installing ++JARUPD elements, or
v When a UNIX shell script is invoked during the installation of a file

system element, and the shell script issues a Java command.

No default location is assumed by SMP/E for SMPJHOME.

Attributes
Existing directory in the UNIX file system.

Device
Direct access only.

Note:

1. SMPJHOME can be specified using a DD statement or a DDDEF entry.
2. For additional information about how to specify the location of the SMP/E

application classes, see “Options that affect Java,” in the “Preparing to use
internet service retrieval” chapter in SMP/E for z/OS User's Guide.

SMPLIST
ddname

SMPLIST.

Use The SMPLIST data set contains the output of all LIST commands.

Attributes
Sequential; LRECL=121, BLKSIZE=multiple of 121, RECFM=FBA,
DISP=MOD.

Device
SYSOUT, printer, direct access, tape, or terminal.

Note:

1. BLKSIZE must not exceed 32760.
2. If SMPLIST is not defined, all LIST output goes to the SMPOUT data set.
3. If SMPLIST is allocated to a data set, the disposition must be MOD, because

SMP/E opens and closes the SMPLIST DD statement at each SET command. If

SMPJCLIN

Chapter 4. SMP/E data sets and files 149

the disposition is SHR or OLD, SMPLIST contains only the output from the last
set of commands processed before the end of SMP/E processing.

4. This data set may reside in a UNIX file system. Specify FILEDATA=TEXT and
PATHOPTS(OWRONLY,OAPPEND) on the DD statement for this data set, if it
is to reside in a UNIX file system. If OAPPEND is not specified, SMPLIST
contains only the output from the last set of commands processed before the
end of SMP/E processing.

SMPLOG
ddname

SMPLOG.

Use The SMPLOG data set (LOG) contains time-stamped records of SMP/E
processing. The records in this data set can be written automatically by
SMP/E or added by the user through the LOG command. The data set also
contains messages issued by SMP/E, as well as detailed information about
data set allocation.

Attributes
Sequential; BLKSIZE=514-32000, RECFM=VB, DISP=MOD.
v The BLKSIZE value determines how many records are written to the

LOG at one time. As a block is filled, it is written to SMPLOG.
If BLKSIZE is less than 514, SMP/E uses the default of 3200.

v DISP=MOD must be specified to maintain a cumulative history of
SMP/E processing.

v SMP/E uses LRECL=510 in allocating the SMPLOG data set.

Device
Tape or direct access.

Note:

1. Important: If the data set allocated to the SMPLOG DD statement has the
wrong data set attributes, SMP/E will open the data set for output processing
with acceptable attributes. This action will overlay the contents of the data set.

2. Each zone should have its own SMPLOG data set.
3. A secondary log data set (SMPLOGA) should be defined to hold log data when

the SMPLOG data set is full. Otherwise, the extra log data is written to the
SMPOUT data set, with the date and time stamp encrypted.

4. SMPLOG should be updated only by the LOG command or by processing for
other SMP/E commands.

5. Because some messages are longer than in earlier releases of SMP/E, you may
need to increase the size of any data sets used for SMP/E messages (such as
SMPOUT). How much more space you need depends on the current size of
these data sets and which messages are issued. To start, you may want to
allocate new data sets twice the size of the old ones.

6. Make sure that DDDEF SMPCNTL is not NULL.

SMPLOGA
ddname

SMPLOGA.

Use SMPLOGA is a backup LOG data set. If SMPLOGA is defined, it is used
automatically when the SMPLOG data set is full. The LOG data set

SMPLIST

150 SMP/E V3R6.0 for z/OS V2R1.0 Reference

contains time-stamped records of SMP/E processing. The records in this
data set can be written automatically by SMP/E or added by the user
through the LOG command. The data set also contains messages issued by
SMP/E, as well as detailed information about data set allocation.

Attributes
Sequential; BLKSIZE=514-32000, RECFM=VB, DISP=MOD.
v The BLKSIZE value determines how many records are written to the

LOG at one time. As a block is filled, it is written to SMPLOG.
If BLKSIZE is less than 514, SMP/E uses the BLKSIZE in effect for the
SMPLOG data set.
The BLKSIZE for the SMPLOGA data set must match the BLKSIZE for
the related SMPLOG data set.

v DISP=MOD must be specified to maintain a cumulative history of
SMP/E processing.

v SMP/E uses LRECL=510 in allocating the SMPLOGA data set.

Device
Tape or direct access.

Note:

1. Important: If the data set allocated to the SMPLOGA DD statement has the
wrong data set attributes, SMP/E will open the data set for output processing
with acceptable attributes. This action will overlay the contents of the data set.

2. Each zone should have its own SMPLOGA data set.
3. If the SMPLOGA data set is full, the extra log data is written to the SMPOUT

data set, with the date and time stamp encrypted.
4. SMPLOGA should be updated only by the LOG command or by processing for

other SMP/E commands.
5. Because some messages are longer than in earlier releases of SMP/E, you may

need to increase the size of any data sets used for SMP/E messages (such as
SMPOUT). How much more space you need depends on the current size of
these data sets and which messages are issued. To start, you may want to
allocate new data sets twice the size of the old ones.

SMPLTS
ddname

SMPLTS.

Use The SMPLTS data set is used to maintain the base versions of load
modules and program objects for which SYSLIB allocations have been
specified. A base version of each load module or program object includes
only the modules that were explicitly defined for it by SMP/E MCS
statements and JCLIN. Other modules that might be implicitly included in
the execution-time load modules and program objects when they are
bound are not stored in the base version copy in the SMPLTS.

SMP/E saves the base version of a load module or program object in
SMPLTS only when the load module or program object is defined to
SMP/E with CALLLIBS and the JCLIN specifies SYSLIB allocations (which
are used to create the CALLLIBS subentry lists in the corresponding
LMOD entries) and:
v the load module or program object contains XZMOD subentries

(indicating cross-zone modules), or

SMPLOGA

Chapter 4. SMP/E data sets and files 151

v the target zone was created before SMP/E V3R2 and the UPGRADE
command has not yet been used to upgrade it.

SMP/E uses the load modules and program objects in the SMPLTS as
input when binding the execution-time load modules and program objects
into their specified target libraries.

In some cases, SMP/E may also need to create a temporary member in the
SMPLTS to resolve certain warning conditions identified by the binder.
This temporary member (if created) is deleted from the SMPLTS after a
successful link-edit into the target library.

Attributes
Partitioned (DSNTYPE=PDS or DSNTYPE=LIBRARY); RECFM=U,
DISP=OLD, BLKSIZE greater than or equal to 6144.

If you allocate the SMPLTS as a PDS, IBM recommends a block size of
32760 to minimize the use of DASD space for this data set.

Device
Direct access only.

Note:

1. Each target zone must have its own SMPLTS data set that is not shared by any
other target zone.

2. The SMPLTS data set is required for APPLY, LINK LMODS, LINK MODULE,
and RESTORE processing.

3. The BLKSIZE of the SMPLTS data set needs to be 1024 or greater to support
load modules that specify the SCTR attribute. A large BLKSIZE is
recommended to provide maximum space efficiency.

4. The SMPLTS data set is eligible for RETRY processing, in the same manner as
other target libraries, after an x37 ABEND. The size of an SMPLTS data set
varies depending on the number of load modules that specify a CALLLIBS
subentry list in the target zone associated with the SMPLTS.

5. If the SMPLTS data set is to contain program objects, it needs to be allocated as
a PDSE.

SMPMTS
ddname

SMPMTS.

Use The SMPMTS data set (MTS) is a target library for macros that exist only
in a distribution library. This data set allows the current version of these
macros to be used for assemblies during APPLY processing. For more
information about MTS entries, see “MTSMAC entry (SMPMTS)” on page
283.

Attributes
Partitioned; LRECL=80, BLKSIZE=multiple of 80, RECFM=FB, DISP=OLD.

Device
Direct access only.

Note:

1. Each target zone must have its own SMPMTS data set that is not shared by any
other target zone. This SMPMTS data set may be used with the related
distribution zone.

SMPLTS

152 SMP/E V3R6.0 for z/OS V2R1.0 Reference

|
|
|
|
|

2. For APPLY processing, the SMPMTS data set must be allocated with enough
space to hold all the system generation macros, as well as any other macros
that do not reside in a target library. This is because functions are now
packaged with a complete set of system generation macros.

3. The SMPMTS data set must be in the SYSLIB concatenation for APPLY and
RESTORE processing. It can be in the SYSLIB concatenation for ACCEPT
processing. For information about SYSLIB concatenation requirements, see
SMP/E for z/OS User's Guide.

SMPNTS
ddname

SMPNTS.

Use

The SMPNTS (SMP/E Network Temporary Store) is a directory of UNIX
file system files that are used for temporary storage of network transported
packages that were received during SMP/E RECEIVE processing.

Attributes
Existing directory within a UNIX file system. A UNIX file system directory
name is concatenated with the appropriate subdirectories and file names to
create complete pathnames.
v The directory name can be from 1 to 255 characters.
v The directory name must begin and end with a slash (/).
v In addition to the required delimiters (/), a directory name must also be

enclosed in single apostrophes (') if any of the following is true:
– The directory name contains lowercase alphabetic characters
– The directory name contains a character that is not uppercase

alphabetic, numeric, or national ($, #, or @), slash (/), plus (+),
hyphen, period, or ampersand (&).

v The apostrophes must be outside the required delimiters, as in
'/directory name/', not /'directory name'/.

v The single apostrophes used to enclose the directory name (the
delimiters) do not count as part of the 255-character limit.

v Any apostrophes specified as part of the directory (not the delimiters)
must be doubled.
Double apostrophes count as two characters in the 255-character limit.

v The directory name can include characters through X'40' and X'FE'.
v Do not use symbolic substitution.

Device
Direct access only.

Note:

1. The SMPNTS can be defined to SMP/E only with a DD statement or a DDDEF.
2. Do not allocate the SMPNTS as anything other than a directory in a UNIX file

system.
3. The size of the SMPNTS directory depends on the size of the packages received

from the network and stored there.

SMPMTS

Chapter 4. SMP/E data sets and files 153

SMPOBJ
ddname

SMPOBJ.

Use The SMPOBJ data set is used primarily for source-maintained products. It
contains preassembled modules that can be used instead of reassembling
those modules. These modules must be in load module format—that is, in
the same format as modules residing in the distribution library.

Attributes
Partitioned; RECFM=U, DISP=SHR.

Device
Direct access only.

SMPOUT
ddname

SMPOUT.

Use The SMPOUT data set contains messages issued during SMP/E processing,
as well as dumps of the VSAM RPL, if any dumps were taken. It might
also contain LIST output and reports if the SMPHRPT, SMPLIST, and
SMPRPT data sets are not defined.

Attributes
Sequential; LRECL=121, BLKSIZE=multiple of 121, RECFM=FBA,
DISP=MOD.

Device
SYSOUT, printer, direct access, tape, or terminal.

Note:

1. BLKSIZE must not exceed 32760.
2. If SMPOUT is allocated to a data set, the disposition must be MOD, because

SMP/E opens and closes the SMPOUT DD statement at each SET command. If
the disposition is SHR or OLD, SMPOUT contains only the output from the last
set of commands processed before the end of SMP/E processing.

3. If SMPOUT is being allocated for the GIMGTPKG, GIMUNZIP, GIMXSID, or
GIMZIP service routine, and you want the resulting SMP/E messages to be
formatted to an 80–character length for easier browsing on a terminal, then
specify LRECL=81 and BLKSIZE as a multiple of 81.

4. This data set may reside in a UNIX file system. Specify FILEDATA=TEXT and
PATHOPTS(OWRONLY,OAPPEND) on the DD statement for this data set, if it
is to reside in a UNIX file system. If OAPPEND is not specified, SMPOUT
contains only the output from the last set of commands processed before the
end of SMP/E processing.

SMPPARM
ddname

SMPPARM.

Use The SMPPARM data set contains members that allow you to customize
SMP/E as follows:

SMPOBJ

154 SMP/E V3R6.0 for z/OS V2R1.0 Reference

Member name
Use

GIMDDALC
Defines data sets to be dynamically allocated

GIMEXITS
Defines exit routines

GIMOPCDE
Defines macro and assembler operation codes

Note: The File Allocation Reports for the APPLY and ACCEPT commands
include status information for the SMPPARM data set, even if an
SMPPARM data set is not allocated. SMP/E does this as a reminder to
users who may have intended to supply one or more SMPPARM members.
If you do not intend to supply any SMPPARM members, you may ignore
this status information for the SMPPARM data set.
v For the GIMDDALC member:

During SET processing, SMP/E determines whether SMPPARM member
GIMDDALC was provided. If so, it processes the GIMDDALC control
statements contained within the member. For more information about
GIMDDALC members, see Chapter 3, “Defining control statements in
SMPPARM members,” on page 127.

v For the GIMEXITS member:
During RECEIVE, APPLY, ACCEPT, RESTORE and LINK processing,
SMP/E will determine if SMPPARM member GIMEXITS has been
provided. If so, it will process the EXITS control statements contained
within the member. For more information about GIMEXITS members,
see Chapter 3, “Defining control statements in SMPPARM members,” on
page 127.

v For the GIMOPCDE member:
During JCLIN processing, SMP/E determines whether assembler
instructions are macro invocations or OPCODEs. SMP/E contains a
default set of OPCODE definitions, which identify standard assembler
OPCODEs. If you do not want to use this default set, you can define
your own by using the sample GIMOPCDE member supplied to you.
For more information about GIMOPCDE members, see Chapter 3,
“Defining control statements in SMPPARM members,” on page 127.

Attributes
Partitioned; LRECL=80, BLKSIZE=multiple of 80, RECFM=FB.

Device
Direct access only.

SMPPTFIN
ddname

SMPPTFIN.

This ddname can refer to an actual data set or to a file on a tape (such as
file 1 on an ESO tape).

Use The SMPPTFIN data set contains SYSMODs and ++ASSIGN statements to
be processed by the RECEIVE command.

SMPPARM

Chapter 4. SMP/E data sets and files 155

Attributes
Sequential; LRECL=80, BLKSIZE=multiple of 80, RECFM=FB.

Device
Card, tape, direct access, or terminal.

Note:

1. BLKSIZE must not exceed 32760.
2. If the SMPPTFIN data set is inline, you must make sure that the combination of

characters used for the delimiter does not occur in the input itself.
For example, if DD * is specified for SYSIN and the SMPPTFIN data set
contains the characters $$, then $$ cannot be used as the default delimiter for
the input or for the delimiter specified on the DLM parameter. (The output of
SMP/E service routine GIMDTS contains the characters $$.)

3. If you want to receive from multiple product tapes, you cannot concatenate
them on a single SMPPTFIN DD statement. Instead, you must process each
tape in a separate step, using separate SMPPTFIN DD statements.
Refer to the documentation supplied with the tape for exact information about
how to code the SMPPTFIN DD statement. For example, with a product tape,
the program directory contains this information.

4. This data set may reside in a UNIX file system. Specify
PATHOPTS(ORDONLY) and either FILEDATA=TEXT or FILEDATA=BINARY
on the DD statement if it is to reside in a UNIX file system. For simplicity,
FILEDATA=TEXT is preferred, and ensure the newline character (X'15') marks
the end of each line. If you use FILEDATA=BINARY, you must ensure that
each line is padded with blanks to the 80-byte record length because there is no
end of record marker in binary data.

SMPPTS
ddname

SMPPTS.

Use The SMPPTS data set (PTS) is used as a repository for SYSMODs. It
contains one member for each SYSMOD that was received. Each member is
called an MCS entry and is an exact copy of the SYSMOD as it was
received from the SMPPTFIN data set. The name of an MCS entry matches
the SYSMOD ID of the SYSMOD it contains. For more information, see
“MCS entry (SMPPTS)” on page 266.

Note: SYSMODs in the SMPPTS data set may be stored by SMP/E in a
compact format. Specifically, inline element data within SYSMODs may be
compacted during RECEIVE or GZONEMERGE command processing. This
compact format helps to reduce the space requirements of the SMPPTS
data set. The compacted data is automatically expanded when needed
during APPLY and ACCEPT command processing. See the description of
the COMPACT subentry in “OPTIONS entry (global zone)” on page 285
for information about how to specify whether SYSMODs should be
compacted.

To view the original uncompacted form of any SYSMOD in the SMPPTS
data set, you can use the SMP/E Query Dialogs to display the MCS entry
in the Global zone for a SYSMOD. You can also use the GIMCPTS service

SMPPTFIN

156 SMP/E V3R6.0 for z/OS V2R1.0 Reference

routine to expand one or more compacted SYSMODs (see “GIMCPTS:
SYSMOD compaction service routine” on page 441 for more information
about GIMCPTS).

Attributes
Partitioned; LRECL=80, BLKSIZE=multiple of 80, RECFM=FB, DISP=OLD.

It is recommended that SMPPTS be allocated as a PDSE
(DSNTYPE=LIBRARY).

If you plan to run concurrent jobs, specify DISP=SHR instead of
DISP=OLD.

Unless SMPPTS spill data sets are defined, the SMPPTS must be large
enough to contain all the SYSMODs that are to be received from the
SMPPTFIN data set.

Do not concatenate SMPPTS data sets. If you need multiple data sets for
the SMPPTS, use SMPPTS spill data sets.

You must specify a valid data set name for the SMPPTS. NULLFILE and
DD DUMMY are invalid for the SMPPTS.

Device
Direct access only.

SMPPTS spill data set
ddname

SMPPTS1 through SMPPTS99.

Use SMPPTS spill data sets can be used to store SYSMODs when the SMPPTS
data set becomes full. This type of processing is called spill processing.
SMPPTS spill data sets are used by SMP/E in the same way as the
primary SMPPTS data set is used. For more information, see “SMPPTS” on
page 156.

Attributes
Partitioned; LRECL=80, BLKSIZE=multiple of 80, RECFM=FB, DISP=OLD.

It is recommended that SMPPTS spill data sets be allocated as a PDSE
(DSNTYPE=LIBRARY).

If you plan to run concurrent jobs, specify DISP=SHR instead of
DISP=OLD.

Do not concatenate SMPPTS spill data sets.

The first SMPPTS spill data set must be specified with a ddname of
SMPPTS1, the second SMPPTS2, and so on, up to a maximum of
SMPPTS99. Do not skip any ddnames in this sequence; if a spill data set is
omitted, SMP/E ignores any data sets that may follow the omitted data
set. (For example, if you specify only SMPPTS1 and SMPPTS3, then
SMP/E uses only SMPPTS1 and ignores SMPPTS3.)

You must specify a valid data set name for an SMPPTS data set.
NULLFILE and DD DUMMY are invalid for SMPPTS spill data sets.

Device
Direct access only.

SMPPTS

Chapter 4. SMP/E data sets and files 157

SMPPUNCH
ddname

SMPPUNCH.

Use The SMPPUNCH data set contains output from various SMP/E
commands. This output generally consists of commands or control
statements.
v For BUILDMCS, it contains the complete superseding function

SYSMODs.
v For GENERATE, it contains a job stream for building target libraries.
v For REPORT CROSSZONE, it contains commands for installing

cross-zone requisites.
v For REPORT ERRSYSMODS, it contains commands for installing

SYSMODs that resolve the error hold reason IDs for exception
SYSMODs.

v For REPORT SOURCEID, it contains commands for listing SYSMODs
associated with the source IDs that were found in the specified zones.

v For REPORT SYSMODS, it contains commands for installing SYSMODs
from the input zone that are applicable to the comparison zone.

v For UNLOAD, it contains UCLIN statements for recreating the entries
that were unloaded.

Attributes
Sequential; LRECL=80, BLKSIZE=multiple of 80, RECFM=FB, DISP=MOD.

Device
Card, tape, or direct access.

Note:

1. BLKSIZE must not exceed 32760.
2. If SMPPUNCH is allocated to a data set, the disposition must be MOD, because

SMP/E opens and closes the SMPPUNCH DD statement at each SET
command. If the disposition is SHR or OLD, SMPPUNCH contains only the
output from the last set of commands processed before the end of SMP/E
processing.

3. For the UNLOAD command, SMPPUNCH should be allocated to a direct
access data set or to tape, because the volume of output is large. You may also
want a large BLKSIZE; the larger the BLKSIZE, the fewer the times SMP/E
must do I/O.

4. This data set may reside in a UNIX file system. Specify FILEDATA=TEXT and
PATHOPTS(OWRONLY,OAPPEND) on the DD statement for this data set, if it
is to reside in a UNIX file system. If OAPPEND is not specified, SMPPUNCH
contains only the output from the last set of commands processed before the
end of SMP/E processing.

SMPRPT
ddname

SMPRPT.

Use The SMPRPT data set contains the reports produced during SMP/E
processing.

SMPPUNCH

158 SMP/E V3R6.0 for z/OS V2R1.0 Reference

Attributes
Sequential; LRECL=121, BLKSIZE=multiple of 121, RECFM=FBA,
DISP=MOD.

Device
SYSOUT, printer, direct access, tape, or terminal.

Note:

1. BLKSIZE must not exceed 32760.
2. If SMPRPT is not defined, all report output goes to the SMPOUT data set.
3. If SMPRPT is allocated to a data set, the disposition must be MOD, because

SMP/E opens and closes the SMPRPT DD statement at each SET command. If
the disposition is SHR or OLD, SMPRPT contains only the reports from the last
set of commands processed before the end of SMP/E processing.

4. This data set may reside in a UNIX file system. Specify FILEDATA=TEXT and
PATHOPTS(OWRONLY,OAPPEND) on the DD statement for this data set, if it
is to reside in a UNIX file system. If OAPPEND is not specified, SMPRPT
contains only the reports from the last set of commands processed before the
end of SMP/E processing.

SMPSCDS
ddname

SMPSCDS.

Use The SMPSCDS data set (SCDS) contains backup copies of target zone
entries that are created during APPLY processing. These backup copies are
made before the entries are (1) changed by inline JCLIN, a ++MOVE MCS,
or a ++RENAME MCS, or (2) deleted by an element MCS with the
DELETE operand. The backup copies are used during RESTORE
processing to return the entries to the way they were before APPLY
processing. For more information about BACKUP entries, see “BACKUP
entries (SMPSCDS)” on page 187.

Attributes
Partitioned; LRECL=80, BLKSIZE=multiple of 80, RECFM=FB, DISP=OLD.

Device
Direct access only.

Note: Each target zone must have its own SMPSCDS data set; that data set must
be unique to that target zone. This SMPSCDS data set must also be used with the
related distribution zone.

SMPSNAP
ddname

SMPSNAP.

Use The SMPSNAP data set is used for snap dump output. When a severe
error occurs, such as an abend or severe VSAM return code, SMP/E
requests a snap dump of its storage before doing any error recovery. In
addition, the DEBUG command may request a snap dump of SMP/E
storage when specified messages are issued, or it may request a snap
dump of control blocks and storage areas associated with a specified dump
point.

SMPRPT

Chapter 4. SMP/E data sets and files 159

Attributes
Sequential.

Device
SYSOUT, printer, direct access, tape, or terminal.

Note: BLKSIZE must not exceed 32760.

SMPSRVR
ddname

SMPSRVR

Use The SMPSRVR data set contains information about a TCP/IP connected
host running an FTP or HTTP(S) server. It is used by the GIMGTPKG
service routine.

Attributes
Sequential or member of a partitioned data set; LRECL=80, RECFM=F or
FB.

Device
Direct access.

Note: This data set may reside in a UNIX file system. Specify
PATHOPTS(ORDONLY) and either FILEDATA=TEXT or FILEDATA=BINARY on
the DD statement if it is to reside in a UNIX file system. For simplicity,
FILEDATA=TEXT is preferred, and ensure the newline character (X'15') marks the
end of each line. If you use FILEDATA=BINARY, you must ensure that each line
is padded with blanks to the 80-byte record length because there is no end of
record marker in binary data.

SMPSTS
ddname

SMPSTS.

Use The SMPSTS data set (STS) is a target library for source that exists only in
a distribution library. This data set allows the current version of these
modules to be used for assemblies during APPLY processing.

Attributes
Partitioned; LRECL=80, BLKSIZE=multiple of 80, RECFM=FB, DISP=OLD.

Device
Direct access only.

Note: Each target zone must have its own SMPSTS data set, which may not be
shared by any other target zone. This SMPSTS data set can also be used with the
related distribution zone.

SMPTLIB
ddname

SMPTLIB.

Use SMPTLIB data sets (TLIBs) are used as temporary storage for relative files

SMPSNAP

160 SMP/E V3R6.0 for z/OS V2R1.0 Reference

|

that are loaded from SMPPTFIN during RECEIVE processing. They are
deleted when the associated SYSMOD is deleted by REJECT, RESTORE, or
ACCEPT processing.

You can have SMP/E dynamically allocate the TLIB data sets, or you can
allocate them yourself before RECEIVE processing. For information about
how SMP/E allocates the TLIBs, see the RECEIVE Command chapter in
SMP/E for z/OS Commands. (Regardless of how the SMPTLIB data sets are
allocated, they do not appear in the File Allocation report.)

Note:

1. No DD statement or DDDEF entry is required for the SMPTLIB data
sets if they are preallocated and cataloged.

2. If you allocate and catalog the SMPTLIB data sets yourself, make sure
they are allocated on the volume specified in the catalog.

3. If you allocate the SMPTLIB data sets yourself but do not catalog them,
make sure they are allocated on the volume specified in the SMPTLIB
DD statement or DDDEF entry being used for the command you are
processing.

4. If you need to specify a unit that is not SYSALLDA, and the unit is not
set by use of a STORCLAS or an ACS filter routine, then you must use
a DDDEF entry instead of a DD statement to allocate SMPTLIB data
sets and specify the unit value in the DDDEF entry.

5. If you are using SMS to manage your data sets, you can set up the unit,
volume, and space allocation through a STORCLAS or an ACS filter
routine, instead of specifying them on a DD statement or DDDEF entry.

6. If you are using SMS to manage your data sets, do not specify dummy
volumes on a DD statement or in a DDDEF entry for the SMPTLIB
allocation. Dummy volumes used as indicators to ACS routines for SMS
class selection can cause operator mount messages to be issued for the
non-existent dummy volumes. This is because SMP/E first attempts to
allocate the SMPTLIB data sets as if they already exist on the volume,
which can cause operator mount messages to be issued for the dummy
volume.

7. SMPTLIB data sets should not be allocated as PDSEs, because IEBCOPY
does not support copying an unloaded PDS load library from tape to a
PDSE load library on DASD.

8. DDDEFs are not required in target or distribution zones for SMPTLIB
data sets, unless you have uncataloged the SMPTLIB data sets from the
global zone (this is not recommended). In this case, only the VOLUME
and UNIT subentries are accepted as input on UCLIN statements for
target or distribution zone SMPTLIB DDDEFs.

Attributes
Partitioned.

Here are two examples of SMPTLIB DD statements:
/SMPTLIB DD UNIT=SYSALLDA,VOL=SER=SMPVOL

//SMPTLIB DD UNIT=SYSALLDA,
// VOL=SER=(SMPVL1,SMPVL2)

If you use DDDEFs to have SMP/E dynamically allocate the SMPTLIB data
sets, you cannot specify the initial or final disposition. SMP/E determines
the disposition based on the command it is processing.

SMPTLIB

Chapter 4. SMP/E data sets and files 161

Device
Direct access only.

SMPTLOAD
ddname

SMPTLOAD.

Use SMP/E may need to use an SMPTLOAD data set when installing program
elements that were packaged inline. SMPTLOAD is required when
applying or accepting a program element and either:
v the destination data set (target or distribution library) is a PDS and the

unloaded inline data represents a PDSE that contains program elements
v the destination data set is a PDSE and the unloaded inline data set has

RECFM=U and is not a PDSE.

SMP/E dynamically allocates a new SMPTLOAD data set whenever one is
needed.

Attributes
Partitioned (DSNTYPE=PDS or DSNTYPE=LIBRARY),
DISP=(NEW,DELETE).

Device
Direct access.

Note:

1. If the unloaded inline data represents a PDSE, SMP/E allocates SMPTLOAD
with DSNTYPE=LIBRARY. Otherwise, SMP/E allocates SMPTLOAD with
DSNTYPE=PDS.

2. All other allocation information for the SMPTLOAD is obtained from the
SMPTLOAD DDDEF or, if a DDDEF does not exist, from GIMDDALC control
statements found in SMPPARM member GIMDDALC. If a DD statement is
supplied for SMPTLOAD, it is freed and the allocation for SMPTLOAD is done
using the DDDEF or the GIMDDALC control statement found in SMPPARM
member GIMDDALC.
SMP/E uses the following information, if it is supplied by the user, to
dynamically allocate an SMPTLOAD data set:
v Primary and secondary space amounts
v Allocation units for primary and secondary space
v Number of directory blocks
v A unit designation
v A volume designation
v A STORCLAS designation
v A MGMTCLAS designation
v A DATACLAS designation
If SMP/E cannot get the required allocation information from a DDDEF or a
GIMDDALC control statement in the GIMDDALC member of SMPPARM, then
the allocation fails.

3. If there is an SMPTLOAD DDDEF, SMP/E tries to allocate the SMPTLOAD
data set, even if the DDDEF does not supply any of the previously listed
information. This is because SMP/E always tries to allocate the SMPTLOAD
data set new with either a DSNTYPE of PDS or LIBRARY, which may be
sufficient if an ACS routine exists to supply other needed allocation values.

SMPTLIB

162 SMP/E V3R6.0 for z/OS V2R1.0 Reference

4. SMPTLOAD does not appear in the File Allocation Report.
5. SMP/E will not use an SMPTLOAD data set specified with JCL. If an

SMPTLOAD DD statement is specified, SMP/E dynamically frees the
SMPTLOAD ddname prior to allocating a new SMPTLOAD data set.

SMPWKDIR
ddname

SMPWKDIR.

Use The SMPWKDIR directory identifies the name of a directory in a UNIX file
system. SMPWKDIR is used to store temporary files created during SMP/E
processing. If SMPWKDIR is not specified, SMP/E will use one of the
following directories for temporary files, depending on the command or
service:
v APPLY and ACCEPT commands: the system /tmp directory
v RECEIVE command: the system /tmp directory and the package

directory of the SMPNTS directory specified on a DD statement or
DDDEF entry.

v GIMZIP and GIMUNZIP service routines: the package directory
specified on the SMPDIR DD statement.

Attributes
Existing directory in a UNIX file system.

Device
Direct access only.

Note: The SMPWKDIR can be defined for the RECEIVE, APPLY, and ACCEPT
commands using either a DD statement or a DDDEF entry. It can be defined for
the GIMZIP and GIMUNZIP service routines using a DD statement only.

SMPWRK1
ddname

SMPWRK1.

Use The SMPWRK1 data set is used as temporary storage for macro updates
and replacements that will be processed by the IEBUPDTE and IEBCOPY
programs. During APPLY and ACCEPT processing, SMP/E places the
input in this data set before calling the utility.

Attributes
Partitioned; LRECL=80, BLKSIZE=multiple of 80, RECFM=FB,
DISP=(NEW,DELETE).

Specifying DISP=(NEW,DELETE) minimizes space loss problems.
SMPWRK1 is generally needed only for the duration of the SMP/E job
step. To keep the data set longer than that, you must use a different DISP
value and compress the data set to reclaim space.

The SMS-related options DATACLAS, MGMTCLAS, STORCLAS, and
DSNTYPE provide additional data set support. For more information, refer
to z/OS DFSMS Using Data Sets.

Device
Direct access only.

Note:

SMPTLOAD

Chapter 4. SMP/E data sets and files 163

1. BLKSIZE must not exceed 32760.
2. If the BLKSIZE value is omitted or inapplicable, SMP/E uses a default of 0

which allows the system to determine the most appropriate block size.

SMPWRK2
ddname

SMPWRK2.

Use The SMPWRK2 data set is used as temporary storage for source updates
and source replacements that will be processed by the IEBUPDTE and
IEBCOPY programs. During APPLY and ACCEPT processing, SMP/E
places the input in this data set before calling the utility.

Attributes
Partitioned; LRECL=80, BLKSIZE=multiple of 80, RECFM=FB,
DISP=(NEW,DELETE).

Specifying DISP=(NEW,DELETE) minimizes space loss problems.
SMPWRK2 is generally needed only for the duration of the SMP/E job
step. To keep the data set longer than that, you must use a different DISP
value and compress the data set to reclaim space.

The SMS-related options DATACLAS, MGMTCLAS, STORCLAS, and
DSNTYPE provide additional data set support. For more information, refer
to z/OS DFSMS Using Data Sets.

Device
Direct access only.

Note:

1. BLKSIZE must not exceed 32760.
2. If the BLKSIZE value is omitted or inapplicable, SMP/E uses a default of 0

which allows the system to determine the most appropriate block size.

SMPWRK3
ddname

SMPWRK3.

Use The SMPWRK3 data set is used as temporary storage for object modules
supplied by a SYSMOD, object modules created by assemblies, and
IMASPZAP control cards following ++ZAP statements.

Attributes
Partitioned; LRECL=80, BLKSIZE=multiple of 80, RECFM=FB,
DISP=(NEW,DELETE).

Specifying DISP=(NEW,DELETE) minimizes space loss problems.
SMPWRK3 is generally needed only for the duration of the SMP/E job
step. To keep the data set longer than that, you must use a different DISP
value and compress the data set to reclaim space.

If you want to save assembled object modules until SMP/E has
successfully applied or accepted the SYSMODs that caused the assemblies,
specify DISP=(NEW,KEEP). This allows SMP/E to reuse the assembled
object modules if the APPLY or ACCEPT command fails. For more
information about reusing assemblies, see SMP/E for z/OS Commands.

SMPWRK1

164 SMP/E V3R6.0 for z/OS V2R1.0 Reference

Note: If SMPWRK3 is a permanent data set, make sure to specify OLD as
the initial disposition. Do not specify SHR. An initial disposition of SHR
may cause an abend.

The SMS-related options DATACLAS, MGMTCLAS, STORCLAS, and
DSNTYPE provide additional data set support. For more information, refer
to z/OS DFSMS Using Data Sets.

Device
Direct access only

Note:

1. BLKSIZE must not exceed 32760.
2. If the BLKSIZE value is omitted or inapplicable, SMP/E uses a default of 0

which allows the system to determine the most appropriate block size.

SMPWRK4
ddname

SMPWRK4.

Use The SMPWRK4 data set is used as temporary storage for IMASPZAP and
link-edit input containing EXPAND control statements.

Attributes
Partitioned; LRECL=80, BLKSIZE=multiple of 80, RECFM=FB,
DISP=(NEW,DELETE).

Specifying DISP=(NEW,DELETE) minimizes space loss problems.
SMPWRK4 is generally needed only for the duration of the SMP/E job
step. To keep the data set longer than that, you must use a different DISP
value and compress the data set to reclaim space.

The SMS-related options DATACLAS, MGMTCLAS, STORCLAS, and
DSNTYPE provide additional data set support. For more information, refer
to z/OS DFSMS Using Data Sets.

Device
Direct access only.

Note:

1. BLKSIZE must not exceed 32760.
2. If the BLKSIZE value is omitted or inapplicable, SMP/E uses a default of 0

which allows the system to determine the most appropriate block size.

SMPWRK6
ddname

SMPWRK6.

Use The SMPWRK6 data set is used during APPLY and ACCEPT processing as
temporary storage for inline replacements for data elements. It is also used
as temporary storage for inline updates for JAR elements. SMP/E places
the input in this data set so it can be directly accessed and installed by the
copy utility or SMP/E.

Attributes
Partitioned; LRECL=80, BLKSIZE=multiple of 80, RECFM=FB,
DISP=(NEW,DELETE).

SMPWRK3

Chapter 4. SMP/E data sets and files 165

Specifying DISP=(NEW,DELETE) minimizes space loss problems.
SMPWRK6 is generally needed only for the duration of the SMP/E job
step. To keep the data set longer than that, you must use a different DISP
value and compress the data set to reclaim space.

The SMS-related options DATACLAS, MGMTCLAS, STORCLAS, and
DSNTYPE provide additional data set support. For more information, refer
to z/OS DFSMS Using Data Sets.

Device
Direct access only.

Note:

1. BLKSIZE must not exceed 32760.
2. If the BLKSIZE value is omitted or inapplicable, SMP/E uses a default of 0

which allows the system to determine the most appropriate block size.

SMPnnnnn
ddname

SMPnnnnn, where nnnnn is a number from 00000 through 99999.

Use SMP/E allocates SMPnnnnn data sets for its own internal processing. To
avoid processing errors, do not assign such a ddname to any data set.

SYSIN
ddname

SYSIN.

Use Contains package control statements used as input to the GIMZIP and
GIMUNZIP service routines.

Attributes
Sequential or a member of a partitioned data set; LRECL=80

Device
Direct access or SYSIN file.

Note:

1. SYSIN can be defined to GIMZIP and GIMUNZIP only with a DD statement.
2. The size of the input data set will vary depending on how you intend to

manage it.
3. You are responsible for managing the contents and space of the input data set.
4. This data set may reside in a UNIX file system. Specify

PATHOPTS(ORDONLY) and either FILEDATA=TEXT or FILEDATA=BINARY
on the DD statement if it is to reside in a UNIX file system. For simplicity,
FILEDATA=TEXT is preferred, and ensure the newline character (X'15') marks
the end of each line. If you use FILEDATA=BINARY, you must ensure that
each line is padded with blanks to the 80-byte record length because there is no
end of record marker in binary data.

SYSLIB
ddname

SYSLIB.

SMPWRK6

166 SMP/E V3R6.0 for z/OS V2R1.0 Reference

Use The SYSLIB data set is a concatenation of macro libraries that are to be
used by the assembler utility.

For APPLY and RESTORE processing, the data sets should be concatenated
in this order:
1. SMPMTS
2. MACLIB
3. MODGEN
4. Target system macro libraries (such as libraries specified for SYSLIB on

the ++MAC statement)
5. Distribution macro libraries (such as libraries specified for DISTLIB on

the ++MAC statement)

For more information about the proper SYSLIB concatenation for ACCEPT
processing, see SMP/E for z/OS User's Guide.

Attributes
Partitioned; LRECL=80, BLKSIZE=multiple of 80, RECFM=FB.

Device
Direct access only.

SYSPRINT
ddname

SYSPRINT.

You can specify different SYSPRINT data sets for each of the utilities that
SMP/E calls. This can be done with the PRINT value in the appropriate
UTILITY entry. For more information, see “UTILITY entry (global zone)”
on page 340.

Use The SYSPRINT data set contains output from the utilities called by SMP/E.

Attributes
Sequential; DISP=MOD.

Do not specify LRECL, BLKSIZE, or RECFM unless they are compatible
with the attributes used by the utilities called.

If SYSPRINT is allocated to a data set, the disposition must be MOD,
because SMP/E opens and closes the SYSPRINT DD statement at each SET
command. If the disposition is SHR or OLD, SYSPRINT contains only the
output from the last set of commands processed before the end of SMP/E
processing.

Device
SYSOUT, printer, direct access, or tape.

SYSOUT or a tape is recommended, because SYSPRINT might be opened
with different DCB attributes by the various utilities and service aids called
by SMP/E.

Note:

1. BLKSIZE must not exceed 32760.
2. How you specify the SYSPRINT data set can affect whether a listing of the

utility output is produced. For example, no listing is produced if the PRINT
value in the UTILITY entry specifies either of the following:
v A DDDEF for a DUMMY data set

SYSLIB

Chapter 4. SMP/E data sets and files 167

v A DDDEF for a data set that is sent to a SYSOUT class that suppresses
output

SYSPUNCH
ddname

SYSPUNCH.

Use The SYSPUNCH data set is a temporary data set containing object modules
assembled by running the job stream produced by system generation or
the GENERATE command. These modules are not installed in the
distribution libraries at ACCEPT time.

Attributes
Partitioned; LRECL=80, BLKSIZE=multiple of 80, RECFM=FB.

Do not specify a DISP value. Instead, let SMP/E use its defaults:
v DISP=(NEW,PASS) for the first job generated
v DISP=(OLD,PASS) for any subsequent jobs

Device
Direct access only.

SYSUT1, SYSUT2, and SYSUT3
ddname

SYSUT1, SYSUT2, and SYSUT3.

Use These are scratch data sets for SMP/E and the utilities it calls. They can be
used instead of the following data sets when certain utilities are called:
v SYSIN

– For invocations of the copy utility
– For some invocations of update utility
– For some invocations of the x37 RETRY COMPRESS utility

v SYSLIN for invocations of the link-edit utility
v SYSUT2 for invocations of the assembler utility

SYSUT1 and SYSUT2 are also used by the GIMDTS service routine:
v SYSUT1 points to the data set containing the input in its original format.
v SYSUT2 points to the data set containing the transformed output.

Attributes
Sequential; DISP=(NEW,DELETE)

Device
Direct access only.

Note:

1. BLKSIZE must not exceed 32760.
2. Do not specify BLKSIZE=0. SMP/E does not support system-determined block

size (SDB) for this data set.
3. If the BLKSIZE value is omitted or invalid, SMP/E uses a default of 3200.
4. When processing partitioned data sets, GIMUNZIP dynamically allocates

SYSUT1 as a large format sequential data set (DSNTYPE=LARGE).

SYSPRINT

168 SMP/E V3R6.0 for z/OS V2R1.0 Reference

SYSUT4
ddname

SYSUT4.

Use This data set can be used instead of the SYSIN data sets when certain
utilities are called:
v For invocations of the x37 RETRY COMPRESS utility
v For some invocations of the assembler utility
v For RECEIVE FROMNETWORK and RECEIVE FROMNTS command

processing

Attributes
Sequential; DISP=(NEW,DELETE)

Device
Direct access only.

Note:

1. BLKSIZE must not exceed 32760.
2. Do not specify BLKSIZE=0. SMP/E does not support system-determined block

size (SDB) for this data set.
3. If the BLKSIZE value is omitted or invalid, SMP/E uses a default of 3200.

Target library
ddname

The ddname for a target library should match the low-level qualifier of the
data set name. For example, the ddname for SYS1.LINKLIB should be
LINKLIB.

Use Target libraries contain updated versions of macros, source modules, and
load modules that were stored during APPLY or RESTORE processing.
They are the libraries used for your running system. You must provide a
DDDEF entry or DD statement for each target library that is being
processed.

Attributes
Partitioned.

Device
Direct access only.

Text library (TXLIB)
ddname

The ddname for a text library must match the TXLIB value on the
++JCLIN or element MCS. For example, the ddname for the text library on
statement ++MOD(MODA) TXLIB(LIBX) must be LIBX.

Use Text libraries contain JCLIN input or replacements for macros, source, or
object modules that have not been link-edited. They are used when the
JCLIN or elements are provided in partitioned data sets rather than inline
or in relative files.

Attributes
Partitioned.

SYSUT4

Chapter 4. SMP/E data sets and files 169

Device
Direct access only.

Zone statement
ddname

The ddname must match the name of the target or distribution zone.

Use The zone DD statement is used by SMP/E to access an individual target or
distribution zone in a CSI data set. For example, to have SMP/E access
target zone MVSTGT1, you can provide a DD statement like this one:
//MVSTGT1 DD DSN=SMPE.SMPCSI.CSI,DISP=SHR

If you do not provide a DD statement for a target or distribution zone,
SMP/E allocates the zone dynamically using the ZONEINDEX information
in the GLOBALZONE entry. Also note that, while DD statements may be
used to override the ZONEINDEX information, they are not a substitute
for a zoneindex. A zoneindex is always required for a zone.

Attributes
VSAM; RECORDSIZE(24 143), KEYS(24 0).

Device
Direct access only.

Note:

1. The low-level qualifier of the data set name must be CSI.
2. If you have used IBM SMP/E for z/OS, V3R6 to update a zone, you might not

be able to process that zone with previous releases of SMP/E. For more
information, see the migration section in SMP/E for z/OS User's Guide.

3. When running on systems with the required level of DFP, SMP/E automatically
takes advantage of the local shared resource (LSR) feature of VSAM. This
reduces the number of times SMP/E must access data when it is reading CSI
data sets. As a result, SMP/E performance is improved for commands such as
APPLY, APPLY CHECK, ACCEPT, ACCEPT CHECK, and especially LIST.

4. CSI data sets should usually be allocated dynamically. However, you may want
to use the batch local shared resources (BLSR) subsystem with expanded
storage hiperspaces (instead of SMP/E's implementation of LSR) to improve
SMP/E performance during APPLY and ACCEPT processing for a large
number of changes. For more information about BLSR, see the notes section in
“SMPCSI” on page 143.

5. For information about the CSI data set containing the global zone, see
“SMPCSI” on page 143.

Text library (TXLIB)

170 SMP/E V3R6.0 for z/OS V2R1.0 Reference

Chapter 5. SMP/E data set entries

This chapter describes the entries in the various data sets SMP/E uses. It discusses
the following:
v How these data sets are organized
v How the entries in these data sets are organized
v How to create, update, and obtain information about these entries

Note: The LIST, UCLIN, and UNLOAD commands used to process these entries
are described in SMP/E for z/OS Commands.

How the data sets are organized
SMP/E uses the following data sets as a database for its processing: the CSI, PTS,
SCDS, MTS, and STS. It is important to understand how SMP/E uses each of these
data sets and how they are related.

The following is a description of each data set:
v The CSI data set is a VSAM data set that serves as the primary data set for

SMP/E. SMP/E divides the CSI into multiple partitions using the VSAM key
structure. Each partition is referred to as a zone.
There are three types of zones:

Global zone
A single global zone is used to record information about SYSMODs that
have been received. The global zone also contains information enabling
SMP/E to access the other two types of zones, and information allowing
you to tailor parts of SMP/E processing.

Target zones
One or more target zones are used to record information about the
status and structure of the operating system (or target) libraries.

Distribution zones
One or more distribution zones are used to record information about the
status and structure of the distribution libraries.

In Figure 4 on page 172 the CSI data set is pictured as one data set. In fact, you
can group all your zones within one VSAM data set (up to 32766 zones per data
set), or divide them up into multiple VSAM data sets, even one zone per data
set. The choice is yours; it is based on such factors as:
– Which packs the associated target and distribution libraries are on. It is

advisable to keep the associated zone on the same pack as the libraries
controlled from the zone, so when the pack is dumped, the data and
description are kept synchronized.

– The organization of your shop. Totally separate service organizations for
different products may require many separate data sets.

Figure 5 on page 173 illustrates the same zone relationship as Figure 4 on page
172, with the CSI spread across multiple VSAM data sets.

v The PTS is used strictly as a storage data set for SYSMODs. A SYSMOD is read
from the SMPPTFIN data set and stored directly on the PTS without any
modifications or SMP/E information. It is, therefore, related to the global zone in
that both data sets contain information about the received SYSMODs. You can,

© Copyright IBM Corp. 1986, 2014 171

therefore, look at the global zone and the PTS as a pair of data sets that must be
processed (such as scratched, saved, or modified) concurrently.

v The SCDS is used by SMP/E to store backup copies of modified target zone
entries during apply processing of a SYSMOD with inline JCLIN. Thus, the
SCDS is directly related to a specific target zone, and each target zone must have
its own SCDS.

v The MTS is a library in which SMP/E stores updated copies of macros during
apply when no other target macro library is identified. The MTS is, therefore,
related to a specific target zone, and each target zone must have its own MTS
data set.

v The STS is a library in which SMP/E stores updated copies of source during
APPLY when no other target source library is identified. The STS is, therefore,
related to a specific target zone, and each target zone must have its own STS
data set.

The relationships among SMP/E data sets and zones are shown in Figure 4 for a
single CSI data set, and in Figure 5 on page 173 for multiple CSI data sets.

Figure 4. Single-CSI structure

Data set entries

172 SMP/E V3R6.0 for z/OS V2R1.0 Reference

How data set entries are organized
Within the global zone, target zone, and distribution zone, SMP/E keeps many
types of entries. These can be divided into two categories:
v Those that are used to control SMP/E processing. These consist of:

– GLOBALZONE definition entry
– TARGETZONE definition entry
– DLIBZONE definition entry
– OPTIONS entries
– UTILITY entries
– DDDEF entries
– FMIDSET entries
– ZONESET entries

Figure 5. Multiple-CSI structure

Data set entries

Chapter 5. SMP/E data set entries 173

v Those that are used to define the status and structure of the target libraries and
distribution libraries. These consist of:
– ASSEM entries
– Data element entries
– DLIB entries
– hierarchical file system element entries
– LMOD entries
– MAC entries
– MOD entries
– SRC entries
– SYSMOD entries

Note: The SYSMOD entries also contain information referred to as
HOLDDATA.

The following sections describe the entry relationships for the entries that control
processing, and entries that define status and structure.

Entries that control processing
The starting point for all SMP/E processing is the SMPCSI DD statement. This DD
statement directs SMP/E to the CSI data set containing the GLOBALZONE entry.
The next step after obtaining the GLOBALZONE entry depends on which zone
you direct SMP/E to process. (For more information about identifying which zone
SMP/E is to process, see the SET command chapter in SMP/E for z/OS Commands.

Processing the global zone
Once the GLOBALZONE entry has been obtained and you direct SMP/E to
process the global zone (for instance to receive SYSMODs), the OPTIONS subentry
in the GLOBALZONE entry directs SMP/E to the correct OPTIONS entry to use.
The OPTIONS entry contains information about the SMP/E processing options to
be used. During processing, SMP/E may have to invoke one of the system utilities.
Another entry, the UTILITY entry, is used to define to SMP/E information about
the utility program to invoke, the parameters to pass to it, and the return code to
expect from it. SMP/E finds the UTILITY entry through the OPTIONS entry that
names the UTILITY entry. Thus, for SMP/E to use the correct utility program, you
must define both the UTILITY entry that describes the utility program and the
OPTIONS entry that names that UTILITY entry.

The other processing entries in the global zone are the DDDEF, FMIDSET, and
ZONESET entries.
v DDDEF entries provide information used by SMP/E to dynamically allocate

data sets. These entries are not connected to any other processing entry. They are
accessed individually, by name, as SMP/E needs information to dynamically
allocate a specific data set. They are not shown in Figure 6 on page 175.

v FMIDSET entries define sets of FMIDs. Various other commands, such as
APPLY and ACCEPT, can then process SYSMODs by FMIDSET.

v ZONESET entries define sets of zones. The REPORT command can then check
for SYSMODs in the zones defined in the ZONESET.

Each of these entries (GLOBALZONE, OPTIONS, UTILITY, DDDEF, FMIDSET, and
ZONESET) exists in the global zone.

Data set entries

174 SMP/E V3R6.0 for z/OS V2R1.0 Reference

Figure 6 illustrates how the various global zone processing entries are related to
one another. Subsequent sections of this chapter provide a more detailed
explanation of each entry and the data it contains.

Processing a target zone or a distribution zone
A target zone and a distribution zone are processed in very similar ways. The only
difference is the name of the controlling entry. Therefore, they are covered together,
and the differences are pointed out as appropriate.

When you direct SMP/E to process a target zone (for instance to apply a PTF) or a
distribution zone (for instance to accept that PTF), SMP/E accesses the
ZONEINDEX subentries in the GLOBALZONE entry. Those subentries list the
target zones and distribution zones that you have defined, including the zone type,
target or DLIB, and the name of the CSI data set on which they reside.

After SMP/E has determined that the zone specified is valid, it uses the CSI data
set name specified to dynamically allocate a DD statement to access the required
data set (optionally, SMP/E looks for a DD statement equal to the zone name).
SMP/E can now access that DD statement to obtain further processing information
for the zone.

The first entry accessed is the TARGETZONE entry (for target zones) or the
DLIBZONE entry (for distribution zones). Each of these, in turn, directs SMP/E to
the correct OPTIONS entry to use, which in turn directs SMP/E to the correct
UTILITY entries. Target and distribution zones also contain DDDEF entries.
v The OPTIONS and UTILITY entries serve the same purpose for the target zone

and distribution zone as for the global zone. However, the OPTIONS and
UTILITY entries used to process a target zone or distribution zone are defined
not in the target or distribution zone, but in the global zone that points to the
target or distribution zone.

v TARGETZONE and DLIBZONE entries contain a RELATED subentry, which
identifies a related zone. For a target zone, the RELATED subentry identifies the

Figure 6. Global zone: relationships between entries that control processing

Data set entries

Chapter 5. SMP/E data set entries 175

distribution zone from which this target zone was built. For a distribution zone,
the RELATED subentry identifies the target zone that was built from these
distribution libraries.

v DDDEF entries in the target zone and distribution zone are not connected to
any other entries. They provide information used by SMP/E to dynamically
allocate data sets.

Figure 7 on page 177 shows how the various target zone, distribution zone, and
global zone processing entries are related. Subsequent sections of this chapter
provide a more detailed explanation of each entry and the data it contains. Because
neither the FMIDSET entries nor the DDDEF entries are connected to any other
distribution zone or target zone entry, they are not shown in this figure.

Entries that define status and structure
Once the processing control information for the specified zone has been
determined, SMP/E uses the status and structure entries within the various zones
to determine what should be done.

Processing the global zone
Processing the global zone is fairly simple, in that only one structure and status
entry exists, SYSMOD. SYSMOD entries are used to determine whether a
SYSMOD has been received already. Various indicators within the SYSMOD entry
also indicate whether the SYSMOD has been applied or accepted. The SYSMOD
entries, although not directly connected to the PTS MCS entries, are implicitly
connected, in that SMP/E assumes that there is a one-to-one relationship between
global zone SYSMOD entries and PTS MCS entries.

Processing the target zone
Processing the target zone is much more complex than processing the global zone,
because the operations performed are much more complex and require more entry
types to direct SMP/E. The primary purpose of the target zone entries is to enable
SMP/E to apply new function and service to the target system libraries; thus, the
APPLY command is used to describe the relationship between the various target
zone entries.

The starting point for applying a SYSMOD is actually the global zone SYSMOD
entries. From the global zone SYSMOD entry, SMP/E obtains information about
the relationship between this SYSMOD and other SYSMODs. SMP/E then uses
other global zone SYSMOD entries and the target zone SYSMOD entries to
resolve these relationships.

Once the eligible SYSMODs have been determined, the actual MCS statements
from the PTS are accessed and lead SMP/E to the other target zone entries:
v ++MAC and ++MACUPD statements lead to target zone MAC entries.
v ++SRC and ++SRCUPD statements lead to target zone SRC entries.
v ++MOD and ++ZAP statements lead to target zone MOD and LMOD entries.
v Data element statements lead to target zone data element entries.
v ++hfs_element statements lead to target zone hierarchical file system element

entries.

Data set entries

176 SMP/E V3R6.0 for z/OS V2R1.0 Reference

If the SYSMOD replaces or modifies a macro (++MAC or ++MACUPD in
SYSMOD), SMP/E uses the target zone MAC entry to determine the functional
and service level of the macro and to determine whether any assemblies must be
redone as a result of the macro update. This is done by checking the GENASM
subentries in the target zone MAC entry. The GENASM subentries contain the
names of either ASSEM entries or SRC entries in the target zone. In either case,
SMP/E accesses the appropriate entry and uses the information stored there to
perform the required assemblies.

Figure 7. Target zone and distribution zone: relationships between entries that control
processing

Data set entries

Chapter 5. SMP/E data set entries 177

If the SYSMOD replaces or modifies source (++SRC or ++SRCUPD in SYSMOD),
SMP/E uses the target zone SRC entry to determine the functional and service
level of the source and the library containing the source code, and then performs
the required assembly.

After an assembly has been done (either using data from the ASSEM entry or SRC
entry), SMP/E knows that the resulting object deck must be link-edited into the
target libraries somewhere. Although there is no direct connection (that is, no
subentry value present) between the ASSEM or SRC entries and a MOD entry,
there is an implicit relationship. SMP/E assumes that for each ASSEM and SRC
entry, there exists a MOD entry with the same name. Thus, after performing the
assembly, SMP/E accesses the corresponding MOD entry to determine where to
install the object deck. This leads us to the same point as if a MOD were supplied
in the SYSMOD.

If the SYSMOD replaces or modifies a module (++MOD or ++ZAP in SYSMOD), or
if an assembly was done for a SRC or ASSEM entry, SMP/E uses the target zone
MOD entry to determine the functional and service level of the module and the
load modules into which the module should be linked. Information about load
modules is kept in the LMOD subentries in the MOD entry.

The LMOD subentries within the MOD entry lead SMP/E to the target zone
LMOD entries. These represent load modules that exist in the target libraries.
LMOD entries contain all the information necessary either to relink the load
module or to superzap it.

If the SYSMOD replaces a data element (a data element MCS is in the SYSMOD),
SMP/E uses the target zone data element entry to determine the functional and
service level of the data element. It then gets the data element installed in the
appropriate target library.

If the SYSMOD replaces a hierarchical file system element (a ++hfs_element MCS is
in the SYSMOD), SMP/E uses the target zone hierarchical file system element
entry to determine the functional and service level of the hierarchical file system
element. It then gets the hierarchical file system element installed in the
appropriate target library (which is actually in a UNIX file system). If a shell script
has been defined for the element, SMP/E passes control to the shell script to allow
it to perform any necessary post-installation processing.

After all the updating, assembling, linking, and so on, are done, you arrive back
almost at the starting point, the SYSMOD entry. The difference is that this is the
target zone SYSMOD entry rather than the global zone SYSMOD entry. The target
zone SYSMOD entry contains all the information about what has been done as a
result of installing this SYSMOD.

That leaves us with one target zone entry not discussed, the DLIB entry. The DLIB
entries are not connected to any other entry. They are used by SMP/E to keep
information about libraries that are totally copied during product installation, and
are used during APPLY processing to create the appropriate element and LMOD
entries for elements coming from the copied DLIB.

Figure 8 on page 179 shows how the various SMP/E status and structure entries
are related. Subsequent sections of this chapter provide a more detailed
explanation of each entry and the data it contains.

Data set entries

178 SMP/E V3R6.0 for z/OS V2R1.0 Reference

Note: Lines to the left of the figure are implicit connections based on the
assumption that entries with equal names will be found.

Processing the distribution zone
Processing the distribution zone is similar to processing the target zone, but more
complex than processing the global zone. The primary purpose of the distribution
zone entries is to enable SMP/E to accept new function and service to the

Figure 8. Target Zone: Relationships between entries that define status and structure

Data set entries

Chapter 5. SMP/E data set entries 179

distribution libraries; it is also used to remove a SYSMOD from the system. The
ACCEPT command will be used to describe the relationship between the various
distribution zone entries.

The starting point for accepting a SYSMOD is actually the global zone SYSMOD
entry. From that entry, SMP/E obtains information about the relationship between
this SYSMOD and other SYSMODs. SMP/E then uses other global zone SYSMOD
entries and the distribution zone SYSMOD entries to resolve these relationships.
In addition, SMP/E checks the target zone SYSMOD entries to ensure that the
selected SYSMODs have been applied.

After the eligible SYSMODs have been determined, the various MCS statements
lead SMP/E to the other distribution zone entries:
v ++MAC and ++MACUPD statements lead to distribution zone MAC entries.
v ++SRC and ++SRCUPD statements lead to distribution zone SRC entries.
v ++MOD and ++ZAP statements lead to distribution zone MOD entries.
v Data element statements lead to distribution zone data element entries.
v ++hfs_element statements lead to distribution zone hierarchical file system

element entries.

If the SYSMOD replaces or modifies a macro (++MAC or ++MACUPD in
SYSMOD), SMP/E uses the distribution zone MAC entry to determine the
functional and service level of the macro and to determine whether any assemblies
must be redone as a result of the macro update. This is done by checking the
GENASM subentries in the target zone MAC entry. The names in the list can be
names of either target zone ASSEM or SRC entries. In either case, SMP/E accesses
the appropriate entry and uses the information stored there to perform the
required assemblies.

If the SYSMOD replaces or modifies a source (++SRC or ++SRCUPD in SYSMOD),
SMP/E uses the distribution zone SRC entry to determine the functional and
service level of the source and the library containing the source code, and then
performs the required assembly.

After an assembly has been done (with data from either the ASSEM entry or the
SRC entry), SMP/E knows that the resulting object deck may be link-edited into
the distribution libraries somewhere. Although there is no direct connection (that
is, no subentry value present) between the ASSEM or SRC entries and a MOD
entry, there is an implicit relationship. SMP/E assumes that for each ASSEM and
SRC entry there exists a MOD entry with the same name. Thus, after performing
the assembly, SMP/E accesses the corresponding MOD entry to determine where
to install the object deck. This leads us to the same point as if a MOD were
supplied in the SYSMOD.

If the SYSMOD replaces or modifies a module (++MOD or ++ZAP in SYSMOD), or
if an assembly was done for a SRC or ASSEM entry, SMP/E uses the distribution
zone MOD entry to determine the functional and service level of the module, the
DLIB into which it must be linked, the load modules into which the module
should be linked, and the link-edit attributes that should be used. Information
about load modules is kept in the LMOD subentries in the MOD entry.

The LMOD subentries within the MOD entry lead SMP/E to the distribution zone
LMOD entries. These represent load modules that exist in the target libraries.
LMOD entries contain all the information necessary, either to relink the load
module or to update it using IMASPZAP.

Data set entries

180 SMP/E V3R6.0 for z/OS V2R1.0 Reference

If the SYSMOD replaces a data element (a data element MCS is in the SYSMOD),
SMP/E uses the distribution zone data element entry to determine the functional
and service level of the data element. It then gets the data element installed in the
appropriate distribution library.

If the SYSMOD replaces a hierarchical file system element (a ++hfs_element MCS is
in the SYSMOD), SMP/E uses the distribution zone hierarchical file system
element entry to determine the functional and service level of the hierarchical file
system element. It then gets the hierarchical file system element installed in the
appropriate distribution library.

After all the updating, assembling, linking, and so on, are done, you arrive back
almost at the starting point, the SYSMOD entry. The difference is that this is the
distribution zone SYSMOD entry, which contains all the information about what
was done as a result of installing this SYSMOD.

Figure 9 on page 182 shows how the various SMP/E status and structure entries
are related. Subsequent sections of this chapter provide a more detailed
explanation of each entry and the data it contains.

Data set entries

Chapter 5. SMP/E data set entries 181

Note: Lines to the left of the figure are implicit connections based on the
assumption that entries with equal names will be found.

The remaining sections of this chapter deal with each of the specific entries in the
various SMP/E data sets.

Figure 9. Distribution zone: relationships between entries that define status and structure

Data set entries

182 SMP/E V3R6.0 for z/OS V2R1.0 Reference

ASSEM entry (distribution and target zone)
The ASSEM entry contains assembler statements that can be assembled to create an
object module. It is created during JCLIN processing when SMP/E encounters an
assembler step with inline assembler input. When the module is reassembled using
the statements in the ASSEM entry, SMP/E copies those statements into the
SMPWRK2 data set, and then assembles the module.

If a macro is invoked in the assembly, the ASSEM entry is pointed to by the
GENASM subentry in the MAC entry created for that macro. As a result, when
that macro is updated, SMP/E can reassemble the affected module using the
statements in the ASSEM entry. For additional information, see the “Processing”
section in the JCLIN command chapter in SMP/E for z/OS Commands.

Subentries

These are the subentries for the ASSEM entry as they appear in the LIST output:

name
is the name of the ASSEM entry. It corresponds to the name of the module that
can be reassembled by use of that ASSEM entry.

The name can contain from 1 to 8 alphanumeric characters.

ASSEMBLER INPUT
is the actual assembler statements that were saved for this module during
JCLIN processing. These statements are passed to the assembler whenever this
module must be reassembled.

The UCL operands are ++ASMIN and ++ENDASMIN.
v An ASSEM entry must contain at least the ++ASMIN and ++ENDASMIN

statements, plus the associated assembler statements.
v The ++ASMIN and ++ENDASMIN statements must start in column 1.
v No other operands can start on the same line as the ++ASMIN statement.
v If you specify the ++ASMIN statement, you must also specify the

++ENDASMIN statement.

LASTUPD
identifies the cause of the last change to this ASSEM entry.

The UCL operand is LASTUPD(value). This subentry can contain one of the
following values:

JCLIN
indicates that the change was made during JCLIN command processing.

UCLIN
indicates that the change was made as a result of UCLIN processing.

sysmod_id
indicates that the change was made during the installation of the indicated
SYSMOD.

The SYSMOD ID must contain 7 alphanumeric characters.

LASTUPD TYPE
indicates how the entry was last changed.

The UCL operand is LASTUPDTYPE(value). This subentry can contain one of
the following values:

ASSEM entry (distribution and target zone)

Chapter 5. SMP/E data set entries 183

ADD The entry was added.

UPD The entry was updated.

LIST Examples

To list all the ASSEM entries in a particular zone, you can use the following
commands:
SET BDY(TGT1) /* Set to requested zone. */.
LIST ASSEM /* List all ASSEM entries. */.

To list specific ASSEM entries, you can use these commands:
SET BDY(TGT1) /* Set to requested zone. */.
LIST ASSEM(ASSEM01 /* List only these two */

ASSEM02) /* entries. */.

The format of the LIST output for each ASSEM entry is the same for both of these
commands. The only difference is the number of ASSEM entries listed. Figure 10 is
an example of LIST output for ASSEM entries.

You can use the LIST command to find the MAC entries for macros that are called
by the assembler statements in this ASSEM entry. To include the names of these
MAC entries in the LIST output, you can use the XREF operand, as shown in these
commands:
SET BDY(TGT1) /* Set to requested zone. */.
LIST ASSEM /* List all ASSEM entries */

XREF /* and macros that use them. */.

Note:

1. You can use XREF in either mass mode or select mode.
2. SMP/E obtains the data included for the XREF operand by checking the

GENASM subentries in all the MAC entries. Because this data is not contained
in the ASSEM entry itself, you cannot use UCLIN to change it in the ASSEM
entry.

Figure 11 on page 185 is an example of the LIST output produced when the XREF
operand is used.

PAGE nnnn - NOW SET TO zzzzzz ZONE nnnnnnn DATE mm/dd/yy TIME hh:mm:ss SMP/E 36.nn SMPLIST OUTPUT

TGT1 ASSEMBLER ENTRIES

NAME

ASSEM01 LASTUPD = JXY1102 TYPE=ADD
ASSEMBLER INPUT = ...

... assembler statements

....

ASSEM02 LASTUPD = JXY1121 TYPE=UPD
ASSEMBLER INPUT = ...

... assembler statements

...

Figure 10. ASSEM entry: sample LIST output

ASSEM entry (distribution and target zone)

184 SMP/E V3R6.0 for z/OS V2R1.0 Reference

UNLOAD Examples

To dump the ASSEM entries in UCL format, you can use the UNLOAD command.
To unload all the ASSEM entries in a particular zone, you can use the following
commands:
SET BDY(TGT1) /* Set to requested zone. */.
UNLOAD ASSEM /* Unload all ASSEM entries. */.

To unload specific ASSEM entries, you can use these commands:
SET BDY(TGT1) /* Set to requested zone. */.
UNLOAD ASSEM(ASSEM01 /* Unload only these two */

ASSEM02) /* entries. */.

The format of the UNLOAD output for each ASSEM entry is the same for both of
these commands. The only difference is the number of ASSEM entries listed.
Figure 12 on page 186 is an example of UNLOAD output for ASSEM entries.

PAGE nnnn - NOW SET TO zzzzzz ZONE nnnnnnn DATE mm/dd/yy TIME hh:mm:ss SMP/E 36.nn SMPLIST OUTPUT

TGT1 ASSEMBLER ENTRIES

NAME

ASSEM01 LASTUPD = JXY1102 TYPE=ADD
ASSEMBLER INPUT = ...

... assembler statements

...
MACROS USED = NAME FMID

MAC01 JXY1102
MAC02 JXY1121

ASSEM02 LASTUPD = JXY1121 TYPE=UPD
ASSEMBLER INPUT = ...

... assembler statements

...
MACROS USED = NAME FMID

MAC01 JXY1102
MAC03 JXY1121

Figure 11. ASSEM entry: sample LIST output when XREF is specified

ASSEM entry (distribution and target zone)

Chapter 5. SMP/E data set entries 185

UCLIN Examples

You can use the ADD, REP, and DEL UCL statements to change subentries in the
ASSEM entry. When you use UCLIN to update an ASSEM entry, keep these points
in mind:
v After the UCLIN changes are done, the ASSEM entry must contain at least

++ASMIN and ++ENDASMIN statements, plus the associated assembler input.
Otherwise, there is not enough information in the entry to assemble the
associated module.

v The input following the ++ASMIN statement replaces the existing assembler
input in the ASSEM entry.

v If a DEL statement deletes all the existing subentries in the entry, SMP/E deletes
the entire entry.

v When SMP/E processes a DEL statement, it does not compare any assembler
input after the ++ASMIN statement with the input that is currently in the
ASSEM entry. It just deletes the existing assembler input. This causes an error,
because there is now insufficient data in the ASSEM entry.

The following examples are provided to help you use the ASSEM entry.

Example 1: Deleting an ASSEM entry
The main use of UCLIN for an ASSEM entry is to delete the entry. Here is an
example:
SET BDY(TGT1) /* Set to target zone. */.
UCLIN /* */.
DEL ASSEM(ASSEM01) /* Delete the entry. */.
ENDUCL /* */.

Example 2: Adding a new ASSEM entry
To create an ASSEM entry, you should run the JCLIN command rather than use
UCLIN. (For examples of how JCLIN creates ASSEM entries, see SMP/E for z/OS
Commands. However, you can also use UCLIN to create ASSEM entries. For

UCLIN .
REP ASSEM (ASSEM01)

LASTUPD (JXY1102)
LASTUPDTYPE (ADD)

++ASMIN
...
... assembler statements
...
++ENDASMIN

.

REP ASSEM (ASSEM02)
LASTUPD (JXY1121)
LASTUPDTYPE (UPD)

++ASMIN
...
... assembler statements
...
++ENDASMIN

.
ENDUCL.

Figure 12. ASSEM entry: sample UNLOAD output

ASSEM entry (distribution and target zone)

186 SMP/E V3R6.0 for z/OS V2R1.0 Reference

example, you can use the following commands to create a new ASSEM entry and
to update an existing MAC entry to show that the macro is used in the new
assembly:
SET BDY(TGT1) /* Set to target zone. */.
UCLIN /* */.
ADD ASSEM(ASSEM99) /* New ASSEM entry. */
++ASMIN /* Assembler data. */
ASSEM99 CSECT /* */

MAC99 0,0,1 /* */
END ASSEM99 /* */

++ENDASMIN /* End of assembler data. */
/* End of adding ASSEM. */.

ADD MAC(MAC99) /* Modify macro entry used */
GENASM(ASSEM99) /* to indicate use in new */

/* assembly entry. */.
ENDUCL /* */.

BACKUP entries (SMPSCDS)
BACKUP entries are a collection of target zone entries that are copied to the
SMPSCDS during APPLY processing before they are updated by inline JCLIN, a
++MOVE MCS, or a ++RENAME MCS, or before they are deleted by an element
MCS with the DELETE operand. A BACKUP entry is also created for a MOD entry
if a SYSMOD being installed provides a ++MOD statement that either changes the
distribution library for the module or adds the module to an existing load module.
v As SMP/E processes the inline JCLIN for a given SYSMOD, it determines which

entries will be affected by that JCLIN. Before making the changes, it saves a
copy of each of those entries on the SMPSCDS.

v Likewise, as SMP/E processes the ++MOVE, ++RENAME, and element MCSs in
a given SYSMOD, it determines which entries will be updated or deleted. Before
updating or deleting the entries, it saves a copy of each of those entries on the
SMPSCDS.

Besides saving copies of the affected entries, SMP/E also saves a SYSMOD entry
on the SMPSCDS to indicate which entries were added by JCLIN, updated by
JCLIN or an MCS statement in the SYSMOD, or deleted by an MCS statement in
the SYSMOD. Each entry is associated with only one SYSMOD. The entries
associated with a SYSMOD are called the BACKUP entries for that SYSMOD.
BACKUP entries consist of:
v A SYSMOD entry indicating what entries were added, deleted, or updated
v ASSEM entries for updated target zone ASSEM entries
v JAR entries for deleted JAR entries
v LMOD entries for updated target zone LMOD entries
v MAC entries for updated or deleted target zone MAC entries
v MOD entries for updated or deleted target zone MOD entries
v SRC entries for updated or deleted target zone SRC entries
v Data element entries for deleted target zone data element entries
v Hierarchical file system entries for deleted target zone hierarchical file system

entries
v DLIB entries for updated target zone DLIB entries

SMP/E provides access to the BACKUP entries as a group—for example, through
the LIST command—but it does not provide access to the individual entries or
subentries.

ASSEM entry (distribution and target zone)

Chapter 5. SMP/E data set entries 187

Subentries

The subentries in the BACKUP entries are the same as those in the various entry
types that are copied. For more information, see the section in this chapter
describing each entry.

LIST Examples

To list the BACKUP entries for all the SYSMODs in the SMPSCDS, you can use the
following commands:
SET BDY(TGT1) /* Set to requested tgt zone. */.
LIST BACKUP /* List all BACKUP entries. */.

To list the BACKUP entries for a specific SYSMOD, you can use these commands:
SET BDY(TGT1) /* Set to requested tgt zone. */.
LIST BACKUP(UZ12345, /* List only BACKUP entries */

UZ12346) /* for these two SYSMODs. */.

The format of the LIST output for each group of BACKUP entries is the same for
both of these commands. The only difference is the number of SYSMODs for which
BACKUP entries are listed.

When you list the BACKUP entries for a SYSMOD, the first entry in the output is a
summary entry for the SYSMOD, which indicates the date and time the SYSMOD
was applied, as well as which entries were added or updated as a result of
applying the SYSMOD. This is followed by a listing of all the existing target zone
entries affected by this SYSMOD, before they were updated. Nothing is listed for
added entries, because no entry existed before the SYSMOD was installed.

Figure 13 on page 189 is a partial example of LIST output for BACKUP entries. It
shows the summary records, but not all the backup copies of the entries modified
by the SYSMOD. This is because the format of those copies is the same as the
format for the original target zone entries.

UCLIN Examples

You can use the DEL UCL statement to delete BACKUP entries from the
SMPSCDS. This can be helpful if you plan to do an APPLY followed by ACCEPT
when several target libraries have been created from the same distribution library.

When a SYSMOD is accepted into a distribution zone, the entries associated with
the SYSMOD are automatically deleted from the SMPSCDS for the RELATED
target zone. However, even if the SYSMOD was also applied to other target zones
created from the same distribution zone, SMP/E does not clean up the SMPSCDS
data sets for the other target zones.

To delete the entries from these data sets, you can accept the SYSMOD and name
these other target zones as the RELATED zone. However, this updates the
distribution library each time, which is time-consuming and can use up space in
the distribution library data set.

Instead, you can use the DEL command to delete these entries without updating
the distribution library. To determine which entries to specify, check the SMPLOG
data set to see which ones SMP/E deleted during ACCEPT processing.

BACKUP Entries (SMPSCDS)

188 SMP/E V3R6.0 for z/OS V2R1.0 Reference

Note: You can also use the CLEANUP command to delete BACKUP entries
without specifying them individually. For more information about the CLEANUP
command, see SMP/E for z/OS Commands.

Example: Deleting BACKUP entries
Assume BACKUP entries exist on the SCDS for SYSMODs UZ12345 and UZ12346.
Those SYSMODs have been accepted, but the BACKUP entries have not been
deleted from the SCDS. This can happen when multiple systems are supported off
one set of DLIBs, where you accept from only one of the target systems. Here is an
example of UCL you could use to delete the BACKUP entries from the SCDS:
SET BDY(TGT1) /* Set to TGT1 zone. */.
UCLIN /* */.
DEL BACKUP(UZ12345) /* Delete the BACKUP entries. */.
DEL BACKUP(UZ12346) /* Delete the BACKUP entries. */.
ENDUCL /* */.

Note: You must specify a separate UCL statement for each BACKUP entry to be
deleted.

PAGE nnnn - NOW SET TO zzzzzz ZONE nnnnnnn DATE mm/dd/yy TIME hh:mm:ss SMP/E 36.nn SMPLIST OUTPUT

SMPSCDS BACKUP ENTRIES

NAME

UZ12345 DATE/TIME APP = 07.100 08:15:00
ASSEM (ADD) = ASSEM01 ASSEM02 ASSEM03
LMOD (ADD) = LMOD01 LMOD02
MACRO (ADD) = MAC01
MOD (ADD) = MOD01 MOD02 MOD03 MOD04
SRC (ADD) = SRC01 SRC02 SRC03
DLIB (ADD) = DLIB01
ASSEM (DEL) = ASSEM04 ASSEM05
LMOD (DEL) = LMOD03 LMOD04 LMOD05
MACRO (DEL) = MAC05 MAC09
MOD (DEL) = MOD10 MOD11 MOD12
SRC (DEL) = SRC11
ASSEM (UPD) = ASSEM91 ASSEM92 ASSEM93
LMOD (UPD) = LMOD9A LMOD9B
MACRO (UPD) = MAC99
MOD (UPD) = MOD99
SRC (UPD) = SRC99
DLIB (UPD) = DLIB99

...

... deleted entries for ASSEM04 ASSEM05

... LMOD03 LMOD05 LMOD05

... MAC05 MAC09

... MOD10 MOD11 MOD12

... SRC11

... updated entries for ASSEM91 ASSEM92 ASSEM93

... LMOD9A LMOD9B

... MAC99

... MOD99

... SRC99

... DLIB99

... would follow here - format is as in sample

... for each target zone entry

...

Figure 13. BACKUP entries: sample LIST output

BACKUP Entries (SMPSCDS)

Chapter 5. SMP/E data set entries 189

Data element entry (distribution and target zone)
The data element entry describes an element that is not a macro, module, or source
(for example, a CLIST or a sample procedure). Data elements may exist in
distribution or target libraries. A data element entry is created the first time you
install a SYSMOD that contains an MCS for a data element that does not yet have
an entry in the CSI data set.

SMP/E records the function and service level of the data element in the entry.
Once a data element entry exists, it is updated as subsequent SYSMODs that affect
the data element are installed.

Table 2 on page 10 shows the types of entries used for data elements. Some types
of elements, such as panels, messages, or text, may have been translated into
several languages. In these cases, the entry type contains xxx, which represents the
language used for the element. (If an element was not translated, the entry type
does not contain any xxx value.) Table 3 on page 12 shows the xxx values and the
languages they represent.

Subentries

These are the subentries for the data element entry as they appear in the LIST
output:

name
is the name of the data element represented by the entry. It can contain from 1
to 8 alphanumeric characters and $, #, @, or hex C0.

ALIAS
specifies a list of alias names for the element.

The UCL operand is ALIAS(name...).

Each alias name can contain from 1 to 8 alphanumeric characters.

DISTLIB
specifies the ddname of the distribution library for the data element.

The UCL operand is DISTLIB(ddname).
v The ddname can contain from 1 to 8 alphanumeric characters.
v The DISTLIB subentry is required. Without it, SMP/E cannot process any

changes for the data element.

FMID
specifies the functional owner of this data element. The functional owner is the
last function SYSMOD that replaced this element.

The UCL operand is FMID(sysmod_id).

The SYSMOD ID must contain 7 alphanumeric characters.

LASTUPD
identifies the cause of the last change to this data element entry.

The UCL operand is LASTUPD(value). This subentry can contain one of the
following values:

UCLIN
indicates that the change was made as a result of UCLIN processing.

Data element entry (distribution and target zone)

190 SMP/E V3R6.0 for z/OS V2R1.0 Reference

sysmod_id
indicates that the change was made during the installation of the indicated
SYSMOD.

The SYSMOD ID must contain 7 alphanumeric characters.

LASTUPD TYPE
indicates how the entry was last changed.

The UCL operand is LASTUPDTYPE(value). This subentry may contain one of
the following values:

ADD The entry was added.

UPD The entry was updated.

RMID
identifies the last SYSMOD that replaced this data element. Any subsequent
SYSMOD that modifies this data element must have a defined relationship
(such as PRE or SUP) with this SYSMOD.

The UCL operand is RMID(sysmod_id).
v The SYSMOD ID must contain 7 alphanumeric characters.
v If RMID is not specified but FMID is, SMP/E sets the RMID value to the

specified FMID.

SYSLIB
specifies the ddname of the target library for the data element.

The UCL operand is SYSLIB(ddname).
v You can specify only one SYSLIB value.
v The ddname can contain from 1 to 8 alphanumeric characters.

LIST Examples

To list all the data element entries of a given type (such as CLIST) in a particular
zone, you can use the following commands:
SET BDY(TGT1) /* Set to requested zone. */.
LIST CLIST /* List all CLIST entries. */.

To list specific CLIST entries, you can use these commands:
SET BDY(TGT1) /* Set to requested zone. */.
LIST CLIST(CLIST1 /* List only these two */

CLIST2) /* entries. */.

The format of the LIST output for each data element entry is the same for both of
these commands. The only difference is the number of data element entries listed.
Figure 14 on page 192 is an example of LIST output for data element entries.

Data element entry (distribution and target zone)

Chapter 5. SMP/E data set entries 191

By specifying the FORFMID operand, you can reduce the number of data element
entries listed. When FORFMID is specified, SMP/E lists a data element entry only
if its FMID matches one of the FMIDs specified on the FORFMID operand. For
example, to list CLIST entries whose FMIDs are defined in FMIDSET TP or else are
MYCLST1, you can use these commands:
SET BDY(TGT1) /* Set to target zone. */.
LIST CLIST /* List all CLIST entries */

FORFMID(TP /* for the TP FMIDSET */
MYCLST1) /* and FMID MYCLST1. */.

You can use the LIST command to find out the names of all SYSMODs that have
modified data elements. To include the names of these SYSMODs in the LIST
output, you can use the XREF operand, as shown in these commands:
SET BDY(TGT1) /* Set to requested zone. */.
LIST CLIST /* List all CLIST entries */

XREF /* and related SYSMODs. */.

Note:

1. You can use XREF in either mass mode or select mode.
2. SMP/E obtains the data included for the XREF operand by checking for entries

for this data element in all the SYSMOD entries. Because this data is not
contained in the data element entry itself, you cannot use UCLIN to change it
in the data element entry.

Figure 15 on page 193 is an example of the LIST output produced when the XREF
operand is used.

PAGE nnnn - NOW SET TO zzzzzz ZONE nnnnnnn DATE mm/dd/yy TIME hh:mm:ss SMP/E 36.nn SMPLIST OUTPUT

TGT1 CLIST ENTRIES

NAME

CLIST1 LASTUPD = MYCLST1 TYPE=ADD
LIBRARIES = DISTLIB=AMACLIB SYSLIB=ISPCLIB
FMID = MYCLST1
RMID = MYCLST1

CLIST2 LASTUPD = MYCPTF1 TYPE=ADD
LIBRARIES = DISTLIB=AMACLIB SYSLIB=ISPCLIB
FMID = MYCLST1
RMID = MYCPTF1

Figure 14. Data element entry: sample LIST output

Data element entry (distribution and target zone)

192 SMP/E V3R6.0 for z/OS V2R1.0 Reference

UNLOAD Examples

To dump the data element entries in UCL format, you can use the UNLOAD
command. To unload all the CLIST entries in a particular zone, you can use the
following commands:
SET BDY(TGT1) /* Set to requested zone. */.
UNLOAD CLIST /* Unload all CLIST entries. */.

To unload specific CLIST entries, you can use these commands:
SET BDY(TGT1) /* Set to requested zone. */.
UNLOAD CLIST(CLIST1 /* Unload only these two */

CLIST2) /* entries. */.

The format of the UNLOAD output for each data element entry is the same for
both of these commands. The only difference is the number of data element entries
listed. Figure 16 is an example of UNLOAD output for CLIST entries.

PAGE nnnn - NOW SET TO zzzzzz ZONE nnnnnnn DATE mm/dd/yy TIME hh:mm:ss SMP/E 36.nn SMPLIST OUTPUT

TGT1 CLIST ENTRIES

NAME

CLIST1 LASTUPD = MYCLST1 TYPE=ADD
LIBRARIES = DISTLIB=AMACLIB SYSLIB=ISPCLIB
FMID = MYCLST1
RMID = MYCLST1
SYSMOD HISTORY = SYSMOD TYPE DATE MCS --STATUS--

MYCLST1 FUNCTION 07.100 CLIST APP ACC

CLIST2 LASTUPD = MYCPTF1 TYPE=ADD
LIBRARIES = DISTLIB=AMACLIB SYSLIB=ISPCLIB
FMID = MYCLST1
RMID = MYCPTF1
SYSMOD HISTORY = SYSMOD TYPE DATE MCS --STATUS--

MYCPTF1 PTF 07.150 CLIST APP ACC

Figure 15. Data element entry: sample LIST output when XREF is specified

UCLIN .
REP CLIST (CLIST1)

LASTUPD (MYCLST1)
LASTUPDTYPE (ADD)
DISTLIB (AMACLIB)
SYSLIB (ISPCLIB)
FMID (MYCLST1)
RMID (MYCLST1)

.
REP CLIST (CLIST2)

LASTUPD (MYCPTF1)
LASTUPDTYPE (ADD)
DISTLIB (AMACLIB)
SYSLIB (ISPCLIB)
FMID (MYCLST1)
RMID (MYCPTF1)

.
ENDUCL.

Figure 16. Data element entry: sample UNLOAD output

Data element entry (distribution and target zone)

Chapter 5. SMP/E data set entries 193

By specifying the FORFMID operand, you can reduce the number of data element
entries unloaded. When FORFMID is specified, SMP/E unloads a data element
entry only if its FMID matches one of the FMIDs specified on the FORFMID
operand. For example, to unload CLIST entries whose FMIDs are either defined in
FMIDSET TP or are MYCLST1, you can use these commands:
SET BDY(TGT1) /* Set to target zone. */.
UNLOAD CLIST /* Unload all CLIST entries */

FORFMID(TP /* for the TP FMIDSET */
MYCLST1) /* and FMID MYCLST1. */.

UCLIN Examples

You can use the ADD, REP, and DEL UCL statements to change subentries in the
data element entry. After the UCLIN changes are made, the data element entry
must contain at least the following subentries:
v DISTLIB
v FMID
v RMID

Otherwise, there is not enough information in the entry to process the data
element. If any of these subentries are missing, SMP/E does not make the
requested UCL updates to the entry, and the entry remains as it was before the
UCL command.

Example: Adding a new data element entry
Assume you have installed CLIST3 outside of SMP/E, but now you want to start
using SMP/E to track changes to that CLIST. Here is an example of the UCL
statements you would use to define entries for that CLIST in the appropriate target
and distribution zones:
SET BDY(TGT1) /* Set to target zone. */.
UCLIN /* */.
ADD CLIST(CLIST3) /* Define new CLIST entry. */

DISTLIB(AMACLIB) /* Define DLIB. */
SYSLIB(ISPCLIB) /* System library. */
FMID(MYCLST1) /* Functional owner. */.

ENDUCL /* */.
SET BDY(DLB1) /* Now do same to DLIB. */.
UCLIN /* */.
ADD CLIST(CLIST3) /* Define new CLIST entry. */

DISTLIB(AMACLIB) /* Define DLIB. */
/* no SYSLIB info in DLIB. */

FMID(MYCLST1) /* Functional owner. */.
ENDUCL /* */.

DDDEF entry (distribution, target, and global zone)
The DDDEF entry contains the information SMP/E needs to dynamically allocate a
specific data set. With DDDEF entries, you do not have to provide a DD statement
for every data set SMP/E may need to process a particular command. When
SMP/E determines that it needs a specific data set, it looks for a DD statement that
it can use to allocate that data set. If there is no DD statement, SMP/E checks
whether the current zone contains a DDDEF entry for that data set. If so, it uses
the information in the DDDEF entry to dynamically allocate the data set.

For more information about dynamically allocating data sets, see SMP/E for z/OS
User's Guide.

Data element entry (distribution and target zone)

194 SMP/E V3R6.0 for z/OS V2R1.0 Reference

Note:

1. In a job with multiple SET commands, if you use DDDEF entries that specify
SYSOUT for SMP/E output (such as SMPOUT or SMPRPT), SMP/E produces
multiple SYSOUT data sets. This can cause undesirable results; for example, the
output could appear to be out of sequence from one SET command to the next.
Therefore, when you run such a job, you may prefer to use DD statements
instead of DDDEF entries for SMP/E output data sets.

2. SMP/E does not strictly enforce rules for which subentries you can specify in
DDDEF entries for specific data sets. To prevent possible allocation errors, refer
to z/OS MVS JCL User's Guide.

Subentries

These are the subentries for the DDDEF entry as they appear in the LIST output:
For more information concerning DDDEF entry syntax, see the UCLIN command
chapter in SMP/E for z/OS Commands.

name
is the ddname of the data set to be allocated.
v The name can contain from 1 to 8 alphabetic (A through Z), national (@, #,

or $), or numeric (0 through 9) characters. The first character must be
alphabetic or national.

v Other than checking for duplicate DDDEF names in a given zone, SMP/E
does not check whether the specified name is associated with another data
set. For example, SMP/E does not check whether a DDDEF name is the
same as a zone name. You must do this checking yourself to avoid
undesired results.

BLK(size), CYL, or TRK
specifies the space units to be used in allocating the data set: blocks, cylinders,
or tracks.

The UCL operand is BLOCK(size), CYLINDERS, or TRACKS.
v size is the size, in decimal, of each block to be allocated. To specify the

number of blocks to be allocated, use SPACE.
v You can specify either the long form or the short form of these operands:

– BLOCK or BLK

– CYLINDERS or CYL

– TRACKS or TRK

v These operands are mutually exclusive with each other and with OLD,
MOD, SHR, CONCAT, PATH, and SYSOUT.

CATALOG, DELETE, or KEEP
specifies the final disposition (DISP) of the data set.

The UCL operand is CATALOG, DELETE, or KEEP.
v These operands are mutually exclusive with each other and with CONCAT

and PATH.
v You cannot specify a final disposition for SMPTLIB data sets. SMP/E

automatically specifies a final disposition based on the command being
processed. For more information, see “SMPTLIB” on page 160.

CONCAT
identifies one or more DDDEF entries, existing in the same zone, that should
be concatenated during SMP/E processing.

DDDEF entry (distribution, target, and global zone)

Chapter 5. SMP/E data set entries 195

The UCL operand is CONCAT(name...).
v The DDDEF names can contain from 1 to 8 alphabetic (A through Z),

national (@, #, or $), or numeric (0 through 9) characters. The first character
must be alphabetic or national.

v There must be a DDDEF entry for each specified name. SMP/E does not
check other sources (such as DD statements or GIMDDALC control
statements in SMPPARM member GIMDDALC) to get the information
needed to allocate the data sets.

v SMP/E allows you to specify up to 123 names. However, the actual number
of partitioned data sets that can be concatenated depends on the operating
system you are running under. To determine the maximum number of data
sets you can concatenate, see z/OS DFSMS Using Data Sets.

v CONCAT is required for concatenated data sets.
v CONCAT cannot specify any DDDEF entries that contain the CONCAT

operand. (You cannot nest concatenated DDDEF entries.)
v CONCAT is mutually exclusive with all other operands.

Note: When a DDDEF that specifies a disposition of OLD is allocated as
part of a CONCAT, a disposition of SHR is used for the allocation.

DATACLAS
specifies the name of a data class to be used for allocating a new data set
managed by SMS.

The UCL operand is DATACLAS(name).
v The data class name is defined by the storage administrator at your

installation. This value can contain from 1 to 8 alphanumeric characters (A
through Z and 0 through 9) or national characters (@, #, $) and must start
with either an alphabetic or national character.

v You can specify this operand only if SMS manages your storage.
v Specify this operand only when you are allocating a new data set. SMS

ignores this parameter if it is specified for an existing data set.
v This operand is mutually exclusive with PATH and CONCAT.

DATASET
is the name of the data set to be allocated.

The UCL operand is DATASET(dsname).
v You can specify either DATASET or DA.
v The data set name must conform to standard naming conventions for data

sets. Each part of the name must contain from 1 to 8 characters, separated
from the other parts by a period (.), with no intervening blanks. The
maximum length of the entire name is 44 characters (including the periods).

v The data set name itself cannot contain parentheses.
v To define a dummy data set, omit the DATASET operand and specify an

initial DISP of NEW.
v DATASET is required if OLD, SHR, or MOD is specified.
v DATASET is mutually exclusive with CONCAT, PATH, and SYSOUT.
v You cannot use DATASET to specify the data set name of an SMPTLIB data

set. Instead, you can use the DSPREFIX operand in either the SMPTLIB
DDDEF entry or in the OPTIONS entry used to process those data sets.

v SMP/E does not check whether the specified data set name is unique within
the zone. For example, SMP/E does not check whether the data set name

DDDEF entry (distribution, target, and global zone)

196 SMP/E V3R6.0 for z/OS V2R1.0 Reference

was also defined in another DDDEF entry in the same zone, or whether the
data set name defines the CSI data set containing the zone. You must do this
checking yourself to avoid undesired results.

DIR
specifies the number of directory blocks to allocate.

The UCL operand is DIR(nnnn).
v The number specified can contain from 1 to 4 decimal digits.
v DIR is mutually exclusive with OLD, MOD, SHR, CONCAT, and PATH.

DSNTYPE
specifies the type of partitioned data set to be created.

The UCL operand is DSNTYPE(LIBRARY) or DSNTYPE(PDS).

LIBRARY
specifies that a PDSE (which must be an SMS-managed data set) is to be
created.

PDS
specifies that a PDS is to be created.

You can also specify DSNTYPE in either a data class or a member of
SYS1.PARMLIB.

Note:

1. This operand is mutually exclusive with PATH and CONCAT.
2. When SMP/E RECEIVE processing allocates a new SMPTLIB data set, it

uses the original DSNTYPE of the corresponding RELFILE data set. If
SMP/E cannot determine the original DSNTYPE of the corresponding
RELFILE data set, SMP/E uses the DSNTYPE value specified in the
SMPTLIB DDDEF entry.

DSPREFIX
specifies the data set prefix to be used to construct the full data set name for
SMPTLIB data sets. For more information about names for SMPTLIB data sets,
see SMP/E for z/OS Commands.

The UCL operand is DSPREFIX(prefix).
v The prefix can contain from 1 to 26 alphanumeric characters.
v The prefix must follow standard conventions for naming data sets.
v Instead of specifying DSPREFIX in the SMPTLIB DDDEF entry, you can

specify it in the OPTIONS entry that is in effect when you receive RELFILEs
into the SMPTLIB data sets.
If you do not specify a data set prefix in the SMPTLIB DDDEF entry or in
the appropriate OPTIONS entry, no prefix is included when SMP/E assigns
a name to the SMPTLIB data sets.

v DSPREFIX is mutually exclusive with CONCAT and PATH.

Note: This subentry exists only in the global zone.

MGMTCLAS
specifies the name of a management class to be used for allocating a new data
set managed by SMS.

The UCL operand is MGMTCLAS(name).
v The management class name is defined by the storage administrator at your

installation. This value can contain from 1 to 8 alphanumeric characters (A

DDDEF entry (distribution, target, and global zone)

Chapter 5. SMP/E data set entries 197

through Z and 0 through 9) or national characters (@, #, $) and must start
with either an alphabetic or national character.

v You can specify this operand only if SMS manages your storage.
v Specify this operand only when you are allocating a new data set. SMS

ignores this parameter if it is specified for an existing data set.
v This operand is mutually exclusive with PATH and CONCAT.

MOD, NEW, OLD, or SHR
specifies the initial disposition (DISP) of the data set.

The UCL operand is MOD, NEW, OLD, or SHR.
v These operands are mutually exclusive with each other and with CONCAT

and PATH.
OLD, SHR, and MOD are also mutually exclusive with SYSOUT, PROTECT,
BLOCK, CYLINDERS, TRACKS, DIR, and SPACE.

v You cannot specify an initial disposition for SMPTLIB data sets. SMP/E
automatically specifies an initial disposition, which is based on the
command being processed. For more information, see “SMPTLIB” on page
160.

PATH
identifies the name of the path to be allocated in a UNIX file system. The name
is not a complete pathname; it is a directory. This value is concatenated with
the appropriate element or load module name to create a complete pathname.

The UCL operand is PATH(pathname).
v PATH is mutually exclusive with all other DDDEF entry operands.
v The pathname can be from 1 to 255 characters.
v The pathname must begin and end with a slash (/).
v In addition to the required delimiters (/), a pathname must also be enclosed

in single apostrophes (') if any of the following is true:
– The pathname contains lowercase alphabetic characters.
– The pathname contains a character that is not uppercase alphabetic,

numeric, national ($, #, or @), slash (/), plus (+), hyphen, period, or
ampersand (&).

– The pathname spans more than one line in the UCL control statement.
The apostrophes must be outside the required delimiters, as in '/pathname/',
not /'pathname'/.
The single apostrophes used to enclose a pathname (the delimiters) do not
count as part of the 255-character limit.

v Any apostrophes specified as part of a pathname (not the delimiters) must
be doubled.
Double apostrophes count as two characters in the 255-character limit.

v The pathname can include characters X'40' through X'FE'.
v Because symbolic substitution is not detected by SMP/E, it is not supported

by SMP/E.

PROTECT
specifies that the z/OS SecureWay Security Server PROTECT option should be
used when a new data set is first allocated. If PROTECT is specified and z/OS
SecureWay Security Server is installed, the data set allocated by SMP/E will be
protected by z/OS SecureWay Security Server.

DDDEF entry (distribution, target, and global zone)

198 SMP/E V3R6.0 for z/OS V2R1.0 Reference

You can also use PROTECT to indicate that an existing data set is protected by
z/OS SecureWay Security Server. In this case, because SMP/E does not allocate
the data set, it does not check the PROTECT indicator. However, you can use it
to keep a record of which data sets have been protected with z/OS SecureWay
Security Server.

The UCL operand is PROTECT.
v PROTECT is mutually exclusive with CONCAT, PATH, OLD, MOD, and

SHR.

SPACE
specifies the primary and secondary space allocation for new data sets.

The UCL operand is SPACE(prime,second).
v Each value must contain from 1 to 4 decimal digits, and the two values must

be separated by a comma or a blank.
v SPACE is mutually exclusive with CONCAT, PATH, OLD, MOD, and SHR.

STORCLAS
specifies the name of a storage class used for allocating a new data set
managed by SMS.

The UCL operand is STORCLAS(name).
v The storage class name is defined by the storage administrator at your

installation. This value can contain from 1 to 8 alphanumeric characters (A
through Z and 0 through 9) or national characters (@, #, $) and must start
with either an alphabetic or national character.

v You can specify this operand only if SMS manages your storage.
v Specify this operand only when you are allocating a new data set. SMS

ignores this parameter if it is specified for an existing data set.
v This operand is mutually exclusive with PATH and CONCAT.

SYSOUT
specifies the output class for SYSOUT data sets.

The UCL operand is SYSOUT(value).
v If you specify a class, it must be 1 alphabetic or numeric character (A

through Z or 0 through 9).
v If you specify *, the output class depends on references to an OUTPUT JCL

statement.
– If there is an implicit or explicit reference to an OUTPUT JCL statement,

the output is written to the same class as the CLASS parameter on the
OUTPUT statement.

– If there is no reference to an OUTPUT JCL statement, the output is
written to the same class as the one specified as MSGCLASS on the JOB
card.

v SYSOUT is mutually exclusive with CATALOG, DELETE, KEEP, DIR,
DSNTYPE, UNIT, SPACE, VOLUME, BLOCK, CYLINDER, TRACK,
CONCAT, PATH, and DATASET.

v You cannot specify SYSOUT for SMPTLIB data sets.

UNIT
specifies the UNIT type the data set resides on if it is not cataloged.

The UCL operand is UNIT(type).

DDDEF entry (distribution, target, and global zone)

Chapter 5. SMP/E data set entries 199

v If the data set is not cataloged, you must specify UNIT (unless it is not
cataloged because of SMS). If you specify UNIT for a cataloged data set, it
overrides the value in the catalog.

v The UNIT value can contain from 1 to 8 characters and should conform to
standard UNIT naming conventions.
SMP/E accepts any nonblank characters specified between the open and
close parentheses, up to a maximum length of 8.

v UNIT is mutually exclusive with CONCAT and PATH.

VOLUME
specifies the volume serial number of the volume that the data set resides on if
not cataloged.

The UCL operand is VOLUME(volid...).
v If the data set is not cataloged, you must specify VOLUME (unless it is not

cataloged because of SMS). If you specify VOLUME for a cataloged data set,
it overrides the value in the catalog.

v The volume identifier can contain from 1 to 6 alphanumeric characters.
v For SMPTLIB data sets, you can specify up to five volume serial numbers.

All the volumes must have the same UNIT type. For other data sets, you can
specify only one volume serial number.

v VOLUME is mutually exclusive with CONCAT and PATH.

WAIT=YES or WAIT= NO
indicates whether SMP/E should wait for the data set to be allocated if the
volume is not mounted or if the data set is already in use. Not waiting causes
allocation to fail for the data set.

The UCL operand is WAITFORDSN.
v You can specify either WAITFORDSN or WAIT.
v WAIT is mutually exclusive with CONCAT and PATH.
v If you do not specify a value, the default is not to wait.
v WAIT is not related to the PROCESS parameter specified on the EXEC

statement. PROCESS affects how long a job should wait for a data set before
being run. For more information, see Chapter 10, “JCL statements required to
invoke SMP/E,” on page 437.

LIST Examples

To list all the DDDEF entries in a particular zone, you can use the following
commands:
SET BDY(TGT1) /* Set to requested target. */.
LIST DDDEF /* List all DDDEF entries. */.

To list specific DDDEF entries in a particular zone, you can use these commands:
SET BDY(TGT1) /* Set to requested target. */.
LIST DDDEF(SMPMTS /* List only these three */

MACLIB /* entries. */
SYSLIB) /* */.

The format of the LIST output for each DDDEF entry is the same for both of these
commands. The only difference is the number of DDDEF entries listed.

Figure 17 on page 201 and Figure 18 on page 202 are examples of LIST output for
DDDEF entries.

DDDEF entry (distribution, target, and global zone)

200 SMP/E V3R6.0 for z/OS V2R1.0 Reference

PAGE nnnn - NOW SET TO zzzzzz ZONE nnnnnnn DATE mm/dd/yy TIME hh:mm:ss SMP/E 36.nn SMPLIST OUTPUT

TGT1 DDDEF ENTRIES

NAME

AMACLIB DATASET = SYS1.AMACLIB
VOLUME = DLIB01
UNIT = 3380
SHR

BPXLIB1 PATH = ’/path_name1/’

CMACLIB DATASET = SYS1.MACLIB
SHR

MACLIB DATASET = SYS1.MACLIB
OLD

SMPMTS DATASET = SYS1.SMPMTS
OLD

SMPLOG DATASET = SYS1.SMPLOG
MOD

SYSLIB CONCAT = SMPMTS CMACLIB AMACLIB

SMPOUT SYSOUT = A

SMPWRK1 UNIT = SYSDA
SPACE = (25,25)
DIR = 25
ALLOC = TRK
NEW
DELETE

SMPWRK2 DATACLAS = FB80CLAS
MGMTCLAS = SMPEMCLS
STORCLAS = SMPESCLS

SMPTLIB VOLUME = DLIB01 DLIB02 DLIB03
UNIT = 3380

Figure 17. DDDEF entry: sample LIST output for a target zone

DDDEF entry (distribution, target, and global zone)

Chapter 5. SMP/E data set entries 201

UNLOAD Examples

To dump the DDDEF entries in UCL format, you can use the UNLOAD command.
To unload all the DDDEF entries in a particular zone, you can use the following
commands:
SET BDY(TGT1) /* Set to requested target. */.
UNLOAD DDDEF /* Unload all DDDEF entries. */.

To unload specific DDDEF entries in a particular zone, you can use these
commands:
SET BDY(TGT1) /* Set to requested target. */.
UNLOAD DDDEF(SMPMTS /* Unload only these three */

MACLIB /* entries. */
SYSLIB) /* */.

The format of the UNLOAD output for each DDDEF entry is the same for both of
these commands. The only difference is the number of DDDEF entries unloaded.

Note: You can use the UNLOAD command only for target and distribution zones,
not for the global zone.

Figure 19 on page 203 is an example of UNLOAD output for DDDEF entries.

PAGE nnnn - NOW SET TO zzzzzz ZONE nnnnnnn DATE mm/dd/yy TIME hh:mm:ss SMP/E 36.nn SMPLIST OUTPUT

GLOBAL DDDEF ENTRIES

NAME

SMPPTS DATASET = SYS1.SMPPTS
OLD

SMPLOG DATASET = SYS1.GLOBAL.SMPLOG
MOD

SMPOUT SYSOUT = A

SMPWRK1 UNIT = SYSDA
SPACE = (25,25)
DIR = 25
ALLOC = TRK
NEW
DELETE

SMPWRK2 DATACLAS = FB80CLAS
MGMTCLAS = SMPEMCLS
STORCLAS = SMPESCLS

SMPTLIB VOLUME = DLIB01 DLIB02 DLIB03
UNIT = 3380
DSPREFIX = C87MVSP
PROTECT

Figure 18. DDDEF entry: sample LIST output for a global zone

DDDEF entry (distribution, target, and global zone)

202 SMP/E V3R6.0 for z/OS V2R1.0 Reference

UCLIN Examples

You can use the ADD, REP, and DEL UCL statements to change subentries in a
DDDEF entry. When you use UCLIN to update a DDDEF entry, keep these points
in mind:
v If a DEL statement deletes all the existing subentries in the entry, SMP/E deletes

the entire entry.
v When SMP/E dynamically allocates a concatenation list, the order of the

concatenation is the same as that specified in the DDDEF entry. Therefore, you
cannot use ADD statements to update a DDDEF entry that already contains a
concatenation list. SMP/E would not know the correct position for the new data.
For example, suppose you have a DDDEF entry for the SYSLIB data set that
concatenates SMPMTS and MACLIB. You cannot use the following commands
to add XYZMACS at the end of the list:
SET BDY(DLIB1) /* Set to DLIB1 zone. */.
UCLIN /* */.
ADD DDDEF(SYSLIB) /* */

CONCAT(XYZMACS) /* */.
ENDUCL /* */.

UCLIN .
REP DDDEF (AMACLIB)

DATASET (SYS1.AMACLIB)
VOLUME (DLIB01)
UNIT (3380)
SHR

.
REP DDDEF (BPXLIB1)

PATH (’/path_name1/’)
.

REP DDDEF (CMACLIB)
DATASET (SYS1.MACLIB)
SHR

.
REP DDDEF (MACLIB)

DATASET (SYS1.MACLIB)
OLD

.
REP DDDEF (SMPDATA1)

DATASET (MVSTGT1.SMPDATA1))
MOD

.
REP DDDEF (SMPDATA2)

DATASET (MVSTGT1.SMPDATA2))
MOD

.
REP DDDEF (SMPMTS)

DATASET (SYS1.SMPMTS)
OLD

.
REP DDDEF (SMPLOG)

DATASET (SYS1.SMPLOG)
MOD

.
REP DDDEF (SYSLIB)

CONCAT (SMPMTS CMACLIB AMACLIB)
.
.

ENDUCL.

Figure 19. DDDEF entry: sample UNLOAD output

DDDEF entry (distribution, target, and global zone)

Chapter 5. SMP/E data set entries 203

Instead, you can use these commands to replace the entire concatenation list:
SET BDY(DLIB1) /* Set to DLIB1 zone. */.
UCLIN /* */.
REP DDDEF(SYSLIB) /* */

CONCAT(SMPMTS, /* Replace entire list. */
MACLIB, /* */
XYZMACS) /* */.

ENDUCL /* */.

The following examples are provided to help you use the DDDEF entry.

Example 1: Defining global zone DDDEFs for cataloged data
sets

For this example, assume you want to define a DDDEF entry for the SMPPTS and
SMPLOG. The data set names are SYS1.SMPPTS and SYS1.GLOBAL.SMPLOG, and
both data sets are cataloged on the system that you are running on. Here is an
example of how to define the DDDEF entries:
SET BDY(GLOBAL) /* Set to global zone. */.
UCLIN /* */.
ADD DDDEF(SMPPTS) /* DDDEF for PTS. */

DA(SYS1.SMPPTS) /* Data set is cataloged. */
OLD /* DISP=OLD. */

ADD DDDEF(SMPLOG) /* DDDEF for LOG. */
DA(SYS1.SMPLOG) /* Data set is cataloged. */
MOD /* DISP=MOD. */.

ENDUCL /* */.

Example 2: Defining DLIB zone DDDEFs for cataloged data
sets

Assume you want SMP/E to dynamically allocate distribution libraries AOS12 and
ASAMPLIB during ACCEPT. Assuming these libraries are cataloged on the system
you are running SMP/E on, you can use the following commands to define the
DDDEF entries:
SET BDY(DLIB1) /* Set to DLIB zone. */.
UCLIN /* */.
ADD DDDEF(AOS12) /* DLIB ddname. */

DA(SYS1.AOS12) /* Assume cataloged. */
OLD /* OLD for update. */.

ADD DDDEF(ASAMPLIB) /* DLIB ddname. */
DA(SYS1.ASAMPLIB) /* Assume cataloged. */
OLD /* OLD for update. */.

ENDUCL /* */.

Note: Both data sets have a disposition of OLD. This is because these data sets are
used for output when SMP/E calls the system utilities, and you want only one job
to update the data sets at a time.

Example 3: Defining target zone DDDEFs for cataloged data
sets

Assume you want SMP/E to dynamically allocate data sets MODGEN, MACLIB,
SMPMTS, and SMPLOG during APPLY. Assuming these data sets are cataloged on
the system that you are running SMP/E on, you can use the following commands
to define the DDDEF entries:
SET BDY(TGT1) /* Set to target zone. */.
UCLIN /* */.
ADD DDDEF(MODGEN) /* For concatenation. */

DA(SYS1.MODGEN) /* Data set is cataloged. */

DDDEF entry (distribution, target, and global zone)

204 SMP/E V3R6.0 for z/OS V2R1.0 Reference

SHR /* SHR for read. */.
ADD DDDEF(MACLIB) /* In case updated. */

DA(SYS1.MACLIB) /* Data set is cataloged. */
OLD /* OLD during update. */.

ADD DDDEF(SMPMTS) /* For update. */
DA(SYS1.SMPMTS) /* Data set is cataloged. */
OLD /* OLD for update. */.

ADD DDDEF(SMPLOG) /* For update. */
DA(SYS1.SMPLOG) /* Data set is cataloged. */
MOD /* MOD for log. */.

ENDUCL /* */.

Note: MACLIB and SMPMTS have a disposition of OLD. This is because these
data sets are used for output when SMP/E calls the system utilities, and you want
only one job to update the data sets at a time.

Example 4: Defining a DDDEF for a noncataloged data set
During APPLY processing, SMP/E may need to refer to some distribution library
data sets not cataloged on the system that SMP/E is running on. For example,
suppose AMODGEN is a distribution macro library not cataloged on the running
system, and you want to use AMODGEN in the SYSLIB concatenation for
assemblies. You can use the following commands to define the DDDEF entry:
SET BDY(TGT1) /* Set to target zone. */.
UCLIN /* */.
ADD DDDEF(AMODGEN) /* For concatenation. */

DA(SYS1.AMODGEN) /* Data set not cataloged. */
VOLUME(DLIB01) /* */
UNIT(3330-1) /* */
SHR /* SHR for read. */.

ENDUCL /* */.

Note: This data set has a disposition of SHR. This is because it is not updated
during APPLY, but rather is used just for input.

Example 5: Defining a concatenated DDDEF entry
After you have defined DDDEF entries for all the data sets to be included in the
SYSLIB concatenation, you can define the DDDEF entry that concatenates the data
sets. This entry must specify the concatenation ddname and the order of
concatenation. The ddname is the name of the DDDEF entry, and the order of
concatenation is the order in which the DDDEF names are specified on the
CONCAT operand.

You can use the following commands to define the DDDEF entry:
SET BDY(TGT1) /* Set to target zone. */.
UCLIN /* */.
ADD DDDEF(SYSLIB) /* ddname for concatenation. */

CONCAT(/* Concatenation order is */
SMPMTS /* SMPMTS first, */
MACLIB /* then MACLIB, */
MODGEN /* then MODGEN, */
AMODGEN /* then AMODGEN. */
) /* End of list. */.

ENDUCL /* */.

The SYSLIB concatenation is the same as if the following JCL were used:
//SYSLIB DD DSN=SYS1.SMPMTS,DISP=OLD
// DD DSN=SYS1.MACLIB,DISP=OLD
// DD DSN=SYS1.MODGEN,DISP=OLD
// DD DSN=SYS1.AMODGEN,DISP=SHR,
// UNIT=3330-1,VOL=SER=DLIB01

DDDEF entry (distribution, target, and global zone)

Chapter 5. SMP/E data set entries 205

Note: SYS1.MACLIB was allocated as DISP=OLD, even though it is not updated
during APPLY processing. This is to limit access by any other job while SMP/E is
running. If you wanted to use a disposition of SHR when MACLIB is part of the
concatenation, you can use the following commands to define an additional
DDDEF entry for MACLIB and change the SYSLIB DDDEF entry:
UCLIN /* */.
ADD DDDEF(CMACLIB) /* For read access. */

DA(SYS1.MACLIB) /* Data set is cataloged. */
SHR /* Change DISP to SHR. */.

ADD DDDEF(SYSLIB) /* ddname for concatenation. */
CONCAT(/* concatenation order is */

SMPMTS /* SMPMTS first, */
CMACLIB /* ***** NOTE CHANGE ***** */
MODGEN /* then MODGEN, */
AMODGEN /* then AMODGEN. */
) /* End of list. */.

ENDUCL /* */.

This corresponds to the following JCL:
//SYSLIB DD DSN=SYS1.SMPMTS,DISP=OLD
// DD DSN=SYS1.CMACLIB,DISP=SHR
// DD DSN=SYS1.MODGEN,DISP=OLD
// DD DSN=SYS1.AMODGEN,DISP=SHR,
// UNIT=3330-1,VOL=SER=DLIB01

SYS1.MACLIB is now allocated with DISP=SHR so other jobs can still access it.

Example 6: Defining DDDEFs for temporary data sets
Assume you want SMP/E to dynamically allocate the SMPOUT and SMPWRK1
data sets during ACCEPT. You can use the following commands to define the
DDDEF entries:
SET BDY(DLIB1) /* Set to DLIB zone. */.
UCLIN /* */.
ADD DDDEF(SMPOUT) /* SMPOUT ddname. */

SYSOUT(A) /* SYSOUT class. */.
ADD DDDEF(SMPWRK1) /* SMPWRK1 ddname. */

NEW /* New data set. */
DELETE /* Delete when finished. */
TRACKS /* Allocate in tracks. */
SPACE(25,25) /* prime and secondary space. */
DIR(25) /* 25 directory blocks. */
UNIT(SYSDA) /* Allocate on SYSDA. */.

ADD DDDEF(SMPWRK2) /* SMPWRK2 ddname. */
DATACLAS(FB80CLAS) /* Add DATACLAS name. */
MGMTCLAS(SMPEMCLS) /* Add MGMTCLAS name. */
STORCLAS(SMPESCLS) /* Add STORCLAS name. */

ENDUCL /* */.

Example 7: Defining a global zone DDDEF for SMPTLIB data
sets

Assume you want SMP/E to dynamically allocate the SMPTLIB data sets when it
receives SYSMODs packaged in relative files. In addition, you want these data sets
to be protected by z/OS SecureWay Security Server. You can use the following
commands to define the DDDEF entry:
SET BDY(GLOBAL) /* Set to global zone. */.
UCLIN /* */.
ADD DDDEF(SMPTLIB) /* SMPTLIB ddname. */

DATACLAS(FB80CLAS) /* Add DATACLAS name. */
DSPREFIX(C87MVSP) /* Data set prefix. */
MGMTCLAS(SMPEMCLS) /* Add MGMTCLAS name. */

DDDEF entry (distribution, target, and global zone)

206 SMP/E V3R6.0 for z/OS V2R1.0 Reference

STORCLAS(SMPESCLS) /* Add STORCLAS name. */
PROTECT /* Request SecureWay Security */

/* Server protection. */.
ENDUCL /* */.

Note: No initial or final disposition is specified. This is because when SMP/E
dynamically allocates SMPTLIB data sets, it automatically specifies the initial and
final disposition based on the command it is processing.

Example 8: Defining a DLIB zone DDDEF for SMPTLIB data
sets

Assume you want SMP/E to dynamically allocate the SMPTLIB data sets when it
accepts SYSMODs packaged in relative files. You can use the following commands
to define the DDDEF entry:
SET BDY(DLIB1) /* Set to DLIB zone. */.
UCLIN /* */.
ADD DDDEF(SMPTLIB) /* SMPTLIB ddname. */

VOLUME(DLIB01 /* Volumes used - DLIB01 */
DLIB02 /* DLIB02 */
DLIB03) /* DLIB03. */

UNIT(3380) /* Allocate on 3380. */.
ENDUCL /* */.

Note: No initial or final disposition is specified. This is because when SMP/E
dynamically allocates SMPTLIB data sets, it automatically specifies the initial and
final disposition based on the command it is processing.

Example 9: Protecting data sets
Assume you have previously defined your SMPMTS and SMPSTS data sets outside
of SMP/E and protected them with z/OS SecureWay Security Server. You now
want to have these dynamically allocated, and you also want to keep a record that
they are protected by z/OS SecureWay Security Server. You can use the following
commands to define the DDDEF entries:
SET BDY(TGT1) /* Set to target zone. */.
UCLIN /* */.
ADD DDDEF(SMPMTS) /* SMPMTS ddname. */

DA(SYS1.SMPMTS) /* Data set is cataloged. */
OLD /* OLD for update. */
PROTECT /* Protected by SecureWay Security Server.*/.

ADD DDDEF(SMPSTS) /* SMPSTS ddname. */
DA(SYS1.SMPSTS) /* Data set is cataloged. */
OLD /* OLD for update. */
PROTECT /* Protected by SecureWay Security Server.*/.

ENDUCL /* */.

Example 10: Defining pathnames in a UNIX file system
Assume a product you plan to add to your system contains load modules and
elements that will reside in a UNIX file system. You want to have the pathnames
dynamically allocated instead of having DD statements for them in a cataloged
procedure. You can use the following commands to define the DDDEF entry for
each pathname:
----+----1----+----2---- ... ----5----+----6----+----7--
SET BDY(TGT1) /* Set to target zone. */.
UCLIN /* */.
ADD DDDEF(BPXLIB1) /* Specify DDDEF name. */

PATH(’/path_name1/’) /* Define pathname. */
/* */.

ADD DDDEF(BPXLIB2) /* Specify DDDEF name. */

DDDEF entry (distribution, target, and global zone)

Chapter 5. SMP/E data set entries 207

PATH(’/path_name2/This/pathname/is/an/example/of/a/
very/long/pathname/It/shows/a/long/name/’)

/* define pathname. */
/* */.

ENDUCL /* */.

DLIB entry (distribution and target zone)
The DLIB entry describes a distribution library that was totally copied to a target
library. It is created during JCLIN processing when SMP/E encounters a COPY or
COPYMOD statement without any SELECT statements. The INDD value on the
COPY or COPYMOD statement becomes the name of the DLIB entry, and the
OUTDD value on the COPY or COPYMOD statement becomes the SYSLIB value in
the DLIB entry. For additional information, see the “Processing” section of the
JCLIN command chapter in SMP/E for z/OS Commands.

SMP/E uses the DLIB entry to determine where elements and load modules
should be applied, as follows:
v Element entries other than MOD. If there is no SYSLIB value either in the

element entry or on the element MCS, SMP/E looks for a DLIB entry whose
name matches the DISTLIB value for the element. SMP/E applies the element to
the library indicated by the SYSLIB value in the DLIB entry, and adds that
SYSLIB value to the element entry.

v MOD entries. For MOD entries, processing is slightly different, because MOD
entries do not contain a SYSLIB subentry.
– For a MOD entry that points to an LMOD entry, SMP/E checks whether the

DISTLIB value in the MOD entry matches the name of a DLIB entry. If there
is a match, and if the SYSLIB value in the DLIB entry is different from the
ones in the LMOD entry, the SYSLIB value in the DLIB entry is used in
addition to the LMOD's SYSLIB values.

– For a MOD entry that does not point to an LMOD entry, SMP/E checks
whether the DISTLIB value in the MOD entry matches the name of a DLIB
entry. If there is a match, SMP/E assumes a load module with the same name
as the MOD entry should exist in the library specified by the SYSLIB value in
the DLIB entry.
- If there is already an LMOD entry with the same name as the MOD entry,

and that LMOD entry does not already contain two SYSLIB values, SMP/E
adds the SYSLIB value from the DLIB entry to the LMOD entry.

- If there is no LMOD entry with the same name as the MOD entry, SMP/E
creates one and adds the SYSLIB value from the DLIB entry to the LMOD
entry.

Lastly, SMP/E updates the MOD entry by adding an LMOD subentry for the
LMOD entry that was updated or created.

Subentries

These are the subentries for the DLIB entry as they appear in the LIST output:

name
is the name of the distribution library represented by the DLIB entry.

The name can contain from 1 to 8 alphanumeric characters.

LASTUPD
identifies the cause of the last change to this DLIB entry.

DDDEF entry (distribution, target, and global zone)

208 SMP/E V3R6.0 for z/OS V2R1.0 Reference

The UCL operand is LASTUPD(value). This subentry can contain one of the
following values:

JCLIN
indicates that the change was made during JCLIN command processing.

UCLIN
indicates that the change was made as a result of UCLIN processing.

sysmod_id
indicates that the change was made during the installation of the indicated
SYSMOD.

The SYSMOD ID must contain 7 alphanumeric characters.

LASTUPD TYPE
indicates how the entry was last changed.

The UCL operand is LASTUPDTYPE(value). This subentry can contain one of
the following values:

ADD The entry has been added.

UPD The entry has been updated.

SYSTEM LIBRARIES
identifies the ddnames of the target libraries into which the distribution library
should be copied.

The UCL operand is SYSLIB(ddname...).
v A DLIB entry used for modules can contain one or two SYSLIB values.
v A DLIB entry used for macros, source, or data elements should contain only

one SYSLIB value.
v The ddnames can contain from 1 to 8 alphanumeric characters.

LIST Examples

To list all the DLIB entries in a particular zone, you can use the following
commands:
SET BDY(TGT1) /* Set to requested zone. */.
LIST DLIB /* List all DLIB entries. */.

To list specific DLIB entries, you can use these commands:
SET BDY(TGT1) /* Set to requested zone. */.
LIST DLIB(AMACLIB /* List only these two */

MACDLB01) /* entries. */.

The format of the LIST output for each DLIB entry is the same for both of these
commands. The only difference is the number of DLIB entries listed. Figure 20 on
page 210 is an example of LIST output for DLIB entries.

DLIB entry (distribution and target zone)

Chapter 5. SMP/E data set entries 209

UNLOAD Examples

To dump the DLIB entries in UCL format, you can use the UNLOAD command. To
unload all the DLIB entries in a particular zone, you can use the following
commands:
SET BDY(TGT1) /* Set to requested zone. */.
UNLOAD DLIB /* Unload all DLIB entries. */.

To unload specific DLIB entries, you can use these commands:
SET BDY(TGT1) /* Set to requested zone. */.
UNLOAD DLIB(AMACLIB /* Unload only these two */

MACDLB01) /* entries. */.

The format of the UNLOAD output for each DLIB entry is the same for both of
these commands. The only difference is the number of DLIB entries listed.
Figure 21 is an example of UNLOAD output for DLIB entries.

PAGE nnnn - NOW SET TO zzzzzz ZONE nnnnnnn DATE mm/dd/yy TIME hh:mm:ss SMP/E 36.nn SMPLIST OUTPUT

TGT1 DLIB ENTRIES

NAME

AMACLIB SYSTEM LIBRARY = MACLIB

MACDLB01 SYSTEM LIBRARY = MACLIB MACTGT01

MODDLB01 LASTUPD = JXY1102 TYPE=ADD
SYSTEM LIBRARY = LPALIB MODTGT01

MODDLB02 LASTUPD = JXY1121 TYPE=UPD
SYSTEM LIBRARY = LPALIB MODTGT02

Figure 20. DLIB entry: sample LIST output

UCLIN .
REP DLIB (AMACLIB)

SYSLIB (MACLIB)
.

REP DLIB (MACDLB01)
SYSLIB (MACLIB MACTGT01)

.
REP DLIB (MODDLB01)

LASTUPD (JXY1102)
LASTUPDTYPE (ADD)
SYSLIB (LPALIB MODTGT01)

.
REP DLIB (MODDLB02)

LASTUPD (JXY1121)
LASTUPDTYPE (UPD)
SYSLIB (LPALIB MODTGT02)

.
ENDUCL.

Figure 21. DLIB entry: sample UNLOAD output

DLIB entry (distribution and target zone)

210 SMP/E V3R6.0 for z/OS V2R1.0 Reference

UCLIN Examples

You can use the ADD, REP, and DEL UCL statements to change subentries in the
DLIB entry. When you use UCLIN to update a DLIB entry, keep these points in
mind:
v After the UCLIN changes are made, the DLIB entry must contain at least a

SYSLIB subentry. Otherwise, there is not enough information in the entry to
indicate where elements should be installed.

v If a DEL statement deletes all the existing subentries in the entry, SMP/E deletes
the entire entry.

Example: Changing the destination of a copied library
Assume you are doing a system generation and have completed the following
steps:
1. Performed stage 1 system generation
2. Allocated new target zone
3. Copied distribution zone to new target zone
4. Ran SMP/E JCLIN command

You now want to change the target library into which a module distribution
library has been totally copied. Assume that the DLIB was MODDLB01, that it was
previously copied to LINKLIB, and that it is now copied to LPALIB. You can do
this with the following UCL statements:
SET BDY(TGT1) /* Set to target zone. */.
UCLIN /* */.
REP DLIB(MODDLB01) /* Module DLIB. */

SYSLIB(LPALIB) /* Now copied to LPALIB. */
/* No longer in LINKLIB. */.

ENDUCL /* */.

If the modules should also be copied into LPALIB, the following UCL can be used:
SET BDY(TGT1) /* Set to target zone. */.
UCLIN /* */.
ADD DLIB(MODDLB01) /* Module DLIB. */

SYSLIB(LPALIB) /* Now copied to LPALIB. */
/* SYSLIB added, not replaced.*/.

ENDUCL /* */.

In both cases, you must take care of copying the modules from the distribution
library. SMP/E does not process elements when it records UCL changes.

Now that the UCL changes are made, when SMP/E installs SYSMODs that update
MODDLB01, SMP/E checks the DLIB entry for MODDLB01, determines that the
modules are copied to LPALIB, and creates or modifies the LMOD entries (with
the same name as the MOD entries) to indicate a copy to LPALIB.

Note: This technique works before you actually install any service. If you want to
change (not add) another library in the DLIB copy list, you must find all the MOD,
MAC, SRC, and LMOD entries with a SYSLIB value matching the old target
library, and then change that value using UCLIN. If you do not do this, SMP/E
continues to copy entries with the old SYSLIB value to the old library (and also, in
some cases, to the new library).

DLIB entry (distribution and target zone)

Chapter 5. SMP/E data set entries 211

DLIBZONE entry (distribution zone)
The DLIBZONE entry contains information SMP/E uses to process a specific
distribution zone and the associated distribution libraries. It is created by UCLIN
and must be defined before you can do any other processing for that distribution
zone.

Subentries

These are the subentries for the DLIBZONE entry as they appear in the LIST
output:

name
is the name of the distribution zone. You assign the name when the zone is
created.

The name can contain from one to seven alphanumeric characters (A through
Z, 0 through 9) or national characters ($, #, @). The first character must be
alphabetic.

ACCJCLIN
indicates that JCLIN is to be saved in the distribution zone whenever a
SYSMOD containing inline JCLIN is accepted.

The UCL operand is ACCJCLIN.
v ACCJCLIN should be specified only for zones in which all the products

have been installed with SMP/E Release 3, or later.
v To save inline JCLIN for a product at ACCEPT time, you must first accept

that product using SMP/E Release 3, or later, and have ACCJCLIN set in the
DLIBZONE entry. From then on, you must keep ACCJCLIN set in the
DLIBZONE entry. This ensures that any time you accept service for that
product, its JCLIN is updated in the distribution zone. For more information,
see the section on inline JCLIN in the ACCEPT command chapter in SMP/E
for z/OS Commands.

OPTIONS
is the name of the OPTIONS entry in the global zone that should be used
when processing this distribution zone. For more information, see “OPTIONS
entry (global zone)” on page 285.

The UCL operand is OPTIONS(name).
v The name can contain from one to eight alphanumeric characters.
v This name can be overridden by using the OPTIONS parameter on the SET

command. For more information about the SET command, see SMP/E for
z/OS Commands.

v If no OPTIONS entry name is specified, SMP/E uses a set of default utility
values when processing this distribution zone. For more information, see
“OPTIONS entry (global zone)” on page 285.

RELATED
is the name of the target zone to which this distribution zone is related. A
distribution zone is related to the target zone that was built from these
distribution libraries, such as during system generation.

The UCL operand is RELATED(zone).
v The zone name can contain from one to seven alphanumeric characters.

DLIBZONE entry (distribution zone)

212 SMP/E V3R6.0 for z/OS V2R1.0 Reference

v Although the entry can be defined without this subentry, you must define
the subentry before you can install any SYSMODs into the distribution
libraries.

SREL
lists the system releases to be supported within this distribution zone.

The UCL operand is SREL(srel...).
v The SREL must contain four alphanumeric characters, usually one alphabetic

character followed by three numeric characters. These are the SRELs defined
by IBM:

System
SREL

DB2 P115

CICS C150

IMS P115

MVS Z038

NCP P004
v Although the entry can be defined without this subentry, you must define

the subentry before you can install any SYSMODs in the distribution
libraries.

Note: Although you can support multiple products with different SREL values
from one distribution zone, those products are still subject to all other
restrictions related to combining products in one zone. The most common
reason for not being able to combine products is common element names. For
example, modules or macros with the same name are found in both products,
but reside in different libraries.

UPGLEVEL
indicates the highest SMP/E release level that is allowed to make incompatible
changes to the distribution zone. Before making an incompatible change to the
distribution zone, SMP/E will check the UPGLEVEL value for that zone. If the
release level of SMP/E is higher than the zone's UPGLEVEL value, SMP/E will
not make the incompatible change.

The UPGLEVEL value is in the form vr.pp, where vr represents the version and
release of SMP/E and pp represents the PTF level of SMP/E.

There is no UCL support for this subentry. When a zone is created by SMP/E
using the UCLIN command or the Administration dialog, SMP/E sets the
UPGLEVEL subentry value for that zone to the level of SMP/E used to create
the zone. The UPGRADE command is used to change the UPGLEVEL subentry
value for a zone.

ZDESC
is a user-written description for this zone.

The UCL operand is ZONEDESCRIPTION(text).
v The zone description can be in single-byte characters (such as English

alphanumeric characters) or in double-byte characters (such as Kanji).
v The zone description can contain up to 500 bytes of data, including blanks.

(For double-byte data, the 500-byte maximum includes all shift-in and
shift-out characters, as well as the double-byte characters.) Extra blanks are
deleted. All data beyond column 72 is ignored, including blanks.

DLIBZONE entry (distribution zone)

Chapter 5. SMP/E data set entries 213

v The zone description cannot be only blanks.
v If parentheses are included in the text, they must be in matched pairs.

LIST Examples

To list the DLIBZONE entry for a particular distribution zone, you can use the
following commands:
SET BDY(DLIB1) /* Set to requested DLIB. */.
LIST DLIBZONE /* List DLIBZONE entry. */.

Figure 22 is an example of LIST output for a DLIBZONE entry.

UCLIN Examples

You can use the ADD, REP, and DEL UCL statements to change subentries in the
DLIBZONE entry. When you use UCLIN to update a DLIBZONE entry, remember
that if a DEL statement deletes all the existing subentries in the entry, SMP/E
deletes the entire entry.

The following examples are provided to help you use the DLIBZONE entry.

Example 1: Defining a DLIBZONE entry
Assume you are about to add a new function to your system and want to define a
separate distribution zone for it named DLIB2. The OPTIONS entry you plan to
use is OPTDLIB2, and the SREL for the SYSMOD is Z038. The distribution zone is
in data set SMPE.SMPCSI.CSI. After installing the function in the distribution
libraries, you plan to do a system generation to build a set of target libraries. The
target zone for those libraries is TGT2. The following UCLIN can be used to define
the new zone.
SET BDY(GLOBAL) /* Set to global zone. */.
UCLIN /* UCLIN for GZONE entry */.
ADD GZONE /* to set up */

ZONEINDEX(/* index for new zone. */
(DLIB2,SMPE.SMPCSI.CSI,DLIB) /* */
) /* */

/* */.
ENDUCL /* End global zone update. */.

SET BDY(DLIB2) /* Now define new zone. */.
UCLIN /* UCLIN to define it. */.
ADD DLIBZONE(DLIB2) /* Identify name. */

OPTIONS(OPTDLIB2) /* OPTIONS entry to use. */
SREL(Z038) /* SREL for MVS. */

PAGE nnnn - NOW SET TO zzzzzz ZONE nnnnnnn DATE mm/dd/yy TIME hh:mm:ss SMP/E 36.nn SMPLIST OUTPUT

DLIB1 DZONE ENTRY

NAME

DLIB1 DZONE = DLIB1
ZDESC = ZONE DESCRIPTION FOR DLIB1 ZONE
RELATED = TGT2
SREL = Z038
OPTIONS = OPTDLIB2
ACCJCLIN

Figure 22. DLIBZONE entry: sample LIST output

DLIBZONE entry (distribution zone)

214 SMP/E V3R6.0 for z/OS V2R1.0 Reference

RELATED(TGT2) /* For this tgt library. */
ZDESC(

THIS DISTRIBUTION ZONE IS FOR
SREL Z038
) /* Zone description. */

/* */.
ENDUCL /* */.

Note: Even if the OPTIONS entry or TARGETZONE entry has not yet been
defined, you can still refer to it in the DLIBZONE entry. However, you must create
the entry before you process this distribution zone. For examples of defining
OPTIONS entries, see “OPTIONS entry (global zone)” on page 285. For examples
of defining TARGETZONE entries, see “TARGETZONE entry (target zone)” on
page 336.

Example 2: Formatting a zone description
Assume you enter the following zone description with the first line ending in
column 72 and the second line starting in column 1:
----+----1----+----2---- ... ----5----+----6----+----7--
SET BDY(DLIB1) /* Set to DLIB zone. */.
UCLIN /* UCLIN for DZONE entry */.
ADD DZONE(DLIB1) /* to set up. */

ZDESC(THIS IS THE DESCRIPTION FOR
THE DLIB1 ZONE)

/* End of zone description. */.
ENDUCL /* End DLIB zone update. */.

Because there is no blank between the word ending in column 72 and the next
word starting in column 1, SMP/E runs the two together.

The words in a zone description, even words that end in column 72, must be
separated by blanks. To format the zone description in this example correctly, you
can put a blank at the beginning of the second line:
----+----1----+----2---- ... ----5----+----6----+----7--
SET BDY(DLIB1) /* Set to DLIB zone. */.
UCLIN /* UCLIN for DZONE entry */.
ADD DZONE(DLIB1) /* to set up. */

ZDESC(THIS IS THE DESCRIPTION FOR
THE DLIB1 ZONE)

/* End of zone description. */.
ENDUCL /* End DLIB zone update. */.

Because there is a blank explicitly coded between the word ending in column 72
and the word starting in column 1, SMP/E does not run the words together.

FEATURE entry (global zone)
The FEATURE entry describes a collection of function SYSMODS called a feature.
An SMP/E feature may be associated with an orderable software feature.

Subentries

name
is the name of this feature.

DESCRIPTION
describes the software feature.

The UCL operand is DESCRIPTION(description).

DLIBZONE entry (distribution zone)

Chapter 5. SMP/E data set entries 215

FMID
specifies the FMIDs that make up this software feature. There can be multiple
FMID subentries associated with a single feature.

The UCL operand is FMID(fmid,...).

PRODUCT
identifies the product with which this feature is associated.

The UCL operand is PRODUCT(prodid,vv.rr.mm).

RECDATE
specifies the date on which the feature was received.

There is no UCL support for this subentry.

RECTIME
specifies the time at which the feature was received.

There is no UCL support for this subentry.

UCLDATE
specifies the date on which the feature was last processed using the UCLIN
command.

There is no UCL support for this subentry.

UCLTIME
specifies the time at which the feature was last processed using the UCLIN
command.

There is no UCL support for this subentry.

REWORK
identifies the level of this feature, which was received again for minor changes.

There is no UCL support for this subentry.

LIST Examples

To list all the FEATURE entries in a particular zone, you can use the following
commands:
SET BDY(GLOBAL) /* Set to global zone. */.
LIST FEATURE /* List all FEATURE entries.*/.

To list specific FEATURE entries, you can use these commands:
SET BDY(GLOBAL) /* Set to global zone. */.
LIST FEATURE(OS3250BA /* List only these two */

OS3250LD) /* entries. */.

The format of the LIST output for each FEATURE entry is the same for both of
these commands. The only difference is the number of FEATURE entries listed.
Figure 23 on page 217 shows an example of LIST output for FEATURE entries.
FEATURE entries are listed alphanumerically by name.

FEATURE entry (global zone)

216 SMP/E V3R6.0 for z/OS V2R1.0 Reference

By specifying the FORFMID operand, you can reduce the number of FEATURE
entries listed. When FORFMID is specified, SMP/E lists a FEATURE entry only if
its FMID matches one of the FMIDs specified on the FORFMID operand. For
example, to list FEATURE entries whose FMIDs either are defined in FMIDSET
ZOSSET or are HMP1E00, you can use these commands:
SET BDY(GLOBAL) /* Set to global zone. */.
LIST FEATURE /* List all FEATURE entries */

FORFMID(ZOSSET /* for the ZOSSET FMIDSET */
) /* and FMID . */.

UCLIN Examples

You can use the ADD, REP, and DEL UCL statements to change subentries in the
FEATURE entry. When you use UCLIN to update a FEATURE entry, keep in mind
that after the UCLIN changes are made, the FEATURE entry must contain at least
the DESCRIPTION and PRODUCT subentries.

Example: Adding a FEATURE entry
Assume you have a feature, named Sample Feature, for which you want to create a
description and put in an entry named SAMPFEAT. You could set up a FEATURE
entry as follows:
SET BDY(GLOBAL) /* Set to global zone */.
UCLIN /* Start UCLIN processing */.

ADD FEATURE(SAMPFEAT) /* Identify the feature: */
DESCRIPTION(Sample Feature) /* - Name */
PRODUCT(1234-ABC,02.05.00) /* - Owning product */
FMID(XYZ1234) /* - FMID */.

ENDUCL /* End UCLIN processing */.

PAGE nnnn - NOW SET TO zzzzzz ZONE nnnnnnn DATE mm/dd/yy TIME hh:mm:ss SMP/E 36.nn SMPLIST OUTPUT

GLOBAL FEATURE ENTRIES

NAME

OS3250BA DESCRIPTION = OS/390 Base
DATE/TIME REC = 07.267 12:55:39

UCL = 07.031 02:25:45
PRODUCT = 5647-A01 02.05.00
FMID = HBB6605 HMP1B00

OS3250DD DESCRIPTION = OpenEdition DCE User Privacy DES
DATE/TIME REC = 07.267 12:55:41

UCL = 07.031 02:25:45
PRODUCT = 5647-A01 02.05.00
FMID = JMB3125

OS3250LD DESCRIPTION = Language Environment Decryption
DATE/TIME REC = 07.267 12:55:42

UCL = 07.031 02:25:45
PRODUCT = 5647-A01 02.05.00
FMID = JMWL755

Figure 23. FEATURE entry: sample LIST output

FEATURE entry (global zone)

Chapter 5. SMP/E data set entries 217

FMIDSET entry (global zone)
The FMIDSET entry defines a group of FMIDs for use in limiting the SYSMODs
processed by an SMP/E command. For example, you can specify an FMIDSET on
the FORFMID operand of the APPLY command to process only SYSMODs
applicable to one of the FMIDs in the FMIDSET.

Subentries

These are the subentries for the FMIDSET entry as they appear in the LIST output:

name
is the name of the FMIDSET.

The name can contain from 1 to 8 alphanumeric characters.

FMID
lists the function SYSMODs (that is, FMIDs) that are to be part of this
FMIDSET.

The UCL operand is FMID(sysmod_id...).

The SYSMOD ID must contain 7 alphanumeric characters.

LIST Examples

To list all the FMIDSET entries in a global zone, you can use the following
commands:
SET BDY(GLOBAL) /* FMIDSET in global only. */.
LIST FMIDSET /* list all FMIDSET entries. */.

To list specific FMIDSET entries in a global zone, you can use these commands:
SET BDY(GLOBAL) /* FMIDSET in global only. */.
LIST FMIDSET(ALLSET /* List only these two */

XXSET) /* entries. */.

The format of the LIST output for each FMIDSET entry is the same for both of
these commands. The only difference is the number of FMIDSET entries listed.

Figure 24 is an example of LIST output for FMIDSET entries.

PAGE nnnn - NOW SET TO zzzzzz ZONE nnnnnnn DATE mm/dd/yy TIME hh:mm:ss SMP/E 36.nn SMPLIST OUTPUT

GLOBAL FMIDSET ENTRIES

NAME

ALLSET FMID = FXX1102 JXX1121 JXX1122 JXX1123
FYY1102 JYY1121 JYY1122 JYY1123
FZZ1102 JZZ1121 JZZ1122 JZZ1123

XXSET FMID = FXX1102 JXX1121 JXX1122 JXX1123

YYSET FMID = FYY1102 JYY1121 JYY1122 JYY1123

ZZSET FMID = FZZ1102 JZZ1121 JZZ1122 JZZ1123

Figure 24. FMIDSET entry: sample LIST output

FMIDSET entry (global zone)

218 SMP/E V3R6.0 for z/OS V2R1.0 Reference

UCLIN Examples

You can use the ADD, REP, and DEL UCL statements to change subentries in an
FMIDSET entry. When you use UCLIN to update an FMIDSET entry, keep these
points in mind:
v After the UCLIN changes are made, the FMIDSET entry must contain at least an

FMID subentry. Otherwise there is not enough information in the entry for
SMP/E to use the entry.

v If a DEL statement deletes all the existing subentries in the entry, SMP/E deletes
the entire entry.

The following examples are provided to help you use the FMIDSET entry.

Example 1: Defining an FMIDSET entry
Assume you have four function SYSMODs installed, JXX1102, JXX1121, JXX1122,
and JXX1123, and that when installing service you would like to be able to install
just the PTFs for these products. You could set up an FMIDSET entry as follows:
SET BDY(GLOBAL) /* FMIDSETs only in global. */.
UCLIN /* */.
ADD FMIDSET(XXSET) /* Define FMIDSET name. */

FMID(FXX1102 /* Define function SYSMODs */
JXX1121 /* to be part of set. */
JXX1122 /* */
JXX1123) /* */

/* */.
ENDUCL /* */.

You can use the FORFMID operand on the APPLY as follows:
SET BDY(TGT1) /* Set for APPLY to TGT1. */.
APPLY FORFMID(XXSET) /* Apply XX PTFs. */.

Example 2: Modifying an FMIDSET entry
Once an FMIDSET has been defined, it can be modified as new function SYSMODs
are installed or as existing function SYSMODs are replaced. For example, starting
with the FMIDSET from the previous example, assume you install a new feature,
JXX1124, that deletes JXX1121, and that you want to modify the FMIDSET
definition. You can do this as follows:
SET BDY(GLOBAL) /* FMIDSETs only in global. */.
UCLIN /* */.
REP FMIDSET(XXSET) /* Define FMIDSET name. */

FMID(FXX1102 /* Define function SYSMODs. */
/* JXX1121 left out. */

JXX1122 /* */
JXX1123 /* */
JXX1124) /* JXX1124 added. */

/* */.
ENDUCL /* */.

You can also do the following:
SET BDY(GLOBAL) /* FMIDSETs only in global. */.
UCLIN /* */.
DEL FMIDSET(XXSET) /* Define FMIDSET name. */

FMID(JXX1121) /* Delete JXX1121 from set. */
/* */.

ADD FMIDSET(XXSET) /* Define FMIDSET name. */
FMID(JXX1124) /* Add new FMID. */

/* */.
ENDUCL /* */.

FMIDSET entry (global zone)

Chapter 5. SMP/E data set entries 219

The result in both cases is the same. The choice of which method to use most
likely depends on the number of FMIDs defined in the FMIDSET.

GLOBALZONE entry (global zone)
The GLOBALZONE entry contains processing-related information for SMP/E. It is
also used by SMP/E as an index to target and distribution zones, either in the
same CSI or a different CSI data set. The GLOBALZONE entry is created by
UCLIN and must be defined before you can do any other processing for that
global zone.

Subentries

These are the subentries for the GLOBALZONE entry as they appear in the LIST
output:

FMID
lists the function SYSMODs for which SMP/E is to receive service.

The UCL operand is FMID(sysmod_id...).

The SYSMOD ID must contain seven alphanumeric characters.

OPTIONS
is the name of the OPTIONS entry in the global zone that should be used in
processing this global zone. For more information, see “OPTIONS entry (global
zone)” on page 285.

The UCL operand is OPTIONS(name).
v The name can contain from one to eight alphanumeric characters.
v This name can be overridden by using the OPTIONS parameter on the SET

command. For more information about the SET command, see SMP/E for
z/OS Commands.

v If no OPTIONS entry name is specified, SMP/E uses a set of default utility
values when processing the global zone. For more information, see
“OPTIONS entry (global zone)” on page 285.

SREL
lists the system releases to be supported in this global zone.

The UCL operand is SREL(srel...).

The SREL must contain four alphanumeric characters, usually one alphabetic
character followed by three numerics. These are the SRELs defined by IBM:

System
SREL

DB2 P115

CICS C150

IMS P115

MVS Z038

NCP P004

Note: Although you can support multiple products with different SREL values
from one global zone, those products are still subject to all other restrictions
related to combining products in one zone. The most common reason for not

FMIDSET entry (global zone)

220 SMP/E V3R6.0 for z/OS V2R1.0 Reference

being able to combine products is common element names. For example,
modules or macros with the same name are found in both products, but reside
in different libraries.

UPGLEVEL
indicates the highest SMP/E release level that is allowed to make incompatible
changes to the global zone. Before making an incompatible change to the
global zone, SMP/E will check the UPGLEVEL value for that zone. If the
release level of SMP/E is higher than the zone's UPGLEVEL value, SMP/E will
not make the incompatible change.

The UPGLEVEL value is in the form vr.pp, where vr represents the version and
release of SMP/E and pp represents the PTF level of SMP/E.

There is no UCL support for this subentry. When a zone is created by SMP/E
using the UCLIN command or the Administration dialog, SMP/E sets the
UPGLEVEL subentry value for that zone to the level of SMP/E used to create
the zone. The UPGRADE command is used to change the UPGLEVEL subentry
value for a zone.

ZDESC
is a user-written description for this zone.

The UCL operand is ZONEDESCRIPTION(text).
v The zone description can be in single-byte characters (such as English

alphanumeric characters) or in double-byte characters (such as Kanji).
v The zone description can contain up to 500 bytes of data, including blanks.

(For double-byte data, the 500-byte maximum includes all shift-in and
shift-out characters, as well as the double-byte characters.) Extra blanks are
deleted. All data beyond column 72 is ignored, including blanks.

v The zone description cannot be only blanks.
v If parentheses are included in the text, they must be in matched pairs.

ZONEINDEX
identifies all the target zones and distribution zones associated with this global
zone. This list is used by SMP/E to determine the data set in which the zone
resides and the type of zone.

For ADD and REP statements, the UCL operand is
ZONEINDEX((name,dsn,type)...).

Note: You cannot use REP to replace a single zone in the ZONEINDEX list.
REP will cause the entire list of zones to be replaced. Instead, you must first
delete the zone from the ZONEINDEX list, and then add the zone to the list
with the new SMPCSI data set name.

For DEL statements, the UCL operand is ZONEINDEX((name)...).
v ZONEINDEX can also be specified as ZINDEX.
v name is the name of the zone. The name can contain from one to seven

alphanumeric characters (A through Z, 0 through 9) or national characters ($,
#, @). The first character must be alphabetic.

v dsn is the fully qualified name of the data set in which the zone resides.
v type is the zone type, either TARGET or DLIB.

The ZONEINDEX is only a pointer to a zone. Changes you make to a
ZONEINDEX do not affect the associated zone. Therefore, you cannot add,
rename, or delete a zone by simply adding, replacing, or deleting its
ZONEINDEX. However, these are some other commands you can use:

GLOBALZONE entry (global zone)

Chapter 5. SMP/E data set entries 221

v Adding a zone: To add a zone, you can use the following commands,
depending on the particular situation:
– UCLIN to add a ZONEINDEX, then UCLIN to define the DZONE or

TZONE entry
– ZONECOPY
– ZONERENAME
– ZONEEXPORT, UCLIN for the ZONEINDEX, and ZONEIMPORT

v Renaming a zone: To rename a zone, you must use the following command:
– ZONERENAME

v Deleting a zone: To delete a zone, you can use the following commands,
depending on the particular situation:
– ZONEDELETE
– ZONEEXPORT

For more information about any of these commands, see the chapter on that
command.

LIST Examples

To list all the GLOBALZONE entry, you can use the following commands:
SET BDY(GLOBAL) /* Set to global zone. */.
LIST GLOBALZONE /* List GLOBALZONE entry. */.

Figure 25 is an example of LIST output for a GLOBALZONE entry.

UCLIN Examples

You can use the ADD, REP, and DEL UCL statements to change subentries in the
GLOBALZONE entry. When you use UCLIN to update a GLOBALZONE entry,
keep these points in mind:
v After the UCLIN changes are made, the GLOBALZONE entry must contain at

least one of these subentries: FMID, OPTIONS, SREL, or ZONEINDEX.
Otherwise, there is not enough information in the entry for SMP/E to use the
entry.

v If a DEL statement deletes all the existing subentries in the entry, SMP/E deletes
the entire entry.

The following examples are provided to help you use the GLOBALZONE entry.

PAGE nnnn - NOW SET TO zzzzzz ZONE nnnnnnn DATE mm/dd/yy TIME hh:mm:ss SMP/E 36.nn SMPLIST OUTPUT

GLOBAL GZONE ENTRY

NAME

GLOBAL ZONEINDEX = TGT1 TARGET SYS1.TGT.SMPCSI.CSI
TGT2 TARGET SYS1.TGT.SMPCSI.CSI
DLIB1 DLIB SYS1.DLIB.SMPCSI.CSI
DLIB2 DLIB SYS1.DLIB.SMPCSI.CSI

ZDESC = ZONE DESCRIPTION FOR GLOBAL ZONE
SREL = Z038 I115 P115 R020
FMID = JXY1102 FXY1121 FXY1122 FXY1123
OPTIONS = OPTGBL

Figure 25. GLOBALZONE entry: sample LIST output

GLOBALZONE entry (global zone)

222 SMP/E V3R6.0 for z/OS V2R1.0 Reference

Example 1: Defining the GLOBALZONE entry
To perform any SMP/E processing, you must first define the GLOBALZONE entry.
Given the following assumptions:
v You are supporting functions JXY1102, JXY1121, JXY1122, and JXY1123 from this

global zone.
v You are supporting system releases Z038, P115, and R020, and I121.
v You are eventually going to define two target zones, TGT1 and TGT2, to exist on

SYS1.TGT.SMPCSI.CSI, and two distribution zones, DLIB1 and DLIB2, to exist
on SYS1.DLIB.SMPCSI.CSI.

v The OPTIONS entry used is OPTGBL.

The following UCLIN can be used to define the GLOBALZONE entry:
SET BDY(GLOBAL) /* Set to global zone. */.
UCLIN /* */.
ADD GLOBALZONE /* Define global now. */

SREL(Z038,P115, /* Identify SRELs. */
R020,I115) /* */

FMID(JXY1102, /* Identify functions. */
JXY1121, /* */
JXY1122, /* */
JXY1123) /* */

OPTIONS(OPTGBL) /* OPTIONS entry to be used.*/
ZONEINDEX(/* */

(TGT1,SYS1.TGT.SMPCSI.CSI,TARGET) /* */
(TGT2,SYS1.TGT.SMPCSI.CSI,TARGET) /* */
(DLIB1,SYS1.DLIB.SMPCSI.CSI,DLIB) /* */
(DLIB2,SYS1.DLIB.SMPCSI.CSI,DLIB) /* */
) /* */

/* */.
ENDUCL /* */.

Note: Even though the OPTIONS entry has not been set up yet, you can still refer
to it in the GLOBALZONE entry. The same is true for the target zone name.
However, the OPTIONS entry must be created before the global zone is processed.
For examples of setting up the OPTIONS entries, see “OPTIONS entry (global
zone)” on page 285.

Example 2: Deleting two ZONEINDEX entries
Assume you decide not to create the TGT1 target zone and the DLIB1 distribution
zone defined in the ZONEINDEX of example 1. You should delete the entries for
those two zones by using UCL as follows:
SET BDY(GLOBAL) /* Set to global zone. */.
UCLIN /* */.
DEL GLOBALZONE /* Define global now. */

ZONEINDEX(/* */
(TGT1) /* Delete TGT1 entry. */
(DLIB1) /* Delete DLIB1 entry. */
) /* */

/* */.
ENDUCL /* */.

Note: The CSI data set name and the zone type operands are not required for a
delete, although the open and close parentheses around the zones are still required.

Example 3: Formatting a zone description
Assume you enter the following zone description with the first line ending in
column 72 and the second line starting in column 1:

GLOBALZONE entry (global zone)

Chapter 5. SMP/E data set entries 223

----+----1----+----2---- ... ----5----+----6----+----7--
SET BDY(GLOBAL) /* Set to global zone. */.
UCLIN /* UCLIN for GZONE entry */.
ADD GZONE /* to set up. */

ZDESC(THIS IS THE DESCRIPTION FOR
THE GLOBAL ZONE)

/* End of zone description. */.
ENDUCL /* End global zone update. */.

Because there is no blank between the word ending in column 72 and the next
word starting in column 1, SMP/E runs the two together.

The words in a zone description, even words that end in column 72, must be
separated by blanks. To format the zone description in this example correctly, you
can put a blank at the beginning of the second line:
----+----1----+----2---- ... ----5----+----6----+----7--
SET BDY(GLOBAL) /* Set to global zone. */.
UCLIN /* UCLIN for GZONE entry */.
ADD GZONE /* to set up. */

ZDESC(THIS IS THE DESCRIPTION FOR
THE GLOBAL ZONE)

/* End of zone description. */.
ENDUCL /* End global zone update. */.

Because there is a blank explicitly coded between the word ending in column 72
and the word starting in column 2, SMP/E does not run the words together.

Example 4: Renaming an SMPCSI data set and updating a
ZONEINDEX

Assume you have a target zone named TGT1 that resides in a data set named
SMPE.TEST.TGT1.CSI, and you decide to rename the data set to
SYS1.PROD.TGT1.CSI. After renaming the data set, you must use UCLIN to update
the ZONEINDEX for the target zone in the global zone, as follows:
SET BDY(GLOBAL) /* Set to global zone. */.
UCLIN /* UCLIN for GZONE entry. */.

DEL GZONE
ZINDEX((TGT1)) /* Delete old TGT1 zone. */.
ADD GZONE
ZINDEX((TGT1, SYS1.PROD.TGT1.CSI, TARGET))

/* Supply new TGT1 zone. */.
ENDUCL /* End global zone update. */.

You cannot use REP to replace a single zone in the ZONEINDEX list. REP will
cause the entire list of zones to be replaced. Instead, you must first delete the zone
from the ZONEINDEX list, and then add the zone to the list with the new SMPCSI
data set name.

Hierarchical file system element entry (distribution and target zone)
The hierarchical file system element entry describes an element that exists in a
distribution library or a UNIX file system. A hierarchical file system entry is
created the first time you install a SYSMOD containing an MCS for a hierarchical
file system element that does not yet have an entry in the CSI data set.

SMP/E records the function and service level of the hierarchical file system
element in the entry. Once a hierarchical file system element entry exists, it is
updated as subsequent SYSMODs affecting the hierarchical file system element are
installed.

GLOBALZONE entry (global zone)

224 SMP/E V3R6.0 for z/OS V2R1.0 Reference

Table 4 on page 26 shows the types of entries used for hierarchical file system
elements. Some types of elements may be translated into several languages. In
these cases, the entry type contains xxx, which represents the language used for the
element. (If an element was not translated, the entry type does not contain any xxx
value. Table 5 on page 26 shows the xxx values and the languages they represent.

Subentries

These are the subentries for the hierarchical file system element entries as they
appear in the LIST output:

name
is the name of the hierarchical file system element represented by the entry.

The name can contain 1–8 uppercase alphabetic, numeric, or national ($, #, @)
characters.

BINARY or TEXT
indicates the installation mode to be used when the HFS copy utility is
invoked to install the element into a UNIX file system.

The UCL operand is BINARY or TEXT.
v Binary mode means that the element is installed in its entirety as a data

stream, with no breaks for logical records.
v Text mode means that the element is installed with breakpoints for logical

records.
v BINARY and TEXT are mutually exclusive.
v If there is no mode indicator in the hierarchical file system element entry, the

HFS copy utility determines how to install the element.

DISTLIB
specifies the ddname of the distribution library for the hierarchical file system
element.

The UCL operand is DISTLIB(ddname).
v The ddname can contain any uppercase alphabetic, numeric, or national ($,

#, @) character, and can be 1–8 characters long.
v The DISTLIB subentry is required. Without it, SMP/E cannot process any

changes for the hierarchical file system element.

FMID
identifies the functional owner of this hierarchical file system element. The
functional owner is the last function SYSMOD that replaced this element.

The UCL operand is FMID(sysmod_id).

The SYSMOD ID must contain 7 uppercase alphabetic, numeric, or national ($,
#, @) characters.

LASTUPD
identifies the cause of the last change to this hierarchical file system element
entry.

The UCL operand is LASTUPD(value). This subentry can contain one of the
following values:

UCLIN
indicates that the change was made as a result of UCLIN processing.

Hierarchical file system element entry (distribution and target zone)

Chapter 5. SMP/E data set entries 225

sysmod-id
indicates that the change was made during the installation of the indicated
SYSMOD.

The SYSMOD ID must contain 7 uppercase alphabetic, numeric, or national
($, #, @) characters.

LASTUPD TYPE
indicates how the entry was last changed.

The UCL operand is LASTUPDTYPE(value). This subentry can contain one of
the following values:

ADD The entry was added.

UPD The entry was updated.

LINK
specifies a list of alternative names by which this hierarchical file system
element can be known in a UNIX file system. The full name is produced by
concatenating the specified linkname with the UNIX file system directory
identified by the SYSLIB subentry.

In LIST output, linknames are always enclosed in single apostrophes. If an
apostrophe is part of a linkname, it is always shown as two consecutive
apostrophes in LIST output.

The UCL operand is LINK(linkname...).
v The linkname can be from 1 to 1023 characters.
v A linkname can be enclosed in single apostrophes ('). A linkname must be

enclosed in single apostrophes if any of the following is true:
– The linkname contains lowercase alphabetic characters.
– The linkname contains a character that is not uppercase alphabetic,

numeric, national ($, #, or @), slash (/), plus (+), hyphen, period, or
ampersand (&).

– The linkname spans more than one line in the control statement.
The single apostrophes used to enclose a linkname (the delimiters) do not
count as part of the 1023-character limit.

v Any apostrophes specified as part of a linkname (not the delimiters) must be
doubled.
Double apostrophes count as two characters in the 1023-character limit.

v The linkname can include characters X'40' through X'FE'.

PARM
specifies a character string that is to be passed to the HFS copy utility as an
execution-time parameter. The maximum length of this character string is 300
bytes of nonblank data. If any blanks are specified in the PARM value, they are
deleted by SMP/E during processing and do not count toward the 300-byte
maximum.

The UCL operand is PARM(character_string).
v PARM is an optional operand.
v The character string can be entered free-form, without regard to blanks

(which are compressed out of the string), and can span multiple 80-byte
records.

v If parentheses are specified in the PARM value, there must always be a pair
(left and right); otherwise, the results are unpredictable.

Hierarchical file system element entry (distribution and target zone)

226 SMP/E V3R6.0 for z/OS V2R1.0 Reference

RMID
identifies the last SYSMOD that replaced this hierarchical file system element.
Any subsequent SYSMOD that modifies this hierarchical file system element
must have defined a relationship (such as PRE or SUP) with this SYSMOD.

The UCL operand is RMID(sysmod_id).
v The SYSMOD ID must contain 7 uppercase alphabetic, numeric, or national

($, #, @) characters.
v If RMID is not specified but FMID is, SMP/E sets the RMID value to the

specified FMID.

SHSCRIPT
specifies a UNIX shell script to run when this element is copied to (or deleted
from) a directory in a UNIX file system.

The UCL operand is SHSCRIPT(scriptname). This subentry optionally contains
one or both of the following values, which specify the point in SMP/E
processing when the shell script is run:

PRE The shell script is run before the element is copied to the UNIX file
system directory.

POST The shell script is run after the element is copied to the UNIX file
system directory.

POST is the default; the shell script is run after the element is copied to the
directory.

SYMLINK
specifies a list of one or more symbolic links, which are file names that can be
used as alternate names for referring to this element in a UNIX file system.
Each symbolic link name listed here is associated with a path name listed in
the SYMPATH entry. See the description of the SYMPATH entry for more
information about how the symbolic link names and path names are
associated.

The UCL operand is SYMLINK(symlinkname...).
v A hierarchical file system element entry that contains a SYMLINK entry

must contain a matching SYMPATH entry. SMP/E will reject any UCLIN
command that would violate this condition.

v A symbolic linkname can be from one to 1023 characters. Any characters in
the range X'40' through X'FE' may be specified.

v A symbolic linkname can be enclosed in single apostrophes ('). A symbolic
linkname must be enclosed in single apostrophes if any of the following is
true:
– The symbolic linkname contains lowercase alphabetic characters.
– The symbolic linkname contains a character that is not uppercase

alphabetic, numeric, national ($, #, or @), slash (/), plus (+), hyphen,
period, or ampersand (&).

– The symbolic linkname spans more than one line in the control statement.
The single apostrophes used to enclose a symbolic linkname (the delimiters)
do not count as part of the 1023-character limit.

v Any apostrophes specified as part of a symbolic linkname (not the
delimiters) must be doubled. Double apostrophes count as two characters in
the 1023-character limit.

SYMPATH
specifies a list of one or more pathnames that are associated with symbolic

Hierarchical file system element entry (distribution and target zone)

Chapter 5. SMP/E data set entries 227

links identified by the SYMLINK operand. The first pathname in the
SYMPATH operand is associated with the first symbolic link in the SYMLINK
operand, the second pathname with the second symbolic link, and so on. If
there are more symbolic links listed than there are pathnames, then the last
listed pathname is used for the remaining symbolic links. If more pathnames
are specified than symbolic linknames, then the excess pathnames (at the end
of the list) are ignored. The UCL operand is SYMPATH(sympathname...).
v A hierarchical file system element entry that contains a SYMPATH entry

must contain a matching SYMLINK entry. is specified, otherwise it must be
omitted.

v A symbolic pathname can be from one to 1023 characters. Any characters in
the range X'40' through X'FE' may be specified.

v A symbolic pathname can be enclosed in single apostrophes ('). A symbolic
pathname must be enclosed in single apostrophes if any of the following is
true:
– The symbolic pathname contains lowercase alphabetic characters.
– The symbolic pathname contains a character that is not uppercase

alphabetic, numeric, national ($, #, or @), slash (/), plus (+), hyphen,
period, or ampersand (&).

– The symbolic pathname spans more than one line in the control
statement.

The single apostrophes used to enclose a symbolic pathname (the delimiters)
do not count as part of the 1023-character limit.

v Any apostrophes specified as part of a symbolic pathname (not the
delimiters) must be doubled. Double apostrophes count as two characters in
the 1023-character limit.

SYSLIB
specifies the ddname of the “target library” within a UNIX file system for the
hierarchical file system element.

The UCL operand is SYSLIB(ddname).
v Only one SYSLIB value can be specified.
v The ddname can contain any uppercase alphabetic, numeric, or national ($,

#, @) character, and can be 1 to 8 characters long.
v The SYSLIB subentry is required. Without it, SMP/E cannot process any

changes for the hierarchical file system element.

LIST Examples

To list all the generic hierarchical file system element entries in a particular zone
that support the Spanish language, you can use the following commands:
SET BDY(TGT1) /* Set to requested zone. */.
LIST HFSESP /* List all generic HFS */

/* element entries (Spanish)*/.

To list specific UNIX1 element entries, you can use these commands:
SET BDY(TGT1) /* Set to requested zone. */.
LIST UNIX1(UNXEL1 /* List only these */

UNXEL2 /* three */
UNXEL3) /* entries. */.

The format of the LIST output for each hierarchical file system element entry is the
same for both of these commands. The only difference is the number of
hierarchical file system element entries listed. Figure 26 on page 229 shows an

Hierarchical file system element entry (distribution and target zone)

228 SMP/E V3R6.0 for z/OS V2R1.0 Reference

example of LIST output for UNIX1 element entries.

By specifying the FORFMID operand, you can reduce the number of hierarchical
file system element entries listed. When FORFMID is specified, SMP/E lists a
hierarchical file system element entry only if its FMID matches one of the FMIDs
specified on the FORFMID operand. For example, to list hierarchical file system
element entries whose FMIDs either are defined in FMIDSET HFS or are
HFSFUNC, you can use these commands:
SET BDY(TGT1) /* Set to target zone. */.
LIST HFS /* List all hierarchical */

/* file system element */
/* entries */

FORFMID(HFS /* for the HFS FMIDSET */
HFSFUNC) /* and FMID HFSFUNC. */.

You can use the LIST command to find out the names of all SYSMODs that have
modified a hierarchical file system element. To include the names of these
SYSMODs in the LIST output you can use the XREF operand, as shown in these
commands:
SET BDY(TGT1) /* Set to requested zone. */.
LIST HFS /* List all hierarchical */

/* file system element */
/* entries */

XREF /* and related SYSMODs. */.

Note:

1. XREF can be used either in mass mode or in select mode.
2. SMP/E obtains the data included for the XREF operand by checking all the

SYSMOD entries for subentries for this hierarchical file system element.

PAGE nnnn - NOW SET TO zzzzzz ZONE nnnnnnn DATE mm/dd/yy TIME hh:mm:ss SMP/E 36.nn SMPLIST OUTPUT

TGT1 UNIX1 ENTRIES

NAME

UNXEL1 LASTUPD = UNXFUNC TYPE=ADD
LIBRARIES = DISTLIB=APOSIXL1 SYSLIB=UNXTGTL1
BINARY
FMID = UNXFUNC
RMID = UNXPTF1
SHSCRIPT = INSTAL01,PRE
LINK = ’linkname_1’

= ’linkname_2’

UNXEL2 LASTUPD = UNXFUNC TYPE=ADD
LIBRARIES = DISTLIB=APOSIXL2 SYSLIB=UNXTGTL2
TEXT
FMID = UNXFUNC
RMID = UNXFUNC
LINK = ’linkname_3’

= ’linkname_4’
SHSCRIPT = INSTAL02,POST

UNXEL3 LASTUPD = UNXFUNC TYPE=ADD
LIBRARIES = DISTLIB=APOSIXL2 SYSLIB=UNXTGTL2
TEXT
FMID = UNXFUNC
RMID = UNXPTF2
LINK = ’linkname_5’

’linkname_6’
SHSCRIPT = INSTAL03,PRE,POST
PARM = This_is_another_sample_character_string_specified_as_the_value_of_PARM.__It_is_a_maximum____

length_character_string_for_this_subentry.__I.e.,_it_is_300_characters_long.__The_string____
has_no_blanks_in_it.__If_you_see_something_that_looks_like_a_blank,_it’s_not. The_previous_
2_characters_are_X’41’...

Figure 26. Hierarchical file system element entry: sample LIST output

Hierarchical file system element entry (distribution and target zone)

Chapter 5. SMP/E data set entries 229

Because this data is not contained in the hierarchical file system element entry
itself, you cannot use UCLIN to change it in the hierarchical file system
element entry.

Figure 27 is an example of the LIST output produced when the XREF operand is
used.

To list the UNIX shell script (SHELLSCR) element entries for a particular zone, you
can use the following commands:
SET BDY(TGT1) /* Set to requested zone. */.
LIST SHELLSCR /* List all UNIX shell */

/* script element entries */.

Figure 28 on page 231 shows an example of the LIST output for SHELLSCR
element entries.

PAGE nnnn - NOW SET TO zzzzzz ZONE nnnnnnn DATE mm/dd/yy TIME hh:mm:ss SMP/E 36.nn SMPLIST OUTPUT

TGT1 UNIX1 ENTRIES

NAME

UNXEL1 LASTUPD = UNXFUNC TYPE=ADD
LIBRARIES = DISTLIB=APOSIXL1 SYSLIB=UNXTGTL1
BINARY
FMID = UNXFUNC
RMID = UNXPTF1
LINK = ’linkname_1’

= ’linkname_2’
SHSCRIPT = INSTAL01,PRE
SYSMOD HISTORY = SYSMOD TYPE DATE MCS --STATUS--

UNXFUNC FUNCTION 07.100 UNX APP ACC
UNXPTF1 PTF 07.120 UNX APP ACC

UNXEL2 LASTUPD = UNXFUNC TYPE=ADD
LIBRARIES = DISTLIB=APOSIXL2 SYSLIB=UNXTGTL2
TEXT
FMID = UNXFUNC
RMID = UNXFUNC
LINK = ’linkname_3’

= ’linkname_4’
SHSCRIPT = INSTAL02,POST
SYSMOD HISTORY = SYSMOD TYPE DATE MCS --STATUS--

UNXFUNC FUNCTION 07.100 UNX APP ACC

Figure 27. Hierarchical file system element entry: sample LIST output when XREF is specified

Hierarchical file system element entry (distribution and target zone)

230 SMP/E V3R6.0 for z/OS V2R1.0 Reference

UNLOAD Examples

To dump the hierarchical file system element entries in UCL format, you can use
the UNLOAD command. For example, to unload all the OS21 element entries in a
particular zone, you can use the following commands:
SET BDY(TGT1) /* Set to requested zone. */.
UNLOAD OS21 /* Unload all OS21 element entries. */.

To unload specific OS21 element entries, you can use these commands:
SET BDY(TGT1) /* Set to requested zone. */.
UNLOAD OS21(OS2EL1 /* Unload only these */

OS2EL2 /* three */
OS2EL3) /* entries. */.

The format of the UNLOAD output for each OS21 element entry is the same for
both of these commands. The only difference is the number of element entries
listed. Figure 29 on page 232 is an example of UNLOAD output for OS21 element
entries.

PAGE nnnn - NOW SET TO TARGET ZONE zzzzzz DATE mm/dd/yy TIME hh:mm:ss SMP/E 36.nn SMPLIST OUTPUT

TGT1 SHELLSCR ENTRIES

NAME

INSTAL01 LASTUPD = FUNC001 TYPE=ADD
LIBRARIES = DISTLIB=HFSDLIB SYSLIB=UNXTGTL1
TEXT
FMID = FUNC001
RMID = FUNC001

INSTAL02 LASTUPD = FUNC002 TYPE=UPD
LIBRARIES = DISTLIB=HFSDLIB SYSLIB=UNXTGTL1
TEXT
FMID = FUNC002
RMID = FUNC002

INSTAL03 LASTUPD = FUNC001 TYPE=ADD
LIBRARIES = DISTLIB=HFSDLIB SYSLIB=UNXTGTL1
TEXT
FMID = FUNC001
RMID = FUNC001

Figure 28. Hierarchical file system element entry: sample LIST output for SHELLSCR entries

Hierarchical file system element entry (distribution and target zone)

Chapter 5. SMP/E data set entries 231

By specifying the FORFMID operand, you can reduce the number of OS21 element
entries unloaded. When FORFMID is specified, SMP/E unloads an OS21 element
entry only if its FMID matches one of the FMIDs specified on the FORFMID
operand. For example, to unload OS21 element entries whose FMIDs either are
defined in FMIDSET OS2 or are OS2FUNC, you can use these commands:
SET BDY(TGT1) /* Set to target zone. */.
UNLOAD OS21 /* Unload all OS21 element entries */

FORFMID(OS21 /* for the OS21 FMIDSET */
OS2FUNC) /* and FMID OS2FUNC. */.

UCLIN Examples

You can use the ADD, REP, and DEL UCL statements to change subentries in the
hierarchical file system element entry. After the UCLIN changes are made, the
hierarchical file system element entry must contain at least the following
subentries:

UCLIN .
REP OS21 (OS2EL1)

LASTUPD (OS2FUNC)
LASTUPDTYPE (ADD)
DISTLIB (OS2DSTL1)
SYSLIB (OS2TGTL1)
FMID (OS2FUNC)
RMID (OS2PTF1)
LINK (’linkname_1’

’linkname_2’)
SHSCRIPT (INST0S2,POST)

.
REP OS21 (OS2EL2)

LASTUPD (OS2FUNC)
LASTUPDTYPE (ADD)
DISTLIB (OS2DSTL2)
SYSLIB (OS2TGTL2)
FMID (OS2FUNC)
RMID (OS2FUNC)
LINK (’linkname_3’

’linkname_4’)
SHSCRIPT (INST0S2,POST)

.
REP OS21 (OS2EL3)

LASTUPD (OS2FUNC)
LASTUPDTYPE (ADD)
DISTLIB (APOSIXL2)
SYSLIB (OS2TGTL2)
TEXT
FMID (OS2FUNC)
RMID (OS2PTF2)
LINK (’linkname_5’

’linkname_6’)
PARM (This_is_another_sample_character_string_spec

ified_as_the_value_of_PARM.__It_is_a_maximum
____length_character_string_for_this_subentr
y.__I.e.,_it_is_300_characters_long.__The_st
ring____has_no_blanks_in_it.__If_you_see_som
ething_that_looks_like_a_blank,_it’s_not. T
he_previous_2_characters_are_X’41’...
)

.
ENDUCL.

Figure 29. OS21 element entry: sample UNLOAD output

Hierarchical file system element entry (distribution and target zone)

232 SMP/E V3R6.0 for z/OS V2R1.0 Reference

v DISTLIB
v FMID
v RMID
v SYSLIB

Otherwise, there is not enough information in the entry to process the element. If
any of these subentries are missing, SMP/E does not make the requested UCL
updates to the entry, and the entry remains as it was before the UCL command.

The following examples are provided to help you use the hierarchical file system
element entries.

Example 1: Adding a new hierarchical file system element
entry

Defining a new hierarchical file system element entry with UCL is very seldom
required; generally, hierarchical file system element entries are created from the
information specified on the hierarchical file system element MCSs contained in
the SYSMODs when the SYSMODs are installed. If, however, you want to use UCL
in defining a new hierarchical file system element entry, the following is an
example of the minimum information you should provide:
SET BDY(TGT1) /* Set to target zone. */.
UCLIN /* */.
ADD HFS(HFS01) /* Define new entry. */

DISTLIB(AHFSLIB) /* Define DLIB, */
SYSLIB(HFSLIB) /* target library. */
FMID(ZUSR001) /* Functional owner (in this

example a user function). */
RMID(ZUSR001) /* Same value as FMID. */

/* */.
ENDUCL /* */.
SET BDY(DLB1) /* Now do same to DLIB. */.
UCLIN /* */.
ADD HFS(HFS01) /* Define new HFS entry. */

DISTLIB(AHFSLIB) /* Define DLIB, */
SYSLIB(HFSLIB) /* target library. */
FMID(ZUSR001) /* Functional owner (in this

example a user function). */
RMID(ZUSR001) /* Same value as FMID. */

/* */.
ENDUCL /* */.

Note: If the RMID value had not been specified, it would have defaulted to the
FMID value.

Example 2: Defining a linkname for an existing hierarchical
file system element

The following shows how to inform SMP/E of new linkname for an existing
hierarchical file system element:
SET BDY(TGT1) /* Set to target zone. */.
UCLIN /* */.
ADD HFS(HFS01) /* Existing entry. */

LINK(’../userlk’) /* New linkname. */
/* */.

ADD HFS(HFS02) /* Existing entry. */
LINK(’myname’) /* New linkname. */

/* */.
ENDUCL /* */.
SET BDY(DLB1) /* Now do same thing to

Hierarchical file system element entry (distribution and target zone)

Chapter 5. SMP/E data set entries 233

appropriate DLIB. */.
UCLIN /* */.
ADD HFS(HFS01) /* Existing entry. */

LINK(’../userlk’) /* New linkname. */
/* */.

ADD HFS(HFS02) /* Existing entry. */
LINK(’myname’) /* New linkname. */

/* */.
ENDUCL /* */.

Note: UCLIN does not create a linkname in the UNIX file system; that must be
done outside of SMP/E using standard utilities. The UCLIN changes ensure that,
when the hierarchical file system element is subsequently modified, the
hierarchical file system element is updated under both its primary name and its
alternative name in the UNIX file system.

Example 3: Adding a hierarchical file system element entry
with a PARM subentry

If you want to use UCL in adding a hierarchical file system element entry with a
PARM subentry, the following example shows you how this can be done.
SET BDY(TGT1). /* Set to target zone. */
UCLIN . /* */
ADD HFS(HFSEL3) LASTUPD(HFSFUNC) LASTUPDTYPE(ADD)

DISTLIB(APOSIXL2) SYSLIB(HFSTGTL2) FMID(HFSFUNC) TEXT
RMID(HFSPTF2) LINK(’linkname_5’ ’linkname_6’)
PARM(This_is_another_sample_character_string_specified_as_the_

value_of_PARM.__It_is_a_maximum____length_character_string_for_this_
subentry.__I.e.,_it_is_300_characters_long.__The_string____has_no_
blanks_in_it.__If_you_see_something_that_looks_like_a_blank,_it’s_not.

The_previous_2_characters_are_X’41’...) .
ENDUCL . /* */

HOLDDATA entry (global zone)
The HOLDDATA entry contains ++HOLD statements that either were received
from SMPHOLD (external HOLDDATA) or were within a SYSMOD that was
received (internal HOLDDATA). It is a record of the ++HOLD statements and is
not used by SMP/E to control exception SYSMOD processing.

The HOLDDATA entry is separate from the SYSMOD entry. However, when
SMP/E saves ++HOLD statements to create HOLDDATA entries, it also creates
HOLDDATA subentries in the associated global zone SYSMOD entry. (These
subentries appear in the LIST output as HOLDERROR, HOLDFIXCAT,
HOLDSYSTEM, or HOLDUSER plus the hold reason IDs.) SMP/E uses these
HOLDDATA subentries to control exception SYSMOD processing.

LIST Examples

To list all the HOLDDATA entries in a global zone, you can use the following
commands:
SET BDY(GLOBAL) /* Set to requested zone. */.
LIST HOLDDATA /* List all HOLDDATA entries. */.

To list HOLDDATA entries for a specific type of hold, code one or more of the
following operands: HOLDERROR, HOLDSYSTEM, HOLDUSER. Here is an
example:

Hierarchical file system element entry (distribution and target zone)

234 SMP/E V3R6.0 for z/OS V2R1.0 Reference

SET BDY(GLOBAL) /* Set to requested zone. */.
LIST HOLDDATA /* List HOLDDATA entries */.

HOLDSYSTEM /* for system holds */.

To list specific SYSMOD entries in the global zone along with the associated
++MCSs (HOLDDATA), you can use these commands:
SET BDY(GLOBAL) /* Set to requested zone. */.
LIST SYSMOD(UZ12345 /* List only these two */.

UZ56789) /* entries */.
HOLDDATA /* plus HOLDDATA for them. */.

The output from the LIST requests differs in the amount of information presented.
If you list just the HOLDDATA entries, only the HOLDDATA itself is presented, as
in Figure 30 on page 236. If you request the HOLDDATA associated with SYSMOD
entries, the HOLDDATA is included in the SYSMOD entry, as in Figure 31 on page
237. (For more information about listing HOLDDATA, see the description of the
HOLDDATA operand of the LIST command in SMP/E for z/OS Commands.)

Note:

1. The ++HOLD statements displayed in the LIST output are exactly as received
by SMP/E. They are listed in alphanumeric order by reason ID.

2. If HOLDDATA for a particular SYSMOD has been received but the SYSMOD
itself has not yet been received, only the hold information is shown when the
SYSMOD entry is listed. For an example, see SYSMOD UZ56789 in Figure 31 on
page 237.

3. HOLDDATA entries for system holds show either INT or EXT to indicate the
source of the ++HOLD statement. INT means that the ++HOLD statement was
contained in the held SYSMOD and can be resolved only with the BYPASS
operand on the APPLY or ACCEPT command. EXT means that the ++HOLD
statement was obtained from another source, such as SMPHOLD, and can be
resolved by either the BYPASS operand or a ++RELEASE statement.

4. You cannot use UCLIN to add, update, or delete HOLDDATA entries or
subentries. However, you can use the REJECT command to delete HOLDDATA
entries. For more information about the REJECT command, see SMP/E for z/OS
Commands.

HOLDDATA entry (global zone)

Chapter 5. SMP/E data set entries 235

PAGE nnnn - NOW SET TO zzzzzz ZONE nnnnnnn DATE mm/dd/yy TIME hh:mm:ss SMP/E 36.nn SMPLIST OUTPUT

GLOBAL HOLDDATA ENTRIES

NAME

HBB7730 HOLDFIXCAT = AA13644 ++HOLD(HBB7730) FMID(HBB7730) REASON(AA13644) FIXCAT
RESOLVER(UA27033) CLASS(PSP) CATEGORY(IBM.Device.2094).

UZ12345 HOLDERROR = AZ00001 ++HOLD(UZ12345) ERROR
REASON(AZ00001) FMID(HBB2102)
COMMENT(SMRTDATA(CHGDTE(071105) SYMP(PRV,IPL))).

HOLDERROR = AZ00002 ++HOLD(UZ12345) ERROR
REASON(AZ00002) FMID(HBB2102)
COMMENT(SMRTDATA(CHGDTE(071106) SYMP(FUL))).

HOLDSYSTEM(INT) = DOC ++HOLD(UZ12345) SYSTEM
REASON(DOC) FMID(HBB2102)
COMMENT(NEW MSG).

HOLDSYSTEM(EXT) = UCLIN ++HOLD(UZ12345) SYSTEM
REASON(UCLIN) FMID(HBB2102)
COMMENT(UCLIN REQUIRED).

HOLDUSER = INUSE ++HOLD(UZ12345) USER
REASON(INUSE) FMID(HBB2102)
COMMENT(IM MODIFYING).

UZ56789 HOLDERROR = AZ00023 ++HOLD(UZ56789) ERROR
REASON(AZ00023) FMID(HBB2102)
COMMENT(SMRTDATA(CHGDTE(071110) SYMP(ABENDS with E37))).

HOLDERROR = AZ00024 ++HOLD(UZ56789) ERROR
REASON(AZ00024) FMID(HBB2102)
COMMENT(SMRTDATA(CHGDTE(071113) SYMP(DAL) FIX(UW92458))).

Figure 30. HOLDDATA entry: sample LIST output when SYSMOD is not specified

HOLDDATA entry (global zone)

236 SMP/E V3R6.0 for z/OS V2R1.0 Reference

JAR entry (target and distribution zone)
The JAR entry describes a Java Archive (JAR) file that resides in a UNIX file
system and a distribution library. A JAR entry is created the first time a SYSMOD
is installed that contains a ++JAR MCS.

Subentries

These are the subentries for the JAR entry as they appear in the LIST output:

name
is the name of the Java ARchive element represented by the JAR entry.

The name can contain 1–8 uppercase alphabetic, numeric, or national ($, #, @)
characters.

DISTLIB
specifies the ddname of the distribution library for the JAR element.

The UCL operand is DISTLIB(ddname).
v The ddname can contain any uppercase alphabetic, numeric, or national ($,

#, @) character, and can be 1–8 characters long.

PAGE nnnn - NOW SET TO zzzzzz ZONE nnnnnnn DATE mm/dd/yy TIME hh:mm:ss SMP/E 36.nn SMPLIST OUTPUT

GLOBAL SYSMOD ENTRIES

NAME

UZ12345 TYPE = PTF
STATUS = REC
DATE/TIME REC = 07.100 08:00:00
SREL VER(001) = Z038
DELETE VER(001) = HBB2102
SUPING VER(001) = AZ11111 AZ11112 AZ11113
MAC = MAC01 MAC02 MAC03
MOD = MOD01 MOD02 MOD03 MOD04
SRC = SRC01 SRC02
HOLDERROR = AZ00001 ++HOLD(UZ12345) ERROR

REASON(AZ00001) FMID(HBB2102)
COMMENT(SMRTDATA(CHGDTE(071105) SYMP(PRV,IPL))).

HOLDERROR = AZ00002 ++HOLD(UZ12345) ERROR
REASON(AZ00002) FMID(HBB2102)
COMMENT(SMRTDATA(CHGDTE(071106) SYMP(FUL))).

HOLDSYSTEM(INT) = DOC ++HOLD(UZ12345) SYSTEM
REASON(DOC) FMID(HBB2102)
COMMENT(NEW MSG).

HOLDSYSTEM(EXT) = UCLIN ++HOLD(UZ12345) SYSTEM
REASON(UCLIN) FMID(HBB2102)
COMMENT(UCLIN REQUIRED).

HOLDUSER = INUSE ++HOLD(UZ12345) USER
REASON(INUSE) FMID(HBB2102)
COMMENT(IM MODIFYING).

UZ56789 HOLDERROR = AZ00023 ++HOLD(UZ56789) ERROR
REASON(AZ00023) FMID(HBB2102)
COMMENT(SMRTDATA(CHGDTE(071110) SYMP(ABENDS with E37))).

HOLDERROR = AZ00024 ++HOLD(UZ56789) ERROR
REASON(AZ00024) FMID(HBB2102)
COMMENT(SMRTDATA(CHGDTE(071113) SYMP(DAL) FIX(UW92458))).

Figure 31. HOLDDATA listed for SYSMOD entry: sample LIST output when SYSMOD is specified

JAR entry (target and distribution zone)

Chapter 5. SMP/E data set entries 237

v The DISTLIB subentry is required. Without it, SMP/E cannot process any
changes for the JAR element.

FMID
identifies the functional owner of this JAR element. The functional owner is the
last function SYSMOD that replaced this JAR element.

The UCL operand is FMID(sysmod_id).

The SYSMOD ID must contain 7 uppercase alphabetic, numeric, or national ($,
#, @) characters.

JARPARM
specifies a character string that is to be passed to the jar command as an
option string when updating the JAR file. The maximum length of this
character string is 300 bytes of data.

Any jar command options specified here will be passed to the jar command in
addition to the options supplied by SMP/E, which are uvf (u indicates that the
JAR file is to be updated, v produces verbose jar command output, and f
indicates that the JAR file to be updated is specified on the command line
rather than through stdin).

Only those jar command options that require only the option indicator to be
specified are supported in the JARPARM entry, such as 0 and M. Options
requiring additional input over and above the option indicator are not
supported. Examples of unsupported options are the m and -C options. If such
options are specified, the jar command will likely fail, since SMP/E does not
prohibit their use.

LASTUPD
identifies the cause of the last change to this JAR entry.

The UCL operand is LASTUPD(value). This subentry can contain one of the
following values:

UCLIN
indicates that the change was made as a result of UCLIN processing.

sysmod-id
indicates that the change was made during the installation of the indicated
SYSMOD.

The SYSMOD ID must contain 7 uppercase alphabetic, numeric, or national
($, #, @) characters.

LASTUPDTYPE
indicates how the entry was last changed.

The UCL operand is LASTUPDTYPE(value). This subentry can contain one of
the following values:

ADD The entry was added.

UPD The entry was updated.

LINK
specifies a list of alternative names by which this JAR element can be known
in the UNIX file system.

In LIST output, linknames are always enclosed in single apostrophes. If an
apostrophe is part of a linkname, it is always shown as two consecutive
apostrophes in LIST output.

The UCL operand is LINK(linkname...).

JAR entry (target and distribution zone)

238 SMP/E V3R6.0 for z/OS V2R1.0 Reference

v The linkname can be from 1 to 1023 characters.
v A linkname can be enclosed in single apostrophes ('). A linkname must be

enclosed in single apostrophes if any of the following is true:
– The linkname contains lowercase alphabetic characters.
– The linkname contains a character that is not uppercase alphabetic,

numeric, national ($, #, or @), slash (/), plus (+), hyphen, period, or
ampersand (&).

– The linkname spans more than one line in the control statement.
The single apostrophes used to enclose a linkname (the delimiters) do not
count as part of the 1023-character limit.

v Any apostrophes specified as part of a linkname (not the delimiters) must be
doubled.
Double apostrophes count as two characters in the 1023-character limit.

v The linkname can include characters X'40' through X'FE'.

PARM
specifies a character string that is to be passed to the copy utility as an
execution-time parameter. The maximum length of this character string is 300
bytes of nonblank data. If any blanks are specified in the PARM value, they are
deleted by SMP/E during processing and do not count toward the 300-byte
maximum.

The UCL operand is PARM(character_string).
v PARM is an optional operand.
v The character string can be entered free-form, without regard to blanks

(which are compressed out of the string), and can span multiple 80-byte
records.

v If parentheses are specified in the PARM value, there must always be a pair
(left and right); otherwise, the results are unpredictable.

RMID
identifies the last SYSMOD that replaced this JAR element. Any subsequent
SYSMOD that modifies this JAR element must have defined a relationship
(such as PRE or SUP) with this SYSMOD.

The UCL operand is RMID(sysmod_id).
v The SYSMOD ID must contain 7 uppercase alphabetic, numeric, or national

($, #, @) characters.
v If RMID is not specified but FMID is, SMP/E sets the RMID value to the

specified FMID.

SHSCRIPT
specifies a UNIX shell script to run when this JAR element is copied to (or
deleted from) a directory in the UNIX file system.

The UCL operand is SHSCRIPT(scriptname). This subentry optionally contains
one or both of the following values, which specify the point in SMP/E
processing when the shell script is run:

PRE The shell script is run before the JAR element is copied to a UNIX file
system directory.

POST The shell script is run after the JAR element is copied to a UNIX file
system directory.

POST is the default; the shell script is run after the JAR element is copied to
the directory.

JAR entry (target and distribution zone)

Chapter 5. SMP/E data set entries 239

SYMLINK
specifies a list of one or more symbolic links, which are file names that can be
used as alternate names for referring to this JAR element in the UNIX file
system. Each symbolic link name listed here is associated with a path name
listed in the SYMPATH entry. See the description of the SYMPATH entry for
more information about how the symbolic link names and path names are
associated.

The UCL operand is SYMLINK(symlinkname...).
v A JAR entry that contains a SYMLINK entry must contain a matching

SYMPATH entry. SMP/E will reject any UCLIN command that would violate
this condition.

v A symbolic linkname can be from one to 1023 characters. Any characters in
the range X'40' through X'FE' may be specified.

v A symbolic linkname can be enclosed in single apostrophes ('). A symbolic
linkname must be enclosed in single apostrophes if any of the following is
true:
– The symbolic linkname contains lowercase alphabetic characters.
– The symbolic linkname contains a character that is not uppercase

alphabetic, numeric, national ($, #, or @), slash (/), plus (+), hyphen,
period, or ampersand (&).

– The symbolic linkname spans more than one line in the control statement.
The single apostrophes used to enclose a symbolic linkname (the delimiters)
do not count as part of the 1023-character limit.

v Any apostrophes specified as part of a symbolic linkname (not the
delimiters) must be doubled. Double apostrophes count as two characters in
the 1023-character limit.

SYMPATH
specifies a list of one or more pathnames that are associated with symbolic
links identified by the SYMLINK operand. The first pathname in the
SYMPATH operand is associated with the first symbolic link in the SYMLINK
operand, the second pathname with the second symbolic link, and so on. If
there are more symbolic links listed than there are pathnames, then the last
listed pathname is used for the remaining symbolic links. If more pathnames
are specified than symbolic linknames, then the excess pathnames (at the end
of the list) are ignored. The UCL operand is SYMPATH(sympathname...).
v A JAR entry that contains a SYMPATH entry must contain a matching

SYMLINK entry. is specified, otherwise it must be omitted.
v A symbolic pathname can be from one to 1023 characters. Any characters in

the range X'40' through X'FE' may be specified.
v A symbolic pathname can be enclosed in single apostrophes ('). A symbolic

pathname must be enclosed in single apostrophes if any of the following is
true:
– The symbolic pathname contains lowercase alphabetic characters.
– The symbolic pathname contains a character that is not uppercase

alphabetic, numeric, national ($, #, or @), slash (/), plus (+), hyphen,
period, or ampersand (&).

– The symbolic pathname spans more than one line in the control
statement.

The single apostrophes used to enclose a symbolic pathname (the delimiters)
do not count as part of the 1023-character limit.

JAR entry (target and distribution zone)

240 SMP/E V3R6.0 for z/OS V2R1.0 Reference

v Any apostrophes specified as part of a symbolic pathname (not the
delimiters) must be doubled. Double apostrophes count as two characters in
the 1023-character limit.

SYSLIB
specifies the ddname of the “target library” within a UNIX file system for the
JAR element.

The UCL operand is SYSLIB(ddname).
v Only one SYSLIB value can be specified.
v The ddname can contain any uppercase alphabetic, numeric, or national ($,

#, @) character, and can be 1 to 8 characters long.
v The SYSLIB subentry is required. Without it, SMP/E cannot process any

changes for the JAR element.

UMID
identifies all of the SYSMODs that have updated this JAR file since it was last
replaced. Any subsequent SYSMOD that updates or replaces this JAR file must
have a defined relationship (such as PRE or SUP) with all SYSMODs in the
UMID subentry.

LIST Examples

To list all the JAR entries in a particular zone, you can use the following
commands:
SET BDY(TGT1) /* Set to zone. */.
LIST JAR /* List all JAR entries. */.

To list specific JAR entries, you can use these commands:
SET BDY(TGT1) /* Set to zone. */.
LIST JAR(JAREL1, /* List only these two */

JAREL2) /* entries. */.

The format of the LIST output for each JAR entry is the same for both of these
commands. The only difference is the number of JAR entries listed.

Figure 32 is an example of LIST output for a JAR entry.

PAGE nnnn - NOW SET TO zzzzzz ZONE nnnnnnn DATE mm/dd/yy TIME hh:mm:ss SMP/E 36.nn SMPLIST OUTPUT

SMPPTS MCS ENTRIES

NAME

ABCTTT LASTUPD = HABC100 TYPE=ADD
LIBRARIES = DISTLIB=AABCBIN SYSLIB=SABCBIN
FMID = HABC100
RMID = HABC100
UMID = OW12345 OW54321 OW34567
SHSCRIPT = ABCSCRPT,PRE,POST
PARM = PATHMODE(0,6,4,4)
JARPARM = 0M
SYMLINK = ’../../../../../usr/lib/TicTacToe.jar’
SYMPATH = ’../../usr/lpp/ttt/bin/TicTacToe.jar’
LINK = ’../TicTacToe.jar’

Figure 32. JAR entry: sample LIST output

JAR entry (target and distribution zone)

Chapter 5. SMP/E data set entries 241

By specifying the FORFMID operand, you can reduce the number of JAR entries
listed. When FORFMID is specified, SMP/E lists a JAR entry only if its FMID
matches one of the FMIDs specified on the FORFMID operand. For example, to list
JAR entries whose FMIDs either are defined in FMIDSET JAR or are JARFUNC,
you can use these commands:
SET BDY(TGT1) /* Set to target zone. */.
LIST JAR /* List all JAR entries */

FORFMID(JAR /* for the JAR FMIDSET */
JARFUNC) /* and FMID JARFUNC. */.

You can use the LIST command to find out the names of all SYSMODs that have
modified a JAR element. To include the names of these SYSMODs in the LIST
output you can use the XREF operand, as shown in these commands:
SET BDY(TGT1) /* Set to requested zone. */.
LIST JAR /* List all JAR entries */

XREF /* and related SYSMODs. */.

Note:

1. XREF can be used either in mass mode or in select mode.
2. SMP/E obtains the data included for the XREF operand by checking all the

SYSMOD entries for subentries for this JAR element. Because this data is not
contained in the JAR entry itself, you cannot use UCLIN to change it in the
JAR entry.

Figure 33 is an example of the LIST output produced when the XREF operand is
used.

UCLIN Examples

You can use the ADD, REP, and DEL UCL statements to change subentries in the
JAR entry. After the UCLIN changes are made, the JAR entry must contain at least
the following subentries:
v DISTLIB
v FMID
v RMID
v SYSLIB

PAGE nnnn - NOW SET TO zzzzzz ZONE nnnnnnn DATE mm/dd/yy TIME hh:mm:ss SMP/E 36.nn SMPLIST OUTPUT

TGT1 JAR ENTRIES

NAME

ABCTTT LASTUPD = JAR0001 TYPE=ADD
LIBRARIES = DISTLIB=DLIB3 SYSLIB=SLSRBIN
FMID = JAR0001
RMID = JAR0001
PARM = PATHMODE(0,7,7,5)
JARPARM = 0M
LINK = ’../TicTacToe.jar’
UMID = PT00002
SYSMOD HISTORY = SYSMOD TYPE DATE MCS ---------- STAT

JAR0001 FUNCTION 07.100 JAR APP
PT00002 PTF 07.100 JARUPD APP

Figure 33. JAR entry: sample LIST output when XREF is specified

JAR entry (target and distribution zone)

242 SMP/E V3R6.0 for z/OS V2R1.0 Reference

Otherwise, there is not enough information in the entry to process the element. If
any of these subentries are missing, SMP/E does not make the requested UCL
updates to the entry, and the entry remains as it was before the UCL command.

The following examples are provided to help you use the JAR entry:
Example 1

SET BDY(TGT) /* Set to target zone */.
UCLIN /* Start UCLIN processing */.

ADD JAR(ABCTTT) JARPARM(0M) /* Add JARPARMs */.
ENDUCL /* End UCLIN processing */.

Example 2

SET BDY(TGT) /* Set to target zone */.
UCLIN /* Start UCLIN processing */.

REP JAR(ABCTTT) JARPARM(M) /* Replace with new JARPARMs */.
UMID(OW12345,OW54321) /* and new UMIDs */.

ENDUCL /* End UCLIN processing */.

Example 3

SET BDY(TGT) /* Set to target zone */.
UCLIN /* Start UCLIN processing */.

DEL JAR(ABCTTT) JARPARM() /* Delete JARPARMs */.
ENDUCL /* End UCLIN processing */.

In the first example, a string of options is added to the JARPARM subentry in the
JAR entry ABCTTT. In the second example, the existing JARPARM subentry value
for ABCTTT is replaced with a new value and the UMID subentry list is replaced
with a new list of values. In the third example, the JARPARM subentry is deleted
from the JAR entry for entry name ABCTTT.

UNLOAD Examples

To dump all the JAR entries in UCL format, you can use the UNLOAD command:
SET BDY(TGT1) /* Set to zone. */.
UNLOAD JAR /* Unload all JAR entries. */.

To dump specific JAR entries, you can use these commands:
SET BDY(TGT1) /* Set to zone. */.
UNLOAD JAR(JAREL1, /* Unload only these two */

JAREL2) /* entries. */.

The format of the UNLOAD output for each JAR entry is the same for both of
these commands. The only difference is the number of JAR entries unloaded.

Figure 34 on page 244 is an example of the output created by the UNLOAD
command for a JAR entry:

JAR entry (target and distribution zone)

Chapter 5. SMP/E data set entries 243

By specifying the FORFMID operand, you can reduce the number of JAR element
entries unloaded. When FORFMID is specified, SMP/E unloads an JAR element
entry only if its FMID matches one of the FMIDs specified on the FORFMID
operand. For example, to unload JAR element entries whose FMIDs either are
defined in FMIDSET JAR or are JARFUNC, you can use these commands:
SET BDY(TGT1) /* Set to target zone. */.
UNLOAD JAR /* Unload all JAR element entries */

FORFMID(JAR /* for the JAR FMIDSET */
JARFUNC) /* and FMID JARFUNC. */.

LMOD entry (distribution and target zone)
The LMOD entry contains all the information needed to replace or update a given
load module. This includes information such as whether the load module is
link-edited or copied during the system generation process, any link-edit
statements required to relink the load module, the link-edit attributes of the load
module, and the libraries in which it resides. An LMOD entry is generally created
by one of the following methods:
v Installing a SYSMOD that adds the load module. LMOD entries can be created

when a SYSMOD is installed. SMP/E builds an LMOD entry if it encounters a
++MOD statement for a load module that does not yet have an LMOD entry
and if the distribution library for the module was totally copied during system
generation. For more information about copied load modules, see “DLIB entry
(distribution and target zone)” on page 208 and SMP/E for z/OS Commands.

v Processing JCLIN. LMOD entries can be created during JCLIN processing when
SMP/E scans the copy and link-edit steps. At the same time, SMP/E builds
MOD entries for modules that are linked or copied to the load module. For more
information, see “MOD entry (distribution and target zone)” on page 268 and
the “Processing” section of the JCLIN command chapter in SMP/E for z/OS
Commands.

Subentries

These are the subentries for the LMOD entry as they appear in the LIST output:

name
is the name of the load module described by the LMOD entry.

The name can contain from 1 to 8 alphanumeric characters.

UCLIN .
REP JAR (ABCTTT)

LASTUPD (HABC100)
LASTUPDTYPE (ADD)
DISTLIB (AABCBIN)
SYSLIB (SABCBIN)
FMID (HABC100)
RMID (HABC100)
UMID (OW12345 OW54321 OW34567)
SHSCRIPT (ABCSCRPT,PRE,POST)
PARM (PATHMODE(0,6,4,4))
JARPARM (0M)
SYMLINK (’../../../../../usr/lib/TicTacToe.jar’)
SYMPATH (’../../usr/lpp/ttt/bin/TicTacToe.jar’)
LINK (’../TicTacToe.jar’)

.
ENDUCL.

Figure 34. Example UNLOAD output for JAR entry

JAR entry (target and distribution zone)

244 SMP/E V3R6.0 for z/OS V2R1.0 Reference

CALLLIBS
specifies one or more DDDEF entries, existing in the same zone, that compose
the SYSLIB allocation to be used when the load module is link-edited.

The UCL operand is CALLLIBS(name...).
v The DDDEF names can contain from 1 to 8 alphabetic (A through Z),

national (@, #, or $), or numeric (0 through 9) characters. The first character
must be alphabetic or national.

v SMP/E does not enforce any limit on the number of names that can be
specified in a CALLLIBS subentry list. However, DFSMS/MVS sets its own
limits on how many data sets can be concatenated. The actual limit depends
on the kind of data sets to be concatenated (partitioned data sets or PDSEs)
and the total number of extents for partitioned data sets. Refer to z/OS
DFSMS Using Data Sets for information about calculating this limitation.

v The order in which the libraries are specified is important because it
indicates the order in which the SYSLIB concatenation is built.

COPY
is a special SMP/E indicator meaning that the load module was copied during
system generation, and that there is a one-to-one correspondence between the
distribution library module (the MOD entry) and the target system load
module (the LMOD entry). This information is used during APPLY processing
to determine whether the LEPARM values from a ++MOD statement are
applicable to the load module. It is also used during delete and compress
processing to determine whether a load module can be deleted before the new
modules are installed.

The UCL operand is COPY.

LASTUPD
identifies the cause of the last change to this LMOD entry.

Note: If a given UCLIN command specifies only cross-zone subentries, this
field is not changed.

The UCL operand is LASTUPD(value). This subentry can contain one of the
following values:

JCLIN
indicates that the change was made during JCLIN command processing.

UCLIN
indicates that the change was made as a result of UCLIN processing.

sysmod_id
indicates that the change was made during the installation of the indicated
SYSMOD. The SYSMOD did one of the following:
v Contained inline JCLIN that affected the LMOD entry.
v Renamed the load module using the ++RENAME statement.
v Moved the load module to a new target system library using the

++MOVE statement.

A SYSMOD that does not do any of the previously listed actions will not
cause an update to the LASTUPD subentry. For example, a SYSMOD that
supplies one or more modules (++MOD) that cause the load module to be
link edited does not necessarily cause the LMOD entry's LASTUPD
subentry to be updated. The LASTUPD subentry only indicates when the
LMOD entry was updated, not when the module content of a load module
is updated.

LMOD entry (distribution and target zone)

Chapter 5. SMP/E data set entries 245

The SYSMOD ID must contain 7 alphanumeric characters.

LASTUPD TYPE
indicates how the entry was last changed.

Note: If a given UCLIN command specifies only cross-zone subentries, this
field is not changed.

The UCL operand is LASTUPDTYPE(value). This subentry can contain one of
the following values:

ADD The entry was added.

DEL A subentry in the entry was deleted.

MOV The load module was moved.

REN The load module was renamed.

UPD The entry was updated.

LKED ATTRIBUTES
identifies the link-edit attributes that must be used when this load module is
link-edited. SMP/E supports the following link-edit attributes. For more
information, see z/OS MVS Program Management: User's Guide and Reference.

AC=1
specifies that the AC=1 parameter (which is the authorization code) is to be
passed to the link-edit utility when the load module is link-edited.

The UCL operand is AC=1.

ALIASES
specifies that the ALIASES parameter is to be passed to the link-edit utility
when the load module is link-edited.

The UCL operand is ALIASES(ALL).

ALIGN2
specifies that the ALIGN2 parameter (alignment on a 2KB boundary) is to
be passed to the link-edit utility when the load module is link-edited.

The UCL operand is ALIGN2 or ALN2.

AMODE=24
specifies that the AMODE=24 parameter is to be passed to the link-edit
utility when the load module is link-edited.

The UCL operand is AMODE=24 or AMOD=24.

AMODE=31
specifies that the AMODE=31 parameter is to be passed to the link-edit
utility when the load module is link-edited.

The UCL operand is AMODE=31 or AMOD=31.

AMODE=64
specifies that the AMODE=64 parameter is to be passed to the link-edit
utility when the load module is link-edited.

The UCL operand is AMODE=64 or AMOD=64.

AMODE=ANY
specifies that the AMODE=ANY parameter is to be passed to the link-edit
utility when the load module is link-edited.

The UCL operand is AMODE=ANY or AMOD=ANY.

LMOD entry (distribution and target zone)

246 SMP/E V3R6.0 for z/OS V2R1.0 Reference

AMODE=MIN
specifies that the AMODE=MIN parameter is to be passed to the link-edit
utility when the load module is link-edited.

The UCL operand is AMODE=MIN or AMOD=MIN.

CALL
indicates that the CALL parameter has been specified for a load module in
a JCLIN link-edit step.

Note: If the load module being link-edited contains a CALLLIBS subentry
list, SMP/E uses NCAL for the link to the SMPLTS library, and ignores the
CALL subentry in the LMOD entry.

For more information about link-edit parameters, see the the discussion of
“Link-edit utility” under the PARM subentry of “UTILITY entry (global
zone)” on page 340. Also see the APPLY command chapter in SMP/E for
z/OS Commands.

The UCL operand is CALL.

CASE
specifies that the CASE parameter, which controls case sensitivity and
folding, is to be passed to the link-edit utility when the load module is
link-edited.

The UCL operand is CASE(UPPER|MIXED).
v CASE(UPPER) and CASE(MIXED) are mutually exclusive.

COMPAT
specifies that the COMPAT parameter is to be passed to the link-edit utility
when the load module is link-edited.

The UCL operand is COMPAT=LKED|PM1|PM2|PM3|PM4.

DC
specifies that the DC parameter, which is the downward compatible
attribute, is to be passed to the link-edit utility when the load module is
link-edited.

The UCL operand is DC.

DYNAM
specifies that the DYNAM parameter is to be passed to the link-edit utility
when the load module is link-edited.

The UCL operand is DYNAM(DLL).

FETCHOPT
specifies that the FETCHOPT parameter is to be passed to the link-edit
utility when the load module is link-edited.

The UCL operand is FETCHOPT(PACK|NOPACK, PRIME|NOPRIME).

FILL
specifies that the FILL parameter is to be passed to the link-edit utility
when the load module is link-edited.

The UCL operand is FILL(nn), where nn is the 2-character representation of
a single hex byte (00 - FF).

HOBSET
specifies that the HOBSET parameter is to be passed to the link-edit utility
when the load module is link-edited.

LMOD entry (distribution and target zone)

Chapter 5. SMP/E data set entries 247

The UCL operand is HOBSET.

MAXBLK
specifies that the MAXBLK parameter is to be passed to the link-edit utility
when the load module is link-edited.

The UCL operand is MAXBLK(nnnnn), where nnnnn is a number between
256 and 32760.

NE
specifies that the NE parameter, which is the noneditable attribute, is to be
passed to the link-edit utility when the load module is link-edited.

The UCL operand is NE.

NOCALL
specifies that the NCAL parameter is to be passed to the link-edit utility
when the load module is link-edited.

Note: If the load module being link-edited contains a CALLLIBS subentry
list, SMP/E uses CALL for the link to the actual target library, and ignores
the NOCALL subentry in the LMOD entry.

For more information about link-edit parameters, see the the discussion of
“Link-edit utility” under the PARM subentry of “UTILITY entry (global
zone)” on page 340. Also see the APPLY command chapter in SMP/E for
z/OS Commands.

The UCL operand is NOCALL or NCAL.

OL
specifies that the OL parameter is to be passed to the link-edit utility when
the load module is link-edited.

The UCL operand is OL.

OVLY
specifies that the OVLY parameter, which specifies that the load module is
in overlay structure, is to be passed to the link-edit utility when the load
module is link-edited.

The UCL operand is OVLY.

REFR
specifies that the REFR parameter, which is the refreshable attribute, is to
be passed to the link-edit utility when the load module is link-edited.

The UCL operand is REFR.

RENT
specifies that the RENT parameter, which indicates that the load module is
re-entrant, is to be passed to the link-edit utility when the load module is
link-edited.

The UCL operand is RENT.

REUS
specifies that the REUS parameter, which indicates that the load module is
reusable, is to be passed to the link-edit utility when the load module is
link-edited.

The UCL operand is REUS.

LMOD entry (distribution and target zone)

248 SMP/E V3R6.0 for z/OS V2R1.0 Reference

REUS(NONE)
specifies that the REUS(NONE) parameter, which indicates that the load
module cannot be reused, is to be passed to the link-edit utility when the
load module is link-edited.

The UCL operand is REUS(NONE).

RMODE=24
specifies that the RMODE=24 parameter is to be passed to the link-edit
utility when the load module is link-edited.

The UCL operand is RMODE=24 or RMOD=24.

RMODE=31
specifies that the RMODE=ANY parameter is to be passed to the link-edit
utility when the load module is link-edited. (RMODE=31 is a synonym for
RMODE=ANY.)

The UCL operand is RMODE=31 or RMOD=31.

RMODE=ANY
specifies that the RMODE=ANY parameter is to be passed to the link-edit
utility when the load module is link-edited.

The UCL operand is RMODE=ANY or RMOD=ANY.

RMODE=SPLIT
specifies that the RMODE=SPLIT parameter is to be passed to the link-edit
utility when the load module is link-edited.

The UCL operand is RMODE=SPLIT or RMOD=SPLIT.

SCTR
specifies that the SCTR parameter, which indicates that the load module
can be scatter-loaded, is to be passed to the link-edit utility when the load
module is link-edited.

The UCL operand is SCTR.

STD
is a special SMP/E indication that the load module should be link-edited
with none of the previously listed attributes.

STD appears in LIST and UNLOAD output in these cases:
v STD was specified on a UCL statement for this entry.
v No link-edit attributes were specified for this entry. SMP/E uses the

standard system link-edit parameters.
v The LMOD entry was created by a JCLIN copy step.

If this attribute is specified when a load module is to be link-edited and no
UTILITY entry is being used, SMP/E passes the default link-edit
parameters to the link-edit utility. For more information about link-edit
parameters, see the APPLY command chapter in SMP/E for z/OS Commands.

The UCL operand is STD.

UPCASE
specifies that the UPCASE parameter, which indicates how the Binder
should process symbol names, is to be passed to the link-edit utility when
the load module is link-edited.

The UCL operand is UPCASE(YES|NO).
v UPCASE(YES) and UPCASE(NO) are mutually exclusive.

LMOD entry (distribution and target zone)

Chapter 5. SMP/E data set entries 249

LKED CONTROL
contains all the link-edit control cards necessary to relink-edit this load
module.

Note: Relink-editing a load module is triggered by a replacement for one of
the modules within that load module. SMP/E performs only CSECT replaces
when relink-editing the load module; it does not completely rebuild the load
module from the distribution libraries. Therefore, it is not necessary to save all
the link-edit control statements in the LMOD entry; for example, the INCLUDE
statements are not saved.

The UCL operands are ++LMODIN and ++ENDLMODIN.
v The ++LMODIN and ++ENDLMODIN statements must start in column 1.
v No other operands can start on the same line as the ++LMODIN statement.
v The ++ENDLMODIN statement must be specified if the ++LMODIN

statement is specified.
v The link-edit control statements must follow SMP/E's coding conventions.

For more information, see the “General JCLIN Coding Conventions” section
of the JCLIN command chapter in SMP/E for z/OS Commands.

v Comment statements are ignored and are not saved in the LMOD entry.
(Any link-edit control statement with an asterisk in column 1 is considered a
comment statement.)

MODDEL
specifies the modules that were once part of this load module but have been
deleted. If the modules are reinstalled, they are linked back into this load
module.

The UCL operand is MODDEL(module...).

The module names can contain from 1 to 8 alphanumeric characters.

RETURN CODE

specifies the maximum acceptable return code from the link edit utility for this
specific load module. If the return code from the link edit utility is higher than
this value, SMP/E normally assumes the link edit operation failed.
The UCL operand is RC(rc), where the rc value can be any decimal number
from 0 to 16.

SIDE DECK LIBRARY
specifies the library to contain the definition side deck.

The definition side deck may be created as a member of a partitioned data set
(PDS or PDSE), or as a file within a directory in a UNIX file system. The
definition side deck is created by the link edit utility when the DYNAM(DLL)
binder option is specified for DLL load modules that export symbols. If a load
module does not export symbols, or if the DYNAM(DLL) option is not
specified, the definition side deck is not created. The member or file name of
the definition side deck is the same as the load module name. In addition, the
definition side deck will have the same aliases as those specified for the load
module.

The UCL operand is SIDEDECKLIB(ddname), where ddname is the ddname of
the library where the load module's definition side deck will reside.

Note:

1. This subentry name appears in the LIST output as SIDE DECK LIB.

LMOD entry (distribution and target zone)

250 SMP/E V3R6.0 for z/OS V2R1.0 Reference

2. When this subentry value is SMPDUMMY, the SIDE DECK LIBRARY will
be allocated as a DUMMY data set, and the definition side deck will not be
created by the link edit utility.

SYSTEM LIBRARIES
specifies the target system libraries in which this load module resides.

The UCL operand is SYSLIB(ddname...).
v There can be up to two SYSLIB values in an LMOD entry.
v The ddnames can contain from 1 to 8 alphanumeric characters.

Note: This subentry name appears in the LIST output as SYSTEM LIBRARY.

UTILITY INPUT
specifies one or more files to be included when this load module is link-edited.
The ddname of the library where the file resides is also indicated.

The UCL operand is UTIN((name,ddname)...), where name is a data set member
name or relative UNIX filename, and ddname is the ddname of the library
where the file resides.
v The name can be from 1 to 1023 characters in length.
v The name can include any nonblank characters X'41' through X'FE'.
v The name cannot begin or end with a slash ('/') because any UNIX filename

specification must be relative to the directory associated with the ddname.
v A name can be enclosed in single quotation marks ('). A name value must be

enclosed in single quotation marks if any of the following are true:
– The name contains a character that is not uppercase alphabetic, numeric,

national ($,#, or @), slash (/), plus (+), hyphen (-), period (.) or ampersand
(&).

– The name spans more than one line in the UCLIN statement.
The single quotation marks used to enclose a name (the delimiters) do not
count as part of the 1023-character limit.

v Any quotation marks specified as part of a name (not the delimiters) must be
doubled. Double quotation marks count as two characters in the 1023
character limit.

v If the name value spans lines, it must extend through column 72 of the first
line and begin in column 1 of the subsequent line.

The combination of name and ddname determines the uniqueness of a subentry
in the UTILITY INPUT subentry list. Only one subentry value for a given name
and ddname combination is saved in the UTILITY INPUT subentry list.

XZMOD
specifies one or more modules that were added to the load module by the
LINK MODULE command. The name of the zone supplying each module is
also indicated.

The UCL operand is XZMOD((module,zone)...).
v The zone name specified for an XZMOD subentry cannot match the name of

the set-to zone.
v The XZMOD subentry is added to an LMOD entry automatically during

LINK MODULE command processing. However, it is almost never removed
automatically, except during JCLIN processing. For more information, see
the “Cross-Zone Relationships” section of the JCLIN command chapter in
SMP/E for z/OS Commands.

LMOD entry (distribution and target zone)

Chapter 5. SMP/E data set entries 251

v An LMOD entry can contain XZMOD and XZMODP subentries without any
other subentries. Such an LMOD entry represents a stub load module, which
is retained after a load module with cross-zone relationships is deleted. If
the deleted load module is later reinstated, SMP/E uses the information in
the stub load module to issue messages reminding the user to use the LINK
MODULE command to restore those previous cross-zone relationships, if
they are still appropriate.

v If UCLIN is used to update an existing LMOD entry and only cross-zone
subentries (XZMOD and XZMODP) are changed, SMP/E does not update
the LASTUPD and LASTUPDTYPE subentries.

XZMODP
indicates that the load module contains one or more modules from another
zone and that XZMOD subentries exist in this LMOD entry.

The UCL operand is XZMODP.
v You never need to specify the XZMODP subentry on a UCL statement.

SMP/E automatically determines the setting of XZMODP, according to
whether the LMOD entry contains XZMOD subentries.

v You cannot add the XZMODP subentry to an LMOD entry that does not
contain XZMOD subentries.

v You cannot delete the XZMODP subentry from an LMOD entry containing
XZMOD subentries.

v An LMOD entry can contain XZMOD and XZMODP subentries without any
other subentries.

v If UCLIN is used to update an existing LMOD entry and only cross-zone
subentries are changed (XZMOD and XZMODP), SMP/E does not update
the LASTUPD and LASTUPDTYPE subentries.

LIST Examples

To list all the LMOD entries in a particular zone, you can use the following
commands:
SET BDY(TGT1) /* Set to requested zone. */.
LIST LMOD /* List all LMOD entries. */.

To list specific LMOD entries, you can use these commands:
SET BDY(TGT1) /* Set to requested zone. */.
LIST LMOD(LMOD01 /* List only these two */

LMOD02) /* entries. */.

The format of the LIST output for each LMOD entry is the same for both of these
commands. The only difference is the number of LMOD entries listed. The code
sample below is an example of LIST output for LMOD entries.

PAGE nnnn - NOW SET TO zzzzzz ZONE nnnnnnn DATE mm/dd/yy TIME hh:mm:ss SMP/E 36.nn SMPLIST OUTPUT

TGT1 LMOD ENTRIES

NAME

BPXLMOD1 LASTUPD = HBPX001 TYPE=ADD
SYSTEM LIBRARY = BPXLIB1
LKED ATTRIBUTES = RENT,CASE(MIXED)
LKED CONTROL = ENTRY BPXMOD01

ALIAS ../FRIENDLY/NAME/THAT/DOES/NOT/NEED/QUOTES
ALIAS ’../friendly/name/with a comma,/which/requires/quotes’
ALIAS ’../friendly/name/with/a/’’/which/requires/quotes’

LMOD01 LASTUPD = JXY1102 TYPE=ADD

LMOD entry (distribution and target zone)

252 SMP/E V3R6.0 for z/OS V2R1.0 Reference

SYSTEM LIBRARY = LINKLIB
RETURN CODE = 4
LKED ATTRIBUTES = STD
MODDEL = MOD05 MOD06
LKED CONTROL = ENTRY MOD01

ALIAS LMOD01A1

LMOD02 LASTUPD = JXY1102 TYPE=ADD
SYSTEM LIBRARY = LINKLIB PPLIB01
LKED ATTRIBUTES = RENT,REUS,AC=1

LMOD03 LASTUPD = JXY1102 TYPE=ADD
SYSTEM LIBRARY = LINKLIB
LKED ATTRIBUTES = RENT,REUS,AC=1
LKED CONTROL = ALIAS MOD03

*** CHANGE/REPLACE STMTS FOR MOD03 FROM DLIB AOS12
CHANGE MOD03C1(NEW03C1)
CHANGE MOD03C2(NEW03C2)

LMOD04 LASTUPD = LINK TYPE=UPD
SYSTEM LIBRARY = LINKLIB
RETURN CODE = 4
LKED ATTRIBUTES = STD
XZMODP
XZMOD = CICSMOD1 FROM ZONE CICS1

= CICSMOD2 FROM ZONE CICS1
= CICSMOD4 FROM ZONE CICS1
= IMSMOD1 FROM ZONE IMS1

LKED CONTROL = ENTRY MOD04
ALIAS LMOD04A1

LMOD05 XZMODP
XZMOD = CICSMOD1 FROM ZONE CICS1

= CICSMOD2 FROM ZONE CICS1
= IMSMOD1 FROM ZONE IMS1

LMOD06 LASTUPD = JCLIN TYPE=ADD
SYSTEM LIBRARY = LINKLIB
LKED ATTRIBUTES = SCTR,MAXBLK(6160),AC=1,AMOD=MIN

LMOD07 LASTUPD = JCLIN TYPE=ADD
SYSTEM LIBRARY = LINKLIB
LKED ATTRIBUTES = FETCHOPT(PACK,PRIME),NOCALL
MODDEL = ISPLINK MOD01

LMOD08 LASTUPD = HXY0001 TYPE=ADD
SYSTEM LIBRARY = APPLLIB
LKED ATTRIBUTES = RENT,REUS
CALLLIBS = PLIBASE CSSLIB

LOTSOPRM LASTUPD = UCLIN TYPE=UPD
SYSTEM LIBRARY = LINKLIB
LKED ATTRIBUTES = RENT,REUS,SCTR,OVLY,XCAL,REFR,DC,NE,AC=1,ALIGN2,AMODE=31,CASE(MIXED),OL,MAXBLK(32760),

FETCHOPT(NOPACK,NOPRIME),COMPAT=LKED,NCAL,FILL(00),HOBSET,RMODE=SPLIT,ALIASES(ALL),
DYNAM(DLL),UPCASE(YES)

LKED CONTROL = ENTRY DL1MOD2

MODULE1 LASTUPD = UCLIN TYPE=ADD
SYSTEM LIBRARY = LINKLIB
LKED ATTRIBUTES = STD
MODDEL = MOD1 MOD2

MODUL25 LASTUPD = UCLIN TYPE=UPD
SYSTEM LIBRARY = LINKLIB
LKED ATTRIBUTES = STD

You can use the LIST command to find out the names of all the distribution library
modules that are link-edited into this load module. To include the names of these
modules in the LIST output you can use the XREF operand, as shown in these
commands:
SET BDY(TGT1) /* Set to requested zone. */.
LIST LMOD /* List all LMOD entries */

XREF /* and MODs in them. */.

Note:

LMOD entry (distribution and target zone)

Chapter 5. SMP/E data set entries 253

1. XREF can be used either in mass mode or in select mode.
2. SMP/E obtains the data included for the XREF operand by checking the LMOD

subentries in all the MOD entries. Because this data is not contained in the
LMOD entry itself, you cannot use UCLIN to change it in the LMOD entry.

The code sample below is an example of the LIST output produced when the
XREF operand is used.

PAGE nnnn - NOW SET TO zzzzzz ZONE nnnnnnn DATE mm/dd/yy TIME hh:mm:ss SMP/E 36.nn SMPLIST OUTPUT

TGT1 LMOD ENTRIES

NAME

BPXLMOD1 LASTUPD = HBPX001 TYPE=ADD
SYSTEM LIBRARY = BPXLIB1
LKED ATTRIBUTES = RENT,CASE(MIXED)
LKED CONTROL = ENTRY BPXMOD01

ALIAS ../FRIENDLY/NAME/THAT/DOES/NOT/NEED/QUOTES
ALIAS ’../friendly/name/with a comma,/which/requires/quotes’
ALIAS ’../friendly/name/with/a/’’/which/requires/quotes’

MODULES = NAME FMID
BPXMOD01 HBPX001

LMOD01 LASTUPD = JCLIN TYPE=ADD
SYSTEM LIBRARY = SLIB01
LKED ATTRIBUTES = COPY,RENT,REUS,SCTR,OVLY,EFR,DC,NE,AC=1,ALIGN2,AMODE=24,RMODE=24
MODULES = NAME FMID

MODULE2 HXZ1234

LMOD02 LASTUPD = JCLIN TYPE=ADD
SYSTEM LIBRARY = SLIB02
LKED ATTRIBUTES = COPY,RENT,REUS,SCTR,OVLY,EFR,DC,NE,AC=1,ALIGN2,AMODE=24,RMODE=24
MODULES = NAME FMID

MODULE2 HXZ1234

LMOD03 LASTUPD = JXY1102 TYPE=ADD
SYSTEM LIBRARY = LINKLIB
LKED ATTRIBUTES = RENT,REUS,AC=1
LKED CONTROL = ALIAS MOD3

*** CHANGE/REPLACE STMTS FOR MOD03 FROM DLIB AOS12
CHANGE MOD03C1(NEW03C1)
CHANGE MOD03C2(NEW03C2)

MODULES = NAME FMID
MOD03 JXY1121

LMOD04 LASTUPD = LINK TYPE=UPD
SYSTEM LIBRARY = LINKLIB
RETURN CODE = 4
LKED ATTRIBUTES = STD
XZMODP
XZMOD = CICSMOD1 FROM ZONE CICS1

= CICSMOD2 FROM ZONE CICS1
= CICSMOD4 FROM ZONE CICS1
= IMSMOD1 FROM ZONE IMS1

LKED CONTROL = ENTRY MOD04
= ALIAS LMOD04A1

MODULES = NAME FMID
= MODULE4 HXZ1234

LMOD05 XZMODP
XZMOD = CICSMOD1 FROM ZONE CICS1

= CICSMOD2 FROM ZONE CICS1
= IMSMOD1 FROM ZONE IMS1

LMOD entry (distribution and target zone)

254 SMP/E V3R6.0 for z/OS V2R1.0 Reference

LMOD06 LASTUPD = JCLIN TYPE=ADD
SYSTEM LIBRARY = LINKLIB
LKED ATTRIBUTES = SCTR,MAXBLK(6160),AC=1,AMOD=MIN
MODULES = NAME FMID

MODULE5 HXZ1234

LMOD07 LASTUPD = JCLIN TYPE=ADD
SYSTEM LIBRARY = LINKLIB
LKED ATTRIBUTES = FETCHOPT(PACK,PRIME),NOCALL
MODDEL = ISPLINK MOD01
MODULES = NAME FMID

MODULE6 JXY0001

LMOD08 LASTUPD = HXY0001 TYPE=ADD
SYSTEM LIBRARY = APPLLIB
LKED ATTRIBUTES = RENT,REUS
CALLLIBS = PLIBASE CSSLIB
MODULES = NAME FMID

MODULE7 HXY0001
MODULE8 HXY0001

MODULE1 LASTUPD = UCLIN TYPE=UPD
SYSTEM LIBRARY = LINKLIB
LKED ATTRIBUTES = STD
MODDEL = MOD1 MOD2
MODULES = NAME FMID

MODULE1 ???????

MODUL25 LASTUPD = UCLIN TYPE=UPD
SYSTEM LIBRARY = LINKLIB
LKED ATTRIBUTES = STD
MODULES = NAME FMID

MODUL25 HXZ1234

UNLOAD Examples

To dump the LMOD entries in UCL format, you can use the UNLOAD command.
To unload all the LMOD entries in a particular zone, you can use the following
commands:
SET BDY(TGT1) /* Set to requested zone. */.
UNLOAD LMOD /* Unload all LMOD entries. */.

To unload specific LMOD entries, you can use these commands:
SET BDY(TGT1) /* Set to requested zone. */.
UNLOAD LMOD(LMOD01 /* Unload only these two */

LMOD02) /* entries. */.

The format of the UNLOAD output for each LMOD entry is the same for both of
these commands. The only difference is the number of LMOD entries listed. The
following is an example of UNLOAD output for LMOD entries.

UCLIN .
REP LMOD (DL1LMOD)

LASTUPD (DL1F001)
LASTUPDTYPE (ADD)
SYSLIB (LINKLIB)
SIDEDECKLIB (SGOSSD)
/* LEPARM */ RENT REUS RMOD=ANY DYNAM(DLL)
CALLLIBS (SCEELOAD SEDCBASE)
/* UTILITY INPUT */
UTIN (

(GOSLMOD1 SGOSSD)
(GOSLMOD2 SGOSSD)

)
++LMODIN

LMOD entry (distribution and target zone)

Chapter 5. SMP/E data set entries 255

ENTRY DL1MOD1
++ENDLMODIN

.

REP LMOD (LMOD01)
LASTUPD (JXY1102)
LASTUPDTYPE (ADD)
SYSLIB (LINKLIB)
RC (4)
/* LEPARM */ STD
MODDEL (MOD05 MOD06)

++LMODIN
ENTRY MOD01
ALIAS LMOD01A1

++ENDLMODIN
.

REP LMOD (LMOD02)
LASTUPD (JXY1102)
LASTUPDTYPE (ADD)
SYSLIB (LINKLIB PPLIB01)
/* LEPARM */ RENT REUS AC=1

.
REP LMOD (LMOD03)

LASTUPD (JXY1102)
LASTUPDTYPE (ADD)
SYSLIB (LINKLIB)
/* LEPARM */ RENT REUS AC=1

++LMODIN
ALIAS MOD03
CHANGE MOD03C1(NEW03C1)
CHANGE MOD03C2(NEW03C2)
INCLUDE AOS12 (MOD03)

++ENDLMODIN
.

REP LMOD (LMOD04)
LASTUPD (LINK)
LASTUPDTYPE (UPD)
SYSLIB (LINKLIB)
RC (4)
/* LEPARM */ STD
/* CROSS-ZONE*/ XZMODP
XZMOD (

(CICSMOD1 CICS1)
(CICSMOD2 CICS1)
(IMSMOD1 IMS1)

)
++LMODIN
ENTRY MOD01
ALIAS LMOD04A1

++ENDLMODIN
.

REP LMOD (LMOD05)
/* CROSS-ZONE*/ XZMODP
XZMOD (

(CICSMOD1 CICS1)
(CICSMOD2 CICS1)
(IMSMOD1 IMS1)

)
.

REP LMOD (LMOD06)
LASTUPD (JCLIN)
LASTUPDTYPE (ADD)
SYSLIB (LINKLIB)
/* LEPARM */ SCTR MAXBLK(6160) AC=1 AMOD=MIN

.
REP LMOD (LMOD07)

LASTUPD (JCLIN)

LMOD entry (distribution and target zone)

256 SMP/E V3R6.0 for z/OS V2R1.0 Reference

LASTUPDTYPE (ADD)
SYSLIB (LINKLIB)
MODDEL (ISPLINK MOD01)
/* LEPARM */ FETCHOPT(PACK,PRIME) NOCALL

.
REP LMOD (LMOD08)

LASTUPD (HXY0001)
LASTUPDTYPE (ADD)
SYSLIB (APPLLIB)
/* LEPARM */ RENT REUS
CALLLIBS (PLIBASE CSSLIB)

.

REP LMOD (LOTSOPRM)
LASTUPD (UCLIN)
LASTUPDTYPE (UPD)
SYSLIB (LINKLIB)
/* LEPARM */ RENT REUS SCTR OVLY XCAL REFR DC NE AC=1

ALIGN2 AMODE=31 CASE(MIXED) OL MAXBLK(32760)
FETCHOPT(NOPACK,NOPRIME) COMPAT=LKED NCAL
FILL(00) HOBSET RMODE=SPLIT ALIASES(ALL)
DYNAM(DLL) UPCASE(YES)

++LMODIN
ENTRY DL1MOD2

++ENDLMODIN
.

REP LMOD (MOD04)
LASTUPD (JXY1102)
LASTUPDTYPE (ADD)
SYSLIB (LPALIB)
/* LEPARM */ COPY STD

.
ENDUCL.

UCLIN Examples

You can use the ADD, REP, and DEL UCL statements to change subentries in the
LMOD entry. When you use UCLIN to update an LMOD entry, keep these points
in mind:
v After the UCLIN changes are made, the LMOD entry must contain at least a

SYSLIB subentry. Otherwise, there is not enough information in the entry to
indicate where the load module should be installed.

v The input following the ++LMODIN statement replaces all existing link-edit
control cards in the LMOD entry. This is different from JCLIN processing, where
all control cards are replaced except CHANGE and REPLACE, which are
merged with the existing CHANGE and REPLACE control cards.

v If a DEL statement deletes all the existing subentries in the entry, SMP/E deletes
the entire entry.

v When SMP/E processes a DEL statement, it does not compare any control cards
after the ++LMODIN statement with the control cards that are currently in the
LMOD entry. It deletes all the existing control cards.

The following examples are provided to help you use the LMOD entry.

Example 1: Adding a new LMOD entry
The correct method of adding a new LMOD entry is through JCLIN, so that in
addition to the LMOD entry being created, SMP/E also ensures that all related
MOD entries are updated. If, however, you want to define a new load module
entry using UCL, the following is an example of the minimum information you
should provide.

LMOD entry (distribution and target zone)

Chapter 5. SMP/E data set entries 257

SET BDY(TGT1) /* Set to target zone. */.
UCLIN /* */.
ADD LMOD(LMOD01) /* Define new LMOD entry. */

SYSLIB(LPALIB /* System library 1. */
PPLIB01) /* System library 2. */

RENT REUS AC=1 /* All link attributes. */
++LMODIN /* All link-edit stmts. */
INCLUDE AOS12(MOD01)
INCLUDE AOS12(MOD02)
ENTRY MOD01
ALIAS LMOD01A1
NAME LMOD01(R)
++ENDLMODIN

/* */.
REP MOD(MOD01) /* Now fix MOD entries. */

DISTLIB(AOS12) /* MOD DLIB. */
FMID(FXY1102) /* Functional owner. */
LMOD(LMOD01) /* Connect to LMOD. */

/* */.
REP MOD(MOD02) /* Now fix MOD entries. */

DISTLIB(AOS12) /* MOD DLIB. */
FMID(FXY1102) /* Functional owner. */
LMOD(LMOD01) /* Connect to LMOD. */

/* */.
ENDUCL /* */.

Note: In this example, the entire set of control cards needed to link the load
module was specified. MOD entries for modules within the load module were also
updated.

Example 2: Changing the link-edit attributes of an LMOD
As in the previous example, the correct way to change any part of a LMOD entry
is through the use of JCLIN. However, at times, assuming a knowledge of SMP/E
and UCL processing, you may decide to use UCL to do it. For this example,
assume you have a load module, LMOD99, with link-edit attributes of RENT
REUS, and that you have made changes so that it is no longer reentrant but is
now authorized and will fill uninitialized areas. This change can be made as
follows:
SET BDY(TGT1) /* Set to target zone. */.
UCLIN /* */.
DEL LMOD(LMOD99) /* Existing LMOD entry. */

RENT. /* Delete RENT attribute. */
ADD LMOD(LMOD99) /* Existing LMOD entry. */

AC=1 FILL(00) /* Add authorization, */
/* and fill uninitialized */
/* areas to hex byte 00. */.

ENDUCL /* */.

Example 3: Deleting a MODDEL subentry
Suppose load module LMOD03 for product A included module MOD01 from
product B, and both products are installed in zone ZOSZN. Product B deleted
MOD01 without replacing it, and as a result, SMP/E created a MODDEL subentry
for MOD01 in the LMOD entry for LMOD03. You have decided to reintroduce
your own version of MOD01, but do not want it relinked into LMOD03. To
prevent this relinking, delete the MODDEL subentry from the LMOD entry, as
shown in the following example: :
SET BDY(ZOSZN) /* Set to zone. */.
UCLIN /* Start UCLIN processing. */.
DEL LMOD(LMOD03) /* Identify LMOD entry. */

MODDEL(MOD01) /* Delete MODDEL subentry. */.
ENDUCL /* */.

LMOD entry (distribution and target zone)

258 SMP/E V3R6.0 for z/OS V2R1.0 Reference

Example 4: Completing cross-zone updates
If SMP/E could not complete cross-zone updates for APPLY or RESTORE
processing, you may need to use UCLIN to make the remaining changes. (SMP/E
issues messages and reports to tell you what cross-zone work you may need to
finish.) Here are some examples of using UCLIN to change XZMOD subentries in
LMOD entries. Make sure you check the messages and reports to determine
whether any additional changes are needed for cross-zone subentries in MOD
entries or TARGETZONE entries.
v Adding XZMOD subentries: This example adds module IGCXXX from zone

ZXXX and module IGCABC from zone ZABC to the IEANUC01 LMOD entry. If
this LMOD entry previously had no XZMOD subentries, SMP/E automatically
sets XZMODP to indicate that the LMOD entry now contains XZMOD
subentries.
SET BDY(ZOSZN) /* Set to z/OS zone */.
UCLIN /* start UCLIN processing */.
ADD LMOD(IEANUC01) /* identify LMOD entry */

XZMOD((IGCXXX,ZXXX), /* add module from ZXXX zone */
(IGCABC,ZABC)) /* add module from ZABC zone */.

ENDUCL /* end UCLIN processing */.

v Replacing XZMOD subentries: This example replaces all the XZMOD
subentries in LMOD entry CICSDIAG with a single subentry for module
ISPLINK from zone ZOSZN. If this LMOD entry previously had no XZMOD
subentries, SMP/E automatically sets XZMODP to indicate that the LMOD entry
now contains XZMOD subentries.
SET BDY(CICS1) /* set to CICS zone */.
UCLIN /* start UCLIN processing */.
REP LMOD(CICSDIAG) /* identify LMOD entry */

XZMOD((ISPLINK,ZOSZN)) /* replace list with one value */.
ENDUCL /* end UCLIN processing */.

v Deleting XZMOD subentries: This example shows how to delete a single
XZMOD subentry or all XZMOD subentries.
– For LMOD entry IMSDIAG1, one XZMOD subentry is deleted. If no XZMOD

values are left, SMP/E turns the XZMODP indicator off to indicate that the
LMOD entry no longer has XZMOD subentries.

– For LMOD entry IMSDIAG2, all XZMOD subentries are deleted. SMP/E turns
the XZMODP indicator off to indicate that the LMOD entry no longer
contains XZMOD subentries.

SET BDY(IMS1) /* set to IMS zone */.
UCLIN /* start UCLIN processing */.
DEL LMOD(IMSDIAG1) /* identify LMOD entry */

XZMOD((ISPLINK,ZOSZN)) /* delete ISPLINK reference */
DEL LMOD(IMSDIAG2) /* identify LMOD entry */

XZMOD() /* delete entire list */.
ENDUCL /* end UCLIN processing */.

Example 5: Adding a CALLLIBS subentry list to an LMOD
entry

You can use either the ADD or the REP statement to add a CALLLIBS subentry list
to an LMOD entry, depending on whether the CALLLIBS already exists or not. The
order in which the libraries are specified is important because it indicates the order
in which the SYSLIB concatenation is built. This is shown in the examples that
follow.
v Adding a CALLLIBS subentry: This example adds a CALLLIBS subentry list

containing PLIBASE and APPLIB to LMOD entry LMOD04.

LMOD entry (distribution and target zone)

Chapter 5. SMP/E data set entries 259

SET BDY(ZOSZN) /* set to z/OS zone */.
UCLIN /* start UCLIN processing */.
ADD LMOD(LMOD04) /* identify LMOD entry */

CALLLIBS(PLIBASE,APPLIB) /* add CALLLIBS subentry */.
ENDUCL /* end UCLIN processing */.

v Adding to an existing CALLLIBS subentry: Suppose LMOD entry LMOD05 has
a CALLLIBS subentry list containing PLIBASE and APPLIB, and CSSLIB is to be
added to this list. The entire CALLLIBS subentry must be replaced as shown in
the following example: :
SET BDY(ZOSZN) /* set to z/OS zone */.
UCLIN /* start UCLIN processing */.
REP LMOD(LMOD05) /* identify LMOD entry */

CALLLIBS(PLIBASE,APPLIB, /* */
CSSLIB) /*replace entire CALLLIBS */.

ENDUCL. /* end UCLIN processing */.

Note: If an ADD statement is used to try to update an existing CALLLIBS
subentry list in an LMOD entry, SMP/E issues an error message.

Example 6: Deleting link-edit control statements
Suppose you have installed a SYSMOD that was packaged incorrectly and added
unwanted link-edit control statements to the LMOD entry for an existing load
module. As a result, you now need to delete those statements from the LMOD
entry. Here is an example of the UCLIN statements you can use to make this
change:
SET BDY(ZOSZN) /* set to z/OS zone */.
UCLIN /* start UCLIN processing */.
DEL LMOD(LMODXZ) /* identify LMOD entry */
++LMODIN /* delete all link-edit */
++ENDLMODIN /* control statements. */.
ENDUCL /* end UCLIN processing */.

Using the REP command instead of the DEL command gives you the same result.
There is no need to specify the control statements to be deleted. In fact, you cannot
selectively delete link-edit control statements from an LMOD entry—you can only
delete them all.

Example 7: Adding a UTIN and SIDEDECKLIB subentry to an
LMOD

In this example, a utility input subentry list, containing DSOMCMP1 from library
SDSOMSD and DSOMCMP2 from library SDSOMSD, is added to the LMOD entry
for load module LMOD1. In addition, a side deck library subentry of SGOSSD is
added to the LMOD entry for load module LMOD5.
SET BDY(TGT) /* Set to target zone. */.
UCLIN /* Start UCLIN processing. */.
ADD LMOD(LMOD1) /* Identify LMOD entry. */

UTIN((DSOMCMP1,SDSOMSD) /* Add utility input... */
(DSOMCMP2,SDSOMSD)) /* ...subentry list. */.

ADD LMOD(LMOD5) /* Identify LMOD entry. */
SIDEDECKLIB(SGOSSD) /* Add side deck library. */.

ENDUCL /* End UCLIN processing. */.

Example 8: Deleting a UTIN subentry from an LMOD
In this example, DSOMCMP1 is deleted from the utility input subentry for LMOD
entry LMOD2, and the entire utility input subentry list is removed from LMOD
entry LMOD3.

LMOD entry (distribution and target zone)

260 SMP/E V3R6.0 for z/OS V2R1.0 Reference

SET BDY(TGT) /* Set to target zone. */.
UCLIN /* Start UCLIN processing. */.
DEL LMOD(LMOD2) /* Identify LMOD entry. */

UTIN((DSOMCMP1,SDSOMSD)) /* Remove DSOMCMP1 from */
/* utility input subentry. */.

DEL LMOD(LMOD3) /* Identify LMOD entry. */
UTIN() /* Delete all utility input. */.

ENDUCL /* End UCLIN processing. */.

MAC entry (distribution and target zone)
The MAC entry describes a macro that exists in the distribution or target macro
libraries. A MAC entry is generally created by one of the following methods:
v Installing a SYSMOD that contains the macro. MAC entries are created the first

time you install a SYSMOD containing a ++MAC statement for a macro that
does not yet have a MAC entry.

v Processing JCLIN. MAC entries can be built during JCLIN processing when
SMP/E scans the assembler statements for inline assemblies to determine which
macros are used in that assembly. The name of the assembly is kept in the MAC
entry, so when the macro is updated, SMP/E can reassemble the required
modules.
MAC entries can also be built when SMP/E scans copy steps and finds a
SELECT statement that specifies TYPE=MAC.
For additional information, see the “Processing” section of the JCLIN command
chapter in SMP/E for z/OS Commands.

SMP/E records the function and service level of each macro in the MAC entry, as
well as information about how that macro affects the structure of the distribution
or target libraries and modules.

Once a MAC entry exists for a macro, it is updated as subsequent SYSMODs are
installed.

Subentries

These are the subentries for the MAC entry as they appear in the LIST output:

name
is the name of the macro represented by the MAC entry.

The name can contain from 1 to 8 alphanumeric characters and $, #, @, or hex
C0.

DISTLIB
is the ddname of the macro distribution library.

The UCL operand is DISTLIB(ddname).
v The ddname can contain from 1 to 8 alphanumeric characters.
v The DISTLIB subentry is not required when the MAC entry is first defined.

For example, during JCLIN processing SMP/E builds MAC entries without a
DISTLIB value. However, SMP/E can add a DISTLIB value later when it
processes the ++MAC statement. A DISTLIB value is needed at some time to
process any changes for the macro.

FMID
identifies the functional owner of this macro. The functional owner is the last
function SYSMOD that replaced this macro.

The UCL operand is FMID(sysmod_id).

LMOD entry (distribution and target zone)

Chapter 5. SMP/E data set entries 261

The SYSMOD ID must contain 7 alphanumeric characters.

GENASM
identifies those assemblies that have to be done during APPLY each time this
macro is modified. These assemblies must exist as either ASSEM or SRC entries
in the target zone.

The UCL operand is GENASM(name...).

The names can contain from 1 to 8 alphanumeric characters.

LASTUPD
identifies the cause of the last change to this MAC entry.

The UCL operand is LASTUPD(value). This subentry can contain one of the
following values:

JCLIN
indicates that the change was made during JCLIN command processing.

UCLIN
indicates that the change was made as a result of UCLIN processing.

sysmod-id
indicates that the change was made during the installation of the indicated
SYSMOD.

The SYSMOD ID must contain 7 alphanumeric characters.

LASTUPD TYPE
indicates how the entry was last changed.

The UCL operand is LASTUPDTYPE(value). This subentry can contain one of
the following values:

ADD The entry was added.

MOV The entry was moved.

UPD The entry was updated.

MALIAS
identifies any alias names for this macro.

The UCL operand is MALIAS(name...).

The alias names can contain from 1 to 8 alphanumeric characters.

RMID
identifies the last SYSMOD that replaced this macro. Any subsequent SYSMOD
that modifies this macro must have a defined relationship (such as PRE or
SUP) with this SYSMOD.

The UCL operand is RMID(sysmod_id).
v The SYSMOD ID must contain 7 alphanumeric characters.
v If RMID is not specified, but FMID is, SMP/E sets the RMID value to the

specified FMID.

SYSLIB
is the ddname of the target system macro library.

The UCL operand is SYSLIB(ddname).
v Only one SYSLIB value may be specified.
v The ddname can contain from 1 to 8 alphanumeric characters.

MAC entry (distribution and target zone)

262 SMP/E V3R6.0 for z/OS V2R1.0 Reference

UMID
identifies all those SYSMODs that have updated this macro since it was last
replaced. Any subsequent SYSMOD that modifies this macro must have a
defined relationship (such as PRE or SUP) with all these SYSMODs.

The UCL operand is UMID(sysmod_id...).

The SYSMOD ID must contain 7 alphanumeric characters.

LIST Examples

To list all the MAC entries in a particular zone, you can use the following
commands:
SET BDY(TGT1) /* Set to requested zone. */.
LIST MAC /* List all MAC entries. */.

To list specific MAC entries, you can use these commands:
SET BDY(TGT1) /* Set to requested zone. */.
LIST MAC(MAC01 /* List only these two */

MAC02) /* entries. */.

The format of the LIST output for each MAC entry is the same for both of these
commands. The only difference is the number of MAC entries listed. Figure 35
shows an example of LIST output for MAC entries.

By specifying the FORFMID operand, you can reduce the number of MAC entries
listed. When FORFMID is specified, SMP/E lists a MAC entry only if its FMID
matches one of the FMIDs specified on the FORFMID operand. For example, to list
MAC entries whose FMIDs either are defined in FMIDSET TP or are JXY1102, you
can use these commands:
SET BDY(TGT1) /* Set to target zone. */.
LIST MAC /* List all macro entries */

FORFMID(TP /* for the TP FMIDSET */
JXY1102) /* and FMID JXY1102. */.

PAGE nnnn - NOW SET TO zzzzzz ZONE nnnnnnn DATE mm/dd/yy TIME hh:mm:ss SMP/E 36.nn SMPLIST OUTPUT

TGT1 MACRO ENTRIES

NAME

MAC01 LASTUPD = JXY1102 TYPE=ADD
LIBRARIES = DISTLIB=DLIBMAC1 SYSLIB=MACLIB01
FMID = JXY1102
RMID = JXY1102
MALIAS = TERMINAL TERM T
GENASM = ASSEM01 ASSEM02 SRC01 SRC02

MAC02 LASTUPD = JXY1000 TYPE=UPD
LIBRARIES = DISTLIB=DLIBMAC1 SYSLIB=MACLIB01
FMID = JXY1121
RMID = UZ00010
UMID = UZ00014 UZ00015
GENASM = ASSEM01 SRC02

Figure 35. MAC entry: sample LIST output

MAC entry (distribution and target zone)

Chapter 5. SMP/E data set entries 263

You can use the LIST command to find out the names of all SYSMODs that have
modified a macro. To include the names of these SYSMODs in the LIST output,
you can use the XREF operand, as shown in these commands:
SET BDY(TGT1) /* Set to requested zone. */.
LIST MAC /* List all macro entries */

XREF /* and related SYSMODs. */.

Note:

1. XREF can be used either in mass mode or in select mode.
2. SMP/E obtains the data included for the XREF operand by checking for MAC

and MACUPD entries for this macro in all the SYSMOD entries. Because this
data is not contained in the MAC entry itself, you cannot use UCLIN to change
it in the MAC entry.

Figure 36 is an example of the LIST output produced when the XREF operand is
used.

UNLOAD Examples

To dump the MAC entries in UCL format, you can use the UNLOAD command.
To unload all the MAC entries in a particular zone, you can use the following
commands:
SET BDY(TGT1) /* Set to requested zone. */.
UNLOAD MAC /* Unload all MAC entries. */.

To unload specific MAC entries, you can use these commands:
SET BDY(TGT1) /* Set to requested zone. */.
UNLOAD MAC(MAC01 /* Unload only these two */

MAC02). /* entries. */.

PAGE nnnn - NOW SET TO zzzzzz ZONE nnnnnnn DATE mm/dd/yy TIME hh:mm:ss SMP/E 36.nn SMPLIST OUTPUT

TGT1 MACRO ENTRIES

NAME

MAC01 LASTUPD = JXY1102 TYPE=ADD
LIBRARIES = DISTLIB=DLIBMAC1 SYSLIB=MACLIB01
FMID = JXY1102
RMID = JXY1102
MALIAS = TERMINAL TERM T
GENASM = ASSEM01 ASSEM02 SRC01 SRC02
SYSMOD HISTORY = SYSMOD TYPE DATE MCS --STATUS--

JXY1102 FUNCTION 07.100 MAC APP ACC

MAC02 LASTUPD = JXY1000 TYPE=UPD
LIBRARIES = DISTLIB=DLIBMAC1 SYSLIB=MACLIB01
FMID = JXY1121
RMID = UZ00010
UMID = UZ00014 UZ00015
GENASM = ASSEM01 SRC02
SYSMOD HISTORY = SYSMOD TYPE DATE MCS --STATUS--

JXY1102 FUNCTION 07.100 MAC APP ACC
JXY1121 FUNCTION 07.150 MAC APP ACC
UZ00010 PTF 07.150 MAC APP
UZ00014 PTF 07.160 MACUPD APP
UZ00015 PTF 07.161 MACUPD APP

Figure 36. MAC entry: sample LIST output when XREF is specified

MAC entry (distribution and target zone)

264 SMP/E V3R6.0 for z/OS V2R1.0 Reference

The format of the UNLOAD output for each MAC entry is the same for both of
these commands. The only difference is the number of MAC entries listed.
Figure 37 is an example of UNLOAD output for MAC entries.

By specifying the FORFMID operand, you can reduce the number of MAC entries
unloaded. When FORFMID is specified, SMP/E unloads a MAC entry only if its
FMID matches one of the FMIDs specified on the FORFMID operand. For example,
to unload MAC entries whose FMIDs either are defined in FMIDSET TP or are
JXY1102, you can use these commands:
SET BDY(TGT1) /* Set to target zone. */.
UNLOAD MAC /* Unload all macro entries */

FORFMID(TP /* for the TP FMIDSET */
JXY1102) /* and FMID JXY1102. */.

UCLIN Examples

You can use the ADD, REP, and DEL UCL statements to change subentries in the
MAC entry. After the UCLIN changes are made, the MAC entry must contain at
least the following subentries:
v FMID
v RMID

Otherwise, there is not enough information in the entry to process the macro. If
any of these subentries are missing, SMP/E does not make the requested UCL
updates to the entry, and the entry remains as it was before the UCL command.

The following examples are provided to help you use the MAC entry.

Example 1: Adding a new MAC entry
Defining a new macro entry with UCL is very seldom required; generally, MAC
entries are created from the information specified on the ++MAC statements
contained in the SYSMODs when SYSMODs are installed. If, however, you want to

UCLIN .
REP MAC (MAC01)

LASTUPD (JXY1102)
LASTUPDTYPE (ADD)
DISTLIB (DLIBMAC1)
SYSLIB (MACLIB01)
FMID (JXY1102)
RMID (JXY1102)
MALIAS (TERMINAL TERM T)
GENASM (ASSEM01 ASSEM02 SRC01 SRC02)

.
REP MAC (MAC02)

LASTUPD (JXY1121)
LASTUPDTYPE (UPD)
DISTLIB (DLIBMAC1)
SYSLIB (MACLIB01)
FMID (JXY1121)
RMID (UZ00010)
UMID (UZ00014 UZ00015)
GENASM (ASSEM01 SRC02)

.
ENDUCL.

Figure 37. MAC entry: sample UNLOAD output

MAC entry (distribution and target zone)

Chapter 5. SMP/E data set entries 265

use UCL in defining a new macro entry, the following is an example of the
minimum information you should provide:
SET BDY(TGT1) /* Set to target zone. */.
UCLIN /* */.
ADD MAC(MAC01) /* Define new macro entry. */

DISTLIB(AMACLIB) /* Define DLIB, */
SYSLIB(MACLIB) /* system library

(never the SMPMTS or MTS). */
FMID(ZUSR001) /* Functional owner (in this

example a user function). */
/* */.

ENDUCL /* */.
SET BDY(DLB1). /* Now do same to DLIB. */
UCLIN /* */.
ADD MAC(MAC01) /* Define new macro entry. */

DISTLIB(AMACLIB) /* Define DLIB. */
/* No SYSLIB info in DLIB. */

FMID(ZUSR001) /* Functional owner (in this
example a user function). */

/* */.
ENDUCL /* */.

Example 2: Defining an alias for an existing macro
The following defines the method of adding an alias to an existing macro:
SET BDY(TGT1) /* Set to target zone. */.
UCLIN /* */.
ADD MAC(MAC01) /* Existing macro entry. */

MALIAS(MAC01AL1) /* New alias name. */
/* End of adding macro. */.

ENDUCL /* */.
SET BDY(DLB1) /* Now do same thing to

appropriate DLIB. */.
UCLIN /* */.
ADD MAC(MAC01) /* Existing macro entry. */

MALIAS(MAC01AL1) /* New alias name. */
/* End of adding macro. */.

ENDUCL /* */.

Note: This UCL does not create an alias entry in the target or distribution libraries;
that must be done outside of SMP/E using standard utilities. This ensures that,
when the macro is subsequently modified, both the major entry and the alias entry
are updated.

MCS entry (SMPPTS)
The MCS entry is a copy of a SYSMOD exactly as it was received from the
SMPPTFIN data set. The MCS entry is in the SMPPTS data set, which is used as a
warehouse for SYSMODs. When SMP/E receives a SYSMOD, it stores the
SYSMOD as a separate member in the SMPPTS. The member name matches the
SYSMOD ID, and each member is an MCS entry. SMP/E also creates a SYSMOD
entry in the global zone to describe the SYSMOD that was received. Thus, the MCS
entry and the global zone SYSMOD entry are closely related.

When SMP/E accepts or applies SYSMODs, it gets them from the MCS entries in
the SMPPTS. An MCS entry is generally kept in the SMPPTS until the associated
SYSMOD is accepted; then the entry is deleted.
v You may want SMP/E to save the MCS entries after ACCEPT processing, for

example, if you plan to do a system generation. To do this, specify NOPURGE
in the OPTIONS entry that is in effect during ACCEPT processing.

MAC entry (distribution and target zone)

266 SMP/E V3R6.0 for z/OS V2R1.0 Reference

v Likewise, you may want to save the MCS entries after RESTORE processing. To
do this, specify NOREJECT in the OPTIONS entry that is in effect during
RESTORE processing.

Subentries

The MCS entry contains no SMP/E data and appears to the system as a member of
a normal partitioned data set.

LIST Examples

To list all the MCS entries in the SMPPTS, you can use the following commands:
SET BDY(GLOBAL) /* Set to global. */.
LIST MCS /* List all MCS entries. */.

To list specific MCS entries, you can use these commands:
SET BDY(GLOBAL) /* Set to global. */.
LIST MCS(UZ12345, /* List only these two */

UZ12346) /* entries. */.

The format of the LIST output for each MCS entry is the same for both of these
commands. The only difference is the number of MCS entries listed.

Figure 38 is an example of LIST output for MCS entries.

As the example for UZ12346 shows, SMP/E includes inline JCLIN when listing the
MCS entries.

You can use various SYSMOD-related LIST operands to limit which MCS entries
are listed. For more information, see “SYSMOD entry (distribution and target
zone)” on page 312 and “SYSMOD entry (global zone)” on page 326.

In addition to the LIST command, you can use standard system utility programs
(such as IEBGENER, IEBPTPCH, IEHLIST, and so on) or products such as ISPF to

PAGE nnnn - NOW SET TO zzzzzz ZONE nnnnnnn DATE mm/dd/yy TIME hh:mm:ss SMP/E 36.nn SMPLIST OUTPUT

SMPPTS MCS ENTRIES

NAME

UZ12345 MCS = ++PTF(UZ12345).
++VER(Z038) FMID(JXY1102).
++MOD(XYMOD01) DISTLIB(AOS12).

UZ12346 MCS = ++PTF(UZ12346).
++VER(Z038) FMID(FXY1102).
++JCLIN.
//JOB JOB ’accounting info’,MSGLEVEL=(1,1)
//STEP1 EXEC PGM=IEBCOPY
//MACLIB DD DSN=SYS1.MACLIB,DISP=SHR
//AMACLIB DD DSN=SYS1.AMACLIB,DISP=SHR
//SYSIN DD *
COPY INDD=AMACLIB,OUTDD=MACLIB
/*
++MAC(MAC01) DISTLIB(AMACLIB).

Figure 38. MCS entry: sample LIST output

MCS entry (SMPPTS)

Chapter 5. SMP/E data set entries 267

display these entries or information about the data set.

UCLIN Examples

You cannot use UCLIN to add, update, or delete MCS entries. However, you can
use the REJECT command to delete MCS entries. For more information about the
REJECT command, see SMP/E for z/OS Commands.

Do not use system utility programs to update MCS entries. The global zone
SYSMOD entry is coordinated with the MCS entry. Any changes to the MCS entry
made outside of SMP/E may get these entries out of synchronization and can
result in unpredictable results when the associated SYSMOD is processed.

MOD entry (distribution and target zone)
The MOD entry describes a particular module, its function and service level, and
how it relates to a load module in the target library. A MOD entry is generally
created by one of the following methods:
v Installing a SYSMOD that contains the module. MOD entries are created the

first time you install a SYSMOD that contains a ++MOD statement for a module
that does not yet have a MOD entry. If the module comes from a copied
distribution library, SMP/E also builds an LMOD entry with the same name. For
additional information about copied libraries and the creation of LMOD entries,
see “DLIB entry (distribution and target zone)” on page 208 and SMP/E for z/OS
Commands.
A MOD entry can also be created when you install a SYSMOD that causes the
assembled source to be linked to the distribution library. This can happen when
a SYSMOD contains both a ++MOD and a ++SRC statement for the same
module, or when the DISTMOD operand is specified on the ++SRC statement.

v Processing JCLIN. MOD entries can be built during JCLIN processing when
SMP/E scans the link-edit and copy steps. A MOD entry built during JCLIN
processing is always associated with an LMOD entry. Thus, when the module is
changed, SMP/E can determine which load modules are affected. For additional
information, see the “Processing” section of the JCLIN command chapter in
SMP/E for z/OS Commands.

Subentries

These are the subentries for the MOD entry as they appear in the LIST output:

name
is the name of the module represented by the MOD entry.

The name can contain from 1 to 8 alphanumeric characters and $, #, @, or hex
C0.

ASSEMBLE
indicates that the source for this module must always be assembled, even if the
object module is supplied in the SYSMOD.

The UCL operand is ASSEMBLE.

CSECT
specifies the CSECTs present in this module.

The UCL operand is CSECT(name...).

MCS entry (SMPPTS)

268 SMP/E V3R6.0 for z/OS V2R1.0 Reference

v The CSECT subentry is not required. However, if CSECT is missing, SMP/E
assumes that the module contains only one CSECT, whose name matches the
module name.

v A CSECT name can contain from 1 to 8 characters.
The name can contain any characters except the following:
– Comma ,
– Left parenthesis (
– Right parenthesis)
– Blank

v Comments are not allowed within a CSECT name. For example, the
following is not allowed:
CSECT (/* this is a csect name */ CSECT01)

The comment is interpreted as part of the CSECT name, instead of a
comment.

v The list of CSECT names must include all of the CSECTs in the module,
even if one of the CSECTs matches the module name.

v Once a ++MOD with the CSECT operand is processed, SMP/E saves the
CSECT information in the MOD entry. From then on, SMP/E uses that saved
information if it is not supplied on subsequent SYSMODs.

v If a module is changed from multiple CSECTs to a single CSECT that
matches the module name, the CSECT operand must be specified with one
name in order to get SMP/E to store that information in the MOD entry.

DALIAS
specifies the alias name for the module, where the alias exists only in the
distribution library.

The UCL operand is DALIAS(name).

The DALIAS name can contain from 1 to 8 alphanumeric characters.

DISTLIB
is the ddname of the module distribution library.

The UCL operand is DISTLIB(ddname).

The ddname can contain from 1 to 8 alphanumeric characters.

FMID
identifies the functional owner of this module. The functional owner is the last
function SYSMOD that replaced this module.

The UCL operand is FMID(sysmod_id).
v The SYSMOD ID must contain 7 alphanumeric characters.
v Some MOD entries, specifically those associated with a system generation

assembly, may have no functional owner. The DISTLIB for these modules is
SYSPUNCH. They may have either no FMID, or one of the following values:
– If the module has no functional owner but was assembled during system

generation, *SYSGEN appears as the FMID.
– If the module has no functional owner and was not assembled during

system generation, ??????? appears as the FMID.

LASTUPD
identifies the cause of the last change to this MOD entry.

Note: If a given UCLIN command specifies only cross-zone subentries, this
field is not changed.

MOD entry (distribution and target zone)

Chapter 5. SMP/E data set entries 269

The UCL operand is LASTUPD(value). This subentry can contain one of the
following values:

JCLIN
indicates that the change was made during JCLIN command processing.

UCLIN
indicates that the change was made as a result of UCLIN processing.

sysmod-id
indicates that the change was made during installation of the specified
SYSMOD. The SYSMOD did one of the following:
v Contained inline JCLIN that affected the module
v Changed the distribution library for the module through the DISTLIB

operand on the ++MOD statement
v Added the module to an existing load module through the LMOD

operand on the ++MOD statement

The SYSMOD ID must contain 7 alphanumeric characters.

LASTUPD TYPE
indicates how the entry was last changed.

Note: If a given UCLIN command specifies only cross-zone subentries, this
field is not changed.

The UCL operand is LASTUPDTYPE(value). This subentry can contain one of
the following values:

ADD The entry was added.

DEL A subentry in the entry was deleted.

MOV The module was moved.

UPD The entry was updated.

LKED ATTRIBUTES
identifies the link-edit attributes that must be used when this module is
link-edited. SMP/E supports the following link-edit attributes. For more
information, see z/OS MVS Program Management: User's Guide and Reference.

AC=1
specifies that the AC=1 parameter, which is the authorization code, is to be
passed to the link-edit utility when the module is link-edited.

The UCL operand is AC=1.

ALIGN2
specifies that the ALIGN2 parameter (alignment on a 2KB boundary) is to
be passed to the link-edit utility when the module is link-edited.

The UCL operand is ALIGN2 or ALN2.

AMODE=24
specifies that the AMODE=24 parameter is to be passed to the link-edit
utility when the module is link-edited.

The UCL operand is AMODE=24 or AMOD=24.

AMODE=31
specifies that the AMODE=31 parameter is to be passed to the link-edit
utility when the module is link-edited.

The UCL operand is AMODE=31 or AMOD=31.

MOD entry (distribution and target zone)

270 SMP/E V3R6.0 for z/OS V2R1.0 Reference

AMODE=64
specifies that the AMODE=64 parameter is to be passed to the link-edit
utility when the module is link-edited.

The UCL operand is AMODE=64 or AMOD=64.

AMODE=ANY
specifies that the AMODE=ANY parameter is to be passed to the link-edit
utility when the module is link-edited.

The UCL operand is AMODE=ANY or AMOD=ANY.

AMODE=MIN
specifies that the AMODE=MIN parameter is to be passed to the link-edit
utility when the module is link-edited.

The UCL operand is AMODE=MIN or AMOD=MIN.

COMPAT
specifies that the COMPAT parameter is to be passed to the link-edit utility
when the module is link-edited.

The UCL operand is COMPAT=LKED|PM1|PM2|PM3|PM4.

DC
specifies that the DC parameter, which is the downward compatible
attribute, is to be passed to the link-edit utility when the module is
link-edited.

The UCL operand is DC.

FETCHOPT
specifies that the FETCHOPT parameter is to be passed to the link-edit
utility when the module is link-edited.

The UCL operand is FETCHOPT(PACK|NOPACK, PRIME|NOPRIME).

FILL
specifies that the FILL parameter is to be passed to the link-edit utility
when the module is link-edited.

The UCL operand is FILL(nn), where nn is the 2-character representation of
a single hex byte (00 - FF).

HOBSET
specifies that the HOBSET parameter is to be passed to the link-edit utility
when the module is link-edited.

The UCL operand is HOBSET.

MAXBLK
specifies that the MAXBLK parameter is to be passed to the link-edit utility
when the module is link-edited.

The UCL operand is MAXBLK(nnnnn), where nnnnn is a number between
256 and 32760.

NE
specifies that the NE parameter, which is the noneditable attribute, is to be
passed to the link-edit utility when the module is link-edited.

The UCL operand is NE.

NOCALL
specifies that the NCAL parameter is to be passed to the link-edit utility
when the module is link-edited.

MOD entry (distribution and target zone)

Chapter 5. SMP/E data set entries 271

The UCL operand is NOCALL or NCAL.

OL
specifies that the OL parameter is to be passed to the link-edit utility when
the module is link-edited.

The UCL operand is OL.

OVLY
specifies that the OVLY parameter, which specifies that the module is in
overlay structure, is to be passed to the link-edit utility when the module
is link-edited.

The UCL operand is OVLY.

REFR
specifies that the REFR parameter, which is the refreshable attribute, is to
be passed to the link-edit utility when the module is link-edited.

The UCL operand is REFR.

RENT
specifies that the RENT parameter, which indicates that the module is
reentrant, is to be passed to the link-edit utility when the module is
link-edited.

The UCL operand is RENT.

REUS
specifies that the REUS parameter, which indicates that the module is
reusable, is to be passed to the link-edit utility when the module is
link-edited.

The UCL operand is REUS.

REUS(NONE)
specifies that the REUS(NONE) parameter, which indicates that the module
cannot be reused, is to be passed to the link-edit utility when the module
is link-edited.

The UCL operand is REUS(NONE).

RMODE=24
specifies that the RMODE=24 parameter is to be passed to the link-edit
utility when the module is link-edited.

The UCL operand is RMODE=24 or RMOD=24.

RMODE=31
specifies that the RMODE=ANY parameter is to be passed to the link-edit
utility when the module is link-edited. (RMODE=31 is a synonym for
RMODE=ANY.)

The UCL operand is RMODE=31 or RMOD=31.

RMODE=ANY
specifies that the RMODE=ANY parameter is to be passed to the link-edit
utility when the module is link-edited.

The UCL operand is RMODE=ANY or RMOD=ANY.

RMODE=SPLIT
specifies that the RMODE=SPLIT parameter is to be passed to the link-edit
utility when the module is link-edited.

The UCL operand is RMODE=SPLIT or RMOD=SPLIT.

MOD entry (distribution and target zone)

272 SMP/E V3R6.0 for z/OS V2R1.0 Reference

SCTR
specifies that the SCTR parameter, which indicates that the module can be
scatter-loaded, is to be passed to the link-edit utility when the module is
link-edited.

The UCL operand is SCTR.

STD
is a special SMP/E indication that the module should be link-edited with
none of the previously listed attributes.

When this indicator is present and a link-edit is to be done, SMP/E will
pass the link-edit utility only those parameters specified in the appropriate
link-edit UTILITY entry.

The UCL operand is STD.

UPCASE
specifies that the UPCASE parameter, which indicates how the Binder
should process symbol names, is to be passed to the link-edit utility when
the module is link-edited.

The UCL operand is UPCASE(YES|NO).
v UPCASE(YES) and UPCASE(NO) are mutually exclusive.

LMOD
specifies the names of the load modules into which this module was copied or
link-edited on the target system.

The UCL operand is LMOD(name...).
v The load module names can contain from 1 to 8 alphanumeric characters.
v If there are no LMOD names in a MOD entry, SMP/E assumes that the

module was not selected when the SYSMOD containing the module was
initially installed. Therefore, during APPLY processing, SMP/E will not link
or copy the module into any target library.

RMID
identifies the last SYSMOD that replaced this module. Any subsequent
SYSMOD that modifies this module must have a defined relationship (such as
PRE or SUP) with this SYSMOD.

The UCL operand is RMID(sysmod_id).
v The SYSMOD ID must contain 7 alphanumeric characters.
v If RMID is not specified, but FMID is, SMP/E sets the RMID subentry to

the FMID value.
v RMID is not required for a module assembled during system generation.

The DISTLIB for these modules is SYSPUNCH.

RMIDASM
specifies that the last replacement (RMID) to the module was done by a
SYSMOD that caused an assembly of the module as a result of a source or
macro modification.

The UCL operand is RMIDASM.

TALIAS
specifies one or more alias names for the module, where the alias exists in the
distribution library and, for copied modules, also in the target library.

The UCL operand is TALIAS(name...).

The alias names can contain from 1 to 8 alphanumeric characters.

MOD entry (distribution and target zone)

Chapter 5. SMP/E data set entries 273

UMID
identifies all those SYSMODs that have updated this module since it was last
replaced. Any subsequent SYSMOD that modifies this module must have a
defined relation (such as PRE or SUP) with all these SYSMODs.

The UCL operand is UMID(sysmod_id...).

The SYSMOD ID must contain 7 alphanumeric characters.

XZLMOD
specifies one or more load modules in other zones into which this module was
added by the LINK MODULE command. The name of the zone supplying
each module is also indicated.

The UCL operand is XZLMOD((load module,zone)...).
v The zone name specified for an XZLMOD subentry cannot match the name

of the set-to zone.
v An entry can contain XZLMOD and XZLMODP subentries without any

other subentries.
v If UCLIN is used to update an existing MOD entry and only cross-zone

subentries are changed (XZLMOD and XZLMODP), SMP/E does not update
the LASTUPD and LASTUPDTYPE subentries.

v The XZLMOD subentry is added to a MOD entry automatically during
LINK MODULE command processing. However, it is never automatically
removed.

XZLMODP
indicates that this module has been linked into one or more load modules
controlled by a different target zone, and that XZLMOD subentries exist in this
MOD entry.

The UCL operand is XZLMODP.
v It is never necessary to specify the XZLMODP subentry on a UCL statement.

SMP/E automatically determines the setting of XZLMODP, according to
whether the MOD entry contains XZLMOD subentries.

v You cannot add the XZLMODP subentry to a MOD entry that does not
contain XZLMOD subentries.

v You cannot delete the XZLMODP subentry from a MOD entry containing
XZLMOD subentries.

v An entry can contain XZLMOD and XZLMODP subentries without any
other subentries.

v If UCLIN is used to update an existing MOD entry and only cross-zone
subentries are changed (XZLMOD and XZLMODP), SMP/E does not update
the LASTUPD and LASTUPDTYPE subentries.

LIST Examples

To list all the MOD entries in a particular zone, you can use the following
commands:
SET BDY(TGT1) /* Set to requested zone. */.
LIST MOD /* List all MOD entries. */.

To list specific MOD entries, you can use these commands:
SET BDY(TGT1) /* Set to requested zone. */.
LIST MOD(MOD01 /* List only these two */

MOD02) /* entries. */.

MOD entry (distribution and target zone)

274 SMP/E V3R6.0 for z/OS V2R1.0 Reference

The format of the LIST output for each MOD entry is the same for both of these
commands. The only difference is the number of MOD entries listed. The following
examples show LIST output for MOD entries. Figure 39 on page 276 does not have
cross-zone subentries. Figure 40 on page 277 does.

MOD entry (distribution and target zone)

Chapter 5. SMP/E data set entries 275

PAGE nnnn - NOW SET TO zzzzzz ZONE nnnnnnn DATE mm/dd/yy TIME hh:mm:ss SMP/E 36.nn SMPLIST OUTPUT

TGT1 MODULE ENTRIES

NAME

ASSEM01 LASTUPD = JCLIN TYPE=ADD
LIBRARIES = DISTLIB=SYSPUNCH
LMOD = LMOD99A LMOD99B

ASSEM02 LASTUPD = JCLIN TYPE=ADD
LIBRARIES = DISTLIB=SYSPUNCH
LMOD = ASSEM02

DL1MOD1 LASTUPD = DL1F001 TYPE=ADD
LIBRARIES = DISTLIB=DLIB3
FMID = DL1F001
RMID = DL1F001
LMOD = DL1LMOD

MOD01 LASTUPD = JXY1102 TYPE=ADD
LIBRARIES = DISTLIB=AOS12
FMID = JXY1102
RMID = JXY1102
CSECT = MOD01C1 MOD01C2 MOD01C3
LMOD = LMOD01

MOD02 LASTUPD = JXY1102 TYPE=ADD
LIBRARIES = DISTLIB=AOS12
FMID = JXY1102
RMID = JXY1102
CSECT = MOD02C1
LMOD = LMOD01 LMOD02

MOD03 LASTUPD = JXY1121 TYPE=UPD
LIBRARIES = DISTLIB=AOS12
FMID = JXY1121
RMID = JXY1121
UMID = UZ00010 UZ00014
LMOD = LMOD03

MOD04 LASTUPD = JXY1121 TYPE=UPD
LIBRARIES = DISTLIB=AOS12
ASSEMBLE
FMID = JXY1121
RMID = JXY1121

RMIDASM
LMOD = MOD04

MOD05 LASTUPD = JXY0001 TYPE=ADD
LIBRARIES = DISTLIB=DLIB1
FMID = JXY0001
RMID = JXY0001

MOD06 LASTUPD = JXY0001 TYPE=ADD
LIBRARIES = DISTLIB=DLIB1
FMID = JXY0001
RMID = JXY0001

Figure 39. MOD entry: sample LIST output (no cross-zone subentries)

MOD entry (distribution and target zone)

276 SMP/E V3R6.0 for z/OS V2R1.0 Reference

By specifying the FORFMID operand, you can reduce the number of MOD entries
listed. When FORFMID is specified, SMP/E lists a MOD entry only if its FMID
matches one of the FMIDs specified on the FORFMID operand. For example, to list
MOD entries whose FMIDs are either defined in FMIDSET TP or are JXY1102, you
can use these commands:
SET BDY(TGT1) /* Set to target zone. */.
LIST MOD /* List all MOD entries */

FORFMID(TP /* for the TP FMIDSET */
JXY1102) /* and FMID JXY1102. */.

You can also use the LIST command to find out the names of all SYSMODs that
have updated a module. To include the names of these SYSMODs in the LIST
output, you can use the XREF operand, as shown in these commands:
SET BDY(TGT1) /* Set to requested zone. */.
LIST MOD /* List all module entries */

XREF /* and related SYSMODs. */.

Note:

1. XREF can be used either in mass mode or in select mode.
2. SMP/E obtains the data included for the XREF operand by checking all the

SYSMOD entries to find which SYSMODs contained ++MOD or ++ZAP

PAGE nnnn - NOW SET TO zzzzzz ZONE nnnnnnn DATE mm/dd/yy TIME hh:mm:ss SMP/E 36.nn SMPLIST OUTPUT

NOW SET TO TARGET ZONE CICS1

CICS1 MODULE ENTRIES

NAME

CICSMOD1 LASTUPD = LINK TYPE=UPD
LIBRARIES = DISTLIB=ARESLIB
FMID = HCI1703
RMID = HCI1703
LMOD = CICSMOD1
XZLMODP
XZLMOD = LMOD01 IN ZONE ZOSZNA

LMOD02 IN ZONE ZOSZNA
LMOD01 IN ZONE ZOSZNB

CICSMOD2 LASTUPD = LINK TYPE=UPD
LIBRARIES = DISTLIB=ARESLIB
FMID = HCI1703
RMID = HCI1703
LMOD = CICSMOD2
XZLMODP
XZLMOD = LMOD01 IN ZONE ZOSZNA

LMOD02 IN ZONE ZOSZNA
LMODAA01 IN ZONE ZOSZNB
LMOD01 IN ZONE ZOSZNB

CICSMOD3 LASTUPD = HCI1703 TYPE=ADD
LIBRARIES = DISTLIB=ARESLIB
FMID = HCI1703
RMID = HCI1703
LMOD = CICSLMD2

CICSMOD4 XZLMODP
XZLMOD = LMOD01 IN ZONE ZOSZNA

LMOD01 IN ZONE ZOSZNB

Figure 40. MOD entry: sample LIST output (cross-zone entries)

MOD entry (distribution and target zone)

Chapter 5. SMP/E data set entries 277

statements for this module. Because this data is not contained in the MOD
entry itself, you cannot use UCLIN to change it in the MOD entry.

Figure 41 is an example of the LIST output produced when the XREF operand is
used.

PAGE nnnn - NOW SET TO zzzzzz ZONE nnnnnnn DATE mm/dd/yy TIME hh:mm:ss SMP/E 36.nn SMPLIST OUTPUT

TGT1 MODULE ENTRIES

NAME

ASSEM01 LASTUPD = JCLIN TYPE=ADD
LIBRARIES = DISTLIB=SYSPUNCH
LMOD = LMOD99A LMOD99B

ASSEM02 LASTUPD = JCLIN TYPE=ADD
LIBRARIES = DISTLIB=SYSPUNCH
LMOD = ASSEM02

MOD01 LASTUPD = JXY1102 TYPE=ADD
LIBRARIES = DISTLIB=AOS12
FMID = JXY1102
RMID = JXY1102
CSECT = MOD01C1 MOD01C2 MOD01C3
LMOD = LMOD01
SYSMOD HISTORY = SYSMOD TYPE DATE MCS --STATUS--

JXY1102 FUNCTION 07.100 MOD APP ACC
MOD02 LASTUPD = JXY1102 TYPE=ADD

LIBRARIES = DISTLIB=AOS12
FMID = JXY1102
RMID = JXY1102
CSECT = MOD02C1
LMOD = LMOD01 LMOD02
SYSMOD HISTORY = SYSMOD TYPE DATE MCS --STATUS--

JXY1102 FUNCTION 07.100 MOD APP ACC
MOD03 LASTUPD = JXY1121 TYPE=UPD

LIBRARIES = DISTLIB=AOS12
FMID = JXY1121
RMID = JXY1121
UMID = UZ00010 UZ00014
LMOD = LMOD03
SYSMOD HISTORY = SYSMOD TYPE DATE MCS --STATUS--

JXY1102 FUNCTION 07.100 MOD APP ACC
JXY1121 FUNCTION 07.150 MOD APP ACC
UZ00010 PTF 07.150 ZAP APP
UZ00014 PTF 07.160 ZAP APP

MOD04 LASTUPD = JXY1121 TYPE=UPD
LIBRARIES = DISTLIB=AOS12
ASSEMBLE
FMID = JXY1121
RMID = JXY1121

RMIDASM
LMOD = MOD04
SYSMOD HISTORY = SYSMOD TYPE DATE MCS --STATUS--

JXY1102 FUNCTION 07.100 MOD APP ACC
JXY1121 FUNCTION 07.150 ASSEM APP ACC

Figure 41. MOD entry: sample LIST output when XREF is specified

MOD entry (distribution and target zone)

278 SMP/E V3R6.0 for z/OS V2R1.0 Reference

UNLOAD Examples

To dump the MOD entries in UCL format, you can use the UNLOAD command.
To unload all the MOD entries in a particular zone, you can use the following
commands:
SET BDY(TGT1) /* Set to requested zone. */.
UNLOAD MOD /* Unload all MOD entries. */.

To unload specific MOD entries, you can use these commands:
SET BDY(TGT1) /* Set to requested zone. */.
UNLOAD MOD(MOD01 /* Unload only these two */

MOD02) /* entries. */.

The format of the UNLOAD output for each MOD entry is the same for both of
these commands. The only difference is the number of MOD entries unloaded. The
following examples show UNLOAD output for MOD entries. Figure 42 on page
280 does not have cross-zone subentries. Figure 43 on page 281 does.

MOD entry (distribution and target zone)

Chapter 5. SMP/E data set entries 279

UCLIN .
REP MOD (ASSEM01)

LASTUPD (JCLIN)
LASTUPDTYPE (ADD)
DISTLIB (SYSPUNCH)
LMOD (LMOD99A LMOD99B)

.
REP MOD (ASSEM02)

LASTUPD (JCLIN)
LASTUPDTYPE (ADD)
DISTLIB (SYSPUNCH)
LMOD (ASSEM02)

.

REP MOD (DL1MOD1)
LASTUPD (DL1F001)
LASTUPDTYPE (ADD)
DISTLIB (DLIB3)
FMID (DL1F001)
RMID (DL1F001)
LMOD (DL1LMOD)

.
REP MOD (MOD01)

LASTUPD (JXY1102)
LASTUPDTYPE (ADD)
DISTLIB (AOS12)
FMID (JXY1102)
RMID (JXY1102)
CSECT (MOD01C1 MOD01C2 MOD01C3)
LMOD (LMOD01)

.
REP MOD (MOD02)

LASTUPD (JXY1102)
LASTUPDTYPE (ADD)
DISTLIB (AOS12)
FMID (JXY1102)
RMID (JXY1102)
CSECT (MOD02C1)
LMOD (LMOD01 LMOD02)

.

REP MOD (MOD03)
LASTUPD (JXY1121)
LASTUPDTYPE (UPD)
DISTLIB (AOS12)
FMID (JXY1121)
RMID (JXY1121)
UMID (UZ00010 UZ00014)
LMOD (LMOD03)

.
REP MOD (MOD04)

LASTUPD (JXY1121)
LASTUPDTYPE (UPD)
DISTLIB (AOS12)
ASSEMBLE
FMID (JXY1121)
RMID (JXY1121)

RMIDASM
LMOD (MOD04)

.
REP MOD (MOD05)

LASTUPD (JXY0001)
LASTUPDTYPE (ADD)
DISTLIB (DLIB1)
FMID (JXY0001)
RMID (JXY0001)

.
ENDUCL.

Figure 42. MOD entry: sample UNLOAD output (no cross-zone subentries)

MOD entry (distribution and target zone)

280 SMP/E V3R6.0 for z/OS V2R1.0 Reference

By specifying the FORFMID operand, you can reduce the number of MOD entries
unloaded. When FORFMID is specified, SMP/E unloads a MOD entry only if its
FMID matches one of the FMIDs specified on the FORFMID operand. For example,
to unload MOD entries whose FMIDs are either defined in FMIDSET TP or are
JXY1102, you can use these commands:
SET BDY(TGT1) /* Set to target zone. */.
UNLOAD MOD /* Unload all MOD entries */

FORFMID(TP /* for the TP FMIDSET */
JXY1102) /* and FMID JXY1102. */.

UCLIN Examples

You can use the ADD, REP, and DEL UCL statements to change subentries in the
MOD entry. After the UCLIN changes are done, the MOD entry must contain at
least the following subentries:

UCLIN .
REP MOD (CICSMOD1)

LASTUPD (HCI1703)
LASTUPDTYPE (ADD)
DISTLIB (ARESLIB)
FMID (HCI1703)
RMID (HCI1703)
LMOD (CICSMOD1)
/* CROSS-ZONE*/ XZLMODP
XZLMOD (

(LMOD01 ZOSZNA)
(LMOD01 ZOSZNB)

)
.

REP MOD (CICSMOD2)
LASTUPD (HCI1703)
LASTUPDTYPE (ADD)
DISTLIB (ARESLIB)
FMID (HCI1703)
RMID (HCI1703)
LMOD (CICSMOD2)
/* CROSS-ZONE*/ XZLMODP
XZLMOD (

(LMOD01 ZOSZNA)
(LMOD01 ZOSZNB)
(LMODAA01 ZOSZNB)

)
.

REP MOD (CICSMOD3)
LASTUPD (HCI1703)
LASTUPDTYPE (ADD)
DISTLIB (ARESLIB)
FMID (HCI1703)
RMID (HCI1703)
LMOD (CICSLMD2)

.
REP MOD (CICSMOD4)

/* CROSS-ZONE*/ XZLMODP
XZLMOD (

(LMOD01 ZOSZNA)
(LMOD01 ZOSZNB)

)
.

ENDUCL.

Figure 43. MOD entry: sample UNLOAD output (cross-zone subentries)

MOD entry (distribution and target zone)

Chapter 5. SMP/E data set entries 281

v DISTLIB
v FMID
v RMID

Otherwise, there is not enough information in the entry to process the module. If
any of the required subentries are missing, SMP/E does not make the requested
UCL updates to the entry, and the entry remains as it was before the UCL
command.

The following examples are provided to help you use the MOD entry.

Example 1: Adding a new MOD entry
To create a MOD entry, you should use one of the following methods rather than
UCLIN:
v JCLIN, if a new module is being added to a new load module. For examples of

how JCLIN creates MOD entries, see SMP/E for z/OS Commands.
v The LMOD operand on the ++MOD statement, if a new module is being added

to an existing load module and no changes are needed in the link-edit control
statements other than the INCLUDE for the new module. For an example of
how to do this, see “++MOD MCS” on page 75.

You could make the same changes with the UCLIN command. However, you
should make sure the changes are correct and complete. For example, assume you
want to define two new modules, MOD99A and MOD99B. These are linked
together to form load module LMOD99AB, which has an entry point of MOD99A
and exists in LINKLIB. The FMID of both new modules is ZUSR001, a user-created
function. You could use these commands to create the MOD and LMOD entries:
SET BDY(TGT1) /* Set to target zone. */.
UCLIN /* */.
ADD MOD(MOD99A) /* Define new module entry. */

DISTLIB(USRDLIB1) /* Define DLIB. */
LMOD(LMOD99AB) /* Load module. */
FMID(ZUSR001) /* Functional owner. */

/* */.
ADD MOD(MOD99B) /* Define new module entry. */

DISTLIB(USRDLIB1) /* Define DLIB. */
LMOD(LMOD99AB) /* Load module. */
FMID(ZUSR001) /* Functional owner. */

/* */.
ADD LMOD(LMOD99AB) /* Now define LMOD. */

SYSLIB(LINKLIB) /* */
RENT REUS /* Attributes. */

++LMODIN /* Link statements. */
INCLUDE USRDLIB1(MOD99A,MOD99B)
ENTRY MOD99A

++ENDLMODIN /* */
/* */.

ENDUCL /* */.

Example 2: Forcing assembly of a module
Assume you have a macro that is used by a source, and you want to make sure
the source is always assembled when the macro is changed. You can do this by
setting the ASSEMBLE indicator as follows:
SET BDY(DLIB1) /* Set to DLIB zone. */.
UCLIN /* */.
ADD MOD(SRC01) /* MOD entry for source. */

MOD entry (distribution and target zone)

282 SMP/E V3R6.0 for z/OS V2R1.0 Reference

ASSEMBLE /* Always assemble it. */
/* */.

ENDUCL /* */.

Example 3: Completing cross-zone updates
If SMP/E could not complete cross-zone updates for APPLY or RESTORE
processing, you may need to use UCLIN to make the remaining changes. (SMP/E
issues messages and reports to tell you what cross-zone work you may need to
finish.) Here are some examples of using UCLIN to change XZLMOD subentries in
MOD entries. Make sure to check the messages and reports to determine whether
any additional changes are needed for cross-zone subentries in LMOD entries or
TARGETZONE entries.
v Adding XZLMOD subentries: This example adds LMOD IEANUC01 to the

IGCXXX MOD entry in zone IMS1. If this MOD entry previously had no
XZLMOD subentries, SMP/E automatically sets XZLMODP to indicate that the
MOD entry now contains XZLMOD subentries.
SET BDY(IMS1) /* set to IMS zone */.
UCLIN /* start UCLIN processing */.
ADD MOD(IGCXXX) /* identify MOD entry */

XZLMOD((IEANUC01,ZOSZNA)) /* add load module from zone ZOSZNA */.
ENDUCL /* end UCLIN processing */.

v Replacing XZLMOD subentries: This example replaces all the XZLMOD
subentries in MOD entry ISPLINK with two XZLMOD subentries. If this MOD
entry previously had no XZLMOD subentries, SMP/E automatically sets
XZLMODP to indicate that the MOD entry now contains XZLMOD subentries.
SET BDY(ZOSZNA) /* set to first zone. */.
UCLIN /* start UCLIN processing */.
REP MOD(ISPLINK) /* identify MOD entry */

XZLMOD((CICSDIAG,CICS1) /* replace list with two values */
(IMSDIAG1,IMS1)) /* */.

ENDUCL /* end UCLIN processing */.

v Deleting XZLMOD subentries: This example deletes an XZLMOD subentry
from the ISPLINK subentry. If this causes the XZLMOD subentry list to become
empty, SMP/E automatically turns XZLMODP off to indicate that the MOD
entry no longer contains XZLMOD subentries.
SET BDY(ZOSZNB) /* set to second zone. */.
UCLIN /* start UCLIN processing */.
DEL MOD(ISPLINK) /* identify MOD entry */

XZLMOD((IMSDIAG2,IMS1)) /* delete IMSDIAG2 reference */.
ENDUCL /* end UCLIN processing */.

MTSMAC entry (SMPMTS)
The MTSMAC entry is a copy of a macro that resides only in a distribution library
but is needed temporarily during APPLY processing. The MTSMAC entry is in the
SMPMTS data set, which serves as a target macro library for such macros.

When SMP/E applies the SYSMODs that affect these macros, it calls utility
programs to store the macros on the SMPMTS. This way, the most current service
level of each macro is available for use in assemblies. After SMP/E has accepted all
the SYSMODs that affect these macros, it deletes the associated MTSMAC entries
from the SMPMTS.

Note: If you specify SAVEMTS in the OPTIONS entry that is in effect during
ACCEPT processing, SMP/E will not delete MTSMAC entries from the SMPMTS
after the SYSMODs that affect those macros have been successfully accepted.

MOD entry (distribution and target zone)

Chapter 5. SMP/E data set entries 283

Subentries

The MTSMAC entry contains no SMP/E data and appears to the system as a
member of a normal macro library.

LIST Examples

You cannot use SMP/E to list the MTSMAC entries. However, you can use
standard system utility programs (such as IEBGENER, IEBPTPCH, and IEHLIST)
or products such as ISPF to display these entries or information about the data set.

UCLIN Examples

You can use the DEL UCL statement to delete an MTSMAC entry from the
SMPMTS. This can be helpful if you plan to do an APPLY followed by ACCEPT
when several target libraries have been created from the same distribution library.

When a SYSMOD is accepted into a distribution zone, the entries associated with it
are automatically deleted from the SMPMTS for the RELATED target zone.
However, even if the SYSMOD was also applied to other target zones created from
the same distribution zone, SMP/E does not clean up the SMPMTS data sets for
the other target zones.

To delete the entries from these data sets, you can accept the SYSMOD and name
these other target zones as the RELATED zone. However, this would update the
distribution library each time; this is time-consuming and could use up space in
the distribution library data set.

Instead, you can use the DEL command to delete these entries without updating
the distribution library. To determine which entries to specify, check the SMPLOG
data set to see which ones SMP/E deleted during ACCEPT processing.

Note: You can also use the CLEANUP command to delete MTSMAC entries
without specifying them individually. For more information about the CLEANUP
command, see SMP/E for z/OS Commands.

Example: Deleting an MTSMAC entry
Assume that you have two target zones, TGT1 and TGT2, generated off the same
distribution zone, DLB1. During ACCEPT processing of a SYSMOD, SMP/E has
deleted MTSMAC MAC01 and MAC02 from the SMPMTS data set associated with
target zone TGT2. After performing the ACCEPT, you want to delete the same
macro from the SMPMTS associated with target zone TGT1. Assume either that
you have a cataloged procedure for TGT1 with the correct SMPMTS specified, or
that you have set up the correct DDDEF entries. The following UCLIN can be used
to delete the MTSMAC entry:
SET BDY(TGT1) /* Set to TGT zone. */.
UCLIN /* */.
DEL MTSMAC(MAC01) /* Delete the macro. */.
DEL MTSMAC(MAC02) /* Delete the macro. */.
ENDUCL /* */.

Note: One UCL statement is required for each MTSMAC entry to be deleted.

You can make the same changes by use of system utilities. However, the SMPLOG
will not reflect the processing done.

MTSMAC entry (SMPMTS)

284 SMP/E V3R6.0 for z/OS V2R1.0 Reference

OPTIONS entry (global zone)
The OPTIONS entry defines processing options that are to be used for an SMP/E
command or set of commands. Although OPTIONS entries exist only in the global
zone, they are also used to process commands for target and distribution zones.
There are two ways you can specify the OPTIONS entry that should be in effect
when you are processing a zone:
v In the GLOBALZONE, TARGETZONE, and DLIBZONE entries. The OPTIONS

entry specified here is the default OPTIONS entry for that zone.
v On the SET command. The name specified on the SET command overrides the

default OPTIONS name.

When SMP/E processes a command, it checks these sources to determine which
OPTIONS entry should be in effect for that command. If SMP/E cannot find a
reference to an OPTIONS entry, it will use defaults for some of the subentries. The
following section describes these defaults, as well as the other values you can
specify for each subentry.

Subentries

These are the subentries for the OPTIONS entry as they appear in the LIST output:

name
is the name of the OPTIONS entry.

The name can contain from 1 to 8 alphanumeric characters.

AMS
is the name of the UTILITY entry that SMP/E is to use to obtain information
when calling the access method services (AMS) utility.

The UCL operand is AMS(name).
v The name can contain from 1 to 8 alphanumeric characters.
v If no entry name is specified, SMP/E uses a default UTILITY entry. For

details, see Table 6 on page 340.

ASM
is the name of the UTILITY entry that SMP/E is to use to obtain information
when calling the assembler utility.

The UCL operand is ASM(name).
v The name can contain from 1 to 8 alphanumeric characters.
v If no entry name is specified, SMP/E uses a default UTILITY entry. For

details, see Table 6 on page 340.

CHANGEFILE
specifies whether library change file records should be generated and written
to the SMPDATA1 and SMPDATA2 data sets during APPLY and RESTORE
command processing.

The UCL operand is CHANGEFILE(YES|NO), where:

YES
indicates that library change file records should be generated during
APPLY or RESTORE processing.

NO indicates that library change file records should not be generated during
APPLY or RESTORE processing. This is the default for APPLY and
RESTORE processing.

OPTIONS entry (global zone)

Chapter 5. SMP/E data set entries 285

COMP
is the name of the UTILITY entry that SMP/E is to use to obtain information
when calling the utility program to compress data sets.

The UCL operand is COMP(name).
v The name can contain from 1 to 8 alphanumeric characters.
v If no entry name is specified, SMP/E uses a default UTILITY entry. For

details, see Table 6 on page 340.

COMPACT
specifies whether inline element data within SYSMODs in the SMPPTS data set
should be compacted. The element data is normally compacted during the
GZONEMERGE and RECEIVE commands.

The UCL operand is COMPACT(YES|NO), where:

YES
indicates inline element data within SYSMODs in the SMPPTS should be
compacted to reduce the space requirements of the SMPPTS during the
GZONEMERGE and RECEIVE commands. The element data is expanded
as needed during ACCEPT and APPLY command processing. YES is the
default.

NO indicates inline element data within SYSMODs in the SMPPTS should not
be compacted during the GZONEMERGE and RECEIVE commands. The
element data will reside in the SMPPTS data set in its original form.

COPY
is the name of the UTILITY entry that SMP/E is to use to obtain information
when calling the copy utility.

The UCL operand is COPY(name).
v The name can contain from 1 to 8 alphanumeric characters.
v If no entry name is specified, SMP/E uses a default UTILITY entry. For

details, see Table 6 on page 340.

DSPREFIX
specifies the data set prefix to be used to construct the full data set name when
SMPTLIB data sets are being allocated for RELFILEs. For more information
about names for SMPTLIB data sets, see SMP/E for z/OS Commands.

The UCL operand is DSPREFIX(prefix).
v The prefix can contain from 1 to 26 alphanumeric characters.
v The prefix must follow standard naming conventions for data sets.
v If a DDDEF entry is in effect for the SMPTLIB data sets, the DSPREFIX

value in that DDDEF entry overrides the DSPREFIX value specified in the
OPTIONS entry in effect.

v If no DSPREFIX value is specified in either the OPTIONS entry or the
DDDEF entry, no high-level qualifier is assigned to the SMPTLIB data sets.

v If the DSPREFIX value is the same as the RFDSNPFX value for the RELFILE
data sets that are being processed, the SMPTLIB data sets cannot be
allocated in either of these cases:
– The RELFILE data sets are on DASD.
– The RELFILE data sets are on tape and are cataloged.

DSSPACE
specifies the primary and secondary space allocation (in tracks) and the
number of directory blocks to be allocated for each SMPTLIB data set. After

OPTIONS entry (global zone)

286 SMP/E V3R6.0 for z/OS V2R1.0 Reference

the data set is loaded, unused space is freed. For more information about
SMPTLIB data sets, see SMP/E for z/OS Commands.

The UCL operand is DSSPACE(prime, secondary, directory).
v Each value can contain from 1 to 4 numeric characters.
v If a DDDEF entry is in effect for the SMPTLIB data sets, the SPACE and DIR

values in that DDDEF entry override the DSSPACE values specified in the
OPTIONS entry in effect.

v These values should be specified in the appropriate OPTIONS or DDDEF
entries before you receive a relative file. Otherwise, SMP/E cannot allocate
any new SMPTLIB data sets.

EXRTYDD
specifies the list of ddnames that are not eligible for retry processing after an
x37 abend. EXRTYDD is used with RETRYDDN in order to exclude a subset of
libraries from retry processing.

The UCL operand is EXRTYDD(ddname...).
v The ddnames can contain from 1 to 8 alphanumeric characters.
v If a ddname is specified in both the EXRTYDD list and the RETRYDDN list,

the ddname is excluded from retry processing.
v If no ddnames are specified for RETRYDDN, no retry processing will be

done for any libraries. The ddnames specified on EXRTYDD are ignored.
v If ALL is specified on EXRTYDD, it is treated as just another ddname; it

does not exclude all ddnames from retry processing. To exclude all libraries
from retry processing, do one of the following instead:
– Specify RETRY(NO) on the SMP/E command being processed.
– Do not specify a RETRYDDN list in the OPTIONS entry that is in effect

for the SMP/E command being processed.
– Do not have an OPTIONS entry in effect for the SMP/E command being

processed.

FIXCAT
specifies the list of fix categories. During APPLY, ACCEPT, and REPORT
MISSINGFIX processing, this subentry, or the FIXCAT operand on the
command, identifies the fix categories of interest and is used to determine
which FIXCAT HOLDDATA entries will affect command processing.

The UCL operand is FIXCAT(category...).
v A Fix Category value is case sensitive, can be 1- to 64-characters in length,

can contain any nonblank character in the range X'41' - X'FE' except single
quotation mark ('), comma (,), left parenthesis ((), and right parenthesis ()),
and can be specified in two ways:
– Explicitly, by fully specifying a particular fix category value. For example,

IBM.Device.zIIP. In this case, all HOLDDATA associated with this Fix
Category is applicable to command processing.

– Implicitly, by partially specifying a fix category value using any number
of asterisks (*) as global characters and percent signs (%) as placeholders.
- A single asterisk indicates that zero or more characters can occupy that

position. Here are some examples:

IBM.Device*
In this example, all HOLDDATA associated with a fix category
that begins with the character string IBM.Device is applicable.

OPTIONS entry (global zone)

Chapter 5. SMP/E data set entries 287

*z/OS In this example, all HOLDDATA associated with a fix category
that ends with the character string z/OS is applicable.

IBM*z/OS
In this example, all HOLDDATA associated with a fix category
that begins with the character string IBM and ends with the
character string z/OS is applicable.

– A single percent sign indicates that any one single character can occupy
that position. For example, IBM.Device.20%4 indicates that HOLDDATA
associated with any of the following fix categories is applicable:
IBM.Device.2084, IBM.Device.2094, and IBM.Device.20t4. HOLDDATA
associated with a fix category of IBM.Device.20914, however, is not
applicable.

The following examples are all acceptable fix categories:
IBM.Device.zIIP
*
IBM.Function*
IBM.Device.20%4.*
*.HealthChecker

HFSCOPY
is the name of the UTILITY entry that SMP/E is to use to obtain information
when calling the HFS copy utility.

This is the utility used to install hierarchical file system elements and must
meet the same program-to-program interface as BPXCOPY.

The UCL operand is HFSCOPY(name).
v The name can contain from 1 to 8 uppercase alphanumeric characters.
v If no HFSCOPY subentry is specified in the OPTIONS entry, SMP/E uses a

default UTILITY entry. For details, see Table 6 on page 340.

IOSUP
is the name of the UTILITY entry that SMP/E is to use to obtain information
when calling the IEHIOSUP utility program to process maintenance for an
OS/VS1 system.

The UCL operand is IOSUP(name).
v The name can contain from 1 to 8 alphanumeric characters.

LKED
is the name of the UTILITY entry that SMP/E is to use to obtain information
when calling the link-edit utility.

The UCL operand is LKED(name).
v The name can contain from 1 to 8 alphanumeric characters.
v If no entry name is specified, SMP/E uses a default UTILITY entry. For

details, see Table 6 on page 340.

MSGWIDTH
specifies whether the message output (SMPOUT only) should be formatted in
80 or 120 character widths.

The UCL operand is MSGWIDTH(value). The subentry can contain one of the
following values:

80 indicates that the message text should be formatted to an 80 character
width.

OPTIONS entry (global zone)

288 SMP/E V3R6.0 for z/OS V2R1.0 Reference

120 indicates that the message text should be formatted to a 120 character
width. This is the default.

MSGFILTER
specifies whether messages issued to SMPOUT during APPLY, ACCEPT, and
RESTORE processing should be filtered to contain only the following:
v Messages with a severity of Warning or higher.
v Messages with a severity of Informational that add clarity or additional

information to a previously issued higher severity message.
v Messages GIM20501I and GIM20502I.

The UCL operand is MSGFILTER(YES|NO), where:

YES indicates that the number of messages issued to SMPOUT should be in
a filtered format for APPLY, ACCEPT, and RESTORE processing.

NO indicates that the number of messages issued to SMPOUT should be in
a unfiltered format for APPLY, ACCEPT, and RESTORE processing.
This is the default.

NOPURGE
indicates that after SMP/E accepts SYSMODs, it should not delete the
associated global zone SYSMOD entries, SMPPTS MCS entries, or SMPTLIB
data sets.

The UCL operand is NOPURGE.
v The default is for NOPURGE not to be specified. In this case, SMP/E

deletes the entries after the SYSMOD has been successfully accepted. (This is
true only if the SYSMOD has been applied and BYPASS(APPLYCHECK)
was not specified on the ACCEPT command.) The associated HOLDDATA,
including internal SYSTEM HOLDDATA, is not deleted when the SYSMOD
is deleted.

v Although this operand can be specified in any OPTIONS entry, it is effective
only when the OPTIONS entry is used during ACCEPT processing.

NOREJECT
specifies that the global zone SYSMOD entry and the associated MCS entry
should not be deleted after the SYSMOD is restored.

The UCL operand is NOREJECT.
v The default is for NOREJECT not to be specified. In this case, SMP/E

deletes the entries after the SYSMOD has been successfully restored. The
associated HOLDDATA, including internal SYSTEM HOLDDATA, is not
deleted when the SYSMOD is deleted.

v Although this operand can be specified in any OPTIONS entry, it is effective
only when the OPTIONS entry is used during RESTORE processing.

ORDERRET
Indicates the retention period, in days, that ORDER entries are kept in the
global zone before being deleted. During RECEIVE ORDER processing, an
ORDER entry will be deleted from the global zone if either of the following
conditions occurs:
v The ORDER entry has a status of DOWNLOADED, and the difference

between the current date and the ORDER entry's DOWNLDATE subentry
value is greater than the OPTIONS entry ORDER RETENTION subentry
value.

OPTIONS entry (global zone)

Chapter 5. SMP/E data set entries 289

v The ORDER entry has a status of ERROR or PENDING and the difference
between the current date and the ORDER entry's ORDERDATE subentry
value is greater than the OPTIONS entry ORDER RETENTION subentry
value.

When an ORDER entry is deleted from the global zone, SMP/E also deletes
the order package stored in the SMPNTS.

The UCL operand is ORDERRET(nnnn).
v The value can contain from 1 to 4 numeric characters from 0 to 9999.
v If no value is specified, the default is 180 days.

PAGELEN
specifies the page length for the SMPLIST, SMPHRPT, SMPOUT, and SMPRPT
data sets.

The UCL operand is PAGELEN(nnnn).
v The value can contain from 1 to 4 numeric characters.
v If no value is specified, the default is 60.

PEMAX
specifies the maximum number of subentries that can be present in any CSI
entry. Most often, the largest entry is a SYSMOD entry.

The UCL operand is PEMAX(nnnn).
v The value can contain from 1 to 4 numeric characters, with a value range of

1 to 9999.
v If no value is specified, the default is 32767. Therefore, if you want a value

higher than 9999, you must use the default.

RECEXZGRP
specifies a list of zones or zonesets to be excluded during APPLYCHECK and
ACCEPTCHECK processing during the SYSMOD selection phase of RECEIVE
processing.

The UCL operand is RECEXZGRP(value...).
v Each value is a zone or zoneset name. Each name can contain from 1 to 8

alphanumeric characters.
v The zone or zonesets can contain both target and distribution zones.

Note: The value specified cannot be GLOBAL nor ALLZONES.
v If a zone is specified in both the RECEXZGRP list and the RECZGRP list, the

zone is excluded from processing.
v If no zones are specified for RECZGRP, the zones specified on RECEXZGRP

are ignored.

RECZGRP
specifies a list of zones and zonesets eligible for APPLYCHECK and
ACCEPTCHECK processing during the SYSMOD selection phase of RECEIVE
processing. Any SYSMOD that has been applied or accepted into any of the
zones specified by this list will not be received by the RECEIVE command,
unless the SYSMOD is specified on the SELECT operand of the RECEIVE
command or the list is overridden by the BYPASS(ACCEPTCHECK) or
BYPASS(APPLYCHECK) operands, or a new list is specified by the
ZONEGROUP operand.

The UCL operand is RECZGRP(value...).

OPTIONS entry (global zone)

290 SMP/E V3R6.0 for z/OS V2R1.0 Reference

v Each value is a zone or zoneset name. Each name can contain from 1 to 8
alphanumeric characters.

v The zone or zonesets can contain both target and distribution zones.

Note: The value specified cannot be GLOBAL.
v ALLZONES can be specified to indicate that all zones defined by a

ZONEINDEX subentry in the GLOBALZONE entry are eligible. When
ALLZONES is specified, all other values specified are ignored.

v If no zones or zonesets are specified, no APPLYCHECK or ACCEPTCHECK
processing is performed unless the ZONEGROUP operand is specified on
the RECEIVE command.

RETRY
is the name of the UTILITY entry that SMP/E is to use to obtain information
when calling the utility program to compress a data set after an x37 abend.

The UCL operand is RETRY(name).
v The name can contain from 1 to 8 alphanumeric characters.
v If no entry name is specified, SMP/E uses a default UTILITY entry. For

details, see Table 6 on page 340.

RETRYDDN
specifies the list of ddnames eligible for retry processing after an x37 abend.

The UCL operand is RETRYDDN(ddname...).
v The ddnames can contain from 1 to 8 alphanumeric characters.
v ALL can be specified to indicate that all ddnames are eligible.
v If no ddnames are specified, no retry processing will be done, even if

RETRY was specified on the command being processed.
v Retry processing is attempted for partitioned data sets (PDSs) and

partitioned data sets extended (PDSEs) that experience an x37 abend,
indicating that they have run out of space.

v For pointers on how to set up the desired retry processing, see SMP/E for
z/OS User's Guide.

SAVEMTS
indicates that MTSMAC entries should not be deleted from the SMPMTS after
the SYSMODs that affect those macros have been successfully accepted.

The UCL operand is SAVEMTS.
v If SAVEMTS is not specified, SMP/E deletes the entries after all the

SYSMODs that affect the macros have been successfully accepted. (This is
true only if the SYSMOD has been applied and BYPASS(APPLYCHECK)
was not specified on the ACCEPT command.)

v Although this operand can be specified in any OPTIONS entry, it is effective
only when the OPTIONS entry is used during ACCEPT processing.

SAVESTS
indicates that STSSRC entries should not be deleted from the SMPSTS after the
SYSMODs that affect the source have been successfully accepted.

The UCL operand is SAVESTS.
v If SAVESTS is not specified, SMP/E deletes the entries after all the

SYSMODs that affect the source have been successfully accepted. (This is
true only if the SYSMOD has been applied and BYPASS(APPLYCHECK)
was not specified on the ACCEPT command.)

OPTIONS entry (global zone)

Chapter 5. SMP/E data set entries 291

v Although this operand can be specified in any OPTIONS entry, it is effective
only when the OPTIONS entry is used during ACCEPT processing.

SUPPHOLD
specifies a list of HOLD reason IDs for which the HOLDDATA card image
should not be displayed on the following reports:
v Unresolved HOLD Reason Report
v Bypassed HOLD Reason Report
v SYSMOD Comparison HOLDDATA Report

The UCL operand is SUPPHOLD(value...), where:

value is a HOLD reason ID, which is from 1 to 7 alphanumeric characters, #,
@, and $. The first character cannot start with 0-9.

UPDATE
is the name of the UTILITY entry that SMP/E is to use to obtain information
when calling the update utility.

The UCL operand is UPDATE(name).
v The name can contain from 1 to 8 alphanumeric characters.
v If no entry name is specified, SMP/E uses a default UTILITY entry. For

details, see Table 6 on page 340.

ZAP
specifies the name of the UTILITY entry that SMP/E is to use to obtain
information when calling the superzap utility.

The UCL operand is ZAP(name).
v The name can contain from 1 to 8 alphanumeric characters.
v If no entry name is specified, SMP/E uses a default UTILITY entry with

NAME(IMASPZAP), RC(4), PRINT(SYSPRINT), and PARM().

LIST Examples

To list all the OPTIONS entries in a global zone, you can use the following
commands:
SET BDY(GLOBAL) /* Set to requested zone. */.
LIST OPTIONS /* List all OPTIONS entries. */.

To list specific OPTIONS entries in a global zone, you can use these commands:
SET BDY(GLOBAL) /* Set to requested zone. */.
LIST OPTIONS(OPT1, /* List only these three */

TGT1, /* entries. */
DLIB1) /* */.

The format of the LIST output for each OPTIONS entry is the same for both of
these commands. The only difference is the number of OPTIONS entries listed.

Figure 44 on page 293 is an example of LIST output for OPTIONS entries.

OPTIONS entry (global zone)

292 SMP/E V3R6.0 for z/OS V2R1.0 Reference

UCLIN Examples

You can use the ADD, REP, and DEL UCL statements to change subentries in an
OPTIONS entry. When you use UCLIN to update an OPTIONS entry, remember
that if a DEL statement deletes all the existing subentries in the entry, SMP/E
deletes the entire entry.

The following examples are provided to help you use the OPTIONS entry.

Example 1: Connecting an OPTIONS entry to UTILITY entries
Assume that you have set up three UTILITY entries: IEUASM, IEWL, and MYX37.
For examples of setting up these entries, see “UTILITY entry (global zone)” on
page 340. Now you want to define an OPTIONS entry, OPT1, that will be used
during APPLY processing. The following UCL can be used to set up that entry:
SET BDY(GLOBAL) /* Set to global zone. */.
UCLIN /* */.
ADD OPTIONS(OPT1) /* New OPTIONS entry. */

ASM(IEUASM) /* Connect to assembler data. */
LKED(IEWL) /* Connect to link data. */
RETRY(MYX37) /* Connect to retry. */

/* */.
ENDUCL /* */.

PAGE nnnn - NOW SET TO GLOBAL ZONE DATE mm/dd/yy TIME hh:mm:ss SMP/E 36.nn SMPLIST OUTPUT

GLOBAL OPTIONS ENTRIES

ALLOPTS AMS = AMS
ASM = ASM
COMP = COMPRESS
COPY = COPY
HFSCOPY = BPXCOPY
IOSUP = IOSUP
LKED = LINK
RETRY = COMPRESS
UPDATE = UPDATE
ZAP = ZAP
PAGELEN = 60
PEMAX = 9999
NOPURGE
COMPACT SMPPTS = YES
NOREJECT
DSSPACE = PRI=0100 SEC=0050 DIR=0200
MSGFILTER = YES
MSGWIDTH = 80
CHANGEFILE = NO
ORDER RETENTION = 90
DSPREFIX = SMPE.SMPTLIB
RETRYDDN = ALL
EXRTYDD = LINKLIB LPALIB
RECZGRP = ALLZONES
RECZGRP = DLIB TGT
SUPPHOLD = DOC IPL
FIXCAT = IBM.Device.zIPP

*.HealthChecker

Figure 44. OPTIONS entry: sample LIST output

OPTIONS entry (global zone)

Chapter 5. SMP/E data set entries 293

To use the OPTIONS entry, you need either to define it as the default OPTIONS
entry for the desired GLOBALZONE, DLIBZONE, or TARGETZONE entry, or to
specify it on the OPTIONS operand of the SET command for the zone you want to
process with these values.

Example 2: Changing the SMPOUT page length
Assume that you want to modify the OPTIONS entry created in “Example 1:
Connecting an OPTIONS entry to UTILITY entries” on page 293 to indicate that
your printer now prints 120 lines per page. The following UCL will do this:
SET BDY(GLOBAL) /* Set to global zone. */.
UCLIN /* */.
ADD OPTIONS(OPT1) /* Add because page length is

not there yet. */
PAGELEN(120) /* Change page length. */

/* */.
ENDUCL /* */.

Example 3: Preparing to receive RELFILEs
To receive a new function packaged in RELFILE format, you have to define the
amount of space to allocate the SMPTLIB data sets and, optionally, the prefix to be
used in building the data set names. Assume that the program directory indicates
that 300 tracks of primary space should be used, 50 tracks of secondary space, and
25 directory blocks, and that you want the data set names to start with
SMP.RELFILE.M9801. The following UCL can be used to add this information to
the OPTIONS entry created in “Example 1: Connecting an OPTIONS entry to
UTILITY entries” on page 293:
SET BDY(GLOBAL) /* Set to global zone. */.
UCLIN /* */.
ADD OPTIONS(OPT1) /* Add because data is

not there yet. */
DSSPACE(300,50,25) /* Space allocation. */
DSPREFIX(SMP.RELFILE.M9801) /* Prefix. */

/* */.
ENDUCL /* */.

Example 4: Identifying libraries for retry processing
During processing of commands that update product libraries (such as ACCEPT,
APPLY, RESTORE, and LINK), utilities called by SMP/E may issue x37 abends
when the libraries they are updating run out of space. SMP/E can attempt to
recover from such out-of-space errors if RETRY(YES) was specified on the
command being processed and if a RETRYDDN list is available in the OPTIONS
entry that is in effect.

Assume that you want SMP/E to attempt this retry processing for all libraries
except LINKLIB, MIGLIB, and NUCLEUS. The following UCL can be used to
specify the desired ddnames in the OPTIONS entry created in “Example 1:
Connecting an OPTIONS entry to UTILITY entries” on page 293:
SET BDY(GLOBAL) /* Set to global zone. */.
UCLIN /* */.
ADD OPTIONS(OPT1) /* Add because data is

not there yet. */
RETRYDDN(ALL) /* Retry all ddnames */
EXRTYDD(LINKLIB,MIGLIB,NUCLEUS) /* except these. */

/* */.
ENDUCL /* */.

OPTIONS entry (global zone)

294 SMP/E V3R6.0 for z/OS V2R1.0 Reference

ORDER entry (global zone)
The ORDER entry describes a HOLDDATA or PTF order initiated with the
RECEIVE ORDER command. When SMP/E sends an order request to the IBM
Automated Delivery Request server and the server accepts the order, SMP/E
creates an ORDER entry in the global zone. The ORDER entry is used to record
information about the order so that SMP/E can query the server for status of
orders that have not been completed. Once the processing for an order has been
completed by the server, SMP/E can download the HOLDDATA or PTF package
for the order and store the package files in the SMPNTS directory.

Subentries

These are the subentries for the ORDER entry as they appear in the LIST output:

name
is the name of the ORDER entry.

The name can contain from 1 to 8 alphanumeric characters.

CONTENT
the HOLDDATA or PTF content for this order. The value can be one of the
following:

ALL
indicates a request for all available PTFs.

APARS
indicates a request for PTFs that resolve the APARS specified in the APARS
subentry.

CRITICAL
indicates a request for all available PTFs that resolve a critical problem. A
critical problem is a high impact pervasive (HIPER) or a PTF in error (PE).

HOLDDATA
indicates a request for HOLDDATA only. A HOLDDATA package contains
the last 2-years worth of Enhanced HOLDDATA for the entire z/OS
software platform. See http://service.software.ibm.com/holdata/
390holddata.html for further information about Enhanced HOLDDATA.

PTFS
indicates a request for the PTFs indicated in the PTFS subentry.

sourceid
indicates a request for all the recommended PTFs identified with the
indicated Recommended Service Update SOURCEID (RSUyymm), and PTFs
that resolve a critical problem (HIPER or PE). Recommended service
includes PTFs through the indicated RSU level, which is the most current
RSU level at the time the order is created.

STATUS
indicates the status of the HOLDDATA or PTF order. Status values can be any
one of the following:

PENDING
the order request has been submitted to the server but the order's package
has not yet been downloaded.

DOWNLOADED
the order package has been downloaded and stored in the SMPNTS
directory.

ORDER entry (global zone)

Chapter 5. SMP/E data set entries 295

ERROR
the server reported an uncorrectable error with the processing of this order.

APARS
identifies the APARS for which resolving PTFs were requested.

PTFS
identifies the specific PTFs that were requested.

ORDERDATE
indicates the date on which the order request was sent to the server.

ORDERTIME
indicates the time at which the order request was sent to the server.

DOWNLDATE
indicates the date on which the order's package was downloaded and stored in
the SMPNTS directory.

DOWNLTIME
indicates the time at which the order's package was downloaded and stored in
the SMPNTS directory.

ORDERID
the order identifier assigned by the IBM Automated Delivery Request server
when the order request was sent. The value is used to correlate ORDER entries
in the global zone with orders being processed by the server.

USERID
the userid that submitted the SMP/E job which created the ORDER entry.

PKGID
indicates the subdirectory name within the SMPNTS directory that contains the
package associated with the order.

ZONES
indicates the target zones used to represent the software inventory associated
with this order.

ORDERSERVER
contains the <ORDERSERVER> tags used to identify the IBM Automated
Delivery Request server scheduled to fulfill the order request. This information
is obtained from the ORDERSERVER data set specified in the RECEIVE
ORDER command when the ORDER entry was created.

This subentry exists only when the order has a STATUS of PENDING. This
subentry is deleted once the order package has been downloaded.

LIST Examples

To list all the ORDER entries in a global zone, you can use the following
commands:
SET BDY(GLOBAL) /* Set to requested zone. */.
LIST ORDER /* List all ORDER entries. */.

To list specific ORDER entries in a global zone, you can use these commands:
SET BDY(GLOBAL) /* Set to requested zone. */.
LIST ORDER(ORD00034, /* List only these three */

ORD00035, /* entries. */
ORD00036) /* */.

ORDER entry (global zone)

296 SMP/E V3R6.0 for z/OS V2R1.0 Reference

The format of the LIST output for each ORDER entry is the same for both of these
commands. The only difference is the number of ORDER entries listed.

Figure 45 is an example of LIST output for ORDER entries. In this example,
processing for ORDER entries ORD00034 and ORD00035 is completed and the
packages have been downloaded. The order described by ORDER entry ORD00036
is in the PENDING state and the package has not yet been downloaded.

Note: An alternative url for the IBM Automated Delivery Request server is
https://eccgw02.rochester.ibm.com/services/projects/ecc/ws/.

UCLIN Examples

You can use the DEL UCL statement to delete an ORDER entry as shown in the
following example. UCLIN does not support either adding entries or updating
subentries for an ORDER entry.

PAGE nnnn - NOW SET TO GLOBAL ZONE DATE mm/dd/yy TIME hh:mm:ss SMP/E 36.nn SMPLIST OUTPUT

GLOBAL ORDER ENTRIES

NAME

ORD00034 CONTENT = RSU0608
STATUS = DOWNLOADED
DATE/TIME ORDER = 06.258 09:11:17
DATE/TIME DOWNL = 06.258 09:52:11
USERID = JOHNDOE
ORDERID = O012341119
PKGID = ORD00034-15September2006-09.47.02
ZONES = ZOS14

ORD00035 CONTENT = PTFS
STATUS = DOWNLOADED
DATE/TIME ORDER = 06.272 15:02:47
DATE/TIME DOWNL = 06.272 15:19:38
USERID = JOHNDOE
ORDERID = 0123456785
PKGID = ORD00035-29September2006-15.14.23
PTFS = UQ12345 UQ98765
ZONES = ZOS14

ORD00036 CONTENT = ALL
STATUS = PENDING
DATE/TIME ORDER = 06.281 10:01:53
USERID = JOHNDOE
ORDERID = O234567893
ZONES = ZOS14
ORDER SERVER = <ORDERSERVER

url="https:eccgw01.boulder.ibm.com/services/projects/ecc/ws/"
keyring="MRWKYRNG"
certificate="SMPE Certificate">

</ORDERSERVER>

Figure 45. ORDER entry: sample LIST output

ORDER entry (global zone)

Chapter 5. SMP/E data set entries 297

Example: Deleting an ORDER entry
The following UCL can be used to delete an ORDER entry:
SET BDY(GLOBAL) /* Set to global zone */.
UCLIN /* Start UCLIN processing */.

DEL ORDER(ORD00035) /* Delete ORDER entry */.
ENDUCL /* End UCLIN processing */.

ORDER entries may reside only in the GLOBALZONE.

PRODUCT entry (global zone)
The PRODUCT entry describes a software product. A product is known to SMP/E
by the combination of its prodid and the vv.rr.mm values. PRODUCT entries reside
only in the global zone.

Subentries

prodid
specifies the product identifier for the product described in the PRODUCT
entry. For IBM products, it is recommended that the prodid be the IBM program
product number (for example, “5647-A01”).

vv.rr.mm
specifies the version, release and modification level for the product described
in the PRODUCT entry.

DESCRIPTION
describes the product.

The UCL operand is DESCRIPTION(description).

SREL
specifies the system or subsystem releases on which the PRODUCT can be
installed. There can be multiple SREL subentries associated with a PRODUCT.

The UCL operand is SREL(srel,...).

PRODSUP
specifies the PRODUCTs that are superseded by this PRODUCT. Multiple
PRODSUP subentries can be associated with a PRODUCT. The combination of
prodid and vv.rr.mm determines the uniqueness of a subentry in the PRODSUP
subentry list. Only one subentry value for a given prodid and vv.rr.mm
combination is saved in the PRODSUP subentry list.

The UCL operand is PRODSUP((prodid,vv.rr.mm),...).

URL
specifies the URL that can be accessed to obtain additional information about
the product.

The UCL operand is URL(product_url).

VENDOR
specifies the name of the vendor supplying the product.

The UCL operand is VENDOR(vendor_name).

RECDATE
specifies the date on which the PRODUCT was received.

There is no UCL support for this subentry.

ORDER entry (global zone)

298 SMP/E V3R6.0 for z/OS V2R1.0 Reference

RECTIME
specifies the time at which the PRODUCT was received.

There is no UCL support for this subentry.

UCLDATE
specifies the date on which the PRODUCT was last processed using the
UCLIN command.

There is no UCL support for this subentry.

UCLTIME
specifies the time at which the PRODUCT was last processed using the UCLIN
command.

There is no UCL support for this subentry.

REWORK
identifies the level of this PRODUCT, which was received again for minor
changes.

There is no UCL support for this subentry.

LIST Examples

To list all the PRODUCT entries in a particular zone, you can use the following
commands:
SET BDY(GLOBAL) /* Set to global zone. */.
LIST PRODUCT /* List all PRODUCT entries.*/.

To list specific PRODUCT entries, you can use these commands:
SET BDY(GLOBAL) /* Set to global zone. */.
LIST PRODUCT(5647-A01) /* List all PRODUCT entries */

/* with prodid of 5647-A01 */.
LIST PRODUCT((5645-001,01.03.00))

/* List PRODUCT entry with */
/* prodid of 5645-001 */
/* and VRM of 01.03.00 */.

LIST PRODUCT(5668-949,(5645-001,1.2.0))
/* List all PRODUCT entries */
/* with prodid of 5668-949, */
/* plus PRODUCT entry with */
/* prodid of 5645-001 */
/* and VRM of 01.02.00 */.

The format of the LIST output for each PRODUCT entry is the same for all of these
commands. The only difference is the number of PRODUCT entries listed.
Figure 46 on page 300 shows an example of LIST output for PRODUCT entries.
PRODUCT entries are listed alphanumerically by prodid. PRODUCT entries with
the same prodid value are further sorted by vv.rr.mm.

PRODUCT entry (global zone)

Chapter 5. SMP/E data set entries 299

Note:

1. The entry name value for the PRODUCT entries formatted to the left of the
subentry names is the prodid value.

2. If the URL value extends past column 120, it is continued on the next line.
3. The display for each PRODSUP subentry occupies two columns. The first

column is the prodid and the second column is the vv.rr.mm. Four subentries can
fit on a row.

UCLIN Examples

You can use the ADD, REP, and DEL UCL statements to change subentries in the
PRODUCT entry. When you use UCLIN to update a PRODUCT entry, keep in
mind that after the UCLIN changes are made, the PRODUCT entry must contain at
least the DESCRIPTION and SREL subentries.

Example: Adding a PRODUCT entry
Assume you have a product, SAMPLE V1R2, for which you want to create a
description and put in an entry named “1234-567,1.2.0”. You could set up a
PRODUCT entry as follows:

SET BDY(GLOBAL) /* Set to global zone */.
UCLIN /* Start UCLIN processing */.

ADD PRODUCT(1234-567,1.2.0) /* Identify the product */
DESCRIPTION(SAMPLE) /* - Name */
VENDOR(IBM) /* - Vendor */
PRODSUP((1234-456,01.04.00)) /* - Product sups */
SREL(Z038) /* - SREL */
URL(http://www.ibm.com/) /* URL */.

ENDUCL /* End UCLIN processing */.

PROGRAM entry (distribution and target zone)
The PROGRAM entry describes a program element (a pre-built load module or a
program object). Program elements may exist in distribution or target libraries. A
PROGRAM entry is created the first time you install a SYSMOD that contains a
++PROGRAM MCS for a program element that does not yet have a PROGRAM
entry.

PAGE nnnn - NOW SET TO zzzzzz ZONE nnnnnnn DATE mm/dd/yy TIME hh:mm:ss SMP/E 36.nn SMPLIST OUTPUT

GLOBAL PRODUCT ENTRIES

NAME

5647-A01 VRM = 02.09.00
DESCRIPTION = OS/390
REWORK = 1999215
URL = http://www.s390.ibm.com/os390/
DATE/TIME REC = 07.267 12:55:39

UCL = 08.331 02:25:45
VENDOR = IBM
PRODSUP = 5645-001 02.07.00 5668-949 01.08.00
SREL = Z038

Figure 46. PRODUCT entry: sample LIST output

PRODUCT entry (global zone)

300 SMP/E V3R6.0 for z/OS V2R1.0 Reference

SMP/E records the function and service level of the program element in the entry.
Once a PROGRAM entry exists, it is updated as subsequent SYSMODs that affect
the program element are installed.

Subentries

These are the subentries for the PROGRAM entry as they appear in the LIST
output:

name
is the name of the program element represented by the entry. It can contain
from 1 to 8 alphanumeric characters and $, #, @, or hex C0.

ALIAS
specifies a list of alias names for the element.

The UCL operand is ALIAS(name...).

Each alias name can contain from 1 to 8 alphanumeric characters.

DISTLIB
specifies the ddname of the distribution library for the program element.

The UCL operand is DISTLIB(ddname).
v The ddname can contain from 1 to 8 alphanumeric characters.
v The DISTLIB subentry is required. Without it, SMP/E cannot process any

changes for the program element.

FMID
specifies the functional owner of this program element. The functional owner is
the last function SYSMOD that replaced this element.

The UCL operand is FMID(sysmod_id).

The SYSMOD ID must contain 7 alphanumeric characters.

LASTUPD
identifies the cause of the last change to this PROGRAM entry.

The UCL operand is LASTUPD(value). This subentry can contain one of the
following values:

UCLIN
indicates that the change was made as a result of UCLIN processing.

sysmod_id
indicates that the change was made during the installation of the indicated
SYSMOD.

The SYSMOD ID must contain 7 alphanumeric characters.

LASTUPD TYPE
indicates how the entry was last changed.

The UCL operand is LASTUPDTYPE(value). This subentry may contain one of
the following values:

ADD The entry was added.

UPD The entry was updated.

RMID
identifies the last SYSMOD that replaced this program element. Any
subsequent SYSMOD that modifies this program element must have a defined
relationship (such as PRE or SUP) with this SYSMOD.

PROGRAM entry (distribution and target zone)

Chapter 5. SMP/E data set entries 301

The UCL operand is RMID(sysmod_id).
v The SYSMOD ID must contain 7 alphanumeric characters.
v If RMID is not specified but FMID is, SMP/E sets the RMID value to the

specified FMID.

SYSLIB
specifies the ddname of the target library for the program element.

The UCL operand is SYSLIB(ddname).
v You can specify only one SYSLIB value.
v The ddname can contain from 1 to 8 alphanumeric characters.

LIST Examples

To list all the PROGRAM entries in a particular zone, you can use the following
commands:
SET BDY(TGT1) /* Set to requested zone. */.
LIST PROGRAM /* List all PROGRAM entries.*/.

To list specific PROGRAM entries, you can use these commands:
SET BDY(TGT1) /* Set to requested zone. */.
LIST PROGRAM(PGM1 /* List only these two */

PGM2) /* entries. */.

The format of the LIST output for each PROGRAM entry is the same for both of
these commands. The only difference is the number of PROGRAM entries listed.
Figure 47 is an example of LIST output for PROGRAM entries.

By specifying the FORFMID operand, you can reduce the number of PROGRAM
entries listed. When FORFMID is specified, SMP/E lists a PROGRAM entry only if
its FMID matches one of the FMIDs specified on the FORFMID operand. For
example, to list PROGRAM entries whose FMIDs are defined in FMIDSET ABC or
else are MYPROG1, you can use these commands:
SET BDY(TGT1) /* Set to target zone. */.
LIST PROGRAM /* List all PROGRAM entries */

FORFMID(ABC /* for the ABC FMIDSET */
MYPROG1) /* and FMID MYPROG1. */.

PAGE nnnn - NOW SET TO zzzzzz ZONE nnnnnnn DATE mm/dd/yy TIME hh:mm:ss SMP/E 36.nn SMPLIST OUTPUT

TGT1 PROGRAM ENTRIES

NAME

PGM1 LASTUPD = MYPROG1 TYPE=ADD
LIBRARIES = DISTLIB=ADSTLIB SYSLIB=SPGMLIB
FMID = MYPROG1
RMID = MYPROG1

PGM2 LASTUPD = PGMPTF1 TYPE=ADD
LIBRARIES = DISTLIB=ADSTLIB SYSLIB=SPGMLIB
FMID = MYPROG1
RMID = PGMPTF1

Figure 47. PROGRAM entry: sample LIST output

PROGRAM entry (distribution and target zone)

302 SMP/E V3R6.0 for z/OS V2R1.0 Reference

You can use the LIST command to find out the names of all SYSMODs that have
modified program elements. To include the names of these SYSMODs in the LIST
output, you can use the XREF operand, as shown in these commands:
SET BDY(TGT1) /* Set to requested zone. */.
LIST PROGRAM /* List all PROGRAM entries */

XREF /* and related SYSMODs. */.

Note:

1. You can use XREF in either mass mode or select mode.
2. SMP/E obtains the data included for the XREF operand by checking for entries

for this program element in all the SYSMOD entries. Because this data is not
contained in the PROGRAM entry itself, you cannot use UCLIN to change it in
the PROGRAM entry.

Figure 48 is an example of the LIST output produced when the XREF operand is
used.

UNLOAD Examples

To dump the PROGRAM entries in UCL format, you can use the UNLOAD
command. To unload all the PROGRAM entries in a particular zone, you can use
the following commands:
SET BDY(TGT1) /* Set to requested zone. */.
UNLOAD PROGRAM /* Unload all PROGRAM entries.*/.

To unload specific PROGRAM entries, you can use these commands:
SET BDY(TGT1) /* Set to requested zone. */.
UNLOAD PROGRAM(PGM1 /* Unload only these two */

PGM2) /* entries. */.

The format of the UNLOAD output for each PROGRAM entry is the same for both
of these commands. The only difference is the number of PROGRAM entries listed.
Figure 49 on page 304 is an example of UNLOAD output for PROGRAM entries.

PAGE nnnn - NOW SET TO zzzzzz ZONE nnnnnnn DATE mm/dd/yy TIME hh:mm:ss SMP/E 36.nn SMPLIST OUTPUT

TGT1 PROGRAM ENTRIES

NAME

PGM1 LASTUPD = MYPROG1 TYPE=ADD
LIBRARIES = DISTLIB=ADSTLIB SYSLIB=SPGMLIB
FMID = MYPROG1
RMID = MYPROG1
SYSMOD HISTORY = SYSMOD TYPE DATE MCS --STATUS--

MYPROG1 FUNCTION 07.100 PROGRAM APP ACC

PGM2 LASTUPD = PGMPTF1 TYPE=ADD
LIBRARIES = DISTLIB=ADSTLIB SYSLIB=SPGMLIB
FMID = MYPROG1
RMID = PGMPTF1
SYSMOD HISTORY = SYSMOD TYPE DATE MCS --STATUS--

PGMPTF1 PTF 07.150 PROGRAM APP ACC

Figure 48. PROGRAM entry: sample LIST output when XREF is specified

PROGRAM entry (distribution and target zone)

Chapter 5. SMP/E data set entries 303

By specifying the FORFMID operand, you can reduce the number of PROGRAM
entries unloaded. When FORFMID is specified, SMP/E unloads a PROGRAM
entry only if its FMID matches one of the FMIDs specified on the FORFMID
operand. For example, to unload PROGRAM entries whose FMIDs are either
defined in FMIDSET ABC or are MYPROG1, you can use these commands:
SET BDY(TGT1) /* Set to target zone. */.
UNLOAD PROGRAM /* Unload all PROGRAM entries */

FORFMID(ABC /* for the ABC FMIDSET */
MYPROG1) /* and FMID MYPROG1. */.

UCLIN Examples

You can use the ADD, REP, and DEL UCL statements to change subentries in the
PROGRAM entry. After the UCLIN changes are made, the PROGRAM entry must
contain at least the following subentries:
v DISTLIB
v FMID
v RMID

Otherwise, there is not enough information in the entry to process the program
element. If any of these subentries are missing, SMP/E does not make the
requested UCL updates to the entry, and the entry remains as it was before the
UCL command.

Example: Adding a new PROGRAM entry
Assume you have installed PGM3 outside of SMP/E, but now you want to start
using SMP/E to track changes to that program element. Here is an example of the
UCL statements you would use to define entries for that program element in the
appropriate target and distribution zones:
SET BDY(TGT1) /* Set to target zone. */.
UCLIN /* */.
ADD PROGRAM(PGM3) /* Define new PROGRAM entry.*/

DISTLIB(ADSTLIB) /* Define DLIB. */
SYSLIB(SPGMLIB) /* System library. */
FMID(MYPROG1) /* Functional owner. */.

ENDUCL /* */.
SET BDY(DLB1) /* Now do same to DLIB. */.

UCLIN .
REP PROGRAM (PGM1)

LASTUPD (MYPROG1)
LASTUPDTYPE (ADD)
DISTLIB (ADSTLIB)
SYSLIB (SPGMLIB)
FMID (MYPROG1)
RMID (MYPROG1)

.
REP PROGRAM (PGM2)

LASTUPD (PGMPTF1)
LASTUPDTYPE (ADD)
DISTLIB (ADSTLIB)
SYSLIB (SPGMLIB)
FMID (MYPROG1)
RMID (PGMPTF1)

.
ENDUCL.

Figure 49. PROGRAM entry: sample UNLOAD output

PROGRAM entry (distribution and target zone)

304 SMP/E V3R6.0 for z/OS V2R1.0 Reference

UCLIN /* */.
ADD PROGRAM(PGM3) /* Define new PROGRAM entry.*/

DISTLIB(ADSTLIB) /* Define DLIB. */
/* no SYSLIB info in DLIB. */

FMID(MYPROG1) /* Functional owner. */.
ENDUCL /* */.

SRC entry (distribution and target zone)
The SRC entry describes source that exists in the distribution or target libraries.
(SMP/E assumes that for each SRC entry in a particular zone there exists a MOD
entry with the same name.) There are two ways a SRC entry can be created:
v Installing a SYSMOD that contains the source. SRC entries are created the first

time you install a SYSMOD that contains a ++SRC statement for source that
does not yet have a SRC entry.

v Processing JCLIN. SRC entries can be built during JCLIN processing when
SMP/E scans the assembler step and determines that the assembler input is a
member of a partitioned data set.
SRC entries can also be built when SMP/E scans copy steps and finds a SELECT
statement that specifies TYPE=SRC.

SMP/E records the function and service level of the source in the SRC entry, as
well as information about how that source affects the structure of the distribution
or target libraries and modules. Once a SRC entry exists for source, it is updated as
subsequent SYSMODs that affect the source are installed.

Subentries

These are the subentries for the SRC entry as they appear in the LIST output:

name
is the name of the source represented by the SRC entry.

The name can contain from 1 to 8 alphanumeric characters and $, #, @, or hex
C0.

DISTLIB
specifies the ddname of the distribution library for the source.

The UCL operand is DISTLIB(ddname).

The ddname can contain from 1 to 8 alphanumeric characters.

FMID
identifies the functional owner of this source. The functional owner is the last
function SYSMOD that replaced this module.

The UCL operand is FMID(sysmod_id).

The SYSMOD ID must contain 7 alphanumeric characters.

LASTUPD
identifies the cause of the last change to this SRC entry.

The UCL operand is LASTUPD(value). This subentry can contain one of the
following values:

JCLIN
indicates that the change was made during JCLIN command processing.

UCLIN
indicates that the change was made as a result of UCLIN processing.

PROGRAM entry (distribution and target zone)

Chapter 5. SMP/E data set entries 305

sysmod_id
indicates that the change was made during the installation of the indicated
SYSMOD.

The SYSMOD ID must contain 7 alphanumeric characters.

LASTUPD TYPE
indicates how the entry was last changed.

The UCL operand is LASTUPDTYPE(value). This subentry can contain one of
the following values:

ADD The entry was added.

MOV The entry was moved.

UPD The entry was updated.

RMID
identifies the last SYSMOD that replaced this source. Any subsequent
SYSMOD that modifies this module must have a defined relationship (such as
PRE or SUP) with this SYSMOD.

The UCL operand is RMID(sysmod_id).
v The SYSMOD ID must contain 7 alphanumeric characters.
v If RMID is not specified, but FMID is, SMP/E sets the RMID value to the

specified FMID.

SYSLIB
specifies the ddname of the target library for the source.

The UCL operand is SYSLIB(ddname).
v Only one SYSLIB value can be specified.
v The ddname can contain from 1 to 8 alphanumeric characters.

UMID
identifies all the SYSMODs that have updated this source since it was last
replaced. Any subsequent SYSMOD that modifies this module must have a
defined relationship (such as PRE or SUP) with all these SYSMODs.

The UCL operand is UMID(sysmod_id...).

The SYSMOD ID must contain 7 alphanumeric characters.

LIST Examples

To list all the SRC entries in a particular zone, you could use the following
commands:
SET BDY(TGT1) /* Set to requested zone. */.
LIST SRC /* List all SRC entries. */.

To list specific SRC entries, you could use these commands:
SET BDY(TGT1) /* Set to requested zone. */.
LIST SRC(SRC01 /* List only these two */

SRC02) /* entries. */.

The format of the LIST output for each SRC entry is the same for both of these
commands. The only difference is the number of SRC entries listed. Figure 50 on
page 307 is an example of LIST output for SRC entries.

SRC entry (distribution and target zone)

306 SMP/E V3R6.0 for z/OS V2R1.0 Reference

By specifying the FORFMID operand, you can reduce the number of SRC entries
listed. When FORFMID is specified, SMP/E lists a SRC entry only if its FMID
matches one of the FMIDs specified on the FORFMID operand. For example, to list
SRC entries whose FMIDs either are defined in FMIDSET TP or are JXY1102, you
could use these commands:
SET BDY(TGT1) /* Set to target zone. */.
LIST SRC /* List all source entries */

FORFMID(TP /* for the TP FMIDSET */
JXY1102) /* and FMID JXY1102. */.

You can also use the LIST command to find out the name of every SYSMOD that
has modified source. To include the names of these SYSMODs in the LIST output,
you can use the XREF operand, as shown in these commands:
SET BDY(TGT1) /* Set to requested zone. */.
LIST SRC /* List all source entries */

XREF /* and related SYSMODs. */.

Note:

1. XREF can be used either in mass mode or in select mode.
2. SMP/E obtains the data included for the XREF operand by checking for SRC

and SRCUPD entries for this module in all the SYSMOD entries. Because this
data is not contained in the SRC entry itself, you cannot use UCLIN to change
it in the SRC entry.

Figure 51 on page 308 is an example of the LIST output produced when the XREF
operand is used.

PAGE nnnn - NOW SET TO zzzzzz ZONE nnnnnnn DATE mm/dd/yy TIME hh:mm:ss SMP/E 36.nn SMPLIST OUTPUT

TGT1 SOURCE ENTRIES

NAME

SRC01 LASTUPD = JXY1102 TYPE=ADD
LIBRARIES = DISTLIB=ASRCLIB SYSLIB=SRCLIB
FMID = JXY1102
RMID = JXY1102

SRC02 LASTUPD = JXY1000 TYPE=UPD
LIBRARIES = DISTLIB=ASRCLIB SYSLIB=SRCLIB
FMID = JXY1121
RMID = UZ00010
UMID = UZ00014 UZ00015

Figure 50. SRC entry: sample LIST output

SRC entry (distribution and target zone)

Chapter 5. SMP/E data set entries 307

UNLOAD Examples

To dump the SRC entries in UCL format, you can use the UNLOAD command. To
unload all the SRC entries in a particular zone, you could use the following
commands:
SET BDY(TGT1) /* Set to requested zone. */.
UNLOAD SRC /* Unload all SRC entries. */.

To unload specific SRC entries, you could use these commands:
SET BDY(TGT1) /* Set to requested zone. */.
UNLOAD SRC(SRC01 /* Unload only these two */

SRC02) /* entries. */.

The format of the UNLOAD output for each SRC entry is the same for both of
these commands. The only difference is the number of SRC entries listed. Figure 52
on page 309 is an example of UNLOAD output for SRC entries.

PAGE nnnn - NOW SET TO zzzzzz ZONE nnnnnnn DATE mm/dd/yy TIME hh:mm:ss SMP/E 36.nn SMPLIST OUTPUT

TGT1 SOURCE ENTRIES

NAME

SRC01 LASTUPD = JXY1102 TYPE=ADD
LIBRARIES = DISTLIB=ASRCLIB SYSLIB=SRCLIB
FMID = JXY1102
RMID = JXY1102
SYSMOD HISTORY = SYSMOD TYPE DATE MCS --STATUS--

JXY1102 FUNCTION 07.100 SRC APP ACC

SRC02 LASTUPD = JXY1000 TYPE=UPD
LIBRARIES = DISTLIB=ASRCLIB SYSLIB=SRCLIB
FMID = JXY1121
RMID = UZ00010
UMID = UZ00014 UZ00015
SYSMOD HISTORY = SYSMOD TYPE DATE MCS --STATUS--

JXY1102 FUNCTION 07.100 SRC APP ACC
JXY1121 FUNCTION 07.150 SRC APP ACC
UZ00010 PTF 07.150 SRC APP
UZ00014 PTF 07.160 SRCUPD APP
UZ00015 PTF 07.161 SRCUPD APP

Figure 51. SRC entry: sample LIST output when XREF is specified

SRC entry (distribution and target zone)

308 SMP/E V3R6.0 for z/OS V2R1.0 Reference

By specifying the FORFMID operand, you can reduce the number of SRC entries
unloaded. When FORFMID is specified, SMP/E unloads a SRC entry only if its
FMID matches one of the FMIDs specified on the FORFMID operand. For example,
to unload SRC entries whose FMIDs either are defined in FMIDSET TP or are
JXY1102, you could use these commands:
SET BDY(TGT1) /* Set to target zone. */.
UNLOAD SRC /* Unload all source entries*/

FORFMID(TP /* for the TP FMIDSET */
JXY1102) /* and FMID JXY1102. */.

UCLIN Examples

You can use the ADD, REP, and DEL UCL statements to change subentries in the
SRC entry. After the UCLIN changes are done, the SRC entry must contain at least
the following subentries:
v DISTLIB
v FMID
v RMID

Otherwise, there is not enough information in the entry to process the macro. If
any of these subentries are missing, SMP/E does not make the requested UCL
updates to the entry, and the entry remains as it was before the UCL command.

The following examples are provided to help you use the SRC entry.

Example 1: Adding a new SRC entry
Assume that you have a user application installed and want to support it with
SMP/E. To do this, you must record the modules in the target and distribution
zones. You should identify the MOD and LMOD entries for your application by
running the JCLIN function, using the appropriate link and copy steps as input.
The source elements in your application will have to be entered through UCLIN.
Assume that the FMID you want to assign the product is ZUSR001 and that no
service level is to be recorded. The following UCL statements should be used for
each such source:

UCLIN .
REP SRC (SRC01)

LASTUPD (JXY1102)
LASTUPDTYPE (ADD)
DISTLIB (ASRCLIB)
SYSLIB (SRCLIB)
FMID (JXY1102)
RMID (JXY1102)

.
REP SRC (SRC02)

LASTUPD (JXY1121)
LASTUPDTYPE (UPD)
DISTLIB (ASRCLIB)
SYSLIB (SRCLIB)
FMID (JXY1121)
RMID (UZ00010)
UMID (UZ00014 UZ00015)

.
ENDUCL.

Figure 52. SRC entry: sample UNLOAD output

SRC entry (distribution and target zone)

Chapter 5. SMP/E data set entries 309

SET BDY(TGT1) /* Set to target zone. */.
UCLIN /* */.
ADD SRC(SRC01) /* Define new source entry. */

DISTLIB(ASRCLIB) /* Define DLIB, */
SYSLIB(SRCLIB) /* system library

(never the SMPSTS or STS). */
FMID(ZUSR001) /* Functional owner (in this

example a user function). */
/* */.

ENDUCL /* */.
SET BDY(DLB1) /* Now do same to DLIB. */.
UCLIN /* */.
ADD SRC(SRC01) /* Define new source entry. */

DISTLIB(ASRCLIB) /* Define DLIB, */
SYSLIB(SRCLIB) /* system library

(never the SMPSTS or STS). */
FMID(ZUSR001) /* Functional owner (in this

example a user function). */.

Example 2: Recording the application of a corrective fix
Assume that you have installed a corrective fix, AZ12345, to source SRC01, outside
of SMP/E, and that now you want to record that fix after it has been installed.
(This is not necessary if the fix was initially installed with SMP/E.) Three updates
must be made:
1. Record that the fix, AZ12345, is in the system.
2. Record that the fix is on the source.
3. Record that the source has been reassembled and installed.

The following UCL can be used to record these changes:
SET BDY(TGT1) /* Set to target zone. */.
UCLIN /* */.
ADD SYSMOD(AZ12345) /* Add SYSMOD entry. */

APAR /* Corrective fix. */
APPDATE(100) /* Date applied. */
APPTIME(08:00:00) /* Time applied. */
FMID(FXY1102) /* Functional owner. */
SRCUPD(SRC01) /* Updated SRC01. */
ASSEM(SRC01) /* Assembled it too. */

/* */.
REP SRC(SRC01) /* Update SRC01 to */

UMID(AZ12345) /* add update ID of APAR. */
/* */.

REP MOD(SRC01) /* Update MOD entry */
RMID(AZ12345) /* with new replacement ID. */
RMIDASM /* Was assembled. */

/* */.
ENDUCL /* */.
SET BDY(DLIB1) /* Set to DLIB zone. */.
UCLIN /* */.
ADD SYSMOD(AZ12345) /* Add SYSMOD entry. */

APAR /* Corrective fix. */
RECDATE(100) /* Date received. */
RECTIME(08:00:00) /* Time received. */
INSDATE(100) /* Date accepted. */
INSTIME(09:00:00) /* Time accepted. */
FMID(FXY1102) /* Functional owner. */
SRCUPD(SRC01) /* Updated SRC01. */
ASSEM(SRC01) /* Assembled it too. */

/* */.
REP SRC(SRC01) /* Update SRC01 to */

UMID(AZ12345) /* add update ID of APAR. */
/* */.

REP MOD(SRC01) /* Update MOD entry */

SRC entry (distribution and target zone)

310 SMP/E V3R6.0 for z/OS V2R1.0 Reference

RMID(AZ12345) /* with new replacement ID. */
RMIDASM /* Was assembled. */

/* */.
ENDUCL /* */.

STSSRC entry (SMPSTS)
The STSSRC entry is a copy of source that resides only in a distribution library but
is needed temporarily during APPLY processing. The STSSRC entry is in the
SMPSTS data set, which serves as a target source library for such modules.

When SMP/E applies the SYSMODs that affect these source, it calls utility
programs to store the modules on the SMPSTS. This way, the most current service
level of each module is available for use in assemblies. After SMP/E has accepted
all the SYSMODs that affect these source modules, it deletes the associated STSSRC
entries from the SMPSTS.

Note: If you specify SAVESTS in the ORDER entry that is in effect during
ACCEPT processing, SMP/E will not delete STSSRC entries from the SMPSTS after
the SYSMODs that affect those source have been successfully accepted.

Subentries

The STSSRC entry contains no SMP/E data and appears to the system as a
member of a normal source library.

LIST Examples

You cannot use SMP/E to list the STSSRC entries. However, you can use standard
system utility programs (such as IEBGENER, IEBPTPCH, and IEHLIST) or
products such as ISPF to display these entries or information about the data set.

UCLIN Examples

You can use the DEL UCL statement to delete an STSSRC entry from the SMPSTS.
This can be helpful if you plan to do an APPLY followed by ACCEPT when
several target libraries have been created from the same distribution library.

When a SYSMOD is accepted into a distribution zone, the entries associated with it
are automatically deleted from the SMPSTS for the related target zone. However,
even if the SYSMOD was also applied to other target zones created from the same
distribution zone, SMP/E does not clean up the SMPSTS data sets for the other
target zones.

To delete the entries from these data sets, you could accept the SYSMOD and name
these other target zones as the related zone. However, this would update the
distribution library each time; this is time-consuming and could use up space in
the distribution library data set.

Instead, you can use the DEL command to delete these entries without updating
the distribution library. To determine which entries to specify, check the SMPLOG
data set to see which ones SMP/E deleted during ACCEPT processing.

Note: You can also use the CLEANUP command to delete STSSRC entries without
specifying them individually. For more information, see the CLEANUP command
in SMP/E for z/OS Commands.

SRC entry (distribution and target zone)

Chapter 5. SMP/E data set entries 311

Example: Deleting an STSSRC entry
Assume that you have two target zones, TGT1 and TGT2, generated off the same
distribution zone, DLB1. During ACCEPT processing of a SYSMOD, SMP/E has
deleted STSSRC SRC01 and SRC02 from the SMPSTS data set associated with
target zone TGT2. After performing the ACCEPT, you want to delete the same
source from the SMPSTS associated with target zone TGT1. Assume either that you
have a cataloged procedure for TGT1 with the correct SMPSTS specified, or that
you have set up the correct DDDEF entries. You can use the following UCLIN to
delete the STSSRC entry:
SET BDY(TGT1) /* Set to TGT1 zone. */.
UCLIN /* */.
DEL STSSRC(SRC01) /* Delete the source. */.
DEL STSSRC(SRC02) /* Delete the source. */.
ENDUCL /* */.

Note: One UCL statement is required for each STSSRC entry to be deleted.

You can make the same changes by using system utilities; however, the SMPLOG
will not reflect the processing done.

SYSMOD entry (distribution and target zone)
The SYSMOD entry in a distribution zone or a target zone describes a SYSMOD
that has been installed in the corresponding distribution library or target library.
This SYSMOD entry contains the same information as the global zone SYSMOD
entry, except that it has information from only one ++VER statement, the one to
install the SYSMOD.

When SMP/E installs a SYSMOD, it uses SYSMOD entries in the distribution or
target zone to do the following:
v Determine the functional level of the system. SMP/E checks which function

SYSMODs have been installed, and then uses that information to determine
which service SYSMODs may be applicable.

v Determine the service level of the system. SMP/E checks which service
SYSMODs have been installed.

v Make sure the requisites are satisfied for each SYSMOD to be installed. SMP/E
checks whether a SYSMOD entry exists in the distribution or target zone for
each requisite.

Subentries

These are the subentries for the SYSMOD entry as they appear in the LIST output:

sysmod_id
is the SYSMOD identification.

The SYSMOD ID must contain 7 alphanumeric characters.

ACCEPT
indicates that the SYSMOD has been successfully accepted.

The UCL operand is ACCEPT, ACPT, or ACC.

Note: This subentry exists only in the distribution zone. It is required in
distribution zone SYSMOD entries.

STSSRC entry (SMPSTS)

312 SMP/E V3R6.0 for z/OS V2R1.0 Reference

APAR
indicates that this SYSMOD is an APAR, which provides a corrective fix to a
problem.

The UCL operand is APAR.

APAR, FUNCTION, PTF, and USERMOD are mutually exclusive. If none of
these operands is specified, PTF is the default.

APPLY
indicates that the SYSMOD has been successfully applied.

The UCL operand is APPLY, APPL, or APP.

Note: This subentry exists only in the target zone. It is required in target zone
SYSMOD entries.

ASSEM
lists the assemblies done during the installation of this SYSMOD.

The UCL operand is ASSEM(name...).

The name can contain from 1 to 8 alphanumeric characters.

BYPASS
indicates that the BYPASS operand was specified when this SYSMOD was
installed.

The UCL operand is BYPASS.

CIFREQ
lists the conditional requisites that must be installed when this function
SYSMOD is installed.

Note: The data specified is used by SMP/E only when present in a function
SYSMOD.

The UCL operand is CIFREQ((causer,req)...).
v causer is the SYSMOD that specified this function SYSMOD on the FMID

operand of an ++IF statement. req is the SYSMOD specified on the REQ
operand as the conditional requisite associated with this function SYSMOD.

v The causer and req fields must contain 7 alphanumeric characters each.
v The CIFREQ operand is mutually exclusive with all other UCL operands. It

will not cause LASTUPD and LASTUPDTYPE to be updated.

DELBY
specifies the SYSMOD that deleted this SYSMOD.

The UCL operand is DELBY(sysmod_id).
v The SYSMOD ID must contain 7 alphanumeric characters.
v This subentry is valid only for function SYSMODs.
v The DELBY operand is mutually exclusive with all other UCL operands.

DELETE
lists the SYSMODs deleted by this SYSMOD.

The UCL operand is DELETE(sysmod_id...).

The SYSMOD ID must contain 7 alphanumeric characters.

DELLMOD
indicates that the SYSMOD contained a ++DELETE statement.

SYSMOD entry (distribution and target zone)

Chapter 5. SMP/E data set entries 313

The UCL operand is DELLMOD.

DESCRIPTION
specifies the descriptive name to be associated with this SYSMOD.

The UCL operand is DESCRIPTION(description).

DLMOD
lists the load modules deleted by ++DELETE statements contained in this
SYSMOD.

The UCL operand is DLMOD(name...).

element
lists the data element replacements contained in the SYSMOD.

The UCL operand is element(name...).
v The name can contain from 1 to 8 alphanumeric characters.
v In place of element, specify one of the replacement values shown in Table 2

on page 10.
v Some types of elements, such as panels, messages, or text, may have been

translated into several languages. In these cases, the element operand
contains xxx, which represents the language used for the element. (If an
element was not translated, the element operand does not contain any xxx
value.) Table 3 on page 12 shows the xxx values and the languages they
represent.

ELEMMOV
indicates that the SYSMOD contained a ++MOVE statement.

The UCL operand is ELEMMOV.

EMOVE
lists the elements and load modules that were moved by ++MOVE statements
contained in this SYSMOD.

The UCL operand is EMOVE(name...).

ERROR
indicates that an error has occurred during the processing of this SYSMOD.

The UCL operand is ERROR.
v This operand can also be specified as ERR.
v If the RESTORE subentry is set, the RESDATE operand must be specified,

and the RESTIME and ERROR operands should be specified (SMP/E will
automatically set it otherwise).

FEATURE
lists the names of the software features that contain this SYSMOD. The
identified software features correspond to FEATURE entries in the global zone.

The UCL operand is FEATURE(name,...).

FESN
identifies the field engineering (FE) service number.

The UCL operand is FESN(string).

The string must contain 7 alphanumeric characters.

FMID
identifies the function SYSMOD to which this SYSMOD is applicable.

The UCL operand is FMID(sysmod_id).

SYSMOD entry (distribution and target zone)

314 SMP/E V3R6.0 for z/OS V2R1.0 Reference

The SYSMOD ID must contain 7 alphanumeric characters.

FUNCTION
indicates that this SYSMOD is a function, which introduces a new function into
the system.

The UCL operand is FUNCTION.

APAR, FUNCTION, PTF, and USERMOD are mutually exclusive. If none of
these operands is specified, PTF is the default.

hfs_element
lists the hierarchical file system element replacements in the SYSMOD.

The UCL operand is hfs-element(name...).

The name can contain 1 to 8 uppercase alphabetic, numeric, or national ($, #,
@) characters.

IFREQ
lists the conditional requisites that were installed with this SYSMOD.

The UCL operand is IFREQ(sysmod_id...).

INSTALLDATE
specifies the date on which this SYSMOD was installed.

The UCL operand is INSTALLDATE(yyddd).
v This operand can also be specified as INSDATE. For a distribution zone

SYSMOD entry, it can be specified as ACCDATE. For a target zone SYSMOD
entry, it can be specified as APPDATE.

v The yyddd must contain 5 numeric characters. SMP/E does not check
whether the specified numbers are valid.

v For the distribution zone SYSMOD entry, INSTALLDATE is the date the
SYSMOD was accepted. For the target zone SYSMOD entry, INSTALLDATE
is the date the SYSMOD was applied.

INSTALLTIME
specifies the time at which this SYSMOD was installed.

The UCL operand is INSTALLTIME(hh:mm:ss).
v This operand can also be specified as INSTIME. For a distribution zone

SYSMOD entry, it can be specified as ACCTIME. For a target zone SYSMOD
entry, it can be specified as APPTIME.

v The hh, mm, and ss must contain 2 numeric characters each. The “:” must be
coded as specified. SMP/E does not check whether the specified numbers
are valid.

v For a distribution zone SYSMOD entry, INSTALLTIME is the time the
SYSMOD was accepted. For a target zone SYSMOD entry, INSTALLTIME is
the time the SYSMOD was applied.

JAR
lists the JAR file replacements (++JAR) supplied by the SYSMOD.

The UCL operand is JAR.

JARUPD
lists the JAR file updates (++JARUPD) supplied by the SYSMOD.

The UCL operand is JARUPD.

JCLIN
indicates that the SYSMOD contained inline JCLIN.

SYSMOD entry (distribution and target zone)

Chapter 5. SMP/E data set entries 315

The UCL operand is JCLIN.

LASTSUP
specifies the most recent SYSMOD that superseded this SYSMOD. All previous
superseding SYSMODs are saved in the SUPBY subentry list.

The UCL operand is LASTSUP(sysmod_id).

The SYSMOD ID must contain 7 alphanumeric characters.

LASTUPD
identifies the cause of the last change to this entry.

The UCL operand is LASTUPD(UCLIN), indicating that the change was made
as a result of UCLIN processing.

LASTUPDTYPE
identifies the last type of update made to this entry.

The UCL operand is LASTUPDTYPE(value). This subentry can contain one of
the following values:

ADD The entry was added.

UPD The entry was updated.

MAC
lists the macro replacements (++MAC statements) in the SYSMOD.

The UCL operand is MAC(name...).

The name can contain from 1 to 8 alphanumeric characters.

MACUPD
lists the macro updates (++MACUPD statements) in the SYSMOD.

The UCL operand is MACUPD(name...).

The name can contain from 1 to 8 alphanumeric characters.

MOD
lists the module replacements (++MOD statements) in the SYSMOD.

The UCL operand is MOD(name...).

The name can contain from 1 to 8 alphanumeric characters.

NPRE
lists negative prerequisite SYSMODs (that is, SYSMODs that must not be
present in the system at the same time as this SYSMOD).

The UCL operand is NPRE(sysmod_id...).
v The SYSMOD ID must contain 7 alphanumeric characters.
v This subentry is valid only for function SYSMODs.

PRE
lists the prerequisite SYSMODs (that is, SYSMODs that must be present before
this SYSMOD can be installed).

The UCL operand is PRE(sysmod_id...).

The SYSMOD ID must contain 7 alphanumeric characters.

PROGRAM
lists the program element replacements (++PROGRAM statements) in the
SYSMOD.

The UCL operand is PROGRAM(name...).

SYSMOD entry (distribution and target zone)

316 SMP/E V3R6.0 for z/OS V2R1.0 Reference

The name can contain from 1 to 8 alphanumeric characters.

PTF
indicates that this SYSMOD is a PTF, which provides preventive service fixes.

The UCL operand is PTF.

APAR, FUNCTION, PTF, and USERMOD are mutually exclusive. If none of
these operands is specified, PTF is the default.

RECDATE
specifies the date on which this SYSMOD was received.

The UCL operand is RECDATE(yyddd).

The yyddd must contain 5 numeric characters. SMP/E does not check whether
the specified numbers are valid.

RECTIME
specifies the time at which this SYSMOD was received.

The UCL operand is RECTIME(hh:mm:ss).

The hh, mm, and ss must contain 2 numeric characters each. The “:” must be
coded as specified. SMP/E does not check whether the specified numbers are
valid.

REGEN
indicates how the SYSMOD was installed in the target libraries.
v In a DLIB zone SYSMOD entry, REGEN is not important. It is automatically

set for all SYSMODs when they are accepted.
v In a target zone SYSMOD entry, if REGEN is set, it indicates that SYSGEN

was used to install the SYSMOD in the target libraries. (The REGEN
indicator was carried over when the distribution zone was copied into the
target zone. This is generally done as part of SYSGEN.)
If REGEN is not set, it indicates that the APPLY command was used to
install the SYSMOD in the target libraries.

The UCL operand is REGEN or RGN.

RENLMOD
indicates that the SYSMOD contained a ++RENAME statement.

The UCL operand is RENLMOD.

REQ
lists requisite SYSMODs (that is, SYSMODs that must be installed concurrent
with this SYSMOD).

The UCL operand is REQ(sysmod_id...).

The SYSMOD ID must contain 7 alphanumeric characters.

RESDATE
specifies the date on which this SYSMOD was restored.

The UCL operand is RESDATE(yyddd).
v This subentry exists only in the target zone.
v The yyddd must contain 5 numeric characters. SMP/E does not check

whether the specified numbers are valid.
v If a SYSMOD is marked “RESTORE”, the RESDATE operand must be

specified, and the RESTIME and ERROR operands should be specified
(SMP/E will automatically set it otherwise).

SYSMOD entry (distribution and target zone)

Chapter 5. SMP/E data set entries 317

RESTIME
specifies the time that this SYSMOD was restored.

The UCL operand is RESTIME(hh:mm:ss).
v This subentry exists only in the target zone.
v The hh, mm, and ss must contain 2 numeric characters each. The “:” must be

coded as specified. SMP/E does not check whether the specified numbers
are valid.

v If a SYSMOD is marked “RESTORE”, the RESDATE operand must be
specified, and the RESTIME and ERROR operands should be specified
(SMP/E will automatically set it otherwise).

RESTORE
indicates that a RESTORE attempt has been made for this SYSMOD. The
RESTORE was not successful; otherwise, the SYSMOD entry would have been
deleted.

The UCL operand is RESTORE.
v This subentry exists only in the target zone.
v This operand can also be specified as REST or RES.
v If a SYSMOD is marked “RESTORE”, the RESDATE operand must be

specified, and the RESTIME and ERROR operands should be specified
(SMP/E will automatically set it otherwise).

REWORK
identifies the level of the SYSMOD, which was received again for minor
changes.

The UCL operand is REWORK(level).
v Up to 8 numeric characters can be specified.
v For SYSMODs supplied by IBM, the REWORK level is yyyyddd, where yyyy

is the year the SYSMOD was reworked and ddd is the Julian date.
v SMP/E does not check whether this data is valid.

RLMOD
indicates the load modules renamed by ++RENAME statements in this
SYSMOD.

The UCL operand is RLMOD(name...).

SOURCEID
lists the character strings assigned to this SYSMOD during RECEIVE. These
values might have been specified by the user on the RECEIVE command,
included inline on the ++ASSIGN statement, or assigned by SMP/E when
processing the contents of an order.

The UCL operand is SOURCEID(source_id...).
v The source ID can be from 1 to 64 characters in length and contain any

nonblank character (X'41' through X'FE') except single quotation mark ('),
asterisk (*), percent (%), comma (,), left parenthesis ((), and right parenthesis
()).

v A source ID value cannot span lines.
v A source ID value is case sensitive.

SRC
lists the source replacements (++SRC statements) in the SYSMOD.

The UCL operand is SRC(name...).

SYSMOD entry (distribution and target zone)

318 SMP/E V3R6.0 for z/OS V2R1.0 Reference

The name can contain from 1 to 8 alphanumeric characters.

SRCUPD
lists the source updates (++SRCUPD statements) in the SYSMOD.

The UCL operand is SRCUPD(name...).

The name can contain from 1 to 8 alphanumeric characters.

SUPBY
lists the SYSMODs that superseded this SYSMOD. For functions, this includes
SYSMODs that both deleted and superseded this SYSMOD.

Note:

1. The most recent SYSMOD to supersede this SYSMOD is not included in the
SUPBY list. It is saved in the LASTSUP field.

2. The SUPBY field may appear as “SUPBY(IN SYSMD)”. For example, this
is the case if the superseding SYSMODs were installed separately instead of
on the same APPLY or ACCEPT command.

The UCL operand is SUPBY(sysmod_id...).
v This operand can also be specified as SUP.
v The SYSMOD ID must contain 7 alphanumeric characters.

SUPING
lists the SYSMODs superseded by this SYSMOD.

The UCL operand is SUPING(sysmod_id...).

The SYSMOD ID must contain 7 alphanumeric characters.

SZAP
lists the module superzaps (++ZAP statements) in the SYSMOD.

The UCL operand is SZAP(name...).

The name can contain from 1 to 8 alphanumeric characters.

UCLDATE
specifies the date on which this SYSMOD was last modified through UCLIN.

The UCL operand is UCLDATE(yyddd).

The yyddd must contain 5 numeric characters. SMP/E does not check whether
the specified numbers are valid.

UCLTIME
specifies the time that this SYSMOD was last modified through UCLIN.

The UCL operand is UCLTIME(hh:mm:ss).

The hh, mm, and ss must contain 2 numeric characters each. The “:” must be
coded as specified. SMP/E does not check whether the specified numbers are
valid.

USERMOD
indicates that this SYSMOD is a USERMOD, which puts a user modification in
the system.

The UCL operand is USERMOD.

APAR, FUNCTION, PTF, and USERMOD are mutually exclusive. If none of
these operands is specified, PTF is the default.

SYSMOD entry (distribution and target zone)

Chapter 5. SMP/E data set entries 319

VERNUM
specifies the relative number of the ++VER statement used when this SYSMOD
was installed.

The UCL operand is VERNUM(nnn).
v nnn can contain from 1 to 3 numeric characters.
v When updating an existing entry, you should not specify VERNUM. This

causes SMP/E to assume the same VERNUM value as in the current entry.
v If you do not specify VERNUM when adding a new entry, SMP/E assumes

a VERNUM value of 1.
v The VERNUM values are kept in each entry built from information from the

++VER statements. (For example, subentries such as PRE and REQ have
unique VERNUM values.) If all entries do not have the same VERNUM, an
error will result.

VERSION
lists the function SYSMODs that are versioned by this SYSMOD. Versioning
indicates that, if there are any elements in common between the SYSMODs
listed and this SYSMOD, this SYSMOD's elements are at a higher functional
level, and are thus the ones that should be installed.

The UCL operand is VERSION(sysmod_id...).

The SYSMOD ID must contain 7 alphanumeric characters.

XZAP
lists the module superzaps in the SYSMOD (++ZAP statements) that contain an
EXPAND statement (indicating that the module should be expanded before it
is updated).

The UCL operand is XZAP(name...).

The name can contain from 1 to 8 alphanumeric characters.

LIST Examples

To list all the SYSMOD entries in a particular zone, you could use the following
commands:
SET BDY(TGT1) /* Set to requested zone. */.
LIST SYSMOD /* List all SYSMOD entries. */.

To list specific SYSMOD entries, you could use these commands:
SET BDY(TGT1) /* Set to requested zone. */.
LIST SYSMOD(UZ00001 /* List only these two */

UZ00002) /* entries. */.

The format of the LIST output for each SYSMOD entry is the same for both of
these commands. The only difference is the number of SYSMOD entries listed.
Figure 53 on page 321 and Figure 54 on page 322 are examples of LIST output for
SYSMOD entries.

SYSMOD entry (distribution and target zone)

320 SMP/E V3R6.0 for z/OS V2R1.0 Reference

PAGE nnnn - NOW SET TO zzzzzz ZONE nnnnnnn DATE mm/dd/yy TIME hh:mm:ss SMP/E 36.nn SMPLIST OUTPUT

DLIB1 SYSMOD ENTRIES

NAME

HZY1102 TYPE = DELETED
DELBY = HZY2102

HZY2102 TYPE = FUNCTION
DESCRIPTION = Sample function
FEATURE = SAMPRG1
STATUS = REC ACC
FMID = HZY2102
JCLIN = YES
FESN = 1234567
DATE/TIME REC = 07.100 08:00:00

INS = 07.102 08:08:00
DELETE VER(001) = HZY1102 JZY1121 JZY1122
NPRE VER(001) = HZZ1102
SUPING VER(001) = AZ11111 AZ11112 AZ11113
VERS VER(001) = HYY1102 JYY1121 JYY1122 JYY1123
MAC = MAC01 MAC02 MAC03
MOD = MOD01 MOD02 MOD03 MOD04
SRC = SRC01 SRC02

HZY2121 TYPE = FUNCTION
DESCRIPTION = Sample function 2
STATUS = REC ACC
FMID = HZY2121
JCLIN = YES
FESN = 1234567
DATE/TIME REC = 06.100 08:30:00

INS = 06.108 08:38:00
DELETE VER(001) = HZY1102 JZY1121 JZY1122
FMID VER(001) = HZY2102
SUPING VER(001) = AZ11121 AZ11122 AZ11123
MAC = MAC01
MOD = MOD01 MOD02
SRC = SRC01 SRC03 SRC04

JZY1121 TYPE = DELETED
DELBY = HZY2102

JZY1122 TYPE = DELETED
DELBY = HZY2102

Figure 53. SYSMOD entry: sample LIST output for a distribution zone

SYSMOD entry (distribution and target zone)

Chapter 5. SMP/E data set entries 321

PAGE nnnn - NOW SET TO zzzzzz ZONE nnnnnnn DATE mm/dd/yy TIME hh:mm:ss SMP/E 36.nn SMPLIST OUTPUT

TGT1 SYSMOD ENTRIES

NAME

AZ99001 TYPE = APAR
DESCRIPTION = Sample APAR
STATUS = REC APP
FMID = HZY2102
DATE/TIME REC = 07.100 08:00:00

INS = 07.100 08:08:00
LASTSUP = UZ00010
ZAP = MOD01

AZ99002 TYPE = SUPERSEDED
LASTSUP = UZ00010

LUS0001 TYPE = USERMOD
DESCRIPTION = Sample user modification
STATUS = REC APP
FMID = HZY2102
DATE/TIME REC = 06.100 08:00:00

INS = 06.100 08:09:00
PRE VER(001) = UZ00010
MACUPD = MAC02

UZ00008 TYPE = PTF
DESCRIPTION = Sample PTF
STATUS = REC APP
FMID = HZY2102
DATE/TIME REC = 06.100 08:00:00

INS = 06.100 08:08:00
LASTSUP = UZ00010
SUPBY(IN SYSMD) = UZ00009

UZ00009 TYPE = SUPERSEDED
LASTSUP = UZ00010

UZ00010 TYPE = PTF
STATUS = REC APP
FMID = HZY2102
DATE/TIME REC = 06.100 08:00:00

INS = 06.100 08:10:00
PRE VER(001) = UZ00008 UZ00007
REQ VER(001) = UZ00040
SUPING VER(001) = AZ99001 AZ99002 UZ00009
MAC = MAC01
MACUPD = MAC02
MOD = MOD01
SRCUPD = SRC01

UZ00011 TYPE = PTF
STATUS = REC APP
FMID = HXY2102
DATE/TIME REC = 07.250 08:00:00

INS = 07.250 08:10:00
SOURCEID = ABC0706 PUT0704 XAU3380
PRE VER(001) = UZ00010
MOD = MOD01

Figure 54. SYSMOD entry: sample LIST output for a target zone

SYSMOD entry (distribution and target zone)

322 SMP/E V3R6.0 for z/OS V2R1.0 Reference

By specifying various operands, you can reduce the number of SYSMOD entries
listed. If you specify any of these operands on the LIST command, SMP/E
automatically assumes that SYSMOD entries are to be processed, regardless of
whether the SYSMOD operand was also specified. If you specify more than one of
these operands on the same LIST command, only the SYSMODs that meet all the
specified conditions are processed. For more information about these operands, see
SMP/E for z/OS Commands.

You can also use the LIST command to find any other SYSMODs that specify this
SYSMOD in their DEL, PRE, REQ, NPRE, SUP, or VERSION lists. To include the
names of these SYSMODs in the LIST output, you can use the XREF operand, as
shown in these commands:
SET BDY(DLIB1) /* Set to requested zone. */.
LIST SYSMOD /* List all SYSMOD entries */

XREF /* and SYSMOD that hit them. */.

Note: XREF can be used either in mass mode or in select mode.

Figure 55 is an example of the LIST output produced when the XREF operand is
used.

Note: Some of the xxxBY subentries listed in this example are not actually valid
for the type of SYSMOD shown (that is, PTF). For example, a SYSMOD does not
specify VERSION, NPRE, or DELETE for a PTF SYSMOD. Those subentries are
included here only to show the format of the output.

UNLOAD Examples

To dump the SYSMOD entries in UCL format, you can use the UNLOAD
command. To unload all the SYSMOD entries in a particular zone, you could use
the following commands:
SET BDY(TGT1) /* Set to requested zone. */.
UNLOAD SYSMOD /* Unload all SYSMOD entries. */.

PAGE nnnn - NOW SET TO zzzzzz ZONE nnnnnnn DATE mm/dd/yy TIME hh:mm:ss SMP/E 36.nn SMPLIST OUTPUT

DLIB1 SYSMOD ENTRIES

NAME

UZ12345 TYPE = PTF
STATUS = REC
FMID = HZY2100
DATE/TIME REC = 06.150 08:00:00

INS = 06.160 08:08:00
SUPING VER(001) = AZ11111 AZ11112 AZ11113
MAC = MAC01 MAC02 MAC03
MOD = MOD01 MOD02 MOD03 MOD04
SRC = SRC01 SRC02
NPREBY (XREF) = UZ00001 UZ00002
PREBY (XREF) = UZ00003 UZ00004
REQBY (XREF) = UZ00005 UZ00006
VERSIONBY(XREF) = UZ00007 UZ00008
DELBY (XREF) = UZ00009 UZ00010
IFREQBY (XREF) = UZ00011 UZ00012
SUPBY (XREF) = UZ00013 UZ00014

Figure 55. SYSMOD entry: sample LIST output when XREF is specified

SYSMOD entry (distribution and target zone)

Chapter 5. SMP/E data set entries 323

To unload specific SYSMOD entries, you could use these commands:
SET BDY(TGT1) /* Set to requested zone. */.
UNLOAD SYSMOD(UZ00001 /* Unload only these two */

UZ00002) /* entries. */.

The format of the UNLOAD output for each SYSMOD entry is the same for both
of these commands. The only difference is the number of SYSMOD entries listed.
Figure 56 is an example of UNLOAD output for one SYSMOD.

By specifying various operands, you can reduce the number of SYSMOD entries
unloaded. If you specify any of these operands on the UNLOAD command,
SMP/E automatically assumes that SYSMOD entries are to be processed. If you
specify more than one of these operands on the same UNLOAD command, only
those SYSMODs that meet all the specified conditions are processed. For more
information about these operands, see SMP/E for z/OS Commands.

UCLIN Examples

You can use the ADD, REP, and DEL UCL statements to change subentries in the
SYSMOD entry. Generally, after UCLIN changes are done, the SYSMOD entry must
contain at least these subentries, unless the entire entry has been deleted:
v ACCEPT or APPLY
v APAR, FUNCTION, PTF, or USERMOD
v INSTALLDATE
v RECDATE
v FMID

UCLIN .
REP SYSMOD (HZY2102)

/* TYPE */ FUNCTION
DESCRIPTION (Sample Function)
FEATURE (SAMPRG1)
/* STATUS */ ACC
RECDATE (07100)
RECTIME (08:08:00)
INSDATE (07101)
INSTIME (10:00:34)
VERNUM (002)
PRE (UZ00001 UZ00002 UZ00003)
REQ (UZ00004 UZ00005 UZ00006)
SUPING (AZ00001 AZ00002 AZ00003)
MOD (MOD01 MOD02)
MAC (MAC01)
SRC (SRC01 SRC02 SRC03)

.
REP SYSMOD (HZY2102)

CIFREQ (
(UZ00087 UZ00088)
(UZ00090 UZ00090)

)
.

ENDUCL.

Figure 56. SYSMOD entry: sample UNLOAD output

SYSMOD entry (distribution and target zone)

324 SMP/E V3R6.0 for z/OS V2R1.0 Reference

Otherwise, there is not enough information in the entry to process the SYSMOD. If
any of the required subentries are missing, SMP/E does not make the requested
UCL updates to the entry, and the entry remains as it was before the UCL
command.

Note: The entry for a deleted SYSMOD can contain just the DELBY subentry. The
entry for a superseded SYSMOD can contain just the SUPBY subentry. The entry
for a SYSMOD that is both deleted and superseded can contain just the DELBY
and SUPBY subentries.

The following examples are provided to help you use the SYSMOD entry.

Example 1: Creating a SYSMOD entry
Assume that you have installed an APAR fix outside of SMP/E and now want to
get that fix recorded in the distribution zone. The APAR number was AZ12345,
and was an update to a source SRC01. The following UCL should be used:
SET BDY(DLIB1) /* Set to DLIB zone. */.
UCLIN /* */.
ADD SYSMOD(AZ12345) /* Specify SYSMOD. */

SRCUPD(SRC01) /* Changed this source. */
RECDATE(100) /* Received on this date. */
INSDATE(100) /* Accepted same day. */
ASSEM(SRC01) /* Assembled source. */
FMID(FZY2102) /* Functional owner. */

/* */.
ADD SRC(SRC01) /* Now update source entry */

UMID(AZ12345) /* with update ID. */
/* */.

REP MOD(SRC01) /* Now update MOD */
RMID(AZ12345) /* with new replacement ID */
RMIDASM /* from assembly. */

/* */.
ENDUCL /* */.

Example 2: Removing the ERROR indicator
Assume that during an APPLY you encountered an error that caused a PTF to be
marked as in error. After looking at the output you determine that the PTF actually
installed correctly, and rather than reinstall the PTF you decide to make the
appropriate changes to make the PTF look installed. The following UCL can be
used:
SET BDY(TGT1) /* Set to target zone. */.
UCLIN /* */.
DEL SYSMOD(UZ12345) /* Specify SYSMOD. */

RESTORE /* Delete restore. */
RESDATE() /* Delete restore date. */
RESTIME() /* Delete restore time. */

/* */.
ADD SYSMOD(UZ12345) /* Specify SYSMOD. */

APPLY /* Add apply info. */
INSDATE(100) /* */
INSTIME(08:00:00) /* */

/* */.
ENDUCL /* */.

Note: This method is very prone to errors. The preceding example gets the
SYSMOD marked as having been applied; however, you have not made all the
changes necessary to get the rest of the target zone entries coordinated. Those

SYSMOD entry (distribution and target zone)

Chapter 5. SMP/E data set entries 325

changes include updating the RMID and UMID fields of all the elements affected
by the PTF, storing superseded SYSMOD entries, and updating the global zone
SYSMOD entry.

If you are not extremely familiar with SMP/E internals and how to complete the
update process, the recommended method is to reapply the PTF.

SYSMOD entry (global zone)
The global zone SYSMOD entry describes a SYSMOD that exists as an MCS entry
in the SMPPTS. It contains information that SMP/E obtained when it received that
SYSMOD. Because SMP/E processing is designed to keep the global zone
SYSMOD entry and the MCS entry synchronized, you should use only SMP/E
commands to update these entries. If you use system utilities to update the MCS
entries, you will get unpredictable results when processing the corresponding
SYSMOD. For more information about MCS entries, see “MCS entry (SMPPTS)” on
page 266.

When SMP/E processes SYSMODs, it uses the global zone SYSMOD entry to
determine which SYSMODs are applicable or whether the SYSMODs you selected
are applicable. In addition, after a SYSMOD has been successfully applied or
accepted, SMP/E records in the SYSMOD entry the names of the zones to which
the SYSMOD was applied or accepted.

Note: Although this information is saved in the global zone SYSMOD entry, it is
used only for reporting purposes. SMP/E does not use it during APPLY, ACCEPT,
or RESTORE processing to determine the status of a SYSMOD. Instead, SMP/E
uses SYSMOD entries in the target and distribution zones to determine whether a
SYSMOD has been applied or accepted.

A SYSMOD entry is generally kept in the global zone until the associated SYSMOD
is accepted; then the entry is deleted. You may want SMP/E to save the global
zone SYSMOD entries after ACCEPT processing (for example, if you plan to do a
system generation). To do this, specify NOPURGE in the ORDER entry that is in
effect during ACCEPT processing. Likewise, you may want to save the global zone
SYSMOD entries after RESTORE processing. To do this, specify NOREJECT in the
ORDER entry that is in effect during RESTORE processing.

Subentries

These are the subentries for the global zone SYSMOD entry as they appear in the
LIST output. Only a few of these subentries can be changed with UCLIN. The
description of each entry indicates whether UCLIN may be used and, if so, what
the correct syntax is.

sysmod_id
is the SYSMOD identification.

The SYSMOD ID must contain 7 alphanumeric characters.

ACCEPT ZONE
lists the distribution zones into which the SYSMOD has been successfully
accepted.

The UCL operand is ACCID(zone...).

The name can contain from 1 to 7 alphanumeric characters.

SYSMOD entry (distribution and target zone)

326 SMP/E V3R6.0 for z/OS V2R1.0 Reference

APAR
indicates that this SYSMOD is an APAR, which provides a corrective fix to a
problem.

There is no UCL support for this subentry in the global zone.

APPLY ZONE
lists the target zones to which the SYSMOD has been successfully applied.

The UCL operand is APPID(zone...).

The name can contain from 1 to 7 alphanumeric characters.

DELLMOD
indicates that the SYSMOD contained a ++DELETE statement.

The UCL operand is DELLMOD.

DELETE
lists the SYSMODs deleted by this SYSMOD.

There is no UCL support for this subentry in the global zone.

DESCRIPTION
specifies the descriptive name to be associated with this SYSMOD.

The UCL operand is DESCRIPTION(description).

DLMOD
lists the load modules deleted by ++DELETE statements contained in this
SYSMOD.

The UCL operand is DLMOD(name...).

element
lists the data element replacements in the SYSMOD.

There is no UCL support for this subentry in the global zone.

In place of element, you will see one of the values shown in Table 2 on page 10.

Some types of elements, such as panels, messages, or text, may have been
translated into several languages. In these cases, the element operand contains
xxx, which represents the language used for the element. (If an element was
not translated, the element operand does not contain any xxx value.) Table 3 on
page 12 shows the xxx values and the languages they represent.

ELEMMOV
indicates that the SYSMOD contained a ++MOVE statement.

The UCL operand is ELEMMOV.

EMOVE
lists the elements and load modules that were moved by ++MOVE statements
contained in this SYSMOD.

ERROR
indicates that an error occurred when this SYSMOD was received.

There is no UCL support for this subentry in the global zone.

FEATURE
lists the names of the software features that contain this SYSMOD. The
identified software features correspond to FEATURE entries in the global zone.

The UCL operand is FEATURE(name,...).

SYSMOD entry (global zone)

Chapter 5. SMP/E data set entries 327

FESN
identifies the field engineering (FE) service number.

There is no UCL support for this subentry in the global zone.

FMID
identifies the function SYSMOD to which this SYSMOD is applicable.

There is no UCL support for this subentry in the global zone.

FUNCTION
indicates that this SYSMOD is a function, which introduces a new function into
the system.

There is no UCL support for this subentry in the global zone.

hfs_element
lists the hierarchical file system element replacements (++hfs_element
statements) in the SYSMOD.

There is no UCL support for this subentry in the global zone.

HOLDERROR
lists the error hold reason IDs in effect for this SYSMOD.

The actual ++HOLD statement associated with each reason ID (HOLDDATA) is
not in the SYSMOD entry. However, if the LIST command specified
HOLDDATA and SYSMOD, the listing of the SYSMOD entry includes the
HOLDDATA. For more information, see information about listing HOLDDATA
with the LIST command in SMP/E for z/OS Commands.

There is no UCL support for this subentry in the global zone.

HOLDFIXCAT
lists the fix category hold reason IDs in effect for this SYSMOD.

There is no UCL support for this subentry in the global zone.

HOLDSYSTEM
lists the system hold reason IDs in effect for this SYSMOD.

The actual ++HOLD statement associated with each reason ID (HOLDDATA) is
not in the SYSMOD entry. However, if the LIST command specified
HOLDDATA and SYSMOD, the listing of the SYSMOD entry includes the
HOLDDATA. For more information, see information about listing HOLDDATA
with the LIST command in SMP/E for z/OS Commands.

HOLDSYSTEM subentries show either INT or EXT to indicate the source of
the ++HOLD statement.
v INT means that the ++HOLD statement was contained in the held SYSMOD.

The held SYSMOD can be installed only if the BYPASS operand is specified
on the APPLY or ACCEPT command.

v EXT means that the ++HOLD statement was obtained from another source,
such as SMPHOLD. The held SYSMOD can be installed only if the BYPASS
operand is specified on the APPLY or ACCEPT command or if the hold is
removed by a ++RELEASE statement.

There is no UCL support for this subentry in the global zone.

HOLDUSER
lists the user hold reason IDs in effect for this SYSMOD.

The actual ++HOLD statement associated with each reason ID (HOLDDATA) is
not in the SYSMOD entry. However, if the LIST command specified

SYSMOD entry (global zone)

328 SMP/E V3R6.0 for z/OS V2R1.0 Reference

HOLDDATA and SYSMOD, the listing of the SYSMOD entry includes the
HOLDDATA. For more information, see information about listing HOLDDATA
with the LIST command in SMP/E for z/OS Commands.

There is no UCL support for this subentry in the global zone.

JAR
lists the JAR file replacements (++JAR) supplied by the SYSMOD.

There is no UCL support for this subentry in the global zone.

JARUPD
lists the JAR file updates (++JARUPD) supplied by the SYSMOD.

There is no UCL support for this subentry in the global zone.

JCLIN
indicates that the SYSMOD contained inline JCLIN.

There is no UCL support for this subentry in the global zone.

MAC
lists the macro replacements (++MAC statements) in the SYSMOD.

There is no UCL support for this subentry in the global zone.

MACUPD
lists the macro updates (++MACUPD statements) in the SYSMOD.

There is no UCL support for this subentry in the global zone.

MOD
lists the module replacements (++MOD statements) in the SYSMOD.

There is no UCL support for this subentry in the global zone.

NPRE
lists negative prerequisite SYSMODs (that is, SYSMODs that must not be
present in the system at the same time as this SYSMOD).

There is no UCL support for this subentry in the global zone.

PRE
lists prerequisite SYSMODs (that is, SYSMODs that must be present before this
SYSMOD can be installed).

There is no UCL support for this subentry in the global zone.

PROGRAM
lists the program element replacements (++PROGRAM statements) in the
SYSMOD.

There is no UCL support for this subentry in the global zone.

PTF
indicates that this SYSMOD is a PTF, which provides preventive service fixes.

There is no UCL support for this subentry in the global zone.

RECDATE
specifies the date on which this SYSMOD was received.

There is no UCL support for this subentry in the global zone.

RECTIME
specifies the time at which this SYSMOD was received.

There is no UCL support for this subentry in the global zone.

SYSMOD entry (global zone)

Chapter 5. SMP/E data set entries 329

RENLMOD
indicates that the SYSMOD contained a ++RENAME statement.

The UCL operand is RENLMOD.

REQ
lists requisite SYSMODs (that is, SYSMODs that must be installed concurrent
with this SYSMOD).

There is no UCL support for this subentry in the global zone.

REWORK
identifies the level of the SYSMOD, which was received again for minor
changes.

For SYSMODs supplied by IBM, the REWORK level is yyyyddd, where yyyy is
the year the SYSMOD was reworked and ddd is the Julian date.

There is no UCL support for this subentry in the global zone.

RLMOD
indicates the load modules renamed by ++RENAME statements in this
SYSMOD.

The UCL operand is RLMOD(name...).

SOURCEID
lists the character strings assigned to this SYSMOD during RECEIVE. These
values might have been specified by the user on the RECEIVE command,
included inline on the ++ASSIGN statement, or assigned by SMP/E when
processing the contents of an order.

The UCL operand is SOURCEID(source_id...).
v The source ID can be from 1 to 64 characters in length and contain any

nonblank character (X'41' through X'FE') except single quotation mark ('),
asterisk (*), percent (%), left parenthesis ((), and right parenthesis ()).

v A source ID value cannot span lines.
v A source ID value is case sensitive.

SRC
lists the source replacements (++SRC statements) in the SYSMOD.

There is no UCL support for this subentry in the global zone.

SRCUPD
lists the source updates (++SRCUPD statements) in the SYSMOD.

There is no UCL support for this subentry in the global zone.

SREL
is the system or subsystem release specified on the indicated ++VER MCS in
the SYSMOD; for example, SREL VER(001) = Z038. This SREL value matches
an SREL value defined in the GLOBALZONE entry that was used when
receiving the SYSMOD. These are the systems and subsystems defined by IBM,
with their SRELs:

System
SREL

DB2 P115

CICS C150

IMS P115

SYSMOD entry (global zone)

330 SMP/E V3R6.0 for z/OS V2R1.0 Reference

MVS Z038

NCP P004

There is no UCL support for this subentry in the global zone.

SUPING
lists the SYSMODs superseded by this SYSMOD.

There is no UCL support for this subentry in the global zone.

SZAP
lists the module superzaps (++ZAP statements) in the SYSMOD.

There is no UCL support for this subentry in the global zone.

TLIBPREFIX
is the high-level data set name qualifier of the SMPTLIB data sets used to
receive this SYSMOD, which was packaged in RELFILEs. This is the DSPREFIX
value that was used during RECEIVE processing.

The UCL operand is TLIBPREFIX(prefix).
v The prefix can contain from 1 to 26 alphanumeric characters.
v The prefix must follow standard naming conventions for data sets.

Note: If the TLIBPREFIX subentry is deleted from the entry for a SYSMOD
packaged in RELFILE format, the SYSMOD cannot be applied or accepted until
the TLIBPREFIX subentry is re-created with the current prefix for the SMPTLIB
data sets.

USERMOD
indicates that this SYSMOD is a USERMOD, which puts a user modification
into the system.

There is no UCL support for this subentry in the global zone.

VERSION
lists the function SYSMODs that are versioned by this SYSMOD. Versioning
indicates that, if there are any elements in common between the SYSMODs
listed and this SYSMOD, this SYSMOD's elements are at a higher functional
level, and are therefore the ones that should be installed.

There is no UCL support for this subentry in the global zone.

XZAP
lists the module superzaps (++ZAP statements) in the SYSMOD that contain an
EXPAND statement (indicating that the module should be expanded before it
is updated).

There is no UCL support for this subentry in the global zone.

LIST Examples

To list all the SYSMOD entries in a global zone, you can use the following
commands:
SET BDY(GLOBAL) /* Set to requested zone. */.
LIST SYSMOD /* List all SYSMOD entries. */.

To list specific SYSMOD entries in a global zone, you can use these commands:
SET BDY(GLOBAL) /* Set to requested zone. */.
LIST SYSMOD(UZ00001 /* List only these two */

UZ00002) /* entries. */.

SYSMOD entry (global zone)

Chapter 5. SMP/E data set entries 331

To list specific SYSMOD entries in the global zone along with the associated
HOLDDATA, you can use these commands:
SET BDY(GLOBAL) /* Set to requested zone. */.
LIST SYSMOD(UZ12345 /* List only these two */

UZ56789) /* entries */
HOLDDATA /* plus HOLDDATA for them. */.

The format of the LIST output for each SYSMOD entry is the same for all of these
commands. The only differences are the number of SYSMOD entries listed and the
amount of information presented for each entry (HOLDDATA causes additional
information to be listed).

Figure 57 on page 333, Figure 58 on page 334, and Figure 59 on page 335 are
examples of LIST output for SYSMOD entries.

Note: If HOLDDATA for a particular SYSMOD has been received but the SYSMOD
itself has not yet been received, only the hold information for the SYSMOD is
listed. For an example, see SYSMOD UZ56789 in Figure 59 on page 335.

SYSMOD entry (global zone)

332 SMP/E V3R6.0 for z/OS V2R1.0 Reference

PAGE nnnn - NOW SET TO zzzzzz ZONE nnnnnnn DATE mm/dd/yy TIME hh:mm:ss SMP/E 36.nn SMPLIST OUTPUT

GLOBAL SYSMOD ENTRIES

NAME

JXY2102 TYPE = FUNCTION
STATUS = REC
JCLIN = YES
FESN = 1234567
TLIBPREFIX = SMP.RELFILE
DATE/TIME REC = 06.100 08:00:00
APPLY ZONE = TGT1 TGT2
ACCEPT ZONE = DLIB1 DLIB2
SREL VER(001) = Z038
DELETE VER(001) = JXY1102 JXY1121 JXY1122
NPRE VER(001) = HZZ1102
SUPING VER(001) = AZ11111 AZ11112 AZ11113
VERS VER(001) = HYY1102 JYY1121 JYY1122 JYY1123
MAC = MAC01 MAC02 MAC03
MOD = MOD01 MOD02 MOD03 MOD04
SRC = SRC01 SRC02

JXY2121 TYPE = FUNCTION
STATUS = REC
JCLIN = YES
FESN = 1234567
TLIBPREFIX = SMP.RELFILE
DATE/TIME REC = 06.100 08:30:00
APPLY ZONE = TGT1 TGT2
ACCEPT ZONE = DLIB1 DLIB2
SREL VER(001) = Z038
DELETE VER(001) = JXY1102 JXY1121 JXY1122
FMID VER(001) = JXY2102
SUPING VER(001) = AZ11121 AZ11122 AZ11123
MAC = MAC01
MOD = MOD01 MOD02
SRC = SRC01 SRC03 SRC04

AZ99801 TYPE = APAR
STATUS = REC
DATE/TIME REC = 06.100 08:00:00
APPLY ZONE = TGT1 TGT2
ACCEPT ZONE = DLIB1 DLIB2
SREL VER(001) = Z038
FMID VER(001) = JXY2102
ZAP = MOD01

Figure 57. SYSMOD entry: sample LIST output for a global zone (Example 1)

SYSMOD entry (global zone)

Chapter 5. SMP/E data set entries 333

PAGE nnnn - NOW SET TO zzzzzz ZONE nnnnnnn DATE mm/dd/yy TIME hh:mm:ss SMP/E 36.nn SMPLIST OUTPUT

GLOBAL SYSMOD ENTRIES

NAME

LUS0001 TYPE = USERMOD
STATUS = REC
DATE/TIME REC = 06.100 08:00:00
APPLY ZONE = TGT1 TGT2
ACCEPT ZONE = DLIB1 DLIB2
SREL VER(001) = Z038
FMID VER(001) = JXY2102
PRE VER(001) = UZ00010
MACUPD = MAC02

UZ00010 TYPE = PTF
STATUS = REC
DATE/TIME REC = 06.100 08:00:00
APPLY ZONE = TGT1 TGT2
ACCEPT ZONE = DLIB1 DLIB2
SREL VER(001) = Z038
FMID VER(001) = JXY2102
PRE VER(001) = UZ00008 UZ00007
REQ VER(001) = UZ00040
SUPING VER(001) = AZ99801 AZ99802 UZ00009
MAC = MAC01
MACUPD = MAC02
MOD = MOD01
SRC = SRC01
SRCUPD = SRC01

UZ00011 TYPE = PTF
STATUS = REC
DATE/TIME REC = 06.150 08:00:00
SOURCEID = ABC0706 PUT0704 XAU3380
APPLY ZONE = TGT1 TGT2
ACCEPT ZONE = DLIB1 DLIB2
SREL VER(001) = Z038
FMID VER(001) = JXY2102
PRE VER(001) = UZ00010
MOD = MOD01

Figure 58. SYSMOD entry: sample LIST output for a global zone (Example 2)

SYSMOD entry (global zone)

334 SMP/E V3R6.0 for z/OS V2R1.0 Reference

UCLIN Examples

You can use the ADD, REP, and DEL UCL statements to change subentries in a
SYSMOD entry. When you use UCLIN to update a SYSMOD entry, remember that
if a DEL statement deletes all the existing subentries in the entry, SMP/E deletes
the entire entry.

The following examples are provided to help you use the SYSMOD entry.

Example 1: Changing the SOURCEID of a SYSMOD
Assume that you received a SYSMOD and assigned it a SOURCEID value of
DATALINK, and that you now want to change the SOURCEID value to PUT0701
so that the SYSMOD will be installed with that service level. The following UCL
can be used to change the SOURCEID value:
SET BDY(GLOBAL) /* Set to global zone. */.
UCLIN /* */.
REP SYSMOD(UZ00001) /* Specify SYSMOD. */

SOURCEID(PUT01) /* Change SOURCEID value. */
/* */.

ENDUCL /* */.

PAGE nnnn - NOW SET TO zzzzzz ZONE nnnnnnn DATE mm/dd/yy TIME hh:mm:ss SMP/E 36.nn SMPLIST OUTPUT

GLOBAL SYSMOD ENTRIES

NAME

UZ12345 TYPE = PTF
STATUS = REC
DATE/TIME REC = 06.100 08:00:00
SREL VER(001) = Z038
DELETE VER(001) = HBB2102
SUPING VER(001) = AZ11111 AZ11112 AZ11113
MAC = MAC01 MAC02 MAC03
MOD = MOD01 MOD02 MOD03 MOD04
SRC = SRC01 SRC02
HOLDERROR = AZ00001 ++HOLD(UZ12345) ERROR

REASON(AZ00001) FMID(HBB2102)
COMMENT(SMRTDATA(CHGDTE(071105) SYMP(PRV,IPL))).

HOLDERROR = AZ00002 ++HOLD(UZ12345) ERROR
REASON(AZ00002) FMID(HBB2102)
COMMENT(SMRTDATA(CHGDTE(071106) SYMP(FUL))).

HOLDSYSTEM(INT) = DOC ++HOLD(UZ12345) SYSTEM
REASON(DOC) FMID(HBB2102)
COMMENT(NEW MSG).

HOLDSYSTEM(EXT) = UCLIN ++HOLD(UZ12345) SYSTEM
REASON(UCLIN) FMID(HBB2102)
COMMENT(UCLIN REQUIRED).

HOLDUSER = INUSE ++HOLD(UZ12345) USER
REASON(INUSE) FMID(HBB2102)
COMMENT(IM MODIFYING).

UZ56789 HOLDERROR = AZ00023 ++HOLD(UZ56789) ERROR
REASON(AZ00023) FMID(HBB2102)
COMMENT(SMRTDATA(CHGDTE(071110) SYMP(ABENDS with E37))).

HOLDERROR = AZ00024 ++HOLD(UZ56789) ERROR
REASON(AZ00024) FMID(HBB2102)
COMMENT(SMRTDATA(CHGDTE(071113) SYMP(DAL) FIX(UW92458))).

Figure 59. SYSMOD entry: sample LIST output when HOLDDATA is specified

SYSMOD entry (global zone)

Chapter 5. SMP/E data set entries 335

Example 2: Indicating that a SYSMOD was applied
Assume that you have received some service, accepted it with the
BYPASS(APPLYCHECK) operand, and then performed a system generation. That
service is now actually in the target libraries, and you would like that recorded in
the global zone SYSMOD entry. Assume that the name of your target zone is
TGT1. The following UCL can be used:
SET BDY(GLOBAL) /* Set to global zone. */.
UCLIN /* */.
ADD SYSMOD(UZ00001) /* Specify SYSMOD. */

APPID(TGT1) /* Applied to this zone. */
/* */.

ENDUCL /* */.

Note: One UCL statement is required for each SYSMOD.

TARGETZONE entry (target zone)
The TARGETZONE entry contains information SMP/E uses to process a specific
target zone and the associated target libraries. It is created by UCLIN and must be
defined before you can do any other processing for that target zone.

Subentries

These are the subentries for the TARGETZONE entry as they appear in the LIST
output:

name
is the name of the target zone. You assign the name when the zone is created.

The name can contain from one to seven alphanumeric characters (A–Z, 0–9) or
national characters ($, #, @). The first character must be alphabetic.

OPTIONS
is the name of the OPTIONS entry in the global zone that should be used in
processing this target zone. For more information, see “OPTIONS entry (global
zone)” on page 285.

The UCL operand is OPTIONS(name).
v The name can contain from one to eight alphanumeric characters.
v This name can be overridden by using the OPTIONS parameter on the SET

command. For more information, see SMP/E for z/OS Commands.
v If no OPTIONS entry name is specified, SMP/E uses a set of default utility

values when processing this target zone. For more information, see
“OPTIONS entry (global zone)” on page 285.

RELATED
is the name of the distribution zone to which this target zone is related. A
target zone is related to the distribution zone used to build the target libraries,
such as during system generation.

The UCL operand is RELATED(zone).
v The zone name can contain from one to seven alphanumeric characters.
v Although the entry can be defined without this subentry, you must define

the subentry before you can install any SYSMODs in the target libraries.

SREL
lists the system releases to be supported in this target zone.

The UCL operand is SREL(srel...).

SYSMOD entry (global zone)

336 SMP/E V3R6.0 for z/OS V2R1.0 Reference

v The SREL must contain four alphanumeric characters, usually one alphabetic
character followed by three numeric characters. These are the SRELs defined
by IBM:

System
SREL

DB2 P115

CICS C150

IMS P115

MVS Z038

NCP P004
v Although the entry can be defined without this subentry, you must define

the subentry before you can install any SYSMODs in the target libraries.

Note: Although you can support multiple products with different SREL values
from one target zone, those products are still subject to all other restrictions
related to combining products in one zone. The most common reason for not
being able to combine products is common element names. For example,
modules or macros with the same name are found in both products, but reside
in different libraries.

TIEDTO
specifies other target zones that either:
v Supplied modules for load modules controlled by this target zone
v Control load modules that have been link-edited with modules supplied by

this target zone

The UCL operand is TIEDTO(zone...).

Note: TIEDTO subentries are added automatically during LINK MODULE
command processing. However, they are never automatically deleted.

UPGLEVEL
indicates the highest SMP/E release level that is allowed to make incompatible
changes to the target zone. Before making an incompatible change to the target
zone, SMP/E will check the UPGLEVEL value for that zone. If the release level
of SMP/E is higher than the zone's UPGLEVEL value, SMP/E will not make
the incompatible change.

The UPGLEVEL value is in the form vr.pp, where vr represents the version and
release of SMP/E and pp represents the PTF level of SMP/E.

There is no UCL support for this subentry. When a zone is created by SMP/E
using the UCLIN command or the Administration dialog, SMP/E sets the
UPGLEVEL subentry value for that zone to the level of SMP/E used to create
the zone. The UPGRADE command is used to change the UPGLEVEL subentry
value for a zone.

XZLINK
specifies whether APPLY and RESTORE processing in another zone should
automatically update load modules in this zone when cross-zone modules
previously added to those load modules by the LINK MODULE command are
changed.

The UCL operand is XZLINK(value).
v This subentry can contain one of the following values:

TARGETZONE entry (target zone)

Chapter 5. SMP/E data set entries 337

DEFERRED
Cross-zone load modules controlled by this zone should not be
automatically updated when modules previously included in them by
the LINK MODULE command are updated or deleted.

To make sure that the modules are synchronized with the cross-zone
load modules and that the cross-zone information in SMP/E entries is
correct, some combination of the following commands must be run later
(depending on how the module changes affect the load modules):
– LINK MODULE command, to include modules in the affected load

modules
– Link-edit (outside of SMP/E), to delete modules from the affected

load modules
– UCLIN command, to update cross-zone subentries as necessary

AUTOMATIC
Cross-zone load modules controlled by this zone should be
automatically updated when modules previously included in them by
the LINK MODULE command are updated or deleted.

v If XZLINK is not specified, SMP/E uses the default value of DEFERRED.
v XZLINK does not affect processing of the LINK command.
v The XZLINK(DEFERRED) value is listed only when the TARGETZONE

entry contains TIEDTO records.

ZDESC
is a user-written description for this zone.

The UCL operand is ZONEDESCRIPTION(text).
v The zone description can be in single-byte characters (such as English

alphanumeric characters) or in double-byte characters (such as Kanji).
v The zone description can contain up to 500 bytes of data, including blanks.

(For double-byte data, the 500-byte maximum includes all shift-in and
shift-out characters, as well as the double-byte characters.) Extra blanks are
deleted. All data beyond column 72 is ignored, including blanks.

v The zone description cannot be only blanks.
v If parentheses are included in the text, they must be in matched pairs.

LIST Examples

To list the TARGETZONE entry for a particular target zone, you can use the
following commands:
SET BDY(TGT1) /* Set to requested target. */.
LIST TARGETZONE /* List TARGETZONE entry. */.

Figure 60 on page 339 is an example of LIST output for a TARGETZONE entry.

TARGETZONE entry (target zone)

338 SMP/E V3R6.0 for z/OS V2R1.0 Reference

UCLIN Examples

You can use the ADD, REP, and DEL UCL statements to change subentries in the
TARGETZONE entry. When you use UCLIN to update a TARGETZONE entry,
remember that if a DEL statement deletes all the existing subentries in the entry,
SMP/E deletes the entire entry.

The following examples are provided to help you use the TARGETZONE entry.

Example 1: Defining a TARGETZONE entry
Assume that you are about to build a new set of target libraries and thus want to
define a new target zone named TGT2. The distribution zone that you have done
the system generation from is DLIB1, the OPTIONS entry that will be set up will
be called OPTTGT2, and the target zone will contain MVS (Z038) and two
additional programs, each with its own SREL value (P010 and R020). The target
zone will exist in data set SMPE.SMPCSI.CSI. Use the following UCLIN to define
the new zone.
SET BDY(GLOBAL) /* Set to global zone. */.
UCLIN /* UCLIN for GZONE entry */.
ADD GZONE /* to set up */

ZONEINDEX(/* index for new zone. */
(TGT2,SMPE.SMPCSI.CSI,TARGET) /* */
) /* */

/* */.
ENDUCL /* End global zone update. */.
SET BDY(TGT2) /* Now define new zone. */.
UCLIN /* UCLIN to define it. */.
ADD TARGETZONE(TGT2) /* Identify name. */

OPTIONS(OPTTGT2) /* OPTIONS entry to use. */
SREL(Z038, /* SRELs for MVS and */

P010, /* two other */
R020) /* programs. */

RELATED(DLIB1) /* Generated from DLIB. */
/* */.

ENDUCL /* */.

Note: Even though the OPTIONS entry has not been set up yet, you can still refer
to it in the TARGETZONE entry. Prior to processing this target zone the OPTIONS
entry must be created. For examples of setting up the OPTIONS entries, see
“OPTIONS entry (global zone)” on page 285.

PAGE nnnn - NOW SET TO zzzzzz ZONE nnnnnnn DATE mm/dd/yy TIME hh:mm:ss SMP/E 36.nn SMPLIST OUTPUT

TGT1 TZONE ENTRY

NAME

TGT1 TZONE = TGT1
ZDESC = ZONE DESCRIPTION FOR TGT1 ZONE
RELATED = DLIB1
SREL = P115 R020 Z038
OPTIONS = OPTTGT1
XZLINK = AUTOMATIC
TIEDTO = CICS1 IMS1

Figure 60. TARGETZONE entry: sample LIST output

TARGETZONE entry (target zone)

Chapter 5. SMP/E data set entries 339

Example 2: Formatting a zone description
Assume that you enter the following zone description with the first line ending in
column 72 and the second line starting in column 1:
----+----1----+----2---- ... ----5----+----6----+----7--
SET BDY(TGT1) /* Set to tgt zone. */.
UCLIN /* UCLIN for TZONE entry */.
ADD TZONE(TGT1) /* to set up. */

ZDESC(THIS IS THE DESCRIPTION FOR
THE TGT1 ZONE)

/* End of zone description. */.
ENDUCL /* End tgt zone update. */.

Because there is no blank between the word ending in column 72 and the next
word starting in column 1, SMP/E will run the two together.

Words in a zone description, even words that end in column 72, must be separated
by a blank. To format the zone description in this example correctly, you can put a
blank at the beginning of the second line:
----+----1----+----2---- ... ----5----+----6----+----7--
SET BDY(TGT1) /* Set to tgt zone. */.
UCLIN /* UCLIN for TZONE entry */.
ADD TZONE(TGT1) /* to set up. */

ZDESC(THIS IS THE DESCRIPTION FOR
THE TGT1 ZONE)

/* End of zone description. */.
ENDUCL /* End tgt zone update. */.

Because there is a blank explicitly coded between the word ending in column 72
and the word starting in column 1, SMP/E will not run the words together.

UTILITY entry (global zone)
The UTILITY entry contains information that SMP/E uses when invoking a
particular system utility program, such as the load module name of the program
and the parameters that should be passed. This information is used only if the
UTILITY entry is named in the OPTIONS entry that is in effect. For example, to
have SMP/E use certain parameters when it calls a specific link-edit utility, you
must do the following:
1. Define a UTILITY entry that names the program and specifies the parameters.
2. Define an OPTIONS entry that specifies that UTILITY entry as the one to use

for the link-edit utility.
3. Put that OPTIONS entry into effect, either by specifying it on the SET

command or by defining it as the default OPTIONS entry for the zone to be
processed.

If the OPTIONS entry does not point to a UTILITY entry for a particular system
utility, SMP/E uses default values for that utility. Table 6 lists the default values for
the various types of utility programs.

Table 6. Default values for UTILITY entries

Utility
NAME (see note

1) RC PRINT PARM

Access method
services

IDCAMS 0 SYSPRINT

TARGETZONE entry (target zone)

340 SMP/E V3R6.0 for z/OS V2R1.0 Reference

Table 6. Default values for UTILITY entries (continued)

Utility
NAME (see note

1) RC PRINT PARM

Assembler ASMA90 4 SYSPRINT XREF,
NOOBJECT,
DECK

Compress IEBCOPY 0 SYSPRINT

Copy IEBCOPY 0 SYSPRINT SPCLCMOD and
CMWA=256K
(for program
elements and
copied load
modules)

Hierarchical file
system copy

BPXCOPY 0 SYSPRINT (see
note 3)

Link-edit utility IEWBLINK 8 SYSPRINT LET, LIST,
NCAL, XREF
(see note 2)

Retry after x37
abends

IEBCOPY 0 SYSPRINT

Update IEBUPDTE 0 SYSPRINT Determined by
SMP/E during
processing

Superzap IMASPZAP 4 SYSPRINT

Notes:

1. If you replace a default utility program, the replacement utility program must be
compatible with the default utility it replaces, both in the way it processes any control
statements and execution parameters generated by SMP/E and in the return codes that
it returns to SMP/E.

2. When the load module being link-edited contains a CALLLIBS subentry list, SMP/E
does not always use NCAL by default. In this case, SMP/E uses CALL for the link to
the actual target library or NCAL for the link to the SMPLTS library. SMP/E always
uses NCAL for ACCEPT processing.

3. If SYSTSPRT is specified as the PRINT value, it is ignored and the default of SYSPRINT
is used instead.

If a UTILITY entry defines some, but not all, of these subentries, SMP/E uses the
default values for the subentries not specified. For more information about
OPTIONS entries, see “OPTIONS entry (global zone)” on page 285.

The names of the utilities SMP/E may call include all of SMP/E's default utility
program names (BPXCOPY, ASMA90, IEBCOPY, IEBUPDTE, IEWBLINK, IEWL,
and IMASPZAP) and any utility program name specified in an active UTILITY
entry. Because SMP/E runs authorized, all the utility programs called by SMP/E
must reside in an authorized library. Also, if a particular utility program is to be
restricted, the z/OS Security Server must be used to control its execution.

Subentries

These are the subentries for the UTILITY entry as they appear in the LIST output:

name
is the name of the UTILITY entry.

UTILITY entry (global zone)

Chapter 5. SMP/E data set entries 341

The name can contain from 1 to 8 alphanumeric characters.

LIST
indicates whether member names should be listed when SMP/E invokes a
copy utility to perform compress processing, retry processing, or element
installation.

The UCL operand is LIST(YES|NO).
v YES indicates that member names should be listed during copy processing.

This is the default.
v NO indicates that the list of member names should be suppressed during

copy processing.
v The LIST value (including the default value) is ignored when the UTILITY

entry is not for a copy utility.

NAME
is the name of the load module for the utility program that SMP/E is to
call. Table 6 on page 340 lists the default names used by SMP/E if the
OPTIONS entry in effect does not point to a UTILITY entry for a specific
system utility.

The UCL operand is NAME(prog).

The name can contain from 1 to 8 alphanumeric characters. The first character
must be alphabetic.

PARM
specifies the parameters to be passed to the utility program. SMP/E may add
other parameters to this list. Table 6 on page 340 lists the default parameters
used by SMP/E if the OPTIONS entry in effect does not point to a UTILITY
entry for a specific system utility.

The UCL operand is PARM(string).
v If you specify PARM, you must specify all the parameters to be passed. You

cannot specify a single value to add or change just one parameter.
v The parameter string is usually a hexadecimal character string with a length

of up to 100 characters. This 100-character limit can be exceeded for a binder
link-edit step using the OPTION option. For a more detailed explanation, see
the GENERATE command chapter in SMP/E for z/OS Commands. No validity
checking is done on the string. If any blanks are specified between the
parentheses, they will be deleted by SMP/E during processing.

v If the string contains parentheses, they must be in matched pairs. SMP/E
assumes it has reached the end of the specified string when it encounters a
closing parenthesis for the opening parenthesis. For example, the following
is valid because there are matching parentheses within the string:
PARM(LIST,LET,SIZE=(1526K,80K),NCAL)

Parentheses within quotation marks are still considered parentheses. The
next example is not valid because there are unmatched parentheses. SMP/E
would continue scanning after the last parenthesis looking for another “)”.
PARM(PRINT(A),SPECIALCHAR’(’)

Likewise, the following example is not valid. SMP/E would stop at the “)”
after SPECIALCHAR and give a syntax error on the closing quotation mark.
PARM(PRINT(A),SPECIALCHAR’)’)

v Assembler utility: If no PARM subentry is specified for an assembler utility,
SMP/E passes the default PARM values shown for assembler utilities in
Table 6 on page 340.

UTILITY entry (global zone)

342 SMP/E V3R6.0 for z/OS V2R1.0 Reference

If you change the PARM subentry, either include DECK in the parameters
chosen or ensure that the assembler program produces an object deck.

v HFS copy utility: If the UTILITY entry for the HFS copy utility specifies a
PARM value, those parameters are passed to the utility in addition to any
parameters saved in the hierarchical file system element entry.

v Link-edit utility: SMP/E constructs the string of link-edit parameters to be
passed to the link-edit utility in the following steps:
1. If a PARM subentry is specified for a link-edit utility, SMP/E starts the

string with the parameters specified in the PARM subentry. Otherwise,
SMP/E starts the string with the default parameters LET, LIST, NCAL,
and XREF.

2. If SMP/E finds any link edit parameters in the LMOD entry for the load
module being link-edited, SMP/E adds those parameters to the string.

3. If the load module being link-edited contains a CALLLIBS subentry list,
then:
– SMP/E adds CALL for the link to the actual target library
– SMP/E adds NCAL for the link to the SMPLTS library
Any parameter added by this step will override any CALL or NCAL
parameters added in previous steps, whether they were explicitly
specified or assumed by default.

4. Finally, if SMP/E determines that the binder is available on the system
and SMP/E is processing CSECT deletes, SMP/E adds the STORENX
link-edit parameter to the parameter list. (If you use the linkage-editor
instead of the binder, STORENX will cause “INVALID” to appear in the
“invocation parameters list” output of the linkage-editor. This has no
effect on processing.)

The consolidated parameter list is passed to the link-edit utility.
LET, LIST, and sometimes either CALL or NCAL are ordinarily required for
maintenance of IBM operating systems. If you change the PARM subentry,
be sure to include LET, LIST, and any other required parameters in the
parameters chosen. For more information, see the APPLY command chapter
in SMP/E for z/OS Commands .

Note: Before using the GENERATE command to create JCL that will update
files in a UNIX file system, you may want to add UID(0) to the PARM value
so that the JCL created by GENERATE will include UID(0) in the execution
parameter string for the link-edit utility. Specify UID(0) if all the following
are true:
1. Your UID is not 0 but you are authorized to the BPX.SUPERUSER facility

class profile. The UID(0) option, in this case, causes the binder to set an
effective UID of 0 for its execution.

2. The binder invoked by the generated JCL is at the proper level to
understand the UID option.

3. UID 0 authority is needed for the binder's execution in the JCL created
by the GENERATE command in order to update files in a UNIX file
system.

If you do specify UID(0) for GENERATE, you must remove it after
GENERATE has run, so that it is not used for other SMP/E commands (such
as APPLY, which handles setting the effective UID itself prior to invoking
the binder).

UTILITY entry (global zone)

Chapter 5. SMP/E data set entries 343

v Update utility: The PARM subentry for an update utility must not specify
MOD or NEW.

PRINT
specifies the ddname that is to contain output from the utility (for example,
SYSPRINT). Table 6 on page 340 lists the default ddnames used by SMP/E if
the OPTIONS entry in effect does not point to a UTILITY entry for a specific
system utility.

The UCL operand is PRINT(ddname).

The value specified can contain from 1 to 8 alphanumeric characters. The first
character must be alphabetic.

Note:

1. The ddname specified for PRINT can affect whether you receive print
output from this utility. For example, if you specify a DDDEF for a
DUMMY data set or a DDDEF for a data set that is sent to a SYSOUT class
that suppresses output, you do not receive print output from this utility.

2. If SYSTSPRT is specified as the PRINT value for the HFS copy utility, it is
ignored and the default of SYSPRINT is used instead.

3. To exploit utility multi-tasking in SMP/E, ensure that the ddname that is to
contain the link edit utility output is defined with either a DDDEF entry
that identifies a SYSOUT class or an entry in the SMPPARM GIMDDALC
member that identifies a SYSOUT class. SMP/E's default ddname for utility
output is SYSPRINT, but can be changed using the PRINT subentry of the
LKED UTILITY entry. When multi-tasking, SMP/E will invoke multiple
instances of the link edit utility at the same time, thus decreasing the total
time required to complete an ACCEPT, APPLY, LINK LMODS or RESTORE
command. Multi-tasking of link edit can occur when there are different
target libraries and there are no dependencies on previous and subsequent
link edits. If you do not define the print ddname using either a DDDEF
entry or an SMPPARM GIMDDALC member, or if the print ddname
definition identifies something other than SYSOUT class, or if you override
the SYSPRINT DDDEF with a ddname in your JCL, then SMP/E will not
multi-task link edit utility operations.

RC
specifies the maximum acceptable return code from this utility. If the return
code is higher than this value, SMP/E normally assumes that the requested
processing failed. However, the RETURN CODE value in the LMOD entry
overrides (for that load module) the value in the UTILITY entry. Also, the
success of a link-edit in the SMPLTS library is based on the following:
v Link-edits into the SMPLTS with a return code of 8 or less are considered

successful regardless of the threshold return code specified in the UTILITY
entry.

v Link-edits into the SMPLTS with a return code of greater than 8 are
considered successful or failures based on the threshold (normal processing).
If the SMPLTS link-edit return code is less than or equal to the threshold
return code, it is considered successful. If the SMPLTS link-edit return code
is greater than the threshold return code, it is considered a failure.

Table 6 on page 340 lists the default return codes used by SMP/E if the
OPTIONS entry in effect does not point to a UTILITY entry for a specific
system utility.

The UCL operand is RC(rc).

UTILITY entry (global zone)

344 SMP/E V3R6.0 for z/OS V2R1.0 Reference

v The value can be from 0 to 16.
v The installation information for a product (such as the product program

directory) may state the utility return codes you should expect during
SMP/E processing. For example, it may state the expected link-edit return
codes for its load modules during SMP/E processing. The expected return
code may be 4 or 8, because post-SMP/E link-edit work is required (for
example, the load modules may require interface routines or compiler library
routines). Such return codes allow the SYSMODs to be installed, but they
also require you to check the actual link-edit return code in the GIM23903I
or GIM23903W messages in order to determine the actual success of utility
processing.
Before using the default SMP/E return codes (especially for link-edit
processing), check the installation information for the products you plan to
install and determine the appropriate maximum acceptable return codes for
utility processing. You may find that you need to set up more than one
UTILITY entry for a particular utility program in order to accommodate
different maximum return codes for various products. (As a result, you may
need additional OPTIONS entries to point to the appropriate UTILITY
entries.)

LIST Examples

To list all the UTILITY entries in a global zone, you can
SET BDY(GLOBAL) /* Set to requested zone. */.
LIST UTILITY /* List all UTILITY entries. */.

To list specific UTILITY entries in a global zone, you can use these commands:
SET BDY(GLOBAL) /* Set to requested zone. */.
LIST UTILITY(IEUASM /* List only these three */

IEWL /* entries. */
MYX37) /* */.

The format of the LIST output for each UTILITY entry is the same for both of these
commands. The only difference is the number of UTILITY entries listed.

Figure 61 shows an example of LIST output for UTILITY entries.

PAGE nnnn - NOW SET TO zzzzzz ZONE nnnnnnn DATE mm/dd/yy TIME hh:mm:ss SMP/E 36.nn SMPLIST OUTPUT

GLOBAL UTILITY ENTRIES

NAME

IEUASM PRINT = MYSYSPRT

IEWL PARM = SIZE=(1526K,80K)

MYX37 NAME = USERRCVR
PARM = TYPE=FAST
PRINT = X37PRINT
RC = 4
LIST = NO

Figure 61. UTILITY entry: sample LIST output

UTILITY entry (global zone)

Chapter 5. SMP/E data set entries 345

UCLIN Examples

You can use the ADD, REP, and DEL UCL statements to change subentries in a
UTILITY entry. When you use UCLIN to update a UTILITY entry, keep these
points in mind:
v After the UCLIN changes are done, the UTILITY entry must contain at least one

of the following subentries:
– NAME
– PARM
– PRINT
– RC

Otherwise, there is not enough information in the entry for SMP/E to use the
entry.

v If a DEL statement deletes all the existing subentries in the entry, SMP/E deletes
the entire entry.

The following examples are provided to help you use the UTILITY entry.

Example 1: Changing the DD statement for SYSPRINT output
Assume that you want to direct all the SYSPRINT output for assemblies to the
MYSYSPRT DD statement rather than to the SYSPRINT DD statement. To do this
you need to build a UTILITY entry for the assembler and then specify that
UTILITY entry in the OPTIONS entry that will be in effect. Assume that the
UTILITY entry to be defined is named IEUASM, and that the OPTIONS entry to be
used is MYOPT1. The following UCL will accomplish your objectives:
SET BDY(GLOBAL) /* Set to global zone. */.
UCLIN /* */.
ADD UTILITY(IEUASM) /* Assembler utility. */

PRINT(MYSYSPRT) /* Alternate SYSPRINT */
/* Other values remain as

in SMP/E defaults. */.
REP OPTIONS(MYOPT1) /* Connect to OPTIONS. */

ASM(IEUASM) /* Use IEUASM for ASM. */
/* */.

ENDUCL /* */.

Note: Remember, if you specify a DDDEF for a DUMMY data set or a DDDEF for
a data set that is sent to a SYSOUT class that suppresses output, you do not
receive SYSPRINT output from this utility.

Example 2: Defining link-edit utility parameters
Assume that you want to always pass the SIZE=(1526K,80K) parameter to the
link-edit utility. To do this you need to build a UTILITY entry for the link-edit
utility and then specify that UTILITY entry in the OPTIONS entry that will be in
effect. Assume that the UTILITY entry to be defined is named IEWL, and that the
OPTIONS entry to be used is MYOPT1. The following UCL will accomplish your
objectives:
SET BDY(GLOBAL) /* Set to global zone. */.
UCLIN /* */.
ADD UTILITY(IEWL) /* Link-edit utility. */

PARM(LET, /* PARM values. */
SIZE=(1526K,80K), /* */
NCAL) /* */

/* Other values remain as
in SMP/E defaults. */.

UTILITY entry (global zone)

346 SMP/E V3R6.0 for z/OS V2R1.0 Reference

REP OPTIONS(MYOPT1) /* Connect to OPTIONS. */
LKED(IEWL) /* Use IEWL for LKED. */

/* */.
ENDUCL /* */.

Example 3: Defining a user utility program
Assume that you want SMP/E to call a user routine, USERRCVR, rather than
IEBCOPY, in order to recover from x37 abends. In addition to the program name
change, the program must also receive parameter TYPE=FAST. You want to
indicate that the output should go to X37PRINT rather than SYSPRINT, and that a
return code of 4 or less is acceptable. You also want to suppress the listing of
member names during retry processing done by your program. To do this you
need to build a UTILITY entry for the program, and then specify the UTILITY
entry in the OPTIONS entry that will be in effect. Assume that the UTILITY entry
to be defined is named MYX37, and that the OPTIONS entry to be used is
MYOPT1. The following UCL will accomplish your objectives:
SET BDY(GLOBAL) /* Set to global zone. */.
UCLIN /* */.
ADD UTILITY(MYX37) /* Retry/recovery program. */

NAME(USERRCVR) /* Program name. */
PARM(TYPE=FAST) /* PARM value. */
PRINT(X37PRINT) /* SYSPRINT ddname. */
RC(4) /* Highest acceptable */

/* return code. */
LIST(NO) /* No list of member names. */

/* */.
REP OPTIONS(MYOPT1) /* Connect to OPTIONS. */

RETRY(MYX37) /* Use MYX37 for RETRY. */
/* */.

ENDUCL /* */.

ZONESET entry (global zone)
The ZONESET entry defines a group of zones to be used to limit the SYSMODs
processed by an SMP/E command. For example, you can specify a ZONESET on
the ZONESET operand of the REPORT command. This defines which zones
SMP/E should check for installed SYSMODs that specify conditional requisites that
might be needed for functions in other zones in the ZONESET. A ZONESET may
also define a group of zones to be checked or ignored by the REJECT command.

Subentries

These are the subentries for the ZONESET entry as they appear in the LIST output:

name
is the name of the ZONESET. The name can contain from 1 to 8 alphanumeric
characters.

To avoid confusion and undesired results, you may want to avoid giving a
ZONESET the same name as any of the target or distribution zones defined to
the global zone that will contain the ZONESET entry. This is because, on some
SMP/E command operands, you can specify zones and ZONESETs. When
ZONESETs and zones have the same name, you might not get the results you
wanted.

For example, suppose you have a ZONESET named Z001 and a zone named
Z001. If you specify Z001 on an SMP/E command operand, SMP/E assumes
that you want to use the zones defined in ZONESET Z001 (which might or
might not include zone Z001), and not the individual zone Z001.

UTILITY entry (global zone)

Chapter 5. SMP/E data set entries 347

XZREQCHK
indicates whether this ZONESET should be used when establishing the default
zone group for the APPLY, ACCEPT, and RESTORE commands.

The UCL operand is XZREQCHK(YES|NO).
v YES indicates that the ZONESET should be used when establishing the

default zone group.
v NO indicates that the ZONESET should not be used when establishing the

default zone group. NO is the default.
v The XZREQCHK value (including the default value) is ignored when the

XZGROUP operand is specified on the APPLY, ACCEPT, or RESTORE
command.

ZONE
lists the target or distribution zones that are to be part of this ZONESET.

The UCL operand is ZONE(zone...).
v Each value can contain from 1 to 7 alphanumeric characters.
v A ZONESET can contain both target and distribution zones.
v All the zones in a ZONESET must be defined in the same global zone as the

ZONESET entry.
v The zones cannot be defined in global zones that are in different SMPCSI

data sets. For an example of defining a ZONESET in order to report on
zones controlled by different global zones, see the REPORT CROSSZONE
command in SMP/E for z/OS Commands.

LIST Examples

To list all the ZONESET entries in a global zone, you can use the following
commands:
SET BDY(GLOBAL) /* Set to global zone. */.
LIST ZONESET /* List all ZONESET entries. */.

To list specific ZONESET entries in a global zone, you can use these commands:
SET BDY(GLOBAL) /* Set to global zone. */.
LIST ZONESET(ZST2 /* List only these */

ZST4) /* entries. */.

The format of the LIST output for each ZONESET entry is the same for both of
these commands. The only difference is the number of ZONESET entries listed.

Figure 62 shows an example of LIST output for ZONESET entries.

PAGE nnnn - NOW SET TO zzzzzz ZONE nnnnnnn DATE mm/dd/yy TIME hh:mm:ss SMP/E 36.nn SMPLIST OUTPUT

GLOBAL ZONESET ENTRIES

ZST2 ZONE = ZONE21 ZONE22 ZONE23

ZST4 ZONE = ZONE41 ZONE42 ZONE43

Figure 62. ZONESET entry: sample LIST output

ZONESET entry (global zone)

348 SMP/E V3R6.0 for z/OS V2R1.0 Reference

UCLIN Examples

You can use the ADD, REP, and DEL UCL statements to change subentries in a
ZONESET entry. When you use UCLIN to update a ZONESET entry, keep these
points in mind:
v After the UCLIN changes are done, the ZONESET entry must contain at least a

ZONE subentry. Otherwise, the entry contains so little information that SMP/E
cannot use it.

v If a DEL statement deletes all the existing subentries in the entry, SMP/E deletes
the entire entry.

Example: Defining a ZONESET entry
Assume that you have a system with four target zones: BP111, PROD111, BP999,
and PROD999. BP111 and BP999 define two different base control programs.
PROD111 and PROD999 are two versions of the same product that must be
synchronized with each other and with their base control programs (PROD111 with
BP111 and PROD999 with BP999). To keep service for these products at the same
level, you can group BP111, PROD111, and PROD999 in one ZONESET (S111) and
BP999, PROD999, and PROD111 in a second ZONESET (S999). The following UCL
will define the ZONESET entries:
SET BDY(GLOBAL) /* Set to global zone. */.
UCLIN /* */.
ADD ZONESET(S111) /* ZONESET S111. */

ZONE(BP111, /* Include these target */
PROD111, /* zones. */
PROD999) /* */

/* */.
ADD ZONESET(S999) /* ZONESET S999. */

ZONE(BP999, /* Include these target */
PROD999, /* zones. */
PROD111) /* */

/* */.
ENDUCL /* */.

ZONESET entry (global zone)

Chapter 5. SMP/E data set entries 349

ZONESET entry (global zone)

350 SMP/E V3R6.0 for z/OS V2R1.0 Reference

Chapter 6. SMP/E CSI application programming interface

This chapter documents intended Programming Interfaces that allow the customer
to write programs to obtain the services of IBM SMP/E for z/OS, V3R6.

This chapter describes the SMP/E CSI application program interface (GIMAPI),
which provides access to data stored and used by SMP/E. This data is stored in a
VSAM data set called the CSI (Consolidated Software Inventory). The purpose of
GIMAPI is to provide you with read-only access to data maintained by SMP/E in
the CSI.

Note: GIMAPI cannot be called from within an SMP/E user exit routine.

Overview of GIMAPI
GIMAPI is a program (load module) provided with IBM SMP/E for z/OS, V3R6
that can be called by a user-written application program to query the contents of
the CSI.

GIMAPI uses data structures both to receive the query parameters from the caller
and to return the query output to the caller. To request a query, you must set up
the data structure containing the appropriate query parameters and call GIMAPI.

The general form of the GIMAPI call is:
where apicmd specifies the API command that GIMAPI is to process (either

QUERY, FREE or VERSION). See “QUERY command,” “FREE command” on page
386 and “VERSION command” on page 387 for descriptions of these commands
and a detailed description of how the remaining parameters parmptr, outptr,
language, rc, cc, and msgbuff) are used on those commands.

QUERY command
Use the QUERY command to retrieve data from a zone or set of zones within a
CSI. You specify the details of your query by setting parameters on the call to the
QUERY command. These parameters determine what data is returned from the
query. The data is returned to the calling program in a set of data structures.

QUERY command parameters
Here is an example of a call to the QUERY command:

QUERY
is a keyword that specifies that GIMAPI is to process a query request. Note
that it is necessary to pad the string containing the QUERY command with
blanks to bring it to a length of eight characters.

GIMAPI(apicmd,parmptr,outptr,language,rc,cc,msgbuff)

GIMAPI('QUERY ',parmptr,outptr,'language',rc,cc,msgbuff)

© Copyright IBM Corp. 1986, 2014 351

parmptr
A 4-byte pointer to an area of storage owned by the calling program that
contains a data structure whose elements are the parameters for the
QUERY command. A generic data structures definition can be found in
“Data structures for QUERY command” on page 383.

outptr A pointer variable that is to be set by GIMAPI with the address of an area
of storage owned by GIMAPI that contains the output from the QUERY
command. For the QUERY command, the output is a set of linked lists that
both contains and describes the requested data. See section “QUERY
command output” on page 380 for more details on the QUERY command
output.

language
A 3-byte character string specifying the language that QUERY command is
to use when issuing messages. The valid values are:

ENU US English

JPN Japanese

Note: Specifying language as three blanks is also valid and is equivalent to
specifying “ENU”.

rc A storage area owned by the calling program representing a 4-byte
numeric variable. The value of the variable is set by GIMAPI to the return
code of the QUERY command processing. The return code represents the
severity of the condition raised by the GIMAPI processing. These codes
may be returned:

0 Indicates the function terminated successfully. The cc value is also
set to zero (0) when the return code is 0.

4 Indicates a warning condition was detected during execution of
GIMAPI. The cc value given indicates the specific warning
condition. When a warning occurs, the GIMAPI command
continues processing. Appropriate warning messages are written to
the message buffer.

8 Indicates an error condition was detected during execution of
GIMAPI. The cc value given indicates the specific error condition.
When an error occurs, the GIMAPI command terminates after
storing the error condition in the message buffer. Other GIMAPI
commands may be invoked from the calling program.

12 Indicates a severe error condition was detected during execution of
GIMAPI. The cc value given indicates the specific error condition.
When a severe error occurs, GIMAPI terminates after storing the
severe condition in the message buffer. The calling program should
not make any more calls to GIMAPI.

16 Indicates a terminating error condition was detected during
execution of GIMAPI. The cc value given indicates the specific
error condition. When a terminating error occurs, GIMAPI
terminates after storing the condition in the message buffer. The
calling program should not make any more calls to GIMAPI.

cc A storage area owned by the calling program representing a 4-byte
numeric variable. The value of the variable is set by GIMAPI to the
condition code of the GIMAPI processing. The condition code, also known
as a reason code, indicates the specific situation that occurred during

GIMAPI

352 SMP/E V3R6.0 for z/OS V2R1.0 Reference

GIMAPI processing. The condition code corresponds to the error message
stored for the condition. For example, if error message GIM30400S is to be
issued, the return code value is 8 and the condition code is 30400.

More than one error condition may occur during a call to GIMAPI. This is
most likely during syntax checking, because GIMAPI checks every
parameter for syntax errors. (GIMAPI will stop checking a parameter if it
finds an error, so GIMAPI will not report any additional errors that may
exist for that parameter.) The return code value set is the one with the
highest severity of the raised conditions. If more than one “highest
condition” is raised, the first condition of that severity encountered is the
value returned as the condition code to the calling program.

GIMAPI sets the cc value to zero (0) for a successful run. The rc value is
also zero (0) in this case.

msgbuff
A pointer variable that is set by GIMAPI to the head of a linked list of
messages issued by the QUERY command processing. The elements of the
list are ITEM_LIST structures. See section “Data structures for QUERY
command” on page 383 for a description of that structure.

Building the QUERY parameters data structure
The QUERY command parameter list must include a pointer to a data structure
(parmptr) that defines the query to be processed. This data structure, in turn,
contains pointers to character strings that specify from where data is to be
retrieved (that is, which CSI, zones, and entry types) and, optionally, a list of
subentries and a filter, which allow you to specify conditions that will be used to
determine which entries are retrieved.

The following parameters are part of the structure pointed to by the parmptr
parameter of the QUERY command. All the parameters are required except the
subentry and filter parameters.

csi Input is accepted in mixed case. A character string that specifies the name
of the global CSI to be searched by the QUERY command. The DDNAME
used when allocating the data set is SMPCSI.

Input is accepted in mixed case. It is folded to uppercase when the
command is processed.

csilen A decimal number specifying the size of the character string containing the
csi parameter. This value cannot be greater than 44.

A zero (0) value indicates that the calling program has already allocated a
global CSI data set as the SMPCSI DDNAME. That allocation is used and
the csi parameter is ignored.

zone A character string that specifies the zones from which data is to be
retrieved. You may enter one or more specific zone names separated by
commas or blanks, or any of these values:

GLOBAL
Use the global zone

ALLTZONES
Use all target zones

ALLDZONES
Use all DLIB zones

GIMAPI

Chapter 6. SMP/E CSI application programming interface 353

* Use all zones defined in the GLOBAL zone index

Except for the asterisk (*), these values can be used together and with
specific zone names, provided that all values are separated by commas or
blanks. The asterisk (*) must be used alone.

For example, these specifications are valid:
GLOBAL, ALLTZONES
ALLTZONES, ALLDZONES
ALLTZONES, MY1DLIB, MY2DLIB
ALLTZONES MY1DLIB, MY2DLIB

whereas this is not valid:
GLOBAL, *, ALLTZONES

A zone can be specified only once in the zone parameter. A specific DLIB
zone name along with the ALLDZONES keyword or a specific target zone
name along with the ALLTZONES keyword does not cause a message to
be issued. However, processing for the duplicated zone names will be done
only once.

Spaces can be used freely between values and commas.

Input is accepted in mixed case. It is folded to uppercase when the
command is processed.

The specific zone name can be a ZONESET name. The command will first
check whether the name is a ZONESET. If not, it will check the
ZONEINDEX.

zonelen
A decimal number specifying the size of the character string containing the
zone parameter.

entry A character string that indicates the entry types from the specified zones to
be searched. You can specify one or more entries, separated by commas or
blanks, or you can specify an asterisk (*) to indicate that all entries are to
be searched. If an asterisk is used, no other values may be specified.

An entry can be specified only once in the entry parameter.

Spaces can be used freely between entry names and commas.

Input is accepted in mixed case. It is folded to uppercase when the
command is processed.

The entry types specified must be valid CSI entry types. Refer to “Valid
entry types” on page 358 for a list of the valid types.

entrylen
A decimal number specifying the size of the character string containing the
entry parameter.

subentry
Each CSI entry has a set of subentries associated with it. The subentry
parameter is a pointer to a character string used to indicate the subentries
for which data is retrieved. Several subentries can be specified separated
by commas or blanks, or you can specify an asterisk (*) to indicate that all
subentries are to be searched. If an asterisk is used, no other values may be
specified.

A subentry can be specified only once in the subentry parameter.

Spaces can be used freely between subentry names and commas.

GIMAPI

354 SMP/E V3R6.0 for z/OS V2R1.0 Reference

Input is accepted in mixed case. It is folded to uppercase when the
command is processed.

Note: The entry parameter allows multiple entries to be specified. It may
be that a subentry to be returned does not apply to all the specified entries.
In this case, the subentry is simply ignored for a particular entry to which
it does not apply.

Refer to “Valid subentry types” on page 359 for more details.

subentrylen
A decimal number specifying the size of the character string containing the
subentry parameter.

filter A character string that specifies the set of conditions with which to limit
the set of entries being retrieved. A condition is in the form

subentry operator ’value’

For example, FMID = 'HP10230' or INSTALLDATE >= '07203'.

Input is accepted in mixed case. The subentry types are folded to
uppercase when the command is processed. The fixed values are not
changed.

Filter is an optional parameter. When no filtering is desired, set the length
field (filterlen) to zero (0).

Refer to “Filter parameter syntax” for a detailed description of the syntax
of the filter parameter.

filterlen
A decimal number specifying the size of the character string containing the
filter parameter.

Filter parameter syntax
The filter parameter is used to limit the entries returned for a particular query. You
specify a filter by listing a set of conditions. These conditions specify a comparison
between two values; a subentry value in the CSI is compared with a fixed value
specified in the condition.

Multiple filter conditions may be specified using the operators, & (logical AND)
and | (logical OR). Parentheses may be used to group search conditions to ensure
a desired evaluation sequence for the filter. The parentheses, when used, may be
preceded by one or more blanks and also may be followed by one or more blanks.

When a subentry name represents a list of values, such as PRE, which is a list of
all the prerequisite SYSMODs, each value in the list from the CSI is compared to
the fixed value. If any match, the condition is evaluated as true.

These subentry types may be specified in the filter parameter only with the = or !=
operators and a null value (for example, ASMIN='' or LEPARM!=''):
v ASMIN
v HFSPARM
v HOLDDATA
v LECNTL
v LEPARM
v LMODALIAS

GIMAPI

Chapter 6. SMP/E CSI application programming interface 355

v LMODSYMLINK
v ORDERSERVER
v UTILPARM
v ZDESC

The fixed value must be enclosed within single quotation marks. Any set of
characters may be used in the fixed value. If the fixed value is shorter than the
subentry value, GIMAPI left-justifies the fixed value and pads it with blanks before
doing the comparison.

Any apostrophes specified as part of a DESCRIPTION, VENDOR, or URL subentry
(excluding delimiters) must be doubled. Double apostrophes count as two
characters in the filter length.

Blanks may be freely used to separate the subentry, operator, and fixed value.

The values of some subentry types are lists of composite values. An example of
this is the CIFREQ parameter whose value is causer,requisite. The fixed value for
conditions containing these types of subentries must match the format of the
output provided by the QUERY command. For example:

CIFREQ=’PTF0001,PTF0002’

Refer to “Valid subentry types” on page 359 for the format of each composite
subentry type.

A null value for a subentry is specified by using two single quotation marks with
no blanks between them(''). This can be used to find all entries whose value is not
blank, for example, PATH!=''.

The operators that can be used to compare a subentry value to a fixed value, or to
join a set of conditions together, are:

Operator
Function

= Equal to

!= Not equal to

< Less than

<= Less than or equal to

> Greater than

>= Greater than or equal to

| Logical OR, at least one of two conditions are true

& Logical AND, both conditions must be true

Subentry names that may appear to the left of operators are the subentries defined
in “Valid subentry types” on page 359. Potential values for each subentry can be
found in Chapter 5, “SMP/E data set entries,” on page 171. When a subentry is an
indicator, such as PROTECT for the DDDEF entry, its value is either YES or NO.

A requested subentry may not have a value for a particular entry. This value is
considered null. This may occur for one of the following reasons:
v The subentry has not been set for the entry.

GIMAPI

356 SMP/E V3R6.0 for z/OS V2R1.0 Reference

v The subentry does not apply to that entry.

An example of the latter case is a request for the SYSLIB subentry with the
SYSMOD entry type. SYSMOD entries do not contain SYSLIB subentries, causing a
request for such a value to always return a null value.

When the not equal sign is used with some value within a filter, for example
SYSLIB!='MACLIB', the case where no data is found for the subentry is considered
a match, because “MACLIB” does not equal a null value. Therefore, if this filter is
used when requesting the SYSMOD entry type, all the SYSMODs in the selected
zones are returned. To exclude entries having no value, write the filter as
(SYSLIB!='MACLIB' & SYSLIB!='').

The >, >=, < and <= operators can be used only with the subentry types that have
date, time, or return code values, which are:
v HOLDDATE
v INSTALLDATE
v INSTALLTIME
v RC
v RECDATE
v RECTIME
v RESDATE
v RESTIME
v UCLDATE
v UCLTIME

The >, >=, < and <= operators have no meaning when applied to a subentry that
has a null value. GIMAPI will always resolve such comparisons to false.

A date fixed value must use the format yyddd. It must be five numeric characters.
For example, specify 01365 to represent December 31, 2001.

A time fixed value must use the format hh:mm:ss, where hh is a two-digit decimal
number in the range 00 through 23, and mm and ss are both two-digit decimal
numbers in the range 00 through 59. (That is, in 24-hour clock format.)

The filter parameter is made up of a combination of these parts:
v Subentry name
v Operator
v Fixed value
v Conjunction (& or |)
v Left parenthesis
v Right parenthesis

The following list indicates for each part, what other part or parts can follow it.
Any other sequence of parts is considered a syntax error.

Filter part
Can be followed by

Subentry
Operator

GIMAPI

Chapter 6. SMP/E CSI application programming interface 357

Operator
Fixed value

Fixed value
Conjunction, Right parenthesis, End of filter

Conjunction
Subentry Left parenthesis

Left parenthesis
Subentry, Left parenthesis

Right parenthesis
Conjunction, Right parenthesis, End of filter

Valid entry types
Table 7 lists the values that are valid as entry parameters and the zones to which
they are applicable.

Table 7. Valid entry values

Entry type Global zone DLIB zone Target zone

ASSEM Valid Valid

Data element1 Valid Valid

DDDEF Valid Valid Valid

DLIB Valid Valid

DLIBZONE Valid

ELEMENT2 Valid Valid

FEATURE Valid

FMIDSET Valid

GLOBALZONE Valid

Hierarchical file system element3 Valid Valid

HOLDDATA Valid

JAR Valid Valid

LMOD Valid Valid

MAC Valid Valid

MOD Valid Valid

OPTIONS Valid

ORDER Valid

PRODUCT Valid

PROGRAM Valid Valid

SRC Valid Valid

SYSMOD Valid Valid Valid

TARGETZONE Valid

UTILITY Valid

ZONESET Valid

Note:

GIMAPI

358 SMP/E V3R6.0 for z/OS V2R1.0 Reference

1. The data element entry type has many possible values. Refer to “Data element
entry (distribution and target zone)” on page 190in Chapter 5, “SMP/E data set
entries,” on page 171 for the complete list. Any one of these values can be
supplied as part of the entry parameter.

2. ELEMENT is a pseudo-entry value indicating that JAR, MOD, MAC,
PROGRAM, SRC, and all data element and hierarchical file system element
entries are returned.

3. The hierarchical file system element entry type has many possible values. Refer
to "Hierarchical File System Element Entry (Distribution and Target Zone)" in
Chapter 5 for the complete list. Any one of these values can be supplied as part
of the entry parameter.

When you specify an entry that is not applicable to a particular zone, the result is
simply that no data is returned. This is not an error condition.

Valid subentry types
For each entry type there is a set of valid subentry types that may be specified as
part of the subentry and filter parameters. The following sections contain a table for
each entry. Each table lists the valid subentries for that entry. The subentry types
generally correspond to the types used for UCLIN processing. However, some
additional types are used for GIMAPI processing (for example, the SMODTYPE
subentry of the SYSMOD entry type). This specifies what type the SYSMOD is and
is used instead of having a separate subentry for each SYSMOD type.

Note:

1. ENAME and zone name are automatically returned for each instance of an
entry as part of the ENTRY structure so they do not have to be requested on
the subentry parameter. ENAME can be used on the filter parameter.
For a PRODUCT entry, ENAME has no meaning and is always blank. PRODID
and VRM values are automatically returned instead of ENAME for PRODUCT
entries. PRODID and VRM can be used on the filter parameter.

2. A maximum length of (*) indicates that a linked list of that subentry is returned
to the caller. Details of the return structures passed back to the caller can be
found in “Data structures for QUERY command” on page 383.

ASSEM
Table 8. Valid subentries for the ASSEM entry

Subentry name Maximum length
(decimal)

Description

ASMIN * A linked list of records containing the assembler statements that were
saved for a module during JCLIN processing. Each record may be up to
80 bytes in length.

ENAME 8 Name of the entry.

LASTUPD 7 Cause of last change to assembler entry.

LASTUPDTYPE 8 Indicates how the entry was last changed.

GIMAPI

Chapter 6. SMP/E CSI application programming interface 359

Data element
Table 9. Valid subentries for the data element entries

Subentry name Maximum length
(decimal)

Description

ALIAS * A linked list containing alias names associated with the data element.
Each alias name may be up to 8 bytes in length.

DISTLIB 8 Identifies the ddname of the distribution library for the data element

ENAME 8 Name of the entry.

FMID 7 Specifies the functional owner of the data element.

LASTUPD 7 Cause of last change to this data element entry.

LASTUPDTYPE 3 Indicates how the entry was last changed.

RMID 7 Identifies the last SYSMOD that replaced this data element.

SYSLIB 8 Identifies the ddname of the target library for the data element.

DDDEF
Table 10. Valid subentries for the DDDEF entry

Subentry name Maximum length
(decimal)

Description

CONCAT * A linked list containing the names of the DDDEF entries existing in the
same zone that should be concatenated during SMP/E processing. Each
entry name may be up to 8 bytes in length.

DATACLAS 8 Specifies the name of the data class to be used for allocating a new data
set managed by SMS.

DATASET 44 Specifies the name of the data set to be allocated.

DIR 4 Specifies the number of directory blocks to allocate.

DISP 7 Specifies the final disposition of the data set.

v CATALOG

v DELETE

v KEEP

DSNTYPE 7 Specifies the type of partitioned data set to be created.

v LIBRARY

v PDS

DSPREFIX 26 Specifies the data set prefix to be used to construct the full data set name
for SMPTLIB data sets. GLOBAL zone only.

ENAME 8 Name of the entry.

INITDISP 3 Specifies the initial disposition of the data set.

v MOD

v NEW

v OLD

v SHR

MGMTCLAS 8 Specifies the name of the management class to be used for allocating a
new data set managed under SMS.

PATH 255 Identifies the name of the path to be allocated in a UNIX file system.

PROTECT 3 Indicates whether RACF® PROTECT option should be used when a new
data set is allocated. (YES or NO).

GIMAPI

360 SMP/E V3R6.0 for z/OS V2R1.0 Reference

Table 10. Valid subentries for the DDDEF entry (continued)

Subentry name Maximum length
(decimal)

Description

SPACE 9 Specifies the primary and secondary space allocation in the format
nnnn,nnnn.

STORCLAS 8 Specifies the name of a storage class used for allocating a new data set
managed by SMS.

SYSOUT 1 Specifies the output class for SYSOUT data sets.

UNIT 8 Specifies the UNIT type the data set resides on if it is not cataloged.

UNITS 12 Specifies the space units to be used in allocating the data set.

v BLK(size)

v CYL

v TRK

VOLUME * A linked list containing volume serial numbers of the device the data set
resides on if it is not cataloged. Each volume serial number may be up to
6 bytes in length.

WAITFORDSN 3 Indicates whether SMP/E should wait for the data set to be allocated if
the volume is not mounted or if the data set is already in use. (YES or
NO).

DLIB
Table 11. Valid subentries for the DLIB entry

Subentry name Maximum length
(decimal)

Description

ENAME 8 Name of the entry.

LASTUPD 7 Cause of last change to DLIB entry.

LASTUPDTYPE 3 Indicates how the entry was last changed.

SYSLIB * A linked list containing the ddnames of the target libraries into which the
distribution library should be copied. Each ddname may be up to 8 bytes
in length.

DLIBZONE
Table 12. Valid subentries for the DLIBZONE entry

Subentry name Maximum length
(decimal)

Description

ACCJCLIN 3 Indicates whether JCLIN is to be saved in the distribution zone whenever
a SYSMOD containing inline JCLIN is accepted. (YES or NO).

ENAME 8 Name of the entry.

OPTIONS 8 The name of the OPTIONS entry in the global zone that should be used
when processing this distribution zone.

RELATED 7 The name of the target zone to which this distribution zone is related.

SREL * A linked list containing the names of the system releases supported
within this distribution zone. Each name may be up to four bytes in
length.

GIMAPI

Chapter 6. SMP/E CSI application programming interface 361

Table 12. Valid subentries for the DLIBZONE entry (continued)

Subentry name Maximum length
(decimal)

Description

UPGLEVEL 8 Indicates the highest SMP/E release level that is allowed to make
incompatible changes to the zone. If SMP/E attempts to make an
incompatible change to a zone and the release level of SMP/E is higher
than the UPGRADE level in that zone, then the incompatible change will
not be made. This value is in the form vr.pp, where vr represents the
version and release of SMP/E and pp represents the PTF level of SMP/E.

ZDESC 500 A user-written description for this zone.

FEATURE
Table 13. Valid subentries for the FEATURE entry

Subentry name Maximum length
(decimal)

Description

DESCRIPTION 64 Describes the software feature in readable text.

ENAME 8 Name of the entry.

FMID * A linked list containing 7-byte names of function SYSMODS that make
up the feature.

PRODUCT 17 The product identifier and version, release, and modification level
(prodid,vv.rr.mm) of the feature's associated product.

RECDATE 5 Specifies the date on which this feature was received.

RECTIME 8 Specifies the time at which the ++FEATURE MCS was received.

REWORK 8 Specifies the level of this FEATURE entry, which was received again
for minor changes.

UCLDATE 5 Specifies the date on which this FEATURE entry was last modified
through UCLIN.

UCLTIME 8 Specifies the time at which this FEATURE entry was last modified
through UCLIN.

FMIDSET
Table 14. Valid subentries for the FMIDSET entry

Subentry name Maximum length
(decimal)

Description

ENAME 8 Name of the entry.

FMID * A linked list containing 7-byte names of the function SYSMODS (that is,
FMIDs) that are to be part of this FMIDSET.

GLOBALZONE
Table 15. Valid subentries for the GLOBALZONE entry

Subentry name Maximum length
(decimal)

Description

ENAME 8 Name of the entry.

FMID * A linked list containing 7-byte names of the function SYSMODS for
which SMP/E is to receive service.

OPTIONS 8 The name of the OPTIONS entry in the global zone that should be used
when processing this global zone.

GIMAPI

362 SMP/E V3R6.0 for z/OS V2R1.0 Reference

Table 15. Valid subentries for the GLOBALZONE entry (continued)

Subentry name Maximum length
(decimal)

Description

SREL * A linked list containing the names of the system releases supported
within this global zone. Each name may be up to four bytes in length.

UPGLEVEL 8 Indicates the highest SMP/E release level that is allowed to make
incompatible changes to the zone. If SMP/E attempts to make an
incompatible change to a zone and the release level of SMP/E is higher
than the UPGRADE level in that zone, then the incompatible change will
not be made. This value is in the form vr.pp, where vr represents the
version and release of SMP/E and pp represents the PTF level of SMP/E.

ZDESC 500 A user-written description for this zone.

ZONEINDEX * A linked list of entries containing the names, data set names, and types
of all the target zones and distribution zones associated with this global
zone. The format of each entry is name,dsn,type. Each entry in the list may
be up to 59 bytes in length.

Hierarchical file system elements
Table 16. Valid subentries for hierarchical file system element entries

Subentry name Maximum length
(decimal)

Description

DISTLIB 8 Specifies the DDNAME of the distribution library for the hierarchical file
system element.

ENAME 8 Name of the entry.

FMID 7 Specifies the functional owner of the hierarchical file system element.

HFSPARM 300 Specifies a character string that is to be passed to the hierarchical file
system copy utility as an execution-time parameter.

INSTMODE 6 Indicates the installation mode to be used when the HFS copy utility is
invoked to install the element into a UNIX system.

v BINARY

v TEXT

LASTUPD 7 Cause of last change to this hierarchical file system element entry.

LASTUPDTYPE 3 Indicates how the entry was last changed.

LINK * A linked list containing the alternate names by which this element can be
known in a UNIX file system. Each alternate name may be up to 1023
bytes in length.

RMID 7 Identifies the last SYSMOD that replaced this hierarchical file system
element.

SHSCRIPT 17 Specifies a shell script, along with the point in processing in which
SMP/E passes control to the shell script. The format is
script_name,PRE,POST, where PRE and POST are optional.

SYMLINK * A linked list containing the names of symbolic links associated with a
hierarchical file system element. Each symbolic link may be up to 1023
bytes in length.

SYMPATH * A linked list containing the path values for symbolic links associated
with a hierarchical file system element. Each path value may be up to
1023 bytes in length.

SYSLIB 8 Specifies the ddname of the target library within a UNIX file system for
the element.

GIMAPI

Chapter 6. SMP/E CSI application programming interface 363

HOLDDATA
Table 17. Valid subentries for the HOLDDATA entry

Subentry name Maximum length
(decimal)

Description

ENAME 7 Name of the entry. This is the name of the held SYSMOD.

HOLDCLASS 7 A 1- to 7-character string indicating an alternative reason to release an
exception SYSMOD for processing.

HOLDDATA * A linked list containing records that contain the entire HOLDDATA entry.
Each record may be up to 80 bytes in length.

HOLDDATE 5 Specifies the date that the ++HOLD statement was generated.

HOLDFIXCAT * A linked list that contains Fix Category values. Each value can be up to
64 characters in length.

HOLDFMID 7 Specifies the FMID to which the held SYSMOD is applicable.

HOLDREASON 7 A 1- to 7-character string used to help you identify the reason why the
SYSMOD has been put into exception SYSMOD status.

HOLDRESOLVER 7 Specifies the SYSMOD that resolves the exception condition, if known.

HOLDTYPE 9 Specifies the hold category into which the SYSMOD has been put.
ERROR, FIXCAT, SYSTEM, or USER are the only valid values.

Refer to the "++HOLD MCS" section for specific details for each of the subentries
listed in the HOLDDATA entry.

JAR
Table 18. Valid subentries for the JAR entry

Subentry name Maximum length
(decimal)

Description

DISTLIB 8 Specifies the ddname of the distribution library for the JAR element.

ENAME 8 Name of the entry.

FMID 7 Specifies the functional owner of the JAR element.

HFSPARM 300 Specifies a character string that is to be passed to the hierarchical file
system copy utility as an execution-time parameter.

JARPARM 300 Specifies a character string that is to be passed to the jar command when
updating the JAR file.

LASTUPD 7 Cause of last change to this JAR element entry.

LASTUPDTYP 3 Indicates how the entry was last changed.

LINK * A linked list containing alternate names by which this element can be
known in a UNIX file system. Each alternate name may be up to 1023
bytes in length.

RMID 7 Identifies the last SYSMOD that replaced this JAR element.

SHSCRIPT 17 Specifies a shell script, along with the point in processing in which
SMP/E passes control to the shell script. The format is
script_name,PRE,POST where PRE and POST are optional.

SYMLINK * A linked list containing the names of symbolic links associated with this
element. Each symbolic link may be up to 1023 bytes in length.

SYMPATH * A linked list containing the path values for symbolic links associated
with this element. Each path value may be up to 1023 bytes in length.

GIMAPI

364 SMP/E V3R6.0 for z/OS V2R1.0 Reference

Table 18. Valid subentries for the JAR entry (continued)

Subentry name Maximum length
(decimal)

Description

SYSLIB * Specifies the ddname of the target library within a UNIX file system for
the element.

UMID * A linked list containing 7-byte names of all SYSMODs that have updated
this JAR file since it was last replaced.

LMOD
Table 19. Valid subentries for the LMOD entry

Subentry name Maximum length
(decimal)

Description

CALLLIBS * A linked list containing the names of the DDDEF entries, existing in
the same zone, that compose the SYSLIB allocation to be used when
the load module is link-edited. Each entry name may be up to 8
bytes in length.

COPIED 3 A special SMP/E indicator meaning that the load module was copied
during system generation, and that there is a one-to-one
correspondence between the distribution library module (the MOD
entry) and the target system load module (the LMOD entry) (YES or
NO).

ENAME 8 Name of the entry.

LASTUPD 7 Cause of last change to this LMOD entry.

LASTUPDTYPE 3 Indicates how the entry was last changed.

LEPARM * A character string containing the link-edit attributes that must be
used when this load module is link-edited. This is not a linked list.

LECNTL * A linked list containing records of link-edit control cards necessary to
relink-edit this load module. Each record may be up to 80 bytes in
length.

LMODALIAS * A linked list containing the names of the aliases associated with this
LMOD. Each alias name may be up to 1023 bytes in length.

LMODSYMLINK * A linked list containing the names of symbolic links associated with
a load module. The values are the values specified on
ALIAS (SYMLINK,symlink_value) link-edit control statements. Each
symbolic link may be up to 1023 bytes in length.

MODDEL * A linked list containing the names of modules that were once part of
this load module, but have been deleted. Each module name may be
up to 8 bytes in length.

RC 2 Highest acceptable link edit return code for this load module.

SIDEDECKLIB 8 Specifies the ddname of the library where the load module's
definition side deck resides.

SYSLIB * A linked list containing the ddnames of the target system libraries in
which this load module resides. Each ddname may be up to 8 bytes
in length.

GIMAPI

Chapter 6. SMP/E CSI application programming interface 365

Table 19. Valid subentries for the LMOD entry (continued)

Subentry name Maximum length
(decimal)

Description

UTIN * A linked list containing utility input (UTIN) subentries, each of
which contains the filename of the input to be included during a
link-edit operation, and the library ddname where the file resides.
The format is filename,ddname. Each UTIN subentry may be up to
1032 bytes in length. (The filename may be up to 1023 characters in
length. The ddname may be up to 8 characters in length. And then
there is the delimiting comma.)
Note: It should be noted that a comma is a valid character within
the filename value. The comma is also the delimiter separating the
filename from the ddname. Therefore, the utility input data should
be scanned from the last byte to the first byte in order to accurately
find the comma that separates the ddname from the filename.

XZMOD * A linked list containing the XZMOD subentries containing the names
of the modules that were added to the load module by the LINK
MODULE command. The name of the zone supplying each module
is also indicated. The format is module,zone. Each XZMOD subentry
may be up to 16 bytes in length.

XZMODP 3 Indicates whether the load module contains one or more modules
from another zone and that XZMOD subentries exist in this LMOD
entry. (YES or NO).

MAC
Table 20. Valid subentries for the MAC entry

Subentry name Maximum length
(decimal)

Description

DISTLIB 8 Specifies the ddname of the macro distribution library.

ENAME 8 Name of the entry.

FMID 7 Specifies the functional owner of this macro.

GENASM * A linked list containing the names of the assemblies that have to be done
during APPLY each time this macro is modified. Each name may be up to
8 bytes in length.

LASTUPD 7 Cause of last change to this MAC entry.

LASTUPDTYPE 3 Indicates how the entry was last changed.

MALIAS * A linked list containing the alias names for this macro. Each name may be
up to 8 bytes in length.

RMID 7 Identifies that last SYSMOD that replaced this macro.

SYSLIB 8 Specifies the ddname of the target library for the macro.

UMID * A linked list containing the 7-byte names of all those SYSMODs that
updated this macro since it was last replaced.

MOD
Table 21. Valid subentries for the MOD entry

Subentry name Maximum length
(decimal)

Description

ASSEMBLE 3 Indicates whether the source for this module must always be assembled
(YES or NO).

GIMAPI

366 SMP/E V3R6.0 for z/OS V2R1.0 Reference

Table 21. Valid subentries for the MOD entry (continued)

Subentry name Maximum length
(decimal)

Description

CSECT * A linked list containing the names of the CSECTs present in this module.
Each name may be up to 8 bytes in length.

DALIAS 8 Specifies the alias name for the module, where the alias exists only in the
distribution library.

DISTLIB 8 Specifies the ddname of the module distribution library.

ENAME 8 Name of the entry.

FMID 7 Identifies the functional owner of this module.

LASTUPD 7 Cause of last change to this MOD entry.

LASTUPDTYPE 3 Indicates how the entry was last changed.

LEPARM * A character string containing the link-edit attributes that must be used
when this module is link-edited. This is not a linked list.

LMOD * A linked list containing the names of the load modules into which this
module was copied or link-edited. Each name may be up to 8 bytes in
length.

RMID 7 Identifies the last SYSMOD that replaced this module.

RMIDASM 3 Specifies that the last replacement (RMID) to the module was done by a
SYSMOD that caused an assembly of the module as a result of a source or
macro modification (YES or NO).

TALIAS * A linked list containing the alias names for the module, where the alias
exists in the distribution library and, for copied modules, also in the
target library. Each name may be up to 8 bytes in length.

UMID * A linked list containing 7-byte names of all those SYSMODs that have
updated this module since it was last replaced.

XZLMOD * A linked list containing XZLMOD subentries that contain the name of
each load module in another zone into which this module was added by
the LINK MODULE command. The name of the zone containing each
load module is also indicated. Each subentry has the format load
module,zone and may be up to 16 bytes in length.

XZLMODP 3 Indicates whether this module has been linked into one or more load
modules controlled by a different target zone, and that XZLMOD
subentries exist in this MOD entry (YES or NO).

OPTIONS
Table 22. Valid subentries for the OPTIONS entry

Subentry name Maximum length
(decimal)

Description

AMS 8 Specifies the name of the UTILITY entry that SMP/E is to use to obtain
information when calling the Access Method Services (AMS) utility.

ASM 8 Specifies the name of the UTILITY entry that SMP/E is to use to obtain
information when calling the assembler utility.

CHANGEFILE 3 Specifies whether library change file records should be created during
APPLY and RESTORE processing (YES or NO)

COMP 8 Specifies the name of the UTILITY entry that SMP/E is to use to obtain
information when calling the utility program to compress data sets.

COMPACT 3 Specifies whether SMPPTS members should be compacted during
RECEIVE and GZONEMERGE command processing (YES or NO)

GIMAPI

Chapter 6. SMP/E CSI application programming interface 367

Table 22. Valid subentries for the OPTIONS entry (continued)

Subentry name Maximum length
(decimal)

Description

COPY 8 Specifies the name of the UTILITY entry that SMP/E is to use to obtain
information when calling the copy utility.

DSPREFIX 26 Specifies the data set prefix to be used to construct the full data set name
when SMPTLIB data sets are being allocated for RELFILEs.

DSSPACE 14 Specifies the primary and secondary space allocation (in tracks) and the
number of directory blocks to be allocated for each SMPTLIB data set. It
is in the format primary,secondary,directory, nnnn,nnnn,nnnn.

ENAME 8 Name of the entry.

EXRTYDD * A linked list containing ddnames ineligible for retry processing after an
x37 abend. Each ddname may be up to 8 bytes in length.

FIXCAT * A linked list that contains the Fix Categories whose HOLDDATA is
considered during APPLY, ACCEPT, and REPORT MISSINGFIX
command processing. Each value can be up to 64 bytes in length.

HFSCOPY 8 Specifies the name of the UTILITY entry that SMP/E is to use to obtain
information when calling the hierarchical file system copy utility.

IOSUP 8 Specifies the name of the UTILITY entry that SMP/E is to use to obtain
information when calling the IEHIOSUP utility program to process
maintenance for an OS/VS1 system.

LKED 8 Specifies the name of the UTILITY entry that SMP/E is to use to obtain
information when calling the link-edit utility.

MSGFILTER 3 Specifies whether messages issued to SMPOUT should be filtered.

MSGWIDTH 7 Specifies the width in which the message issued to SMPOUT should be
formatted.

NOPURGE 3 Indicates whether after SMP/E accepts SYSMODS, it should not delete
the associated global zone SYSMOD entries, SMPPTS MCS entries, or
SMPTLIB data sets (YES or NO).

NOREJECT 3 Specifies that the global zone SYSMOD entry and the associated MCS
entry should not be deleted after the SYSMOD is restored. (YES or NO).

ORDERRET 4 Indicates the retention period, in days, that ORDER entries are kept in
the global zone before being deleted.

PAGELEN 4 Specifies the page length for SMPHRPT, SMPLIST, SMPOUT, and
SMPRPT.

PEMAX 4 Specifies the maximum number of subentries that can be present in any
CSI entry.

RECZGRP * A linked list containing 8-byte zone and zoneset names eligible for
APPLYCHECK and ACCEPTCHECK processing during the SYSMOD
selection phase of RECEIVE.

RECEXCGRP * A linked list containing 8-byte zone and zoneset names not eligible for
APPLYCHECK and ACCEPTCHECK processing during the SYSMOD
selection phase of RECEIVE.

RETRY 8 Specifies the name of the UTILITY entry that SMP/E is to use to obtain
information when calling the utility program to compress a data set after
an x37 abend.

RETRYDDN * A linked list containing ddnames eligible for retry processing after an x37
abend. Each ddname may be up to 8 bytes in length.

GIMAPI

368 SMP/E V3R6.0 for z/OS V2R1.0 Reference

Table 22. Valid subentries for the OPTIONS entry (continued)

Subentry name Maximum length
(decimal)

Description

SAVEMTS 3 Indicates whether MTSMAC entries should be deleted from the SMPMTS
after the SYSMODs that affect those macros have been successfully
accepted (YES or NO).

SAVESTS 3 Indicates whether STSSRC entries should be deleted from the SMPSTS
after the SYSMODs that affect the source have been successfully accepted
(YES or NO).

SUPPHOLD * A linked list containing 7-byte HOLD Reason IDs for which the
HOLDDATA card image is not displayed in Unresolved HOLD Reason
Report and Bypassed HOLD Reason Report for Apply and Accept
command processing, and the SYSMOD Comparison HOLDDATA Report
for REPORT SYSMODS command processing.

UPDATE 8 Specifies the name of the UTILITY entry that SMP/E is to use to obtain
information when calling the update utility.

ZAP 8 Specifies the name of the UTILITY entry that SMP/E is to use to obtain
information when calling the superzap utility.

ORDER
Table 23. Valid subentries for the ORDER entry

Subentry name Maximum length
(decimal)

Description

APARS * A linked list containing 7-byte names of all the APARs for which
resolving PTFs are to be in the order.

CONTENT 8 Indicates the content selected for the order. The value may be ALL,
APARS, CRITICAL, HOLDDATA, PTFS, or a Recommended Service
Update SOURCEID value (RSUyymm).

DOWNLDATE 5 Indicates the date (yyddd) on which the order was downloaded and
stored in the SMPNTS directory.

DOWNLTIME 8 Indicates the time (hh:mm:ss) at which the order was downloaded and
stored in the SMPNTS directory.

ENAME 8 Name of the entry.

ORDERDATE 5 Indicates the date (yyddd) on which the order request was made to the
server.

ORDERID 10 Specifies the order identifier assigned by the server when the order was
created. This value is used to correlate ORDER entries in the global zone
with orders processed by the server.

ORDERSERVER * A linked list containing the <ORDERSERVER> tags used to identify the
server used to fulfill the order request.

ORDERTIME 8 Indicates the time (hh:mm:ss) at which the order request was made to the
IBM Automated Delivery Request server.

PKGID 50 Specifies the order package id value used to create a package
subdirectory within the SMPNTS directory to contain the order's package
files.

PTFS * A linked list containing 7-byte names of all the PTF SYSMODs to be in
the order.

STATUS 10 Specifies the current status of the ORDER entry. Possible values are
PENDING, DOWNLOADED, and ERROR.

GIMAPI

Chapter 6. SMP/E CSI application programming interface 369

Table 23. Valid subentries for the ORDER entry (continued)

Subentry name Maximum length
(decimal)

Description

USERID 8 Specifies the userid associated with the address space where SMP/E was
executing when the ORDER entry was created.

ZONES * A linked list containing 8-byte names of all the target zones used to
define the scope of the software inventory associated with this order.

PRODUCT
Table 24. Valid subentries for the PRODUCT entry

Subentry name Maximum length
(decimal)

Description

DESCRIPTION 64 Specifies the name of this product.

PRODID 8 Product identifier

PRODSUP * A linked list containing the prodid,vv.rr.mm values for the products
superseded by this product.

RECDATE 5 Specifies the date on which this product was received.

RECTIME 8 Specifies the time at which the ++PRODUCT MCS was received.

REWORK 8 Specifies the level of this PRODUCT, which was received again for
minor changes.

SREL * A linked list containing 4-byte names of the system or subsystem
releases on which the PRODUCT can be installed.

UCLDATE 5 Specifies the date on which this PRODUCT entry was last modified
through UCLIN.

UCLTIME 8 Specifies the time at which this PRODUCT entry was last modified
through UCLIN.

URL 256 Specifies a uniform resource locator (URL) that can be accessed to
obtain additional information about this product.

VENDOR 64 Specifies the name of the vendor supplying the product.

VRM 8 Specifies the version, release, and modification level (vv.rr.mm) of this
product.

Note: For a PRODUCT entry, the ENAME value is always blank, because the
PRODID and VRM subentries, taken together, make up the “entry name” normally
provided by ENAME. For each PRODUCT entry satisfying the QUERY request, the
PRODID and VRM subentries are returned instead of ENAME.

PROGRAM
Table 25. Valid subentries for the PROGRAM entry

Subentry name Maximum length
(decimal)

Description

ALIAS * A linked list containing alias names associated with the program element.
Each alias name may be up to 8 bytes in length.

DISTLIB 8 Identifies the ddname of the distribution library for the program element

ENAME 8 Name of the entry.

FMID 7 Specifies the functional owner of the data element.

LASTUPD 7 Cause of last change to this program element entry.

GIMAPI

370 SMP/E V3R6.0 for z/OS V2R1.0 Reference

Table 25. Valid subentries for the PROGRAM entry (continued)

Subentry name Maximum length
(decimal)

Description

LASTUPDTYPE 3 Indicates how the entry was last changed.

RMID 7 Identifies the last SYSMOD that replaced this program element.

SYSLIB 8 Identifies the ddname of the target library for the program element.

SRC
Table 26. Valid subentries for the SRC entry

Subentry name Maximum length
(decimal)

Description

DISTLIB 8 Specifies the ddname of the distribution library for the source.

ENAME 8 Name of the entry.

FMID 7 Specifies the functional owner of this source.

LASTUPD 7 Cause of last change to this SRC entry.

LASTUPDTYPE 3 Indicates how the entry was last changed.

RMID 7 Identifies that last SYSMOD that replaced this source.

SYSLIB 8 Specifies the ddname of the target library for this source.

UMID * A linked list containing 7-byte names of all those SYSMODs that updated
this source since it was last replaced.

SYSMOD (GLOBAL zone)
Table 27. Valid subentries for the SYSMOD entry (GLOBAL zone)

Subentry name Maximum length
(decimal)

Description

ACCID * A linked list containing 7-byte names of the distribution zones into
which the SYSMOD has been successfully accepted.

APPID * A linked list containing the 7-byte names of the target zones into
which the SYSMOD has been successfully applied.

Data Element1 * A linked list containing the names of data element replacements
contained in the SYSMOD. Each name may be up to 8 bytes in length.

DELETE2 * A linked list containing 7-byte names of SYSMODs deleted by this
SYSMOD.

DELLMOD 3 Indicates whether the SYSMOD contained a ++DELETE statement
(YES or NO).

DESCRIPTION 64 Descriptive name associated with a SYSMOD

DLMOD * A linked list containing the names of load modules to be deleted by
++DELETE statements contained in this SYSMOD. Each name may be
up to 8 bytes in length.

GIMAPI

Chapter 6. SMP/E CSI application programming interface 371

Table 27. Valid subentries for the SYSMOD entry (GLOBAL zone) (continued)

Subentry name Maximum length
(decimal)

Description

ELEMENT * A "pseudo-subentry" name that refers to all element types. It is the
same as individually requesting each of these elements:

v All data elements

v All hierarchical file system elements

v JAR and JARUPD

v MAC and MACUPD

v MOD

v PROGRAM, SZAP, and XZAP

v SRC and SRCUPD

ELEMMOV 3 Indicates whether the SYSMOD contained a ++MOVE statement (YES
or NO).

EMOVE * A linked list containing names of elements and load modules to be
moved by the ++MOVE statements contained in this SYSMOD. Each
name may be up to 8 bytes in length.

ENAME 8 Name of the entry.

ERROR 3 Indicates whether an error has occurred during the processing of this
SYSMOD (YES or NO).

FEATURE * A linked list containing the 8-byte names of software features that
contain this SYSMOD.

FESN 7 Identifies the field engineering (FE) service number.

FMID 7 Identifies the function SYSMOD to which this SYSMOD is applicable.

Hierarchical File
System Element3

* A linked list containing the names of hierarchical file system element
replacements (++hfs_element statements) in the SYSMOD. Each name
may be up to 8 bytes in length.

HOLDDATA * A linked list of the hold information associated with the SYSMOD.
Each data value in the list is in the format holdtype,reason,sysmod with
the following definitions:

holdtype is one of the following values:

v ERROR

v FIXCAT

v SYSTEM(EXT)

v SYSTEM(INT)

v USER

reason is the 1- to 7-character reason ID.

sysmod is the SYSMOD ID specified on the ++HOLD.

JAR * A linked list containing the names of JAR file replacements (++JAR
statements) in the SYSMOD. Each name may be up to 8 bytes in
length.

JARUPD * A linked list containing the names of JAR file updates (++JARUPD
statements) in the SYSMOD. Each name may be up to 8 bytes in
length.

JCLIN 3 Indicates whether this SYSMOD contained inline JCLIN (YES or NO).

MAC * A linked list containing the names of macro replacements (++MAC
statements) in the SYSMOD. Each name may be up to 8 bytes in
length.

GIMAPI

372 SMP/E V3R6.0 for z/OS V2R1.0 Reference

Table 27. Valid subentries for the SYSMOD entry (GLOBAL zone) (continued)

Subentry name Maximum length
(decimal)

Description

MACUPD * A linked list containing the names of macro updates (++MACUPD
statements) in the SYSMOD. Each name may be up to 8 bytes in
length.

MOD * A linked list containing the names of modules replacements (++MOD
statements) in the SYSMOD. Each name may be up to 8 bytes in
length.

NPRE2 * A linked list containing the 7-byte names of negative prerequisite
SYSMODS-that is, SYSMODs that must not be present in the system at
the same time as this SYSMOD.

PRE2 * A linked list containing the 7-byte names of prerequisite
SYSMODS-that is, SYSMODs that must be present before this
SYSMOD can be installed.

PROGRAM * A linked list containing the names of program element replacements
(++PROGRAM statements) in the SYSMOD. Each name may be up to
8 bytes in length.

RECDATE 5 Specifies the date on which this SYSMOD was received.

RECTIME 8 Specifies the time at which this SYSMOD was received.

RENLMOD 3 Indicates whether the SYSMOD contained a ++RENAME statement
(YES or NO).

REQ2 * A linked list containing the 7-byte names of requisite SYSMODS-that
is, SYSMODs that must be installed concurrent with this SYSMOD.

REWORK 8 Identifies the level of the SYSMOD, which was received again for
minor changes.

RLMOD * A linked list containing the names of the load modules to be renamed
by ++RENAME statements in this SYSMOD. Each name may be up to
8 bytes in length.

SMODTYPE 8 Indicates the type of SYSMOD (APAR, FUNCTION, PTF, UNKNOWN,
or USERMOD).

SOURCEID * A linked list containing the names of strings assigned to this SYSMOD
during RECEIVE processing. Each name can be up to 64 characters in
length.

SRC * A linked list containing the names of source replacements (++SRC
statements) in the SYSMOD. Each name may be up to 8 bytes in
length.

SRCUPD * A linked list containing the names of source updates (++SRCUPD
statements) in the SYSMOD. Each name may be up to 8 bytes in
length.

SREL2 * A linked list containing the names of the system or subsystem releases
on which the SYSMOD can be installed. Each name may be up to four
bytes in length.

SUPING2 * A linked list containing the 7-byte names of SYSMODs superseded by
this SYSMOD.

SZAP * A linked list containing the names of module superzaps (++ZAP
statements) in the SYSMOD. Each name may be up to 8 bytes in
length.

TLIBPREFIX 26 Specifies the high-level data set name qualifier of the SMPTLIB data
sets used to receive the SYSMOD, which was packaged in RELFILEs

GIMAPI

Chapter 6. SMP/E CSI application programming interface 373

Table 27. Valid subentries for the SYSMOD entry (GLOBAL zone) (continued)

Subentry name Maximum length
(decimal)

Description

VERSION2 * A linked list containing 7-byte names of function SYSMODs that are
versioned by this SYSMOD.

Note:

1. For the data element subentry, the data is returned to the caller in separate
linked lists for each unique data element type requested.

2. When PRE, NPRE, REQ, DELETE, SUPING, VERSION, FMID, or SREL
subentries are requested, a subentry structure of type 'VER' is returned, along
with the necessary associated VER pseudo-subentries. See “VER” on page 385
for more details.

3. For the hierarchical file system element subentry the data is returned to the caller
in separate linked lists for each unique hierarchical file system element type
requested.

4. For SYSMODs that are only superseded, a value of "UNKNOWN" is returned
for the SMODTYPE subentry.

SYSMOD
Table 28. Valid subentries for the SYSMOD entry (DLIB and target zones)

Subentry name Maximum length
(decimal)

Description

ACCEPT 3 Indicates whether the SYSMOD has been successfully accepted (YES or
NO). This subentry appears only for DLIB zones.

APPLY 3 Indicates whether the SYSMOD has been successfully applied (YES or
NO). This subentry appears only for target zones.

ASSEM * A linked list containing the names of the assemblies done during the
installation of this SYSMOD. Each name may be up to 8 bytes in
length.

BYPASS 3 Indicates whether the BYPASS operand was specified when this
SYSMOD was installed (YES or NO).

CIFREQ * A linked list of entries containing CIFREQ data that list the conditional
requisites that must be installed when this function SYSMOD is
installed. Each CIFREQ entry has the format causer,requisite and may
be up to 15 bytes in length.

DELBY 7 Specifies the SYSMOD that deleted this SYSMOD.

DELETE2 * A linked list containing 7-byte names of SYSMODs deleted by this
SYSMOD.

DELLMOD 3 Indicates whether the SYSMOD contained a ++DELETE statement
(YES or NO).

DESCRIPTION 64 Descriptive name associated with a SYSMOD

DLMOD * A linked list containing the names of load modules to be deleted by
++DELETE statements contained in this SYSMOD. Each name may be
up to 8 bytes in length.

Data Element1 * A linked list containing the 8-byte names of data element replacements
contained in the SYSMOD.

GIMAPI

374 SMP/E V3R6.0 for z/OS V2R1.0 Reference

Table 28. Valid subentries for the SYSMOD entry (DLIB and target zones) (continued)

Subentry name Maximum length
(decimal)

Description

ELEMENT * A "pseudo-subentry" name that refers to all element types. It is the
same as individually requesting each of these elements:

v All data elements

v All hierarchical file system elements

v JAR and JARUPD

v MAC and MACUPD

v MOD

v PROGRAM, SZAP, and XZAP

v SRC and SRCUPD

ELEMMOV 3 Indicates whether the SYSMOD contained a ++MOVE statement (YES
or NO).

EMOVE * A linked list containing the names of elements and load modules to be
moved by the ++MOVE statements contained in this SYSMOD. Each
name may be up to 8 bytes in length.

ENAME 8 Name of the entry.

ERROR 3 Indicates whether an error has occurred during the processing of this
SYSMOD (YES or NO).

FEATURE * A linked list containing the 8-byte names of software features that
contain this SYSMOD.

FESN 7 Identifies the field engineering (FE) service number.

FMID 7 Identifies the function SYSMOD to which this SYSMOD is applicable.

Hierarchical File
System Element3

* A linked list containing the names of hierarchical file system element
replacements (++hfs_element statements) in the SYSMOD. Each name
may be up to 8 bytes in length.

IFREQ * A linked list containing 7-byte names of conditional requisites that
were installed with this SYSMOD.

INSTALLDATE 5 Specifies the date on which this SYSMOD was installed.

INSTALLTIME 8 Specifies the time at which this SYSMOD was installed.

JAR * A linked list containing the names of JAR file replacements (++JAR
statements) in the SYSMOD. Each name may be up to 8 bytes in
length.

JARUPD * A linked list containing the names of JAR file updates (++JARUPD
statements) in the SYSMOD. Each name may be up to 8 bytes in
length.

JCLIN 3 Indicates whether this SYSMOD contained inline JCLIN (YES or NO).

LASTSUP 7 Specifies the most recent SYSMOD that superseded this SYSMOD. All
previous superseding SYSMODs are saved in the SUPBY subentry list.

LASTUPD 7 Cause of last change to this SYSMOD entry.

LASTUPDTYPE 3 Indicates how the entry was last changed.

MAC * A linked list containing the names of macro replacements (++MAC
statements) in the SYSMOD. Each name may be up to 8 bytes in
length.

MACUPD * A linked list containing the names of macro updates (++MACUPD
statements) in the SYSMOD. Each name may be up to 8 bytes in
length.

GIMAPI

Chapter 6. SMP/E CSI application programming interface 375

Table 28. Valid subentries for the SYSMOD entry (DLIB and target zones) (continued)

Subentry name Maximum length
(decimal)

Description

MOD * A linked list containing the names of module replacements (++MOD
statements) in the SYSMOD. Each name may be up to 8 bytes in
length.

NPRE2 * A linked list containing the 7-byte names of negative prerequisite
SYSMODS-that is, SYSMODs that must not be present in the system at
the same time as this SYSMOD.

PRE2 * A linked list containing the 7-byte names of prerequisite
SYSMODS-that is, SYSMODs that must be present before this
SYSMOD can be installed.

PROGRAM * A linked list containing the names of program element replacements
(++PROGRAM statements) in the SYSMOD. Each name may be up to
8 bytes in length.

RECDATE 5 Specifies the date on which this SYSMOD was received.

RECTIME 8 Specifies the time at which this SYSMOD was received.

REGEN 3 Indicates how the SYSMOD was installed in the target libraries (YES
or NO).

RENLMOD 3 Indicates whether the SYSMOD contained a ++RENAME statement
(YES or NO).

REQ2 * A linked list containing the 7-byte names of requisite SYSMODS-that
is, SYSMODs that must be installed concurrent with this SYSMOD.

RESDATE 5 Specifies the date on which this SYSMOD was restored.

RESTIME 8 Specifies the time at which this SYSMOD was restored.

RESTORE 3 Indicates whether a restore attempt has been made for this SYSMOD
(YES or NO).

REWORK 8 Identifies the level of the SYSMOD, which was received again for
minor changes.

RLMOD * A linked list containing the names of the load modules to be renamed
by ++RENAME statements in this SYSMOD. Each name may be up to
8 bytes in length.

SMODTYPE 8 Indicates the type of SYSMOD (APAR, FUNCTION, PTF, UNKNOWN,
or USERMOD).

SOURCEID * A linked list containing the names of strings assigned to this SYSMOD
during RECEIVE processing. Each name can be up to 64 characters in
length.

SRC * A linked list containing the names of source replacements (++SRC
statements) in the SYSMOD. Each name may be up to 8 bytes in
length.

SRCUPD * A linked list containing the names of source updates (++SRCUPD
statements) in the SYSMOD. Each name may be up to 8 bytes in
length.

SUPBY * A linked list containing the 7-byte names of SYSMODs that
superseded this SYSMOD. The most recent SYSMOD to supersede this
SYSMOD is not included in the SUPBY list. It is saved in the
LASTSUP field. Therefore, to simply determine if a SYSMOD is
superseded or not, the LASTSUP subentry should be interrogated
instead of SUPBY.

SUPING2 * A linked list containing the 7-byte names of SYSMODs superseded by
this SYSMOD.

GIMAPI

376 SMP/E V3R6.0 for z/OS V2R1.0 Reference

Table 28. Valid subentries for the SYSMOD entry (DLIB and target zones) (continued)

Subentry name Maximum length
(decimal)

Description

SZAP * A linked list containing the 8-byte names of module superzaps
(++ZAP statements) in the SYSMOD. Each name may be up to 8 bytes
in length.

UCLDATE 5 Specifies the date on which this SYSMOD was last modified through
UCLIN.

UCLTIME 8 Specifies the time at which this SYSMOD was last modified through
UCLIN.

VERSION2 * A linked list containing 7-byte names of function SYSMODs that are
versioned by this SYSMOD.

XZAP * A linked list containing the names of module superzaps the SYSMOD
(++ZAP statements) that contain an EXPAND statement (indicating
that the module should be expanded before it is updated). Each name
may be up to 8 bytes in length.

Note:

1. For the data element subentry, the data is returned to the caller in separate
linked lists for each unique data element type requested.

2. When PRE, NPRE, REQ, DELETE, SUPING, or VERSION subentries are
requested, a subentry structure of type 'VER' is returned for each unique
version statement, along with its associated pseudo-subentries. See “VER” on
page 385 for more details.

3. For the hierarchical file system element subentry the data is returned to the caller
in separate linked lists for each unique hierarchical file system element type
requested.

4. For SYSMODs that are only superseded, a value of "UNKNOWN" is returned
for the SMODTYPE subentry.

TARGETZONE
Table 29. Valid subentries for the TARGETZONE entry

Subentry name Maximum length
(decimal)

Description

ENAME 8 Name of the entry.

OPTIONS 8 The name of the OPTIONS entry in the global zone that should be used
when processing this target zone.

RELATED 7 The name of the distribution zone to which this target zone is related.

SREL * A linked list containing the names of the system releases supported
within this target zone. Each name may be up to four bytes in length.

TIEDTO * A linked list containing the names of other target zones that either
supplied modules for load modules controlled by this target zone or
control load modules that have been link-edited with modules supplied
by this target zone. Each name may be up to 8 bytes in length.

UPGLEVEL 8 Indicates the highest SMP/E release level that is allowed to make
incompatible changes to the zone. If SMP/E attempts to make an
incompatible change to a zone and the release level of SMP/E is higher
than the UPGRADE level in that zone, then the incompatible change will
not be made. This value is in the form vr.pp, where vr represents the
version and release of SMP/E and pp represents the PTF level of SMP/E.

GIMAPI

Chapter 6. SMP/E CSI application programming interface 377

Table 29. Valid subentries for the TARGETZONE entry (continued)

Subentry name Maximum length
(decimal)

Description

XZLINK 9 Specifies whether APPLY and RESTORE processing in another zone
should automatically update load modules in this zone when cross-zone
modules previously added to those load modules by the LINK command
are changed.

This subentry value can contain one of these values:

v DEFERRED

v AUTOMATIC

ZDESC 500 A user-written description for this zone.

UTILITY
Table 30. Valid subentries for the UTILITY entry

Subentry name Maximum length
(decimal)

Description

ENAME 8 Name of the entry.

LIST 3 Indicates whether member names should be listed when SMP/E invokes
a copy utility to perform compress processing, retry processing, or
element installation (YES or NO).

NAME 8 The name of the load module for the utility program that SMP/E is to
call.

UTILPARM 100 Specifies the parameters to be passed to the utility program.

PRINT 8 Specifies the ddname that is to contain output from the utility.

RC 2 Specifies the maximum acceptable return code from this utility. This
value can be from 0 to 16.

ZONESET
Table 31. Valid subentries for the ZONESET entry

Subentry name Maximum length
(decimal)

Description

ENAME 8 Name of the entry.

XZREQCHK 3 Indicates whether this ZONESET should be used when establishing the
default zone group for the APPLY, ACCEPT, and RESTORE commands.
(YES or NO).

ZONENAME * A linked list containing the 7-byte names of the target or distribution
zones that are to be part of this ZONESET.

QUERY command processing
GIMAPI checks to see if the SMPCSI DDNAME is already allocated. If it is,
GIMAPI notes the data set name. GIMAPI then determines if the caller expects
GIMAPI to allocate the global CSI data set. The caller indicates this by setting the
csilen parameter to zero. The data set name previously noted is used so a shared
enqueue can be done. The enqueue is to protect GIMAPI processing from updates
by any other SMP/E processing that might be going on at the same time.

GIMAPI

378 SMP/E V3R6.0 for z/OS V2R1.0 Reference

If the csilen parameter is not zero, GIMAPI verifies that the csi parameter provided
is a valid CSI data set name.

If the SMPCSI DDNAME has already been allocated, the data set name of the
allocation must be the same as the CSI parameter value. If they match, GIMAPI
treats it as if the calling program already did the allocation. The data set is not
allocated again (and is not deallocated at the end of the command).

If the CSI data set must be allocated, GIMAPI dynamically allocates the data set
with DISP=SHR.

GIMAPI continues by validating the rest of the required QUERY parameters that it
has received. Syntax checking is done for each QUERY parameter received. If
GIMAPI encounters an error, it stops syntax checking for that parameter list and
moves on to begin syntax checking for the next QUERY parameter. If any errors
are found, the QUERY command terminates after syntax checking is done. The
command continues if warnings are the highest severity found.

GIMAPI enforces these syntax rules:
v When multiple values are specified on the zone, entry or subentry parameters,

they must be appropriately separated by commas or spaces.
v When an asterisk (*) is used on the zone, entry or subentry parameters, no other

values can be specified.
v Entry types entered on the entry parameter must be a valid CSI entry type.
v A specific value can be specified only once on the zone, entry or subentry

parameters.
v A condition using the >, >=, < or <= operator with a subentry type that is not a

date or time field is not allowed.
v There are a set of subentry types that are not allowed to be used in conditions

on the filter parameter. See section “Filter parameter syntax” on page 355 for the
list.
A null value for a subentry may be specified by using two single quotation
marks with no other characters or blanks between them (''). A null value may be
used with the “not equal” (!=) operator to find all entries that have some value
— for example, PATH!=''.

v A date fixed value must use the format 'yyddd'. GIMAPI checks the characters
entered to make sure they are all numeric.

v A time fixed value must use the format 'hh:mm:ss', where hh is a two-digit
decimal number in the range 00 through 23, and mm and ss are both two-digit
decimal numbers in the range 00 through 59. (That is, in 24-hour clock format.)

v A null value can be used with date and time fields with the = and != operators
to check if the values have been set or not.

v A closing quotation mark "'" must be found by the end of the filter parameter.
v All parentheses must be closed before the filter parameter string ends.
v When any other syntax errors are found in the filter parameter, GIMAPI issues a

general syntax error message specifying the character position with the error.

Once the syntax is checked and zones other than the GLOBAL zone are specified,
specific zone names are checked to see if they are ZONESETs. If so, the ZONESET
name is removed from the list of zones passed by the caller and replaced with the
zone names from the ZONESET. An attempt is then made to read the
ZONEINDEX for each of the zones to be processed to see if any other CSI data

GIMAPI

Chapter 6. SMP/E CSI application programming interface 379

sets need to be dynamically allocated. If one of the zones specified is not a
ZONESET and cannot be found in the ZONEINDEX, the QUERY command
terminates.

If any of the target zones or DLIB zones are contained in separate CSI data sets
than the global CSI, those data sets must be allocated. The command first
determines if they are already allocated by the calling routine. If so, that allocation
is used and the data sets are not deallocated later. If not, the data sets are allocated
with DISP=SHR. In either case, a shared enqueue is done.

The command now attempts to process the query. The requested entries are read
from the CSI and compared with the filter. If there is a match, the requested
subentries and their values are attached to the output storage. This is a set of data
structures linked together, with storage being allocated for each structure used.

Once all entries are processed, any CSI data sets that were dynamically allocated
are dequeued and deallocated.

Note: Any successful allocations and enqueues are undone, even if errors are
found. The data sets are always freed when the program ends.

If the query requested from the calling program did not result in any data being
returned, the command output parameter is set to zero.

QUERY command output
The CSI data is made up of entries, which can be thought of as record types, and
subentries, which can be considered the fields within those records. Each entry has
a set of subentries. Those subentry values may be a single value, such as FMID
subentry of the MOD entry. Other subentries are made up of a list of values, such
as the LMOD subentry of the MOD entry, which lists all the LMODs that contain
the MOD. Refer to Chapter 5, "SMP/E Data Set Entries" for a complete description
of the CSI entry types and their associated subentries.

The data returned from the query follows this principle in that it is organized by
entries and subentries.

What is returned from the QUERY command is a pointer to storage containing the
output data. The storage is a set of linked lists that describe the output as well as
contain the values.

The pointer returned points to the head of a linked list of records describing each
of the entry types returned from the query. The entry type structures
(ENTRY_LIST) contain a 12-character name of the entry type (padded with blanks)
and a pointer to a link list of entry structures (ENTRY) representing the instances
of that entry type. It also contains a pointer to the next entry type record.

The entry record points to a linked list of subentry type structures (SUBENTRY)
and to the next instance of that entry type. It also contains a string with the name
of the entry and a string with the name of the zone where the entry was found.

Note: If no subentries are requested on the subentry parameter, the entry name and
zone name are still returned with the entry structure, with no subentry structures
attached.

GIMAPI

380 SMP/E V3R6.0 for z/OS V2R1.0 Reference

The subentry type structure contains a 12-character name of the subentry type and
a pointer to the value structure (ITEM_LIST), as well as a pointer to the next
subentry type.

The value structure contains the length of the value, a pointer to the character
string value and a pointer to the next value structure, for subentries that have lists
of values.

Refer to “Data structures for QUERY command” on page 383 for details on the
structures defined. “Example of QUERY command” contains pictures of what the
output looks like in storage.

Some subentries are lists of values, while others are single values. There are some
subentries that are composite values as well as being lists. For example, the
ZONEINDEX subentry of the GLOBALZONE entry contains the zone name, the
CSI data set containing the zone name, and the zone type. Subentries such as these
are returned with their parts combined into one string separated by commas, as
shown here:

TARG1,UID.TARG1.CSI,TARGET

The order of the parts for subentries whose values have multiple parts follow the
description of that subentry in Chapter 5, "SMP/E Data Set Entries".

Other subentries are indicator variables. This means they do not have a value, but
the fact that they do (or do not) exist in the CSI indicates something. The
PROTECT subentry of the DDDEF entry is an example of this. These types of
subentries will have values in the QUERY output. If the subentry exists, the value
is set to YES, if it does not, the value is set to NO.

If an asterisk is used in either the entry or subentry parameters, QUERY creates a
complete list, internally, of the specified type (entries, subentries, or both). If all
entries and subentries are requested, then a list for each type is generated. Each list
is processed as if the user had entered it from the command. Table 32 shows the
possible outputs.

Table 32. Entry and subentry combinations/output

ENTRY/SUBENTRY contents Output

v ENTRY set to *

v SUBENTRY set to *

All valid subentries are returned for all instances
of all valid entry types that fulfill the filter
restrictions.

v ENTRY set to specific entry types

v SUBENTRY set to *

All valid subentries are returned all instances of
each of the specified entry types that fulfill the
filter restrictions.

v ENTRY set to *

v SUBENTRY set to specific subentries

The specific subentries are returned for all
instances of all entry types that fulfill the filter
restrictions.

Example of QUERY command
Suppose you want to write an application that will perform the following query:
v Find all PTF and USERMOD type SYSMODs having an FMID of HMP1E00 that

were received after December 1, 2008 and that were applied with
BYPASS(anything). Return the SYSMOD name, the zone, the MODs that are
replaced by the SYSMOD, and the installation date.

GIMAPI

Chapter 6. SMP/E CSI application programming interface 381

The storage containing the input parameters may be represented like this:

Note: The SYSMOD name and zone are automatically returned without your
asking for them.

QPARM is a variable containing a pointer to a QUERY_PARMS data structure. The
elements of the data structure point to strings in storage containing the values of
the parameters.

Your program would then execute this call:
GIMAPI(’QUERY’,QPARM,QRESULT,’ENU’,RC,CC,MSGBUFF)

The result of the query is two SYSMODS, SMOD019 and SMOD022. SMOD019 is
in target zone TARG1 with two MODs, MOD01 and MOD02 and was installed on
December 6, 2008. SMOD022 is in target zone MYTARG and has no MODs. It was
installed on December 14, 2008.

Figure 63 on page 383 provides a picture of what the output storage looks like. See
section “Data structures for QUERY command” on page 383 for a description of
the data structures used in the picture.

GIMAPI

382 SMP/E V3R6.0 for z/OS V2R1.0 Reference

Note: There are no values for the MOD subentry for SYSMOD SMOD022.
Therefore, no SUBENTRY structure is added to the output for that subentry type.

Data structures for QUERY command
The data structures shown in this section are defined in a language-independent
format. See “Programming in C” on page 389, “Programming in PL/I” on page
391, and “Programming in assembler” on page 393 to see the syntax of the data
structures for those languages. Headers or macros with the language-specific
structure definitions are provided in members named GIMHC370 (for C/370™),
GIMMPLI (for PL/I), and GIMMASM (for assembler) in libraries with these
DDDEFs:

MACLIB
Target library

Figure 63. Picture of storage for query output

GIMAPI

Chapter 6. SMP/E CSI application programming interface 383

AMACLIB
Distribution library

Note: The pointer and numeric values found in the tables in this section are 4-byte
fields.

QUERY_PARMS
Table 33 lists the elements of the data structure used as input to the QUERY
command. Only a brief description of each parameter is given here. See “QUERY
command” on page 351 for a more complete description.

Table 33. QUERY command input parameters

Element Data type Description

csi Pointer Global CSI data set name to be searched by the query.

csilen Numeric Number of characters in the csi parameter.

zone Pointer Pointer to character string representing zones to search during the query.

zonelen Numeric Number of characters in the zone parameter

entrytype Pointer Pointer to character string representing the list of CSI entry types to be
returned from the query.

entrylen Numeric Number of characters in the entry parameter

subentrytype Pointer Pointer to character string representing the list of subentries to be
returned for each entry selected during the query.

subentrylen Numeric Number of characters in the subentry parameter

filter Pointer Pointer to character string representing the set of conditions used to limit
the entries being returned by the query.

filterlen Numeric Number of characters in the filter parameter

ENTRY_LIST
Table 34. General SMP/E entry list structure

Element Data type Description

next Pointer Pointer to the next entry list structure. This value is zero (0)
for the last item in the list.

entries Pointer Pointer to a linked list of entry structures. This value is zero
(0) if there are no entries.

entrytype Character(12) Text representation of the type of entry pointed to by the
entry list structure.

ENTRY
Table 35. General SMP/E entry structure

Element Data type Description

next Pointer Pointer to the next entry structure. This value is zero (0) for
the last item in the list.

subentries Pointer Pointer to a linked-list of subentry structures. This value is
zero (0) if there are no subentries.

entryname Character(8) The name of an SMP/E entry.

zonename Character(7) The name of an SMP/E zone.

GIMAPI

384 SMP/E V3R6.0 for z/OS V2R1.0 Reference

SUBENTRY
Table 36. General SMP/E subentry structure

Element Data type Description

next Pointer Pointer to the next subentry structure. This value is zero (0)
for the last item in the list.

subentrydata Pointer Pointer to a linked list of item list structures. This value is
zero (0) if there is no subentry data.

type Character(12) Text representation of the type of subentry pointed to by the
subentry structure.

VER
The VER structure is used when SYSMOD entry information is requested from the
GLOBAL, target, or distribution zone. More specifically, this structure is used to
return information that is typically associated with a ++VER statement. Refer to
the “Valid subentry types” on page 359 for valid subentry and pseudo-subentry
specification for the SYSMOD entry.

For each request for data associated with any of the information that is contained
in a ++VER statement, a VER pseudo-subentry structure is returned.

The type value in the subentry structure is set to the 12-character string 'VER' and
the subentrydata pointer points to a VER pseudo-subentry structure.

For each VER pseudo-subentry returned, a linked list of subentry structures are
returned.

Each subentry structure returned will be associated with one of the types of data
related to a ++VER statement. In other words, the 'type' field in the subentry
structure will contain one of these text strings: SREL, FMID, PRE, NPRE, REQ,
DELETE, SUP, or VERSION.

Each subentry structure returned will point to an item_list structure containing the
actual VER-related data.

GIMAPI

Chapter 6. SMP/E CSI application programming interface 385

Table 37. VER pseudo-subentry structure (GLOBAL, target, and DLIB zone)

Element Data type Description

next Pointer Pointer to the next VER pseudo-subentry structure. This value
is zero (0) for the last item in the list.

verdata Pointer Pointer to a linked list of subentry structures. This value is
zero (0) if there is no data associated with the VER.

vernum Character(3) Contains the relative number of the ++VER statement when
the SYSMOD was installed.

ITEM_LIST
This structure is used by many of the entry structures to hold an element in a list
of subentry values attached to the entry. For example, it may contain a list of
SYSMOD values, SRELs, or ALIAS names.

Table 38. Item list structure

Element Data type Description

next Pointer Pointer to the next item in the list. This value is zero (0) when there are
no more items.

datalen Numeric Number of characters in the item string.

data Pointer Pointer to the data associated with this item.

FREE command
The FREE command frees all the storage allocated by GIMAPI for query output,
message buffer, and any other data that is saved between different calls to
GIMAPI. The FREE command will free storage allocated by any previous queries
that has not already been freed. It is suggested that the FREE command be run
after each query, but this is not required. It is good practice to use the FREE
command prior to terminating the calling program.

Figure 64. Illustration of VER data structure

GIMAPI

386 SMP/E V3R6.0 for z/OS V2R1.0 Reference

FREE command parameters
Here is an example of a call to the FREE command:

FREE is a keyword that specifies that GIMAPI is to process a free request. Note
that it is necessary to pad the string containing the FREE command with
blanks to bring it to a length of eight characters.

0,0 The parmptr and outptr parameters must both be set to zero (0) on the
FREE command.

ENU The language parameter must be specified as either ENU, JPN, or three
blanks. The FREE command does not return any messages, so it does not
matter which of these choices is specified.

rc A storage area owned by the calling program representing a 4-byte
numeric variable. This variable will contain the return code for the FREE
command. GIMAPI will always set this variable to zero (0) after processing
the FREE command.

cc A storage area owned by the calling program representing a 4-byte
numeric variable. This variable will contain the condition code for the
FREE command. GIMAPI will always set this variable to zero (0) after
processing the FREE command.

msgbuff
A pointer variable. No messages are issued by the FREE command, but
this pointer variable must be passed to GIMAPI.

The parmptr, outptr, language, rc, cc, and msgbuff parameters must all be specified on
the GIMAPI call, even though none of these parameters are used by the FREE
command.

FREE command processing
The FREE command frees any storage obtained by GIMAPI on previous QUERY
requests made by this caller.

VERSION command
The VERSION command is used to query the version of GIMAPI module being
accessed by the calling program.

The version is returned as 8 bytes worth of data representing the current version of
SMP/E in the format vvrrmmpp, where:

vv version

rr release

mm modification level

pp PTF

The version of IBM SMP/E for z/OS, V3R6 is displayed as 36.00. This translates to
an 8 byte value of "03060000".

GIMAPI('FREE ',0,0,'ENU',rc,cc,msgbuff)

GIMAPI

Chapter 6. SMP/E CSI application programming interface 387

VERSION command parameters
Here is an example of a call to the VERSION command:

No input parameters are defined for this command. A parameter passed to
GIMAPI for this command would be ignored.

The output is a pointer to an API_VERSION structure containing the version of the
current running GIMAPI module. Refer to

VERSION command processing
GIMAPI allocates the storage for AN API_VERSION structure. If the storage
cannot be allocated, existing message GIM30700E is issued and the module
terminates.

If allocation was successful, GIMAPI sets the elements of the structure with the
values of the current version, release, modification and PTF level then returns to
the calling program.

For example, the level of IBM SMP/E for z/OS, V3R6 is 36.00. As the result of a
call to GIMAPI with the VERSION command, the elements of the API_VERSION
structure are set as follows:

apiver="03"
apirel="06"
apimod="00"
apiptf="00"

The version can be accessed by the user as the complete string, "03060000" or as
the previously listed individual parts.

The calling program needs to issue the FREE command at some point after calling
the VERSION command.

VERSION command output
The data structure shown in this section are defined in a language independent
format. See “Programming in C” on page 389, “Programming in PL/I” on page
391, and “Programming in assembler” on page 393 to see the syntax of the data
structures for those languages. Headers or macros with the language-specific
structure definitions are provided in members named GIMHC370 (for C/370),
GIMMPLI (for PL/I), and GIMMASM (for assembler) in libraries with these
DDDEFs:

MACLIB
Target Library

AMACLIB
Distribution Library

Table 39. API version

Element Data type Description

apiver Character(2) A 2-digit character string representing the version of the
API. Leading zeros are included.

GIMAPI('VERSION',0,verout,'ENU',rc,cc,msgbuff)

GIMAPI

388 SMP/E V3R6.0 for z/OS V2R1.0 Reference

Table 39. API version (continued)

Element Data type Description

apirel Character(2) A 2-digit character string representing the release of the
API. Leading zeros are included.

apimod Character(2) A 2-digit character string representing the modification of
the API. Leading zeros are included.

apiptf Character(2) A 2-digit character string representing the PTF associated
with the API. Leading zeros are included.

Programming in C
For GIMAPI to be invoked from a C/370 program, GIMAPI must first be loaded
into storage. The calling program must identify the parameter linkage as standard
OS linkage and must declare the routine. Figure 65 shows the statements to load
and unload the module, the #pragma statement that identifies the linkage, the
function declaration, and the calling syntax.

The FETCH must be done once, then GIMAPI can be invoked any number of times
before it is released. The release function requires a pointer to a C function as its
parameter. APIPGM becomes an OS program. The typedef of CFUNC is used to
cast the gimapi parameter so the program compiles correctly.

apicmd
The apicmd parameter is a string of length 8 that contains the name of the
command to be passed to GIMAPI.

&parmptr
A qparm variable is declared of type QUERY_PARMS. The parmptr pointer
variable is set to the address of the query parameter structure. The address
of the pointer variable is passed to GIMAPI.

&outptr
The outptr variable is a pointer variable that will be set to the address of
the beginning of storage containing the output of the command processing.
The address of outptr is passed to GIMAPI.

language
A character string of length 3 to indicate the language to use for messaging
by GIMAPI. Valid values are ENU and JPN.

typedef void APIPGM();
typedef void CFUNC();
#pragma linkage(APIPGM,OS)

...
APIPGM * gimapi;
gimapi = (APIPGM *) fetch("GIMAPI");

...
(*gimapi) (apicmd,&parmptr,&outptr,language,&rc,&cc,&msgbuff);

...
release((CFUNC*) gimapi)

Figure 65. C syntax of GIMAPI invocation

GIMAPI

Chapter 6. SMP/E CSI application programming interface 389

&rc Address of a variable defined as long to be set to the command's return
code by GIMAPI.

&cc Address of a variable defined as long to be set to the command's condition
code by GIMAPI.

&msgbuff
The msgbuff variable is a pointer variable that is set to the head of a
linked list of messages that could be created by GIMAPI processing. The
elements to the link list are ITEM_LIST structures. The address of the
pointer variable is passed to GIMAPI.

Data structures in C
Many of the structures contain character string data. The strings are not null
terminated.

A header file will be provided in the MACLIB library. The member name for
C/370 is GIMHC370.

QUERY_PARMS
typedef _Packed struct QUERY_PARMS
{

char *csi;
long csilen;
char *zone;
long zonelen;
char *entrytype;
long entrylen;
char *subentrytype;
long subentrylen;
char *filter;
long filterlen;

} QUERY_PARMS, * P_QUERY_PARMS;

API_VERSION
typedef _Packed struct API_Version
{

char apiver[2];
char apirel[2];
char apimod[2];
char apiptf[2];

} API_VERSION, * P_API_VERSION;

ENTRY
typedef _Packed struct CSI_ENTRY
{

_Packed struct CSI_ENTRY *next;
_Packed struct SUBENTRY *subentries;
char entryname[8];
char zonename[7];

} CSI_ENTRY, * P_CSI_ENTRY;

ENTRY_LIST
typedef _Packed struct ENTRY_LIST
{

_Packed struct ENTRY_LIST *next;
_Packed struct CSI_ENTRY *entries;
char type[12];

} ENTRY_LIST, * P_ENTRY_LIST;

GIMAPI

390 SMP/E V3R6.0 for z/OS V2R1.0 Reference

ITEM_LIST
typedef _Packed struct ITEM_LIST
{

_Packed struct ITEM_LIST *next;
long datalen;
char *data;

} ITEM_LIST, * P_ITEM_LIST;

SUBENTRY
typedef _Packed struct SUBENTRY
{

_Packed struct SUBENTRY *next;
void *subentrydata;
char type[12];

} SUBENTRY, * P_SUBENTRY;

Note: Given that C requires pointers to indicate the data type they will point to, a
void pointer must be used here since more than one structure may be attached, the
ITEM_LIST or the VER structure.

VER
typedef _Packed struct VER
{

_Packed struct VER *next;
_Packed struct SUBENTRY *verdata;
char vernum[3];

} VER, * P_VER;

Programming in PL/I
Before the GIMAPI program can be invoked from a PL/I program, it must be
declared. This identifies the variable as a callable routine and indicates to PL/I that
standard OS linkage is used to pass parameters. The program must be loaded into
storage before it can be invoked. The declaration, linkage, load and call syntax are
shown in Figure 66.

The FETCH must be done once, then GIMAPI can be invoked any number of times
before it is released.

APICMD
A variable defined as CHAR(8) that contains the string representing the
command GIMAPI is to process.

PARMPTR
A command parameter structure (QUERY_PARMS) that contains the
parameters of the command being processed is declared in the calling

DECLARE GIMAPI(CHAR(8), PTR, PTR, CHAR(3), FIXED, FIXED, PTR)
ENTRY OPTIONS(ASSEMBLER INTER);

...
FETCH GIMAPI;
CALL GIMAPI(APICMD,PARMPTR,OUTPTR,LANGUAGE,RC,CC,MSGBUFF);

...
RELEASE GIMAPI;

Figure 66. PL/I syntax of GIMAPI invocation

GIMAPI

Chapter 6. SMP/E CSI application programming interface 391

program. PARMPTR is a pointer variable that contains the address of that
structure. The variable is passed to GIMAPI.

OUTPTR
A pointer variable that will be set to the address of the beginning of
storage containing the output of the command processing.

LANGUAGE
3-character national language identifier to use for messages. Valid values
are ENU and JPN.

RC A return code variable declared as FIXED BIN(31). The value of the
variable is set to the return code of GIMAPI call by GIMAPI program.

CCPTR
A condition code variable declared as FIXED BIN(31). The value of the
variable is set to the condition code of GIMAPI call by GIMAPI program.

MSGBUFF
The MSGBUFF variable is a pointer variable that is set to the head of a
linked list of messages that could be created by GIMAPI processing. The
elements to the link list are ITEM_LIST structures.

Data structures in PL/I
This section shows the data structures defined in “Data structures for QUERY
command” on page 383 as they would appear in PL/I. The calling program must
declare all the structures it is going to use before calling GIMAPI.

The data structures defined for the entries are BASED variables. This means no
storage is allocated for the variables, but they are used to reference data allocated
by the GIMAPI command. The calling program must declare pointer variables to
reference the storage.

A macro file for PL/I is provided in member GIMMPLI of the MACLIB library.

QUERY_PARMS
DECLARE
1 QUERY_PARMS UNALIGNED,

2 CSI POINTER,
2 CSILEN FIXED BIN(31),
2 ZONE POINTER,
2 ZONELEN FIXED BIN(31),
2 ENTRYTYPE POINTER,
2 ENTRYLEN FIXED BIN(31),
2 SUBENTRYTYPE POINTER,
2 SUBENTRYLEN FIXED BIN(31),
2 FILTER POINTER,
2 FILTERLEN FIXED BIN(31);

API_VERSION
DECLARE

1 API_VERSION BASED UNALIGNED,
2 APIVER CHAR(2),
2 APIREL CHAR(2),
2 APIMOD CHAR(2),
2 APIPTF CHAR(2);

GIMAPI

392 SMP/E V3R6.0 for z/OS V2R1.0 Reference

ENTRY
DECLARE
1 CSI_ENTRY BASED UNALIGNED,

2 NEXT POINTER,
2 SUBENTRIES POINTER,
2 ENTRYNAME CHAR(8),
2 ZONENAME CHAR(7);

ENTRY_LIST
DECLARE
1 ENTRY_LIST BASED UNALIGNED,

2 NEXT POINTER,
2 ENTRIES POINTER,
2 TYPE CHAR(12);

ITEM_LIST
DECLARE
1 ITEM_LIST BASED UNALIGNED,

2 NEXT POINTER,
2 DATALEN FIXED BIN(31),
2 DATA POINTER;

SUBENTRY
DECLARE
1 SUBENTRY BASED UNALIGNED,

2 NEXT POINTER,
2 SUBENTRYDATA POINTER,
2 TYPE CHAR(12);

VER
DECLARE
1 VER BASED UNALIGNED,

2 NEXT POINTER,
2 VERDATA POINTER,
2 VERNUM CHAR(3);

Programming in assembler
Before the GIMAPI program can be invoked from an assembler program, the load
module must be brought into virtual storage using the LOAD macro. It can then
be invoked using the CALL macro passing the required parameters. An example of
the declares, LOAD, CALL and FREE syntax are shown in Figure 67 on page 394.

GIMAPI

Chapter 6. SMP/E CSI application programming interface 393

QUERYCMD
A variable defined as CHAR(8) that contains the string representing the
QUERY command GIMAPI is to process.

FREECMD
A variable defined as CHAR(8) that contains the string representing the
FREE command GIMAPI is to process.

QUERY_PARMS@
A command parameter structure (QUERY_PARMS) that contains the
parameters of the command being processed is declared in the calling
program. QUERY_PARMS@ is a pointer variable that contains the address
of that structure. The variable is passed to GIMAPI.

CMDOUT
A pointer variable that will be set to the address of the beginning of
storage containing the output of the command processing.

APILANGE
3-character national language identifier to use for messages. Valid values
are ENU and JPN.

RC A return code variable declared as a fullword. The value of the variable is
set to the return code of GIMAPI call by GIMAPI program.

CC A condition code variable declared as a fullword. The value of the variable
is set to the condition code of GIMAPI call by GIMAPI program.

MSG@
The MSG@ variable is an address variable that is set to the head of a
linked list of messages that could be created by GIMAPI processing. The
elements to the link list are ITEM_LIST structures.

Data structures in assembler
This section shows the data structures defined in “Data structures for QUERY
command” on page 383 as they would appear in assembler. The calling program
must declare all the structures it is going to use before calling GIMAPI.

LA 2,APIPGM
LOAD EPLOC=(2),LOADPT=PGMADR

L 15,PGMADR
CALL (15),(QUERYCMD,QUERY_PARMS@,CMDOUT,APILANG,RC,CC,MSG@)

L 15,PGMADR
CALL (15),(FREECMD,0,CMDOUT,APILANG,RC,CC,MSG@)

APIPGM DC CL8’GIMAPI ’
QUERYCMD DC CL8’QUERY ’
FREECMD DC CL8’FREE ’
APILANG DC CL3’ENU’

DS 0F
QUERY_PARMS@ DC AL4(QUERY_PARMS)
PGMADR DC AL4(0)
CMDOUT DC AL4(0)
MSG@ DC AL4(0)
RC DS F’0’
CC DS F’0’

Figure 67. Assembler syntax of GIMAPI invocation

GIMAPI

394 SMP/E V3R6.0 for z/OS V2R1.0 Reference

The data structures defined for the entries are DSECTS. This means no storage is
allocated for the variables, but they are used to reference data allocated by the
GIMAPI command. The calling program must declare address variables to
reference the storage.

A macro file for assembler code is provided in member GIMMASM of the
MACLIB library.

QUERY_PARMS
QUERY_PARMS DS 0CL40 PARAMETERS FOR QUERY COMMAND
PCSI DS AL4 PTR TO GLOBAL CSI DATASET
CSILEN DS FL4 LENGTH OF DATA SET NAME
PZONE DS AL4 PTR TO LIST OF ZONES
ZONELEN DS FL4 LENGTH OF ZONE LIST
PENTRY DS AL4 PTR TO LIST OF ENTRIES
ENTRYLEN DS FL4 LENGTH OF ENTRY LIST
PSUBENTRY DS AL4 PTR TO LIST OF SUBENTRIES
SUBENTRYLEN DS FL4 LENGTH OF SUBENTRY LIST
PFILTER DS AL4 PTR TO QUERY FILTER
FILTERLEN DS FL4 LENGTH OF FILTER

ENTRY_LIST
ENTRY_LIST DSECT LIST OF ENTRY TYPES
NEXT DS AL4 PTR TO NEXT ITEM IN LINKED LIST
ENTRIES DS AL4 PTR TO HEAD OF LINKED LIST OF
* CSIENTRY STRUCTURES LISTING THE
* INSTANCES OF THIS ENTRY TYPE
TYPE DS CL12 ENTRY TYPE

ENTRY
CSIENTRY DSECT DESCRIPTION OF A SPECIFIC ENTRY
CSINEXT DS AL4 PTR TO NEXT ITEM IN LINKED LIST
SUBENTRIES DS AL4 PTR TO HEAD OF LINKED LIST OF
* SUBENTRY STRUCTURES LISTING THE
* SUBENTRY VALUES RETURNED FOR
* THIS ENTRY
ENTRYNAME DS CL8 NAME OF ENTRY
ZONENAME DS CL7 ZONE WHERE ENTRY WAS RETRIEVED

SUBENTRY
SUBENTRY DSECT CONTAINS SUBENTRY DATA
SUBNEXT DS AL4 PTR TO NEXT ITEM IN LINKED LIST
SUBENTDATA DS AL4 PTR TO HEAD OF LINKED LIST OF
* DATA VALUES FOR THIS SUBENTRY
SUBTYPE DS CL12 SUBENTRY TYPE

VER
VER DSECT PLACEHOLDER FOR SUBENTRIES
* ASSOCIATED WITH ++VER RECORDS
* OF A SYSMOD
VERNEXT DS AL4 PTR TO NEXT ITEM IN LINKED LIST
VERDATA DS AL4 PTR TO HEAD OF LINKED LIST OF
* SUBENTRIES ASSOC WITH A ++VER
VERNUM DS CL3 ++VER STATEMENT NUMBER

ITEM_LIST
ITEM_LIST DSECT HOLDS PIECE OF SUBENTRY DATA
ITMNEXT DS AL4 PTR TO NEXT ITEM IN LINKED LIST
DATALEN DS FL4 NUMBER OF CHARS OF REAL DATA
DATA DS AL3 PTR TO STORAGE CONTAINING DATA

GIMAPI

Chapter 6. SMP/E CSI application programming interface 395

API_VERSION
API_VERSION DSECT API VERSION COMMAND OUTPUT
APIVER DS CL2 STRUCTURE
APIREL DS CL2 CURRENT SMP/E LEVEL FOR VERSION
APIMOD DS CL2 " " RELEASE
APIPTF DS CL2 " " MODIFICAT

Additional programming considerations
GIMAPI is installed in SYS1.LINKLIB and SYS1.MIGLIB with the GIMSMP
module. Because GIMAPI resides in LINKLIB, which is considered an authorized
library, GIMAPI is available to both authorized and unauthorized callers.

The GIMAPI load module cannot be reused. A new copy must be brought into
virtual storage for each use. Each task must load its own copy of GIMAPI.
However, a single task can load GIMAPI once and then call GIMAPI several times
before deleting GIMAPI.

GIMAPI runs in AMODE 31. It will obtain storage from either above or below the
16MB line, based on the AMODE of the caller upon entry to GIMAPI.

GIMAPI will not provide an ESTAE environment. If an ESTAE environment is
required, the calling program must establish it before invoking GIMAPI.

Callers of GIMAPI should not link-edit a copy of the load module into the
application program. GIMAPI should be called as an external routine.

The caller of GIMAPI must first load the GIMAPI load module into virtual storage
using the appropriate syntax for the language in which the application is written.
For example, an assembler application may use the LOAD or LINK macros. Once
the GIMAPI module is loaded into virtual storage, it can be called by the
application.

The caller of GIMAPI must adhere to standard linkage conventions. For more
information regarding standard linkage conventions, refer to z/OS MVS
Programming: Assembler Services Guide and the appropriate documentation for the
language you are using for your application.

GIMAPI can only be invoked from a user-written program. GIMAPI cannot be
invoked from JCL.

GIMAPI exposes certain control blocks to the user. These are the data structures
defined in section “Data structures for QUERY command” on page 383. A macro
data set is provided for you to include the definition of the control blocks in your
program. The DDDEF of the macro library is MACLIB for the target library and
AMACLIB for the distribution library. Refer to “Programming in C” on page 389,
“Programming in PL/I” on page 391, and “Programming in assembler” on page
393 for the member names used for each language.

Sample programs that use GIMAPI
This section contains three sample programs that use GIMAPI. Each program does
the same basic function, where differences are mostly due to the syntax of the
languages involved.

GIMAPI

396 SMP/E V3R6.0 for z/OS V2R1.0 Reference

Note: In addition to the programs documented here, SYS1.SAMPLIB provides
other sample programs that use GIMAPI, such as GIMCRSAM and GIMPRSAM.

Each program follows these steps:
1. The query described in “Example of QUERY command” on page 381 is set up

to be invoked. The global CSI data set used is 'SMP.VSAM.CSI'.
2. GIMAPI is called with the QUERY command to retrieve the data.
3. If the query is successful, it calls a generic result print function that prints the

data retrieved from any query.
4. Once these are done, the storage is freed by calling GIMAPI with the FREE

command.

The following is an example of the output of the sample programs:
Entry Type: SYSMOD
--

ENAME : SMOD19
ZONE : TARG1
INSTALLDATE : 07340
MOD : MOD01

MOD02
--

ENAME : SMOD22
ZONE : MYTARG
INSTALLDATE : 07348

Sample C/370 program
This sample program can be found in the SAMPLIB library as member name
GIMCSAMP.
#include <stdio.h>
#include <stdlib.h>
#include <DD:SYSLIB(GIMHC370)> /* Contains API structure definitions */

#define FREE "FREE "
#define QUERY "QUERY "
#define APILANG "ENU"
#define TXT_VER "VER"
#define LEN_ETYPE 12
#define LEN_ENAME 8
#define LEN_ZNAME 7
#define LEN_VERNUM 3
#define LEN_TXTVER 3
#define LEN_MSG 256
typedef void APIPGM();
typedef void cfunc();
#pragma linkage(APIPGM,OS)

static void errprint(char *, long, long, ITEM_LIST *);
static void valprint(ITEM_LIST *);
static void resprint(ENTRY_LIST *);

void main(int argc, char *argv[])
{

long rc,cc;
QUERY_PARMS qparms;
P_QUERY_PARMS pqparms = &qparms;
ENTRY_LIST *qreslt;
ITEM_LIST *msgbuff;
APIPGM *gimapi;

char csi[45];
char zone[100];

GIMAPI

Chapter 6. SMP/E CSI application programming interface 397

char ent[100];
char subent[100];
char filter[150];

rc = 0;
cc = 0;

/***/
/* Load the GIMAPI load module for use later */
/***/
gimapi = (APIPGM *) fetch("GIMAPI");

/***/
/* Create the QUERY. Put the parameter strings into */
/* variables and put the addresses of those variables*/
/* in the query parameter structure along with the */
/* length of those strings. */
/***/
strcpy(csi,"SMP.VSAM.CSI");
strcpy(zone,"ALLTZONES");
strcpy(ent,"SYSMOD");
strcpy(subent,"MOD,INSTALLDATE");
strcpy(filter,"(SMODTYPE=’PTF’ | SMODTYPE=’USERMOD’)");
strcat(filter," & FMID=’HMP1E00’ & APPLY=’YES’");
strcat(filter," & BYPASS=’YES’ & RECDATE>’07335’");

qparms.csi = csi;
qparms.csilen = strlen(csi);
qparms.zone = zone;
qparms.zonelen = strlen(zone);
qparms.entrytype = ent;
qparms.entrylen = strlen(ent);
qparms.subentrytype = subent;
qparms.subentrylen = strlen(subent);
qparms.filter = filter;
qparms.filterlen = strlen(filter);

gimapi(QUERY,&pqparms,(void**) &qreslt,APILANG,&rc,&cc,&msgbuff);

if (rc!=0)
{

errprint(QUERY, rc, cc, msgbuff);
if (rc>4) goto EXIT;

}

/**/
/* Call routine to print results of query */
/**/
resprint(qreslt);

/**/
/* Free storage returned from the QUERY */
/**/
gimapi(FREE,0,0,APILANG,&rc,&cc,&msgbuff);

EXIT:

release ((cfunc*)gimapi);
}

/******************************/
/* Print results of the query */
/******************************/
static void resprint(ENTRY_LIST *head)
{
ENTRY_LIST *curetype;
CSI_ENTRY *curentry;

GIMAPI

398 SMP/E V3R6.0 for z/OS V2R1.0 Reference

SUBENTRY *cursubent;
VER *curver;
SUBENTRY *curversub;
char etype[13];
char vernumber[13];
char versubtype[13];
char stEname[LEN_ENAME+1];
char stZname[LEN_ZNAME+1];

/********************************/
/* Loop through each entry type */
/********************************/
for (curetype=head; curetype!=0 ; curetype=curetype->next)
{

/**/
/* Print name of entry type being processed */
/**/
strncpy(etype,curetype->type,LEN_ETYPE);
etype[LEN_ETYPE] = ’\0’;
printf("Entry Type: %s\n",etype);

/**/
/* Loop through each entry printing the ename and zone */
/* then the list of subentry values. */
/**/
for (curentry=curetype->entries;

curentry!=0;
curentry=curentry->next)

{
printf("--\n");
strncpy(stEname,curentry->entryname,LEN_ENAME);
stEname[LEN_ENAME]=’\0’;
strncpy(stZname,curentry->zonename,LEN_ZNAME);
stZname[LEN_ZNAME]=’\0’;
printf(" ENAME : %s\n",stEname);
printf(" ZONE : %s\n",stZname);
for (cursubent=curentry->subentries;

cursubent!=0;
cursubent=cursubent->next)

{
strncpy(etype,cursubent->type,LEN_ETYPE);
etype[LEN_ETYPE] = ’\0’;
if ((strncmp(etype,TXT_VER,LEN_TXTVER)) == 0)
{

for (curver=(P_VER) cursubent->subentrydata;
curver!=0;
curver=curver->next)

{
strncpy(vernumber,curver->vernum,LEN_VERNUM);
vernumber[LEN_VERNUM]=’\0’;
for (curversub=curver->verdata;

curversub!=0;
curversub=curversub->next)

{

/*********************************/
/* Now print ver subentry values */
/*********************************/
strncpy(versubtype,curversub->type,LEN_ETYPE);
versubtype[LEN_ETYPE]=’\0’;
printf(" %.6s VER(%s): ",versubtype,vernumber);
valprint(curversub->subentrydata);

}
}

} /* end ver subentry */
else /* not a ver structure */
{

GIMAPI

Chapter 6. SMP/E CSI application programming interface 399

printf(" %s : ",etype);
valprint(cursubent->subentrydata);

} /* end non-ver subentry */
} /* end subentry for */

} /* end entries for */
} /* end entry type for */

}

static void valprint(ITEM_LIST *item1)
{

char databuff[500];
ITEM_LIST *curitem;

for (curitem=item1;
curitem!=0;
curitem=curitem->next)

{
strncpy(databuff,curitem->data,curitem->datalen);
databuff[curitem->datalen] = ’\0’;
printf("%s\n",databuff);
if (curitem->next!=0)

printf("\n ");
} /* end item for */

}

static void errprint(char *cmd, long rc, long cc, ITEM_LIST *msgs)
{

char msgout[LEN_MSG+1];
ITEM_LIST *curmsg;
unsigned short i;

printf("Error processing command: %s. RC=%d CC=%d\n",
cmd,rc,cc);

printf("Messages follow:\n");
/***/
/* Loop through a linked list of error messages */
/* printing them out. */
/***/
for (curmsg=msgs; curmsg!=0; curmsg=curmsg->next)
{

strncpy(msgout,curmsg->data,curmsg->datalen);
msgout[curmsg->datalen] = ’\0’;
printf("%s\n",msgout);

}
}

Sample PL/I program
This sample program can be found in the SAMPLIB library as member name
GIMPSAMP.
MAIN:
PROC OPTIONS(MAIN) REORDER;

%INCLUDE GIMMPLI;

DCL QUERY CHAR(8) INIT(’QUERY’);
DCL FREE CHAR(8) INIT(’FREE’);
DCL TXT_VER CHAR(12) INIT(’VER’);
DCL APILANG CHAR(3) INIT(’ENU’);

DCL GIMAPI ENTRY(CHAR(8),PTR,PTR,CHAR(3),FIXED BIN(31),
FIXED BIN(31),PTR)

EXTERNAL OPTIONS(ASSEMBLER,INTER);

DCL SYSNULL BUILTIN;
DCL ADDR BUILTIN;

GIMAPI

400 SMP/E V3R6.0 for z/OS V2R1.0 Reference

DCL SUBSTR BUILTIN;

DCL (RC,CC) FIXED BIN(31) INIT(0);

DCL QPARMS POINTER;
DCL MSGBUFF POINTER;

DCL QRESULT POINTER;
DCL NULLPTR POINTER;

DCL CSISTR CHAR(44);
DCL ZONESTR CHAR(100);
DCL ENTRYSTR CHAR(100);
DCL SUBENTSTR CHAR(100);
DCL FILTERSTR CHAR(150);
/**/
/* */
/* SET ADDRESS OF QUERY PARAMETERS TO THE QPARMS VAR */
/* */
/**/

QPARMS = ADDR(QUERY_PARMS);

/**/
/* */
/* LOAD GIMAPI LOAD MODULE */
/* */
/**/

FETCH GIMAPI;

/**/
/* */
/* PLUG QUERY PARMS INTO THE QUERY STRUCTURE */
/* */
/**/
CSISTR = ’SMP.VSAM.CSI’;
ZONESTR = ’ALLTZONES’;
ENTRYSTR = ’SYSMOD’;
SUBENTSTR = ’MOD, INSTALLDATE’;
SUBSTR(FILTERSTR,1,41) = ’(SMODTYPE=’’PTF’’ | SMODTYPE=’’USERMOD’’)’;
SUBSTR(FILTERSTR,42,19) = ’ & FMID=’’HMP1E00’’’;
SUBSTR(FILTERSTR,61,16) = ’ & APPLY=’’YES’’’;
SUBSTR(FILTERSTR,77,37) = ’ & BYPASS=’’YES’’ & RECDATE>’’07335’’’;

CSI = ADDR(CSISTR);
CSILEN = 12;
ZONE = ADDR(ZONESTR);
ZONELEN = 9;
ENTRYTYPE = ADDR(ENTRYSTR);
ENTRYLEN = 6;
SUBENTRYTYPE = ADDR(SUBENTSTR);
SUBENTRYLEN = 16;
FILTER = ADDR(FILTERSTR);
FILTERLEN = 113;

CALL GIMAPI(QUERY,QPARMS,QRESULT,APILANG,RC,CC,MSGBUFF);

/**/
/* PRINT ANY ERROR MESSAGES ENCOUNTERED */
/**/
IF RC ¬=0

THEN CALL ERRPRINT(QUERY);

/**/
/* CALL ROUTINE TO PRINT RESULTS OF QUERY IF QUERY WAS SUCCESSFUL */
/**/

GIMAPI

Chapter 6. SMP/E CSI application programming interface 401

IF RC<=4
THEN CALL RESPRINT;

/**/
/* FREE STORAGE RETURNED FROM THE QUERY */
/**/
CALL GIMAPI(FREE,NULLPTR,NULLPTR,APILANG,RC,CC,MSGBUFF);

EXIT:
RELEASE GIMAPI;

/**/
/* INTERNAL SUBROUTINES FOLLOW */
/**/
RESPRINT: PROCEDURE;

DCL CURETYPE POINTER;
DCL CURENTRY POINTER;
DCL CURSUBENT POINTER;
DCL CURVER POINTER;
DCL CURVSUB POINTER;
DCL PRTITEM POINTER;

/********************************/
/* LOOP THROUGH EACH ENTRY TYPE */
/********************************/
CURETYPE = QRESULT; /* POINT TO HEAD OF LIST */
DO WHILE (CURETYPE¬=SYSNULL);

/* PRINT NAME OF ENTRY BEING PROCESSED */
PUT EDIT(’Entry Type: ’,CURETYPE->ENTRY_LIST.TYPE)

(SKIP,A(12),A(15));
/**/
/* LOOP THROUGH EACH ENTRY PRINTING THE ENAME AND ZONE */
/* THEN THE LIST OF SUBENTRY VALUES. */
/**/
CURENTRY = CURETYPE->ENTRIES;
DO WHILE (CURENTRY¬=SYSNULL);

PUT SKIP LIST(’--’);
PUT EDIT(’ENAME’,’:’,CURENTRY->CSI_ENTRY.ENTRYNAME)

(SKIP,X(2),A(5),X(10),A(1),X(1),A(8));
PUT EDIT(’ZONE’,’:’,CURENTRY->CSI_ENTRY.ZONENAME)

(SKIP,X(2),A(4),X(11),A(1),X(1),A(7));

CURSUBENT=CURENTRY->SUBENTRIES;
DO WHILE (CURSUBENT¬=SYSNULL);

IF CURSUBENT->SUBENTRY.TYPE=TXT_VER THEN DO;
CURVER=CURSUBENT->SUBENTRYDATA;
DO WHILE (CURVER¬=SYSNULL);

CURVSUB=CURVER->VERDATA;
DO WHILE (CURVSUB¬=SYSNULL);

PUT EDIT(CURVSUB->SUBENTRY.TYPE,’VER(’,
CURVER->VERNUM,’):’)

(SKIP,X(2),A(6),X(1),A(4),A(3),A(2),X(1));
PRTITEM=CURVSUB->SUBENTRYDATA;
CALL VALPRINT(PRTITEM);
CURVSUB=CURVSUB->SUBENTRY.NEXT;

END;
CURVER=CURVER->VER.NEXT;

END;
END; /* End Process VER type subentries */
ELSE DO;

PUT EDIT(CURSUBENT->SUBENTRY.TYPE,’:’)
(SKIP,X(2),A(15),A(1),X(1));

PRTITEM=CURSUBENT->SUBENTRYDATA;
CALL VALPRINT(PRTITEM);

END; /* End non-VER type subentries */

GIMAPI

402 SMP/E V3R6.0 for z/OS V2R1.0 Reference

CURSUBENT = CURSUBENT->SUBENTRY.NEXT;
END; /* END SUBENT TYPE LOOP */

CURENTRY = CURENTRY->CSI_ENTRY.NEXT; /* GET NEXT ENTRY */
END; /* END ENTRY LOOP */
PUT SKIP;
CURETYPE = CURETYPE->ENTRY_LIST.NEXT; /* GET NEXT ENTRY TYPE */

END; /* END ENTRY TYPE LOOP */

END RESPRINT;

VALPRINT: PROCEDURE(ITEM1);
DCL ITEM1 POINTER;
DCL CURITEM POINTER;
DCL BUFFPTR POINTER;
DCL DATABUFF CHAR(500) BASED(BUFFPTR);

CURITEM = ITEM1;
DO WHILE (CURITEM ¬=SYSNULL);

BUFFPTR = CURITEM->DATA;
PUT EDIT(SUBSTR(BUFFPTR->DATABUFF,1,CURITEM->DATALEN))

(X(1),A);

CURITEM = CURITEM->ITEM_LIST.NEXT; /* GET NEXT DATA VALUE */
IF CURITEM¬=SYSNULL /* LINE UP NEXT VALUE IF THERE IS ONE */

THEN PUT SKIP LIST(’ ’);
END; /* END DATA ITEM LOOP */

END VALPRINT;

ERRPRINT: PROCEDURE(CMD);
DCL CMD CHAR(8);

DCL CURMSG POINTER;
DCL TEXTPTR POINTER;
DCL MSGTEXT CHAR(256) BASED(TEXTPTR);

PUT EDIT(’Error processing command: ’,CMD,’. ’,’RC=’,RC,’CC=’,CC)
(SKIP,A(26),A(8),A(3),A(3),F(5),X(2),A(3),F(5));

IF MSGBUFF¬=SYSNULL THEN
DO;
PUT SKIP LIST(’MESSAGES FOLLOW:’);
CURMSG = MSGBUFF;
DO WHILE (CURMSG¬=SYSNULL);

TEXTPTR = CURMSG->DATA;
PUT SKIP LIST(SUBSTR(TEXTPTR->MSGTEXT,1,CURMSG->DATALEN));
CURMSG = CURMSG->ITEM_LIST.NEXT;

END;
END;
ELSE
PUT SKIP LIST(’NO MESSAGES RETURNED’);

END ERRPRINT;
END MAIN;

Sample assembler program
This sample program can be found in the SAMPLIB library as member name
GIMASAMP.
MAIN:
BALAPI CSECT

STM 14,12,12(13)
LR 12,15

@PSTART EQU BALAPI
USING @PSTART,12

GIMAPI

Chapter 6. SMP/E CSI application programming interface 403

ST 13,SAVE+4
LA 14,SAVE
ST 14,8(13)
LR 13,14

*
* END OF STANDARD LINKAGE
*
BALAPI AMODE 31
*
* SET UP PARAMETERS FOR QUERY
*

XC QUERY_PARMS,QUERY_PARMS
LA 3,MYCSI
ST 3,PCSI
LA 3,19
ST 3,CSILEN
LA 3,MYZONE
ST 3,PZONE
LA 3,3
ST 3,ZONELEN
LA 3,MYENTRY
ST 3,PENTRY
LA 3,6
ST 3,ENTRYLEN
LA 3,MYSUBNTY
ST 3,PSUBENTRY
LA 3,1
ST 3,SUBENTRYLEN
LA 3,MYFILTER
ST 3,PFILTER
LA 3,16
ST 3,FILTERLEN

*
* NOW LOAD THE API
*

LA 2,APIPGM
LOAD EPLOC=(2),LOADPT=PGMADR

*
* NOW DO THE QUERY
*

L 15,PGMADR
CALL (15),(QUERYCMD,QUERY_PARMS@,CMDOUT,APILANG,RC,CC,MSG@)

*
*
* NOW SEE WHAT WAS RETURNED
*

L 3,RC
LTR 3,3
BNZ ERRPRINT

*
* ESTABLISH ADDRESSABILITY
*

OPEN (SYSPRINT,OUTPUT)
L 3,CMDOUT
USING ENTRY_LIST,3
L 4,ENTRIES
USING CSIENTRY,4
L 5,SUBENTRIES
USING SUBENTRY,5
L 6,SUBENTDATA
USING ITEM_LIST,6
L 7,DATA
USING RETDATA,7

*
* PRINT ENTRIES
*
PRTENT LTR 4,4

GIMAPI

404 SMP/E V3R6.0 for z/OS V2R1.0 Reference

BZ CLOSEOUT
MVI BUFFER,C’ ’
MVC BUFFER+1(119),BUFFER
MVC BUFFER(8),ENTRYNAME
MVC BUFFER+10(7),ZONENAME
LA 2,ANSICHAR
PUT SYSPRINT,(2)
B PRTSUB

MOREENT L 4,CSINEXT
B PRTENT

*
* PRINT SUBENTRIES
*
PRTSUB LTR 5,5

BZ MOREENT
MVI BUFFER,C’ ’
MVC BUFFER+1(119),BUFFER
MVC BUFFER(11),SUBTYPE
PUT SYSPRINT,(2)
B PRTDATA

MORESUB L 5,SUBNEXT
B PRTSUB

*
* PRINT DATA
*
PRTDATA LTR 7,7

BZ MORESUB
L 8,DATALEN

CHECKLEN C 8,OUTRECLN
BNH SETLEN
L 8,OUTRECLN

SETLEN LA 15,1
SLR 8,15
MVI BUFFER,C’ ’
MVC BUFFER+1(119),BUFFER
EX 8,@MOVDATA
LA 2,ANSICHAR
PUT SYSPRINT,(2)
L 8,DATALEN
C 8,OUTRECLN
BNH MORESUB
S 8,OUTRECLN
ST 8,DATALEN
A 7,OUTRECLN
B CHECKLEN

*
* PRINT ERROR MESSAGES
*
ERRPRINT OPEN (SYSPRINT,OUTPUT)

L 6,MSG@
L 7,DATA
L 8,DATALEN

CHKMSGLN C 8,OUTRECLN
BNH SETMSGLN
L 8,OUTRECLN

SETMSGLN LA 15,1
SLR 8,15
MVI BUFFER,C’ ’
MVC BUFFER+1(119),BUFFER
EX 8,@MOVDATA
LA 2,ANSICHAR
PUT SYSPRINT,(2)
L 8,DATALEN
C 8,OUTRECLN
BNH CLOSEOUT
S 8,OUTRECLN
ST 8,DATALEN

GIMAPI

Chapter 6. SMP/E CSI application programming interface 405

A 4,OUTRECLN
B CHKMSGLN

*
CLOSEOUT CLOSE SYSPRINT
*
* NOW FREE THE STORAGE OBTAINED DURING THE QUERY
*
CLEANUP L 15,PGMADR

CALL (15),(FREECMD,0,CMDOUT,APILANG,RC,CC,MSG@)
*
* NOW DELETE GIMAPI
*

DELETE EPLOC=APIPGM
*
* EXIT
*
EXIT LA 15,0

L 13,4(,13)
L 14,12(,13)
LM 00,12,20(13)
BR 14

*
*
@MOVDATA MVC BUFFER(0),RETDATA
SYSPRINT DCB DDNAME=SYSPRINT,DSORG=PS,MACRF=PM,LRECL=121,RECFM=FBA
ANSICHAR DC CL1’ ’
BUFFER DS CL120
MYCSI DC CL19’TOPGUN.WAG.VSAM.CSI’
MYZONE DC CL3’TZ1’
MYENTRY DC CL6’SYSMOD’
MYFILTER DC CL16’SMODTYPE=’’PTF’’’
MYSUBNTY DC CL3’*’
APIPGM DC CL8’GIMAPI ’
QUERYCMD DC CL8’QUERY ’
FREECMD DC CL8’FREE ’
APILANG DC CL3’ENU’

DS 0F
QUERY_PARMS@ DC AL4(QUERY_PARMS)
PGMADR DC AL4(0)
CMDOUT DC AL4(0)
MSG@ DC AL4(0)
OUTRECLN DC F’120’
RC DS F’0’
CC DS F’0’
SAVE DC 18F’0’

GIMMASM
RETDATA DSECT CL0

END

GIMAPI

406 SMP/E V3R6.0 for z/OS V2R1.0 Reference

Chapter 7. Writing UNIX shell scripts

This chapter documents intended Programming Interfaces that allow the customer
to write programs to obtain the services of IBM SMP/E for z/OS, V3R6.

To simplify the post-install work for z/OS UNIX Services application programs,
some UNIX applications include shell scripts. These scripts perform additional
processing when SMP/E installs elements into a UNIX file system. A product
packager normally includes any necessary shell scripts with the product.

For example, if the hierarchical file system element is a TAR or PAX file, you can
provide a shell script that performs the necessary steps to restore the file. As with
other products, you use SMP/E to copy the element (a TAR or PAX file) to a
directory in a UNIX file system. However, you rely on the element's shell script to
actually explode the file into its component subdirectories and files.

SMP/E provides IBM and vendor product packagers with a generic interface for
writing UNIX shell scripts. This chapter describes the interface and includes
suggestions for designing a shell script for SMP/E processing.

You define the shell script to SMP/E through a hierarchical file system MCS
statement, as described in “Hierarchical file system element MCS” on page 26.
Once defined, the shell script receives control whenever SMP/E installs or deletes
the element.

Designing a shell script for SMP/E processing
To process a file in a UNIX file system, a shell script must be able to cope with
both of the actions that SMP/E can potentially perform on the file: copy and
delete. That is, SMP/E can copy the file to a directory in a UNIX file system (as a
new file or a replacement for an existing file) and, later, SMP/E can delete the file
from a UNIX file system directory. A shell script must be able to detect either of
these conditions (copy or delete) and respond accordingly.

Assume, for example, that as part of deleting or replacing a product on your
system, you delete a function that was shipped in the product's tar file. SMP/E
deletes only the original tar file from the directory in a UNIX file system. It is the
responsibility of the shell script to clean up (delete) the tar file's exploded
component subdirectories and files.

Fortunately, SMP/E provides shell scripts with the necessary input. This input
comes in the form of environment variables that SMP/E sets, as follows:

Variable
Description

SMP_Directory
Directory in a UNIX file system that contains the file to be processed by
your shell script. This directory should be considered the working
directory for the shell script, and the shell script should not update any
directories or files which do not reside within the working directory.

© Copyright IBM Corp. 1986, 2014 407

SMP_File
Name of the file to be processed by your shell script. This is the
hierarchical file system element processed by SMP/E.

SMP_Action
Action that SMP/E is performing on the file. This value can be either of
the following:

COPY SMP/E is copying the file into a UNIX file system directory.

DELETE
SMP/E is deleting the file from a UNIX file system directory.

SMP_Phase
Point in processing in which SMP/E calls the shell script. This value can
be either of the following:

PRE SMP/E is calling the shell script before performing the action
indicated by the SMP_Action variable.

POST SMP/E is calling the shell script after performing the action
indicated by the SMP_Action variable.

SMP_Phase is always set to PRE when SMP_Action is DELETE to ensure
that SMP/E calls the shell script before deleting its corresponding element.

LC_ALL
The default value for all of the UNIX locale environment variables. This
value is always set to IBM-1047.

IBM-1047 defines the United States English character set. By specifying a
specific locale, all shell scripts invoked by SMP/E receive the same
environment, regardless of the locale being used on any particular driving
system.

PATH The Java runtime directory concatenated with the base PATH value
(/bin:.). The Java runtime directory is obtained from either the SMPJHOME
DD statement or the SMPJHOME DDDEF entry. The Java runtime
directory is required only if the UNIX shell script invokes Java commands.

For example, if the SMPJHOME DD is allocated to "/usr/lpp/java/j1.4",
the PATH environment variable value will be set to "/usr/lpp/java/j1.4/
bin/:/bin:.".

If neither the SMPJHOME DD statement nor the SMPJHOME DDDEF
entry is specified, SMP/E will not set the PATH environment variable.

This input allows you to design a shell script that can respond to SMP/E's actions,
as described in the sections that follow.

Designing for copy actions
For a copy action, SMP/E sets the SMP_Action variable to COPY (as well as
setting the other environmental variables) and passes control to the shell script.

The shell script should not assume a first-time environment for the file. For
example, if APPLY REDO is in effect, previous copy processing for a file might
have already completed successfully. Therefore the shell script should begin by
performing some kind of clean-up processing before taking any copy-related
actions.

UNIX shell scripts

408 SMP/E V3R6.0 for z/OS V2R1.0 Reference

Designing for delete actions
For a delete action, SMP/E sets the SMP_Action variable to DELETE (as well as
setting the other environmental variables) and passes control to the shell script.

The shell script should not assume that the file has previously been installed. For
example, if during an APPLY, a file is being installed for the first time, and is also
being deleted by a subsequent SYSMOD, SMP/E might invoke the shell script to
delete the file before it has actually been copied to a UNIX file system. Therefore,
the shell script should determine whether the file exists before taking any
delete-related actions.

Designing for diagnosis
Code your shell script to write status information to the STDOUT and STDERR
files during the course of its processing. Doing so will aid users in verifying the
successful completion of shell script processing, and, if necessary, diagnosing
problems when failures occur.

SMP/E copies this information from the STDOUT and STDERR files to the print
data set specified in the active HFSCOPY UTILITY entry where it can be viewed
by the user. By default, SYSPRINT is the print data set.

It is recommended that shell scripts provide sufficient information about the
completion of any functions they use, and especially about any detected error
conditions.

Returning control to SMP/E
When your shell script completes processing, it must return control to SMP/E.
Your shell script returns control to SMP/E through the exit shell command,
specifying an appropriate exit status (for example, exit 0 or exit –1). SMP/E uses
your shell script's exit status value to determine whether the shell script completed
successfully.

SMP/E recognizes the following exit statuses from shell scripts:

Exit status
Meaning

00 Shell script has completed successfully.

Any other value
Shell script processing has failed.

Example shell script
In the following example, the shell script is designed to process a UNIX tar file.
The shell script is written so that it:
1. Explodes the tar file in response to a COPY action by SMP/E
2. Deletes all files from the directory in response to a DELETE action by SMP/E.
This script will either explode a tar file file or delete all files in
the directory. The script uses the following environment variables
for input:
#
SMP_Directory - directory in which the tar file resides
SMP_File - name of the tar file
SMP_Phase - indicates whether the shell script is being called
before or after SMP/E has processed the file
SMP_Action - the action that SMP/E is performing: COPY or DELETE
#

UNIX shell scripts

Chapter 7. Writing UNIX shell scripts 409

echo "Starting script processing..."
status=0 # initialize script status
#
Verify that the required input was received by the shell script.
#
if test ! "$SMP_Directory"
then
echo "** No SMP_Directory parameter specified."
status=-1

elif test ! "$SMP_File"
then
echo "** No SMP_File parameter specified."
status=-1

elif test ! "$SMP_Phase"
then
echo "** No SMP_Phase parameter specified."
status=-1

elif test ! "$SMP_Action"
then
echo "** No SMP_Action parameter specified."
status=-1

fi
#
If a parameter error was detected, then exit now.
#
if test $status -ne 0 # If status is not 0, an error was detected
then
echo " Ensure the input environment variables for this script have been provided."
echo " If SMP/E was not used to invoke the script, correct the caller to specify "
echo " the input environment variables. If SMP/E invoked this script, contact "
echo " the IBM support center."
echo "Parameter error. Exiting script with status $status"
exit $status

fi
#
If the script is being invoked after the tar file has been copied
to the directory (SMP/E phase is post-copy), and the desired action
is COPY, explode the tar file.
#
if test $SMP_Phase = POST
then
if test $SMP_Action = COPY
then
cd $SMP_Directory # Set the working directory for pax
echo "Exploding all components of $SMP_Directory$SMP_File using the pax command"
pax -rvf $SMP_Directory$SMP_File # Explode the tar file
status=$? # Get the status of the pax command
if test $status -ne 0 # If pax failed, indicate so to the user
then
echo "** pax command failure: pax ended with status $status"

else
echo "pax command completed successfully."

fi
ls -l $SMP_Directory # List the contents of the directory

fi
fi
#
If the action is DELETE, delete all component files.
#
if test $SMP_Action = DELETE
then
echo "Deleting the following from $SMP_Directory using the rm command:"
ls -l $SMP_Directory # List the contents of the directory
cd $SMP_Directory # Set the working directory for rm
rm * # Delete the directory and all files
status=$? # Get the status of the delete
if test $status -ne 0 # If rm failed, indicate so to the user
then
echo "** rm command failure: rm ended with status $status"

else
echo "rm command completed successfully."

fi
if test $status = 0 # If rm was OK, then...
then
mkdir $SMP_Directory # ...recreate the directory, albeit empty
status=$? # Get the status of the mkdir
if test $status -ne 0 # If mkdir failed, indicate so to the user
then
echo "** mkdir command failure: mkdir ended with status $status"
fi

UNIX shell scripts

410 SMP/E V3R6.0 for z/OS V2R1.0 Reference

fi
fi
echo "Exiting script with status $status"
exit $status

UNIX shell scripts

Chapter 7. Writing UNIX shell scripts 411

UNIX shell scripts

412 SMP/E V3R6.0 for z/OS V2R1.0 Reference

Chapter 8. Library change file records

This chapter documents intended Programming Interfaces that allow the customer
to write programs to obtain the services of IBM SMP/E for z/OS, V3R6.

This chapter documents the various record types that are produced and written to
the SMPDATA1 and SMPDATA2 data sets as a result of APPLY or RESTORE
processing. You can use these records to propagate the libraries and members
modified by SMP/E APPLY and RESTORE processing to other systems that require
the same changes.

Note: The CHANGEFILE subentry in the OPTIONS entry must be set to YES to
instruct SMP/E to create these records.

SMP/E provides macros containing the mappings of these records:
v GIMMALC for assembler
v GIMMCLC for C
v GIMMPLC for PL/I.

Library change file record structure
The following sections provide samples of the various library change file records
that are written to the SMPDATA1 and SMPDATA2 data sets as a result of APPLY
or RESTORE processing.

Note:

1. SMP/E COMPRESS processing does not create any library change records.
2. The library change file records are of varying lengths.
3. All character data in all library change records are in uppercase, except for the

following, which contain mixed-case character data:
v Aliases in Alias Record Type 0 records
v Link names in Alias Record Type 0 records
v Symbolic link names in Alias Record Type 1 records
v Path names in Element Record Type 1 records
v Path names in Library Record Type 1 records

See “A0 - Alias record type 0” on page 414 and “L1 - Library record type 1” on
page 424 for details.

4. The scale lines shown in the examples do not appear in the actual SMPDATA1
and SMPDATA2 data sets.

5. In Figure 68 on page 415, the binary zeros after the alias name are not shown in
the example.

6. In Figure 69 on page 417, the binary zeros after the symbolic link name are not
shown in the example.

Library change file record types
The following are the valid record types produced by the library change interface:

© Copyright IBM Corp. 1986, 2014 413

Record type
Description

A0 Alias Record Type 0

A1 Alias Record Type 1

C0 Continuation Record Type 0

E0 Element Record Type 0

E1 Element Record Type 1

H0 Header Record Type 0

L0 Library Record Type 0

L1 Library Record Type 1

L2 Library Record Type 2

P0 SYSMOD Status Record Type 0

S0 SMP/E Environment Record Type 0

T0 Trailer Record Type 0

A0 - Alias record type 0
An Alias Record Type 0 (A0) is created for each alias for an element or LMOD
processed during APPLY or RESTORE processing. For hierarchical file system
elements, the linkname is indicated in the record.

Multiple A0 records may be produced for the same element or LMOD, because
more than one alias can exist for the same element or LMOD.

The purpose of the A0 record is to identify the aliases associated with the changed
elements or LMODs associated with this execution of the APPLY or RESTORE
command.

The format and contents of this record type are shown in Table 40.

Table 40. Alias record type 0

Field name
Position
(decimal)

Length
(decimal) Description

Record type 1 2 The characters 'A0'.

Name 3 8 The name of an SMP/E element or LMOD processed during
APPLY or RESTORE processing. The data is left-justified and
padded with blanks.

Type 11 12 The type of SMP/E element or LMOD processed during
APPLY or RESTORE processing. The valid element types for
an Alias Record Type 0 are:

v Data elements

v Hierarchical file system elements

v JAR

v MAC

v LMOD

v PROGRAM

v SIDEDECK

The data is left-justified and padded with blanks.

Library change file records

414 SMP/E V3R6.0 for z/OS V2R1.0 Reference

Table 40. Alias record type 0 (continued)

Field name
Position
(decimal)

Length
(decimal) Description

Action 23 8 The type of action SMP/E took against this alias of this
element or LMOD during APPLY or RESTORE processing.
Valid values are ADDREP and DELETE. This data is
left-justified and padded with blanks.

DD name 31 8 The ddname associated with the target library associated with
the named element or LMOD in this A0 record.

For action type DELETE, this field indicates the target library
ddname from which the alias has been deleted.

For action type ADDREP,, this field indicates the target
library ddname into which the alias has been added or
replaced.

An A0 record is created for every unique library that has an
alias change. Elements with multiple SYSLIBs will have the
appropriate A0 records created for each unique SYSLIB
changed. Therefore, it is possible to have the same element
have the same change in alias structure in multiple SYSLIBs.

The data is left-justified and padded with blanks.

This field contains the ddname of the associated target library
regardless of whether the allocation was done by a DD
statement or DDDEF.

Alias 39 1023 This is an alias name associated with this SMP/E element or
LMOD. If the element is a hierarchical file system element,
then the linkname is placed in this field. The data is
mixed-case characters and is left-justified and padded with
binary zeros.

For LMODs that have an associated side deck, there is one A0 record created for
each unique alias associated with the LMOD (indicated by LMOD in the element
type field of the A0 record) and one A0 record created for each unique alias
associated with the LMOD's side deck (indicated by SIDEDECK in the element
type field of the A0 record). Both the A0 record with element type LMOD and the
A0 record with element type SIDEDECK contain the same name (the LMOD's
name) in the Name field of the A0 record.

For example, suppose that SMP/E adds load module LMODA, which has two
aliases, LMA and LMDA. Load module LMODA has a side deck. Figure 68 shows
the A0 records created for LMODA:

1 2 3 4 5 6 7 8
----+----0----+----0----+----0----+----0----+----0----+----0----+----0----+----0
A0LMODA LMOD ADDREP LINKLIB LMA
A0LMODA LMOD ADDREP LINKLIB LMDA
A0LMODA SIDEDECK ADDREP SIDELIB LMA
A0LMODA SIDEDECK ADDREP SIDELIB LMDA

Figure 68. Example of alias record type 0 records

Library change file records

Chapter 8. Library change file records 415

A1 - Alias record type 1
An Alias Record Type 1 (A1) is created for each symbolic link associated with a
hierarchical file system element and for each symbolic link associated with a load
module within a UNIX file system that is processed during APPLY or RESTORE
processing. For hierarchical file system elements, the symbolic link names are
placed in the records. For load modules, values from the
ALIAS (SYMLINK,symlink) control statements are placed in the records.

Multiple A1 records may be produced for the same hierarchical file system element
or load module, because more than one symbolic link can exist for the same
hierarchical file system element or load module.

The purpose of the A1 record is to identify the symbolic links associated with the
changed hierarchical file system elements and the symbolic links associated with
load modules processed with this execution of the APPLY or RESTORE command.

The format and contents of this record type are shown in Table 41.

Table 41. Alias record type 1

Field name
Position
(decimal)

Length
(decimal) Description

Record type 1 2 The characters 'A1'.

Name 3 8 The name of an SMP/E hierarchical file system element or
load module processed during APPLY or RESTORE
processing. The data is left-justified and padded with blanks.

Type 11 12 The type of SMP/E hierarchical file system element or LMOD
processed during APPLY or RESTORE processing. The valid
values are:

v a hierarchical file system element type

v JAR

v LMOD

The data is left-justified and padded with blanks.

Action 23 8 The type of action SMP/E took against this symbolic link
during APPLY or RESTORE processing. Valid values are
ADDREP and DELETE. The data is left-justified and padded
with blanks.

DD name 31 8 The ddname associated with the target library for the named
hierarchical file system element or load module in this A1
record. The data is left-justified and padded with blanks.

For action type DELETE, this field indicates the target library
ddname from which the symbolic link has been deleted.

For action type ADDREP, this field indicates the target
library ddname into which the symbolic link has been added
or replaced.

An A1 record is created for all libraries modified within a
UNIX file system by having a hierarchical file system element
replaced or deleted or by having a load module replaced or
deleted.

This field contains the ddname of the associated target library
regardless of whether the allocation was done by a DD
statement or DDDEF.

Library change file records

416 SMP/E V3R6.0 for z/OS V2R1.0 Reference

Table 41. Alias record type 1 (continued)

Field name
Position
(decimal)

Length
(decimal) Description

Symbolic link 39 1023 This is a symbolic link associated with this SMP/E
hierarchical file system element or LMOD. The data is
mixed-case characters and is left-justified and padded with
binary zeros.

For example, suppose that load module LMODA, which has two symbolic links,
LMA and LMDA, is added to the BPXUSER library. Figure 69 shows the A1
records created for LMODA:

C0 - Continuation record type 0
One Continuation Record Type 0 (C0) is created for each delta produced by the
results of APPLY or RESTORE processing when spill processing has occurred. The
purpose of the C0 record is to uniquely identify the continuation of a set of library
change records.

The format and contents of this record type are shown in Table 42.

Table 42. Continuation record type 0

Field name
Position
(decimal)

Length
(decimal) Description

Record type 1 2 The characters C0.

Target zone 3 7 The target zone name that was operated on by the APPLY or
RESTORE command. It is left-justified and padded with
blanks.

Time stamp 10 13 The date and time that APPLY or RESTORE processing
completed for the entire delta. This field is in the form
yyyydddhhmmss, where:

yyyy year

ddd day

hh hours

mm minutes

ss seconds

Time is represented in 24-hour clock format (military time).
The time value matches the time value in the T0 record and
is the time that the GIM20501I message is issued for the
associated APPLY or RESTORE command.

ERROR count 23 6 The character representation of the count of SYSMODs
applied or restored in error. The data is padded on the left
with character zeroes (0).

1 2 3 4 5 6 7 8
----+----0----+----0----+----0----+----0----+----0----+----0----+----0----+----0
A1LMODA LMOD ADDREP BPXUSER LMA
A1LMODA LMOD ADDREP BPXUSER LMDA

Figure 69. Example of alias record type 1

Library change file records

Chapter 8. Library change file records 417

Table 42. Continuation record type 0 (continued)

Field name
Position
(decimal)

Length
(decimal) Description

INCMPLT count 29 6 The character representation of the count of SYSMODs left
with a status of INCMPLT by the APPLY or RESTORE. The
data is padded on the left with character zeroes (0).

APPLIED or
RESTORED
count

35 6 The character representation of the count of SYSMODs with a
status of APPLIED or RESTORED. The data is padded on the
left with character zeroes (0).

DELETED count 41 6 The character representation of the count of SYSMODs with a
status of DELETED. The data is padded on the left with
character zeroes (0).

SUPD count 47 6 The character representation of the count of SYSMODs with a
status of SUPD. The data is padded on the left with character
zeroes (0).

For example, suppose that a delta is produced for target zone TZONEA on January
16, 2008 at 9:57:22 AM. During this execution of SMP/E, two SYSMODs were
applied in error, one SYSMOD was left incomplete, 123 SYSMODs were applied
successfully, seven SYSMODs were deleted, and three SYSMODs were superseded.
Figure 70 shows the C0 records created that for delta:

E0 - Element record type 0
An Element Record Type 0 (E0) is created for each element or LMOD that changed
in a target library during APPLY or RESTORE processing. The term changed in this
context refers to an element or LMOD that been deleted or replaced in a target
library as a result of SMP/E processing. See “Valid action types” on page 431 for
more information.

The purpose of the E0 record is to identify the changed elements or LMODs in the
associated target libraries identified by the L0 and L1 records.

The format and contents of this record type are shown in Table 43.

Table 43. Element record type 0

Field name
Position
(decimal)

Length
(decimal) Description

Record type 1 2 The characters 'E0'.

Name 3 8 The name of an SMP/E element or LMOD processed during
APPLY or RESTORE processing. The data is left-justified and
padded with blanks.

1 2 3 4 5 6 7 8
----+----0----+----0----+----0----+----0----+----0----+----0----+----0----+----0
C0TZONEA 2008016095722000002000001000123000007000003

Figure 70. Example of continuation record type 0

Library change file records

418 SMP/E V3R6.0 for z/OS V2R1.0 Reference

Table 43. Element record type 0 (continued)

Field name
Position
(decimal)

Length
(decimal) Description

Type 11 12 The type of SMP/E element or LMOD processed during
APPLY or RESTORE processing.

The valid element types for an Element Record Type 0 are:

v data elements

v hierarchical file system elements

v JAR

v LMOD

v MAC

v PROGRAM

v SIDEDECK

v SRC

The data is left-justified and padded with blanks.

Action 23 8 The type of action SMP/E took against this element or
LMOD during APPLY or RESTORE processing. Valid values
are ADDREP and DELETE. This data is left-justified and
padded with blanks.

DD name 31 8 The ddname associated with the target library associated with
the named element or LMOD in this E0 record. The data is
left-justified and padded with blanks.

For cross-zone elements, this field indicates the SMP/E
generated ddname associated with the SYSLIB for this
element. The associated L0 record also contains the related
true name for the SYSLIB in the cross-zone.

For action type DELETE, this field indicates the target library
ddname from which the element has been deleted.

For action type ADDREP, this field indicates the target
library ddname into which the element has been added or
replaced.

An E0 record is created for every unique library that has an
element change. Elements with multiple SYSLIBs will have
the appropriate E0 records created for each unique SYSLIB
changed. Therefore, it is possible to have the same element
have the same change take place in multiple SYSLIBs.

This field contains the ddname of the associated target library
regardless of whether the allocation was done by a DD
statement or DDDEF.

For LMODs that have an associated side deck, there is one E0 record created for
each LMOD (indicated by LMOD in the element type field of the E0 record) and
one E0 record created for the LMOD's side deck (indicated by SIDEDECK in the
element type field of the E0 record). Both the E0 record with element type LMOD
and the E0 record with element type SIDEDECK contain the same name (the
LMOD's name) in the name field of the E0 record.

Library change file records

Chapter 8. Library change file records 419

For example, suppose that SMP/E adds load module LMODA, which has a
SIDEDECK. Figure 71 shows the E0 records created for LMODA:

E1 - Element record type 1
One Element Record Type 1 (E1) is created for each element having a UNIX shell
script that changed in a target library during APPLY or RESTORE processing. The
term changed in this context refers to an element that has been deleted or replaced
in a target library as a result of SMP/E processing. See “Valid action types” on
page 431 for more information.

The purpose of the E1 record is to identify the changed elements in the associated
target libraries identified by the L0 and L1 records.

The format and contents of this record type are shown in Table 44.

Table 44. Element record type 1

Field name
Position
(decimal)

Length
(decimal) Description

Record type 1 2 The characters 'E1'.

Name 3 8 The name of an SMP/E element processed during APPLY or
RESTORE processing. The data is left-justified and padded
with blanks.

Type 11 12 The type of hierarchical file system element processed by the
APPLY or RESTORE command. The data is left-justified and
padded with blanks.

Action 23 8 The type of action SMP/E took against this element during
APPLY or RESTORE processing. Valid values are ADDREP
and DELETE. This data is left-justified and padded with
blanks.

1 2 3 4 5 6 7 8
----+----0----+----0----+----0----+----0----+----0----+----0----+----0----+----0
E0LMODA LMOD ADDREP LINKLIB
E0LMODA SIDEDECK ADDREP SIDELIB

Figure 71. Example of element record type 0

Library change file records

420 SMP/E V3R6.0 for z/OS V2R1.0 Reference

Table 44. Element record type 1 (continued)

Field name
Position
(decimal)

Length
(decimal) Description

DD name 31 8 The ddname associated with the target library associated with
the named element in this E1 record. The data is left-justified
and padded with blanks.

For cross-zone elements, this field indicates the SMP/E
generated ddname associated with the SYSLIB for this
element. The associated L1 record also contains the related
true name for the SYSLIB in the cross-zone.

For action type DELETE, this field indicates the target library
ddname from which the element has been deleted.

For action type ADDREP, this field indicates the target
library ddname into which the element has been added or
replaced.

An E1 record is created for every unique library that has an
element change. Elements with multiple SYSLIBs will have
the appropriate E1 records created for each unique SYSLIB
changed. Therefore, it is possible to have the same element
have the same change take place in multiple SYSLIBs.

It is also possible to have multiple E1 records for the same
element in the same SYSLIB if the element is both deleted
and replaced. Normally, only the net effect would be
represented in the E1 record. However, when a shell script is
run, two records are produced because the shell script is run
for each action.

This field contains the ddname of the associated target library
regardless of whether the allocation was done by a DD
statement or DDDEF.

Phase 39 8 The phase of processing when the shell script was invoked to
complete the installation of the identified element. Valid
values are:

PRE Shell script was invoked before the action was
performed.

POST Shell script was invoked after the action was
performed.

PRE,POST
Shell script was invoked both before and after the
action was performed.

The data is left-justified and padded with blanks.

Path name 47 263 The full path name of the shell script. The data is left-justified
and padded with blanks. The value is of the form
/directory/file, in which:

/directory/
Directory in a UNIX file system in which the shell
script resides. This value can be up to 255 characters.

file Name of the shell script file. This value can be 1 to 8
characters long.

Library change file records

Chapter 8. Library change file records 421

For example, suppose that a ++HFS element named XMPHFS was added to target
zone TZONEB using a shell script named MYSHELL in directory /usr/lpp/abc/ and
that shell script MYSHELL was invoked after XMPHFS was installed. Figure 72
shows the E1 records created for LMODA:

H0 - Header record type 0
One Header Record Type 0 (H0) is created for each delta produced by the results
of APPLY or RESTORE processing. The purpose of the H0 record is to uniquely
identify the start of a set of library change records.

The format and contents of this record type are shown in Table 45.

Table 45. Header record type 0

Field name
Position
(decimal)

Length
(decimal) Description

Record type 1 2 The characters 'H0'.

Zone name 3 7 The target zone name that was operated on by the APPLY or
RESTORE command. It is left-justified and padded with
blanks.

Time stamp 10 13 The date and time that APPLY or RESTORE processing
completed for the entire delta. This field is in the form
yyyydddhhmmss, where:

yyyy year

ddd day

hh hours

mm minutes

ss seconds

Time is represented in 24-hour clock format (military time).
The time value matches the time value in the T0 record and
is the time that the GIM20501I message is issued for the
associated APPLY or RESTORE command.

ERROR count 23 6 The character representation of the count of SYSMODs
applied or restored in error. The data is padded on the left
with character zeroes (0).

INCMPLT count 29 6 The character representation of the count of SYSMODs left
with a status of INCMPLT by the APPLY or RESTORE. The
data is padded on the left with character zeroes (0).

APPLIED or
RESTORED
count

35 6 The character representation of the count of SYSMODs with a
status of APPLIED or RESTORED. The data is padded on the
left with character zeroes (0).

DELETED count 41 6 The character representation of the count of SYSMODs with a
status of DELETED. The data is padded on the left with
character zeroes (0).

1 2 3 4 5 6 7 8
----+----0----+----0----+----0----+----0----+----0----+----0----+----0----+----0
E1XMPHFS HFS ADDREP TZONEB POST /usr/lpp/abc/MYSHELL

Figure 72. Example of element record type 1

Library change file records

422 SMP/E V3R6.0 for z/OS V2R1.0 Reference

Table 45. Header record type 0 (continued)

Field name
Position
(decimal)

Length
(decimal) Description

SUPD count 47 6 The character representation of the count of SYSMODs with a
status of SUPD. The data is padded on the left with character
zeroes (0).

For example, suppose that a delta is produced for target zone TZONEA on January
16 of 2008 at 9:57:22 AM. During this execution of SMP/E, two SYSMODs were
applied in error, one SYSMOD was left incomplete, 123 SYSMODs were applied
successfully, seven SYSMODs were deleted, and three SYSMODs were superseded.
Figure 73 shows the H0 records created for that delta:

L0 - Library record type 0
One Library Record Type 0 (L0) is created for each target library changed during
APPLY or RESTORE processing that is not associated with a pathname. A Library
Record Type 1 (L1) is created for pathnames.

The purpose of the L0 record is to identify the target libraries (excluding
pathnames) that were changed by this execution of APPLY or RESTORE.

SYSLIB concatenations used during the APPLY or RESTORE do not produce any
L0 records.

The format and contents of this record type are shown in Table 46.

Table 46. Library record type 0

Field name
Position
(decimal)

Length
(decimal) Description

Record type 1 2 The characters 'L0'.

DD name 3 8 The SMP/E ddname associated with this L0 record. The data
is left-justified and padded with blanks. This field contains
the ddname of the allocated target library regardless of
whether the allocation was done by a DD statement or
DDDEF.

For cross-zone libraries, this field indicates the
SMP/E-generated ddname for this library.

SYSLIB ddname 11 8 This is the SMP/E SYSLIB ddname associated with
cross-zone libraries. This is the true ddname of the cross-zone
library in the associated cross-zone. The data is left-justified
and padded with blanks.

For libraries that are not cross-zone libraries, this field is set
to blanks.

1 2 3 4 5 6 7 8
----+----0----+----0----+----0----+----0----+----0----+----0----+----0----+----0
H0TZONEA 2008016095722000002000001000123000007000003

Figure 73. Example of header record type 0

Library change file records

Chapter 8. Library change file records 423

Table 46. Library record type 0 (continued)

Field name
Position
(decimal)

Length
(decimal) Description

Cross-zone
name

19 7 The cross-zone name associated with this cross-zone library.
The data is left-justified and padded with blanks.

For libraries that are not cross-zone libraries, this field is set
to blanks.

Library type 26 8 The type of library that is associated with this L0 record. The
valid library types are LIBRARY, PDS, and SEQ. The data is
left-justified and padded with blanks.

Volume name 34 6 The volume name associated with the SMP/E target library
named in this record.

Data set name 40 44 The data set name of an SMP/E target library that was
changed during APPLY or RESTORE processing. The data is
left-justified and padded with blanks.

Catalog data set
name

84 44 The catalog data set name associated with the target library
data set name identified in this record. The data is
left-justified and padded with blanks. If the data set name
identified in this record is not cataloged, this field is set to
blanks.

For example, Figure 74 shows the L0 record generated for a PDS library named
SYS1.LINKLIB on volume MVSRES in catalog CATALOG.MVSICFM.VMVSRES.
The library has a ddname of LINKLIB.

L1 - Library record type 1
One Library Record Type 1 (L1) is created for each target library changed during
APPLY or RESTORE processing that is associated with a pathname. An L0 record
is created for libraries that are not associated with pathnames.

The purpose of the L1 record is to identify the target libraries containing
pathnames that were changed by the associated APPLY or RESTORE command.

The format and contents of this record type are shown in Table 47.

Table 47. Library record type 1

Field name
Position
(decimal)

Length
(decimal) Description

Record type 1 2 The characters 'L1'.

1 1
1 2 3 4 5 6 7 8 9 0 1

----+----0----+----0----+----0----+----0----+----0----+----0----+----0----+----0----+----0----+----0----+----0
L0LINKLIB PDS MVSRESSYS1.LINKLIB CATALOG.MVSICFM.VMVSRES

Figure 74. Example of library record type 0

Library change file records

424 SMP/E V3R6.0 for z/OS V2R1.0 Reference

Table 47. Library record type 1 (continued)

Field name
Position
(decimal)

Length
(decimal) Description

DD name 3 8 The SMP/E ddname associated with this Library Type 1
record. The data is left-justified and padded with blanks. This
field contains the ddname of the allocated target library
regardless of whether the allocation was done by a DD
statement or DDDEF.

For cross-zone libraries, this field indicates the
SMP/E-generated ddname for this library.

SYSLIB name 11 8 This is the SMP/E SYSLIB ddname associated with
cross-zone libraries. This is the true ddname of the cross-zone
library in the associated cross-zone. The data is left-justified
and padded with blanks.

For libraries that are not cross-zone libraries, this field is set
to blanks.

Cross-zone
name

19 7 The cross-zone name associated with this cross-zone library.
The data is left-justified and padded with blanks.

For libraries that are not cross-zone libraries, this field is set
to blanks.

Library type 26 8 The type of library that is associated with this L1 record. The
only valid type is HFS. The data is left-justified and padded
with blanks.

Path name 34 255 The path name of an SMP/E target library that was changed
during APPLY or RESTORE processing. The data is
left-justified and padded with blanks.

For example, Figure 75 shows the L1 record generated for a pathname of
'/hfs_path_name/', which is an HFS library with the ddname of HFSLIB1.

L2 - Library record type 2
A Library Record Type 2 (L2) is created for each physical data set associated with a
directory in a UNIX file system that was changed during APPLY or RESTORE
processing. The purpose of the L2 record is to identify the physical data set in
which a particular directory is located, how the data set is related to the directory,
and the ddname that was used to allocate the directory.

The format and contents of this record type are shown in Table 48.

Table 48. Library record type 2

Field name
Position
(decimal)

Length
(decimal) Description

Record type 1 2 The characters 'L2'.

1 2 3 4 5 6 7 8
----+----0----+----0----+----0----+----0----+----0----+----0----+----0----+----0
L1HFSLIB1 HFS/hfs_path_name/

Figure 75. Example of library record type 1

Library change file records

Chapter 8. Library change file records 425

Table 48. Library record type 2 (continued)

Field name
Position
(decimal)

Length
(decimal) Description

DD name 3 8 The SMP/E ddname associated with this Library Type 2
record. The data is left-justified and padded with blanks. This
field contains the ddname that was used to allocate the
directory in a UNIX file system that was updated. This value
can be used to correlate the Library Type 2 records with the
Library Type 1 records that describe the directory.

Relationship 11 8 This field describes the relationship between the updated
directory and the physical data set identified in the record.
Valid relationships are:

PATHHFS
The HFS data set specified in this record contains
the directory that contains a file updated by SMP/E.

SYMHFS
The HFS data set specified in this record contains
the directory that contains a symbolic link associated
with a file updated by SMP/E.

Library Type 2 records with a type of SYMHFS are created
only when the SYMHFS data set names are different than the
PATHHFS data set name. In addition, records only for unique
SYMHFS data set names are produced.

For example, if a file updated by SMP/E has two symbolic
link values, and those symbolic link values reside in two
directories that reside in the same physical data set, then only
one Library Type 2 record with a type of SYMHFS is
produced to describe this data set. In addition, if the data set
that contains the symbolic links is the same physical data set
that contains the file updated by SMP/E, then no Library
Type 2 records with a type of SYMHFS are produced; a single
record with a type of PATHHFS describes the physical data
set that contains the file and its symbolic links.

The data is left-justified and padded with blanks.

Physical data set
name

19 44 data set name of the physical data set that was updated when
SMP/E updated a file in a UNIX file system. The data is
left-justified and padded with blanks.

For example, suppose the following PTF is selected for APPLY processing and that
the SBKSBIN library is allocated to directory /service/usr/lpp/booksrv/cgi-bin/
IBM/ in a UNIX file system.
++PTF(UW12345).
++VER(Z038) FMID(HYY2900).
++HFS(BKSMAIN) SYSLIB(SBKSBIN) DISTLIB(ABKSBIN)

PARM(PATHMODE(7,5,5))
LINK(’../bksmain’)
SYMLINK(’../../../../../bin/bksmain’)
SYMPATH(’../usr/lpp/booksrv/cgi-bin/bksmain’).

The resulting APPLY processing replaces the BKSMAIN file in the
/service/usr/lpp/booksrv/cgi-bin/IBM/ directory with the copy of the HFS
element supplied in the PTF. Also, when the file's symbolic link value specified on
the MCS is concatenated with the file's directory, the symbolic link value resolves
to /service/bin/bksmain. This file is the symbolic link and resides in the

Library change file records

426 SMP/E V3R6.0 for z/OS V2R1.0 Reference

/service/bin/ directory. In this example, the directory containing the symbolic link
is in a different physical data set than the directory that contains the file
BKSMAIN.

At the end of APPLY processing, SMP/E produces L1 and L2 records to
summarize the updates performed. Figure 76 shows the L1 record that describes
the directory that contains the file, as well as the L2 records that describe the data
sets that contain the file and its symbolic links.

P0 - SYSMOD status record type 0
Status records are created for SYSMODs for which some utility work was done
during the command and for SYSMODs superseded by SYSMODs that were
successfully applied or restored.

Note: The superseded SYSMODs are included to aid in analyzing when a set of
deltas is ready for distribution. When a SYSMOD in ERROR status is noted as
superseded in a subsequent delta, it's error status may be considered resolved.

The format and contents of this record type are shown in Table 49.

Table 49. SYSMOD status record type 0

Field name
Position
(decimal)

Length
(decimal) Description

Record type 1 2 The characters 'P0'.

SYSMOD ID 3 7 The SYSMOD ID.

1 2 3 4 5 6 7 8
----+----0----+----0----+----0----+----0----+----0----+----0----+----0----+----0
L1SBKSBIN HFS /service/usr/lpp/booksrv/cgi-bin/IBM/
L2SBKSBIN PATHHFS OMVS.HFS.BOOKSRV
L2SBKSBIN SYMHFS OMVS.HFS.ROOT.ZOS130

Figure 76. Example of library record type 2

Library change file records

Chapter 8. Library change file records 427

Table 49. SYSMOD status record type 0 (continued)

Field name
Position
(decimal)

Length
(decimal) Description

Status 10 8 The status of the SYSMOD. The following text may appear in
this field. Where the text is less than 8 characters, it is left
justified and padded with blanks.

v APPLIED

v DELETED

v ERROR

v INCMPLT

v RESTORED

v SUPD

The status in this library change record is consistent with the
status of the SYSMOD as reported in the SYSMOD STATUS
REPORT.
Note: SYSMODs identified in the SYSMOD STATUS REPORT
with the following status are not included in the library
change records, because they failed during SYSMOD selection
processing.

v EXCLUDED

v HELD

v NOGO

v NOGO(E)

v NOGO(H)

FMID 18 7 The FMID of the SYSMOD. If the status is SUPD and the
SYSMOD is not in process, this field contains blanks.

Type 25 8 The SYSMOD type. The following text is valid in this field:

v FUNCTION

v PTF

v APAR

v USERMOD

If the status is SUPD and the SYSMOD is not in process, this
field contains blanks.

The SYSMOD Status (P0) records follow the E0 record in the set of library change
records for the command. Figure 77 shows examples of P0 records written for
APPLY processing.

Additionally, fields are added to the header and trailer records to represent the
count of SYSMODs represented in the P0 records with each status.

This information tells you whether any errors are contained in the current delta.
However, just because a delta is error free, it does not mean that it can be

1 2 3 4 5 6 7 8
----+----0----+----0----+----0----+----0----+----0----+----0----+----0----+----0
P0UZ00002ERROR H000001PTF
P0UZ00001APPLIED H000001PTF
P0UZ00000SUPD

Figure 77. Example of SYSMOD status records

Library change file records

428 SMP/E V3R6.0 for z/OS V2R1.0 Reference

distributed without resolving errors in previous deltas. You must perform the task
of error resolution among deltas prior to distribution in order to ensure an error
free package. Refer to “Usage recommendations” on page 432 for usage
information.

S0 - SMP/E environment record type 0
One SMP/E Environment Record Type 0 (S0) is created for each delta produced by
the results of APPLY or RESTORE processing.

The purpose of the S0 record is to identify the SMP/E environment from which
this set of library change records was derived.

The format and contents of this record type are shown in Table 50.

Table 50. SMP/E environment record type 0

Field name
Position
(decimal)

Length
(decimal) Description

Record type 1 2 The characters 'S0'.

Command 3 7 The SMP/E command that was executed. Valid values are
APPLY or RESTORE. The data is left-justified and padded
with blanks.

SMP/E level 10 8 The level of SMP/E under which the APPLY or RESTORE
command was executed. This subfield is in the form
vvrrmmpp, where:

vv version of SMP/E

rr release of SMP/E

mm release of SMP/E

pp PTF level of SMP/E

Data set name 18 44 The data set name of the SMP/E target zone CSI that
contains the target zone operated on by the SMP/E APPLY or
RESTORE function. The data is left-justified and padded with
blanks.

Catalog data set
name

62 44 The catalog data set name of the SMP/E target zone CSI that
contains the target zone operated on by the SMP/E APPLY or
RESTORE function. The data is left-justified and padded with
blanks.

Volume name 106 6 The volume name of the SMP/E target zone CSI that contains
the target zone operated on by the SMP/E APPLY or
RESTORE function.

For example, Figure 78 shows an S0 record for a target zone CSI data set named
SAMPLE.ZOSYS.TARGET.CSI on volume SMPVOL in catalog
CATALOG.MVSICF1.VMVSRES. The SMP/E level is 03.06.00, and the SMP/E
command executed was APPLY.

1 1 1
1 2 3 4 5 6 7 8 9 0 1 2

----+----0----+----0----+----0----+----0----+----0----+----0----+----0----+----0----+----0----+----0----+----0----+----0
S0APPLY 03060000SAMPLE.ZOSYS.TARGET.CSI
CATALOG.MVSICF1.VMVSRES SMPVOL

Figure 78. Example of SMP/E environment record type 0

Library change file records

Chapter 8. Library change file records 429

T0 - Trailer record type 0
One Trailer Record Type 0 (T0) is created for each delta produced by the results of
APPLY or RESTORE processing. The purpose of the T0 record is to uniquely
identify the end of a set of library change records.

The format and contents of this record type are shown in Table 51.

Table 51. Trailer record type 0

Field name
Position
(decimal)

Length
(decimal) Description

Record type 1 2 The characters 'T0'.

Zone name 3 7 The target zone name that was operated on by the APPLY or
RESTORE command. It is left-justified and padded with
blanks.

Time stamp 10 13 The date and time that APPLY or RESTORE processing
completed for the entire delta. This field is in the form
yyyydddhhmmss, where:

yyyy year

ddd day

hh hours

mm minutes

ss seconds

Time is represented in 24-hour clock format (military time).
The time value matches the time value in the T0 record and
is the time that the GIM20501I message is issued for the
associated APPLY or RESTORE command.

ERROR count 23 6 The character representation of the count of SYSMODs
applied or restored in error. The data is padded on the left
with character zeroes (0).

INCMPLT count 29 6 The character representation of the count of SYSMODs left
with a status of INCMPLT by the APPLY or RESTORE. The
data is padded on the left with character zeroes (0).

APPLIED or
RESTORED
count

35 6 The character representation of the count of SYSMODs with a
status of APPLIED or RESTORED. The data is padded on the
left with character zeroes (0).

DELETED count 41 6 The character representation of the count of SYSMODs with a
status of DELETED. The data is padded on the left with
character zeroes (0).

SUPD count 47 6 The character representation of the count of SYSMODs with a
status of SUPD. The data is padded on the left with character
zeroes (0).

For example, Figure 79 on page 431 shows a T0 record for a target zone named
MYTZN. The delta processing for this zone ended on January 16, 2008 at 10:12:34
AM. During this execution of SMP/E, one SYSMOD was applied in error, four
SYSMODs were left incomplete, ten SYSMODs were applied successfully, one
SYSMOD was deleted, and two SYSMODs were superseded.

Library change file records

430 SMP/E V3R6.0 for z/OS V2R1.0 Reference

Valid action types
Action Meaning

ADDREP
The ADDREP action indicates either that a new element or LMOD was
added to a target library during APPLY or RESTORE processing, or that an
existing element or LMOD was replaced in a target library during APPLY
or RESTORE processing

This includes elements added or replaced by way of:
v Data element MCS
v Hierarchical file system element MCS
v Link-edits or copies of load modules:

– ++MOD MCS (add or replace)
v ++MAC MCS
v ++JAR MCS
v ++JARUPD MCS
v ++MACUPD MCS
v ++MOVE MCS for MACs, SRC, and LMODs
v ++PROGRAM MCS
v ++RENAME MCS for load modules
v ++SRC MCS
v ++SRCUPD MCS
v ++ZAP MCS

This also includes aliases added or replaced by way of:
v Data element MCS with ALIAS operand
v Hierarchical file system element MCS with LINK operand
v Link-edits or copies of load modules:

– ++MOD MCS with TALIAS operand
– LMODs defined in JCLIN

v ++JAR or ++JARUPD MCS with LINK operand
v ++MAC MCS with MALIAS operand
v ++MACUPD MCS with MALIAS operand
v ++MOVE MCS for MACs and LMODs
v ++PROGRAM MCS with ALIAS operand
v ++RENAME MCS for load modules

DELETE
The DELETE action indicates that an element or LMOD was deleted from a
target library during APPLY processing.

This includes elements and their aliases deleted by way of:

1 2 3 4 5 6 7 8
----+----0----+----0----+----0----+----0----+----0----+----0----+----0----+----0
T0MYTZN 2008016101234000001000004000010000001000002

Figure 79. Trailer record type 0

Library change file records

Chapter 8. Library change file records 431

v DELETE operand on data element MCS
v DELETE operand on hierarchical file system element MCS
v DELETE operand on ++JAR MCS
v DELETE operand on ++MAC MCS
v DELETE operand on ++PROGRAM MCS
v DELETE operand on ++SRC MCS
v DELETE operand on ++VER MCS
v ++DELETE MCS for load modules

This also includes aliases deleted by way of:
v ALIAS operand on ++DELETE MCS for load modules

Usage recommendations
Users cannot simply look at the records created by the library change interface and
move the identified parts. As is the case whenever SMP/E is executed, each
processed SYSMOD has a specific completion status when the particular APPLY or
RESTORE completes. Therefore, the results of each APPLY or RESTORE must be
looked at collectively. Until a set of SYSMODs has been successfully processed, you
cannot distribute the library change records associated with those SYSMODs.

Therefore, you must first get a successful APPLY CHECK or RESTORE CHECK
before attempting to use the records produced by library change processing for a
specified target zone. Since there are no records produced during CHECK
processing, there are no records to be lost until delta processing is activated.

Once activated, delta processing produces records for an execution of APPLY or
RESTORE. Since all SYSMODs may not successfully complete in one run, the
records from each run against the same set of SYSMODs must be kept.

Once a successful APPLY or RESTORE is obtained, the net result of the processing
must be analyzed by elements, LMODs, or both to determine the appropriate
action to take to distribute the elements and LMODs.

Alternatively, once a successful APPLY or RESTORE is obtained, the net result of
the libraries updated can be analyzed to determine the appropriate action to take
to distribute the libraries affected by the APPLY/RESTORE activity.

Library change file records

432 SMP/E V3R6.0 for z/OS V2R1.0 Reference

Chapter 9. SMP/E exit routines

This chapter describes intended Programming Interfaces that allow the customer to
write programs to obtain the services of IBM SMP/E for z/OS, V3R6.

This chapter describes how to write exit routines that:
v Process statements in SMPPTFIN at RECEIVE time
v Control retry processing when data sets run out of space during ACCEPT,

APPLY, GZONEMERGE, LINK LMODS, LINK MODULE, RECEIVE, or
RESTORE processing.

LINK LMODS,

A common parameter list is used to pass information between SMP/E and the exit
routines. It is pointed to by register 1 and is mapped by macro GIMMPUXP in
SYS1.MACLIB. Table 52 shows the format and contents of the parameter list.

Table 52. GIMMPUXP: exit routine parameter list

Field name Offset
(DEC)

Offset
(HEX)

Length Description

UXPUXNUM + 0 + 0 2 Exit routine number:
X'0001' – RECEIVE
X'0002' – RETRY

+ 2 + 2 2 Not used

UXPUXNAM + 4 + 4 8 Name of exit routine

UXPUXAD +12 + C 4 Address of exit routine

UXPFUNCT +16 +10 8 SMP/E command

UXPPRMAD +24 +18 4 Address of exit routine parameter
list

UXPLOJAD +28 +1C 4 Not used

UXPLOEAD +32 +20 4 Not used

UXPCTBAD +36 +24 4 Reserved for future use

UXPMODAD +40 +28 4 Reserved for future use

The following sections describe the exit routines for RECEIVE and retry processing.

RECEIVE exit routine
The RECEIVE exit routine allows you to scan statements in the SMPPTFIN data set
at RECEIVE time. This exit routine must be defined by a GIMEXITS control
statement in the GIMEXITS member of SMPPARM, which tells SMP/E RECEIVE
processing that an exit routine exists and should be called. Optionally, the
GIMEXITS control statement may also specify the data set containing the exit
routine. This exit routine must be a load module residing in an authorized library.
For more information about specifying exit routines in GIMEXITS, see Chapter 3,
“Defining control statements in SMPPARM members,” on page 127. The RECEIVE
exit routine is loaded at the start of RECEIVE command processing and is deleted
at the end of RECEIVE processing.

© Copyright IBM Corp. 1986, 2014 433

When this exit routine is called, the parameter list contains the values shown in
Table 53 and Table 54.

Table 53. RECEIVE exit routine: parameter list values

Field name Description

UXPUXNUM X'0001' (exit routine number)

UXPUXNAM Name of exit routine

UXPUXAD Address of exit routine

UXPFUNCT RECEIVE

UXPPRMAD Address of 81-byte buffer area (see Table 54)

Table 54. RECEIVE exit routine: buffer passed by UXPPRMAD

Field name Offset
(DEC)

Offset
(HEX)

Length Description

UX001RC + 0 + 0 1 X'00' – Buffer contains record to be
processed

X'04' – End-of-file on SMPPTFIN

UX001RCD + 1 + 1 80 Record from SMPPTFIN

According to the input record, the RECEIVE exit may decide to continue RECEIVE
processing, change the record, insert data after the record, or skip the record. Or, it
may choose to stop processing for the SYSMOD, for the RECEIVE command, or for
SMP/E.

When the exit routine returns control to SMP/E, it must set register 15 to one of
the following values:

Value Meaning
0 Continue normal RECEIVE processing.
8 Stop SYSMOD processing. SMP/E does not receive this SYSMOD, but

continues to pass records from the SYSMOD to the exit routine.
12 Stop RECEIVE processing.
16 Stop SMP/E processing.
20 Insert a record after the current one in the buffer.
24 Skip the record in the buffer area.

If any other value is returned, SMP/E issues an error message and fails.

Changing records within SMPPTFIN
To change the current record within the SMPPTFIN data set, the exit routine must
change the record currently in UX001RCD and set the return code in register 15 to
0 or 20. A return code of 0 indicates to SMP/E that the changed record should be
processed and normal processing should continue. A return code of 20 indicates to
SMP/E that the exit routine inserts records after this changed record. For more
information, see “Inserting records within SMPPTFIN.”

Inserting records within SMPPTFIN
To insert one or more records within the SMPPTFIN data set after the current
record in UX001RCD, the exit routine must set the return code in register 15 to 20.

RECEIVE exit routine

434 SMP/E V3R6.0 for z/OS V2R1.0 Reference

SMP/E first processes the current record in UX001RCD; then it calls the exit
routine again. On this call, the exit routine must place the record to be inserted
into UX001RCD. If more records are to be inserted, the exit routine must set the
return code in register 15 to 20. If this is the last record to be inserted, the exit
routine must set the return code to 0.

When the exit routine passes a return code of 0, SMP/E processes the record in
UX001RCD; then it continues processing with the next record in the SMPPTFIN
data set.

Inserting records at the end of SMPPTFIN
To insert one or more records at the end of the SMPPTFIN data set, the exit routine
must set the return code in register 15 to 20.

SMP/E then calls the exit routine again. On this call, the exit routine must place
the record to be inserted into UX001RCD. If more records are to be inserted, the
exit routine must set the return code in register 15 to 20. If this is the last record to
be inserted, the exit routine must set the return code to 0. SMP/E processes the
inserted records as if they were at the end of the SMPPTFIN data set.

When the exit routine passes a return code of 0, SMP/E processes the record in
UX001RCD; then it continues with normal end-of-file processing.

Note: When you specify the SELECT operand during RECEIVE processing, and all
selected SYSMODs have been processed, SMP/E indicates end-of-file to the exit
routine. If the exit routine passes a return code of 20 at this point, the add request
is ignored, and SMP/E continues with end-of-file processing.

Skipping records in SMPPTFIN
To skip a record in SMPPTFIN, the exit routine must set the return code in register
15 to 24. SMP/E does not process the current record in UX001RCD; instead, it
processes the next record in SMPPTFIN.

Retry exit routine
The retry exit routine enables you to control retry processing when a data set runs
out of space during ACCEPT, APPLY, GZONEMERGE, LINK LMODS, LINK
MODULE, RECEIVE, or RESTORE processing. (In retry processing, the data set is
compressed and the utility that failed is called again.) This exit routine must be
defined by a GIMEXITS control statement in the GIMEXITS member of SMPPARM,
which tells SMP/E retry processing that an exit routine exists and should be called.
Optionally, the GIMEXITS control statement may also specify the data set
containing the exit routine. This exit routine must be a load module residing in an
authorized library. For more information about specifying exit routines in
GIMEXITS, see Chapter 3, “Defining control statements in SMPPARM members,”
on page 127. The retry exit routine is loaded at the start of ACCEPT, APPLY,
GZONEMERGE, LINK LMODS, LINK MODULE, RECEIVE, or RESTORE
command processing and is deleted at the end of command processing.

Note: The processing of this routine is not affected by the debatching SMP/E does
after retry processing fails, because this routine is called as part of the initial retry
processing, before debatching is attempted.

SMPPTFIN

Chapter 9. SMP/E exit routines 435

When a data set runs out of space, an x37 abend occurs. If SMP/E determines that
a retry can be attempted, it cancels the abend dump and calls the retry exit routine.
The parameter list contains these values:

Table 55. Retry exit routine: parameter list values

Field name Description

UXPUXNUM X'0002' (exit routine number)

UXPUXNAM Name of exit routine

UXPUXAD Address of exit routine

UXPFUNCT ACCEPT, APPLY, GZMRG, LINK, RECEIVE, or RESTORE

UXPPRMAD Address of 25-byte parameter list (see Table 56)

Table 56. Retry exit routine: parameter list passed by UXPPRMAD

Field name Offset
(DEC)

Offset
(HEX)

Length Description

UX002DDN + 0 + 0 8 ddname of data set that ran out of
space

UX002PGM + 8 + 8 8 Name of the utility program that
failed

UX002ACH +16 +10 3 ABEND code (hex) in the same
format as field SDWACMPC in the
SDWA control block

UX002RCH +19 +13 1 ABEND reason code (hex)

UX002ACP +20 +14 3 ABEND code (EBCDIC)

UX002RCP +23 +17 2 ABEND reason code (EBCDIC)

According to the input, the retry exit can either cancel retry processing or perform
some other method of recovery.

When the exit routine returns control to SMP/E, it must set register 15 to one of
the following values:

Value Meaning
0 Continue normal retry processing.

12 Stop command processing and perform no retry.
16 Stop SMP/E processing and perform no retry.
20 Perform modified retry processing. Call the failing utility, but do not

compress the failing data set.

If any other value is returned, SMP/E converts it to 12, and command processing
fails.

Retry exit routine

436 SMP/E V3R6.0 for z/OS V2R1.0 Reference

Chapter 10. JCL statements required to invoke SMP/E

Unless you are using the SMP/E dialogs, you must provide the following JCL
statements to invoke SMP/E:
v A JOB statement
v An EXEC statement
v DD (data definition) statements

JOB statement
The JOB statement describes your installation-dependent parameters. The JOB
statement (or the EXEC statement, or both) can also include the REGION
parameter to set the size of the region in which SMP/E runs. For details, see z/OS
MVS JCL User's Guide, SA23-1386 or z/OS MVS JCL Reference, SA23-1385

Note: To enable the SMP/E job step to get the maximum space above 16
megabytes. you can specify REGION=0M.

EXEC statement
The EXEC statement must specify PGM=GIMSMP or the name of your cataloged
procedure for calling SMP/E. (For an example of a cataloged procedure, see SMP/E
for z/OS User's Guide.) The following can be specified in the EXEC statement PARM
parameter:

COMPAT=WARNBYPASS or
COMPAT=NOWARNBYPASS

The COMPAT parameter is used to control incompatible behaviors of SMP/E
processing.

COMPAT(WARNBYPASS)
indicates that the APPLY and ACCEPT commands will issue warning
messages to identify bypassed SYSTEM HOLD exceptions. This is the
behavior for releases of SMP/E prior to V3R5.

COMPAT(NOWARNBYPASS)
indicates that the APPLY and ACCEPT commands will issue
informational messages to identify bypassed SYSTEM HOLD
exceptions. If neither COMPAT(WARNBYPASS) or
COMPAT(NOWARNBYPASS) is specified, the default is
COMPAT(NOWARNBYPASS).

CSI=dsname
where dsname is the name of the CSI data set containing the global zone. (This
data set is also known as the master CSI.) This parameter is used to enable
SMP/E to allocate the master CSI data set dynamically.

Note: If there is an SMPCSI DD statement, the CSI=dsname operand is not
allowed. If both are specified, SMP/E does not run.

DATE=date
where date can be one of the following:

U or IPL
To use the IPL date of the system.

© Copyright IBM Corp. 1986, 2014 437

REPLY
To request the date from the operator. As a result, SMP/E issues
message GIM399I.

yyddd To specify a specific date, where yy is the year and ddd is the day of
the year (the Julian date).

If DATE is not specified, the IPL date of the system is used.

LANGUAGE=xxx
where xxx can be one of the following:

ENU US English

JPN Japanese

The LANGUAGE option defines which language to use for SMP/E messages.

LANGUAGE can also be specified as L. If LANGUAGE is not specified, the
default is LANGUAGE=ENU.

You can specify LANGUAGE=JPN only if you have installed the Japanese
language feature of SMP/E. If you have installed the Japanese language
feature, you can specify LANGUAGE=ENU or LANGUAGE=JPN. (You do not
need to install the English feature along with the Japanese feature.)

The output devices used must support the selected language and English
single-byte characters. SMP/E does not check to verify that the output devices
provide this support.

PROCESS=WAIT or
PROCESS=END

The PROCESS parameter is used to control how long a job should wait if a CSI
or PTS data set is not immediately available because it is currently being used
either by another job or by a dialog.
v WAIT causes the job to wait until the data set is available. A message is

issued to the system operator every 30 minutes while the job is waiting.
v END causes the job to wait for 10 minutes. If the data set is still not

available after the 10-minute wait, the command requiring the data set is
stopped.

If PROCESS is not specified, the default is PROCESS=WAIT.

For more information about obtaining and sharing CSI data sets, see the
“Sharing SMP/E Data Sets” appendix in SMP/E for z/OS Commands.

Processing of the PTS data set is also affected by the WAITFORDSN value
specified in its DDDEF entry. WAITFORDSN determines whether SMP/E
should wait to allocate a data set that is not immediately available. If the
DDDEF entry specifies WAITFORDSN=NO (or lets this value default to NO)
and the data set is not available, allocation of the data set fails, regardless of
the PROCESS value specified on the EXEC statement. If WAITFORDSN=NO,
SMP/E does not wait to retry allocation of the data set.

For example, suppose a PTS with a disposition of OLD is already being used
by a job, and a second job tries to access the same PTS data set by allocating it
through a DDDEF entry. The DDDEF entry used by the second job for the PTS
specifies WAITFORDSN=NO. As a result, allocation of the PTS fails for the
second job.

438 SMP/E V3R6.0 for z/OS V2R1.0 Reference

DD statements
DD statements define the data sets that can be used in SMP/E processing. For
information about the data sets required for each command, see the chapters on
individual SMP/E commands in SMP/E for z/OS Commands.

Note: You can use DDDEF entries, rather than DD statements, to allocate many of
the necessary data sets. For more information, see “DDDEF entry (distribution,
target, and global zone)” on page 194.

Sample cataloged procedure

Chapter 10. JCL statements required to invoke SMP/E 439

Sample cataloged procedure

440 SMP/E V3R6.0 for z/OS V2R1.0 Reference

Chapter 11. Service routines

SMP/E provides these service routines:
v GIMCPTS
v GIMDTS
v GIMGTPKG
v GIMUNZIP
v GIMXSID
v GIMXTRX
v GIMZIP

GIMCPTS: SYSMOD compaction service routine
The GIMCPTS service routine is used to compact or expand inline element data
within SYSMODs. The inline element data can be compacted prior to receiving a
SYSMOD or SYSMODs already received can be compacted.

SYSMODs with their inline element data compacted require less space, so the
space requirements of the SMPPTS data set should be reduced. Of course, SMP/E
APPLY and ACCEPT processing will expand any compacted inline element data
prior to installing the element in a target or distribution library respectively.

GIMCPTS can also be used to expand the inline element data within a SYSMOD.
This could be useful if you need to send the SYSMOD to another system where the
SMP/E installed on the other system cannot handle compacted inline element data.
It could also be useful for viewing inline data. Note that the SMP/E Query Dialogs
can be used to view MCS entries from the SMPPTS data set and that SMP/E
expands the inline element data before displaying it.

Note: GIMCPTS is a separate load module residing in the MIGLIB library that
runs independently from the rest of SMP/E processing.

Calling GIMCPTS
Following are the JCL statements needed to call GIMCPTS:

EXEC

is the statement used to call GIMCPTS. The EXEC statement must specify
PGM=GIMCPTS. The following options may be specified on the EXEC
statement PARM operand:

COMPACT
The COMPACT option indicates to GIMCPTS the input data is to be

//JOBx JOB ...
//STEP1 EXEC PGM=GIMCPTS,PARM=’options’
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD DSN=aaaaaaaa,DISP=SHR
//SYSUT2 DD DSN=bbbbbbbb,DISP=OLD

Figure 80. JCL to call GIMCPTS

© Copyright IBM Corp. 1986, 2014 441

compacted. COMPACT is mutually exclusive with EXPAND. If neither
COMPACT nor EXPAND is specified, the default is COMPACT.

EXPAND
The EXPAND option indicates to GIMCPTS the input data is to be
expanded. EXPAND is mutually exclusive with COMPACT. If neither
EXPAND or COMPACT is specified, the default is COMPACT.

LANGUAGE=xxx
where xxx can be one of the following:

ENU US English

JPN Japanese

The LANGUAGE option defines which language to use for GIMCPTS
messages. LANGUAGE can also be specified as L. If LANGUAGE is not
specified, the default is LANGUAGE=ENU.

SYSPRINT
is used by GIMCPTS for messages.

The record format (RECFM) of SYSPRINT must be FBA, and the record length
(LRECL) may be either 81 or 121. GIMCPTS will format messages to 80
characters or 120 characters in length, based on the record length of the
SYSPRINT data set.

SYSUT1
points to the sequential or partitioned input data. Sequential input data may be
a sequential data set or a single member of a partitioned data set. Partitioned
input data is an entire partitioned data set (PDS) whose members each contain
input data. The actual input data must be the MCS of one or more SYSMODs.
The inline element data within the SYSMODs will be either compacted or
expanded, as determined by the COMPACT and EXPAND options.

The record format (RECFM) of SYSUT1 must be fixed (F), fixed-block (FB), or
fixed-block standard (FBS), and the record length (LRECL) must be 80.

SYSUT2
points to the sequential or partitioned output destination. If the input is
sequential, then SYSUT2 must also be sequential. If the input is partitioned,
then SYSUT2 must also be partitioned. The output will contain the input
SYSMODs with either compacted or expanded inline element data.

The record format (RECFM) of SYSUT2 must be fixed (F), fixed-block (FB), or
fixed-block standard (FBS), the record length (LRECL) must be 80, and the
BLKSIZE value must be a multiple of 80.

IBM recommends that SYSUT2 be allocated the same size as the original
SMPPTS data set. The amount of compaction that can be achieved will vary
depending on the content and packaging method of the SYSMOD in the
originating SMPPTS data set. For example, if the originating SMPPTS data set
contained only functions packaged in RELFILE format, no compaction would
occur.

After GIMCPTS is run, you can release the unused space using ISPF (or other
methods). You could also specify RLSE on the SPACE parameter of the
SYSUT2 data set (if it is being allocated when GIMCPTS is being run) and
z/OS will free unused space when it is closed.

GIMCPTS

442 SMP/E V3R6.0 for z/OS V2R1.0 Reference

Example
Suppose your system has an existing SMPPTS data set that is quite large and
requires the space of an entire physical volume. You can use the SMP/E GIMCPTS
compaction service routine to compact data within the members of the SMPPTS. In
this example, the existing SMPPTS data set is compacted in place. However, a new
data set could be allocated and used to receive the compacted data.

When this is executed, the GIMCPTS service routine will compact the inline
element data within all SYSMOD members in the SMPPTS data set and rewrite
them to the SMPPTS data set.

Note: You should only attempt to compact a partitioned data set in place if it is a
PDSE. If the data set is a simple PDS however, it is likely the data set will get an
out of space condition during the operation, unless a large amount of free space is
available.

Return codes
To help you diagnose errors, GIMCPTS issues messages and return codes. The
messages are documented in SMP/E for z/OS Messages, Codes, and Diagnosis. Here is
a description of the return codes:

Return code Meaning
0 The input data was processed successfully.
8 One of the following:

v Syntax errors were found in an input SYSMOD.

v An unsupported compaction dictionary was used to compact data.

v Compacted data is incomplete.
12 One of the following:

v Data sets were missing.

v Data sets could not be opened.

v Data set organization of SYSUT1 and SYSUT2 is not sequential or
partitioned.

v Data set organizations of SYSUT1 and SYSUT2 did not match.

v SYSUT2 data set had incorrect RECFM or LRECL.

v SYSUT2 and SYSUT1 data sets are the same data set and they are
sequential or members of a PDS.

v Directory space for SYSUT2 was exceeded.

v Compression and expansion services are not supported.
16 One of the following:

v An I/O error occurred.

v Syntax error was found on the EXEC statement parameters.
20 SYSPRINT data set is missing.

> 20 Internal error. Report the error to the IBM Support Center.

//JOBx JOB ...
//COMPACT EXEC PGM=GIMCPTS,PARM=’COMPACT,LANGUAGE=ENU’
//*
//SYSPRINT DD SYSOUT=*
//SYSUT1 DD DSN=SMP.ZOSR1.SMPPTS,DISP=SHR
//SYSUT2 DD DSN=SMP.ZOSR1.SMPPTS,DISP=OLD

Figure 81. Sample GIMCPTS job stream

GIMCPTS

Chapter 11. Service routines 443

GIMDTS: Data transformation service routine
Elements may have any of a variety of record formats, depending on how they are
meant to be used. However, when elements are packaged inline in a SYSMOD,
they must contain fixed-block 80 records. To help you package inline elements,
SMP/E provides the GIMDTS service routine. GIMDTS is a background utility
program that transforms data into fixed-block 80 records. For example, it can be
used to format inline replacements for data elements. Although GIMDTS is
packaged as part of SMP/E, it is a separate load module residing in SYS1.MIGLIB
and runs independently from the rest of SMP/E processing.

The input for GIMDTS must meet these requirements:
v It must be a sequential data set or a member of a partitioned data set (PDS).
v It can contain either variable-length or fixed-length records.

The output from GIMDTS is in this format:
v It is a sequential data set or a member of a partitioned data set.
v It has these attributes:

RECFM=FB
LRECL=80
BLKSIZE=a multiple of 80

After using GIMDTS to transform an element into the required format, you can
package the transformed data inline in a SYSMOD, following the associated data
element MCS. Later, when the element is installed, it is changed back to its original
format.

The following sections describe:
v Statements used to call GIMDTS
v Processing done by GIMDTS
v Return codes issued by GIMDTS

Calling GIMDTS
Here are the JCL statements that are required to call GIMDTS:

EXEC

is the statement used to call GIMDTS.

SYSPRINT
is used by GIMDTS for messages.

SYSUT1
points to the sequential data set or PDS member containing the data to be
transformed.

//JOBx JOB ’account’,’name’,MSGLEVEL=(1,1)
//STEP1 EXEC PGM=GIMDTS
//SYSPRINT DD SYSOUT=A
//SYSUT1 DD DSN=aaaaaaa,DISP=SHR
//SYSUT2 DD DSN=bbbbbbb,DISP=SHR

Figure 82. Sample GIMDTS job stream

GIMDTS

444 SMP/E V3R6.0 for z/OS V2R1.0 Reference

|
|
|

A file in a file system can be copied to a sequential data set to be used as input
to GIMDTS.

Note: A binary file must be copied with the binary option.

The record format (RECFM) must be F, FA, FM, FB, FBA, FBM, V, VA, VM, VB,
VBA, VBM, VS, or VBS.

SYSUT2
points to the sequential data set or PDS member that will contain the
transformed data. This data set must be on DASD.

The record format of this file should be fixed-block (RECFM=FB) with a
BLKSIZE value that is a multiple of 80.

Processing
GIMDTS first checks for the required data sets, opens the SYSUT1 and SYSUT2
data sets, and makes sure these data sets have the correct attributes. If necessary,
GIMDTS changes the RECFM value of the SYSUT2 data set to FB and the BLKSIZE
value to 3200. Next, GIMDTS reads records from the SYSUT1 data set and
transforms the data.

After processing the data, GIMDTS writes the output records to the SYSUT2 data
set. GIMDTS also issues messages to SYSPRINT indicating the input data set, the
output data set, and the return code. If any errors occur during processing,
GIMDTS issues messages describing the errors and stops processing. If an abend
occurs, normal system abend processing is done.

If SYSUT1 is already fixed-block with LRECL=80 and the data has no "++"
characters in columns 1 and 2, then the data needs no transformation and is
simply copied from SYSUT1 to SYSUT2.

Return codes
GIMDTS may issue the following return codes:

Return code Meaning

00 The input data was processed successfully.
04 The SYSUT2 data set was reblocked.
08 The input data was not processed successfully.
16 An I/O error occurred.

GIMGTPKG service routine
The GIMGTPKG service routine is used to get a GIMZIP package from a remote
FTP or HTTP(S) server in a TCP/IP network and store the package on a local
z/OS host. GIMGTPKG performs the functions of the SMP/E RECEIVE
FROMNETWORK TRANSFERONLY command, but does so independently of
SMP/E. It either uses FTP or HTTP(S) to transport the files of a GIMZIP package
from a remote server to a local host, thus it will provide the following capabilities
(which are also available with the RECEIVE FROMNETWORK command):
v Industry standard FTP and HTTP(S) protocols.
v Secure transmission using the capabilities of the z/OS FTP client and Java 2

Technology Edition Version 6 (or higher).
v Ensured integrity of the transported files.

GIMDTS

Chapter 11. Service routines 445

|
|

|

|
|

|

|

|

|
|

GIMGTPKG requires input to define the FTP or HTTP(S) server and package to be
obtained and to control local host processing. GIMGTPKG depends on either the
z/OS FTP client or Java 6 for its transfer operations, and it also depends on either
ICSF or Java 6 to perform SHA-1 hash calculations. For Java 6, SMP/E specifically
requires the IBM 31-bit SDK for z/OS, Java Technology Edition, V6 (5655-R31), or
the IBM 64-bit SDK for z/OS, Java Technology Edition, V6 (5655-R32), or a logical
successor.

GIMGTPKG is an independent load module residing in the MIGLIB library. It has
an addressing mode of 31 (AMODE=31), a residence mode of 24 (RMODE=24),
and requires no special authorization (AC=0). GIMGTPKG runs independently
from the rest of SMP/E processing.

Calling GIMGTPKG
Following are the JCL statements required to call GIMGTPKG.

EXEC

is the statement used to call GIMGTPKG. The EXEC statement must specify
PGM=GIMGTPKG. The following option may be specified on the EXEC
statement PARM operand:

LANGUAGE=xxx

where xxx can be either ENU (US English) or JPN (Japanese). The
LANGUAGE option defines which language to use for GIMGTPKG
messages. LANGUAGE can also be specified as L. If LANGUAGE is not
specified, the default is LANGUAGE=ENU.

SMPOUT

used for GIMGTPKG messages. SMPOUT may be sequential, a member of a
partitioned data set, or a file in the UNIX file system. See “SMPOUT” on page
154 for information about allocating SMPOUT. GIMGTPKG will format
messages to 80 characters in width, regardless of the LRECL for SMPOUT.

SYSPRINT

is used for FTP and HTTP(S) output. SYSPRINT may be sequential, a member
of a partitioned data set, or a file in the UNIX file system. See “SYSPRINT” on
page 167 for information about allocating SYSPRINT. GIMGTPKG will format
output to 80-characters in width, regardless of the LRECL for SYSPRINT.

SMPNTS

//job JOB ...
//step EXEC PGM=GIMGTPKG,PARM=’options’
//SMPOUT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SMPNTS DD PATH=’package_directory’,PATHDISP=KEEP
//SMPCPATH DD PATH=’smpclasses_directory’, PATHDISP=KEEP
//SMPJHOME DD PATH=’javaruntime_directory’, PATHDISP=KEEP
//SMPSRVR DD *

server tag and attributes
/*
//SMPCLNT DD *

client tag and attributes
/*

Figure 83. JCL to call GIMGTPKG

GIMGTPKG

446 SMP/E V3R6.0 for z/OS V2R1.0 Reference

|

|

|

specifies a directory in the UNIX file system where the package to be obtained
is to be stored.

SMPCPATH

specifies a directory in the UNIX file system where the SMP/E Java classes
reside. The SMPCPATH DD statement is optional and only required to
calculate SHA-1 hash values if ICSF is not available.

SMPJHOME

specifies a directory in the UNIX file system where the Java runtime resides.
The SMPJHOME DD statement is optional and only required to calculate
SHA-1 hash values if ICSF is not available.

SMPSRVR

provides the necessary information about either the FTP or HTTP(S) server
from which a package is to be obtained and about the package itself. This
package and server information is specified with the <SERVER> tag. For
information about using the <SERVER> tag, see SMP/E for z/OS Commands.
SMPSRVR may be sequential, a member of a partitioned data set, or a file in
the UNIX file system. See “SMPSRVR” on page 160 for information about
allocating SMPSRVR.

SMPCLNT

provides information about the local FTP or HTTP(S) client host, such as choice
of download method (FTP or HTTP(S)), and information about local firewall
navigation. The local client host information is specified with the <CLIENT>
tag. For information about using the <CLIENT> tag, see SMP/E for z/OS
Commands.
SMPCLNT is an optional DD statement. SMPCLNT may be sequential, a
member of a partitioned data set, or a file in the UNIX file system. See
“SMPCLNT” on page 142 for information about allocating SMPCLNT.

Example of using GIMGTPKG

//job JOB ...
//step EXEC PGM=GIMGTPKG
//SMPOUT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SMPNTS DD PATH=’/u/usr01/pkgs/’,PATHDISP=KEEP
//SMPCPATH DD PATH=’/usr/lpp/smp/classes/’,PATHDISP=KEEP
//SMPJHOME DD PATH=’/usr/lpp/java/J6.0/’,PATHDISP=KEEP
//SMPSRVR DD *
<SERVER host="host.sample.com"

user="usr01"
pw="n0peekng">

<PACKAGE file="CBPROC/O12345/RIMTAPE/GIMPAF.XML"
hash="1234567890123456789012345678901234567890"
id="O12345">

</PACKAGE>
</SERVER>
/*
//SMPCLNT DD *
<CLIENT retry="3">
</CLIENT>
/*

Figure 84. GIMGTPKG example

GIMGTPKG

Chapter 11. Service routines 447

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|

|
|

In this example, a GIMZIP package residing on the host.sample.com FTP server is
transferred onto the local z/OS host and stored in the /u/usr01/pkgs/ directory.
The <SERVER> tag and attributes in the SMPSRVR data set describe the FTP
server and the package to be obtained. The <CLIENT> tag and attributes in the
optional SMPCLNT data set indicate FTP operations should be retried a maximum
of three times if necessary in order to obtain full and accurate package files.

GIMGTPKG processing
GIMGTPKG checks the required and optional DD statements that were specified,
opens the data sets, and ensures they have the correct attributes.

The remainder of GIMGTPKG processing is much like that for the RECEIVE
FROMNETWORK command with TRANSFERONLY (see the RECEIVE Command
chapter in SMP/E for z/OS Commands). Briefly, this processing includes the
following activities:
v The SMPSRVR and SMPCLNT data sets are read and analyzed. For comparison

to the RECEIVE FROMNETWORK command, SMPSRVR is analogous to the
SERVER data set and SMPCLNT is analogous to the CLIENT data set.

v The package directory is a specific subdirectory of the SMPNTS directory and is
the destination on the local host for the GIMZIP package files to be stored. The
name of this subdirectory is the package-id value from the SMPSRVR data set. If
the package directory does not already exist, then it is created.

v Each of the files in the GIMZIP package on the FTP or HTTP(S) server are
retrieved and stored in the package directory created in the previous step. Each
file is verified by computing an SHA-1 hash value for the file.

v After all files have been transferred successfully, then, if any archive files in the
package have been segmented, the segments are combined to create complete
archive files.

Return codes
GIMGTPKG may complete with any of the following return codes.

Return code
Meaning

00 GIMGTPKG processing completed successfully.

12 One of the following:
v Required data sets were missing or could not be opened.
v Required modules could not be loaded.
v Syntax error was found in the SMPSRVR or SMPCLNT tags.
v An FTP or HTTP(S) error was detected.
v Neither ICSF or Java 2 Version 1 Release 4 is available.

16 One of the following:
v An I/O error occurred.
v Syntax error was found on the EXEC statement parameters.

20 The SMPOUT data set is missing.

GIMGTPKG

448 SMP/E V3R6.0 for z/OS V2R1.0 Reference

|

|

GIMUNZIP file extraction service routine
The GIMUNZIP service routine is used to extract data sets, files, and directories
from archive files in GIMZIP packages created by the GIMZIP service routine.
These packages typically contain software and associated materials in the form of
SYSMODs, RELFILE data sets, HOLDDATA, and other materials such as
documentation, samples, and text files. These GIMZIP packages may be
transported through a network, processed by the GIMUNZIP service routine, and
then processed by the SMP/E RECEIVE command.

More specifically, the GIMUNZIP service routine extracts data sets, files, and
directories from the archive files that compose the GIMZIP package. An archive file
consists of a portable image of a sequential, partitioned, or VSAM data set, or a file
or directory in a UNIX file system, and the information needed to create that data
set, file, or directory from the portable image. The data set, file, or directory into
which the archive file is to be extracted can already exist or GIMUNZIP can create
a new one of the appropriate type. New sequential and partitioned data sets
created by GIMUNZIP are always catalogued.

Note:

1. GIMUNZIP is a separate load module residing in the MIGLIB library and runs
independently from the rest of SMP/E processing.

2. GIMUNZIP optionally requires either the Integrated Cryptographic Services
Facility (ICSF) One-Way Hash Generate callable service or Java Version 1
Release 4 to be available for its use in order to compute an SHA-1 hash value.

Calling GIMUNZIP
The following figure shows the job control statements for GIMUNZIP:

EXEC

is the statement used to call GIMUNZIP. The EXEC statement must specify
PGM=GIMUNZIP. The following options may be specified on the EXEC
statement PARM operand:

LANGUAGE=xxx

where xxx can be one of the following:

ENU US English

JPN Japanese

//JOBx JOB ...
//STEP1 EXEC PGM=GIMUNZIP,PARM=’options’
//SMPDIR DD PATH=’package_directory’,PATHDISP=KEEP
//SMPWKDIR DD PATH=’work_directory’,PATHDISP=KEEP
//SMPCPATH DD PATH=’smpclasses_directory’,PATHDISP=KEEP
//SMPJHOME DD PATH=’javaruntime_directory’,PATHDISP=KEEP
//SMPOUT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSUT3 DD UNIT=SYSALLDA,SPACE=(CYL,(50,10))
//SYSUT4 DD UNIT=SYSALLDA,SPACE=(CYL,(25,5))
//SYSIN DD *

package control statements
/*

Figure 85. JCL to call GIMUNZIP

GIMUNZIP

Chapter 11. Service routines 449

The LANGUAGE option defines the language to use for GIMUNZIP
messages. LANGUAGE can also be specified as L. If LANGUAGE is not
specified, the default is LANGUAGE=ENU.

HASH=xxx

where xxx can be one of the following:

YES indicates GIMUNZIP is to perform SHA-1 hash checking for the
archive files specified in the SYSIN data set.

Note: GIMUNZIP requires either the Integrated Cryptographic
Services Facility (ICSF) One-Way Hash Generate callable service or
Java 2 Version 1 Release 4 to be available in order to compute an
SHA-1 hash value.

NO indicates GIMUNZIP is not to perform SHA-1 hash checking for
the archive files specified in the SYSIN data set.

HASH can also be specified as H. If HASH is not specified, the default is
HASH=NO.

SYSIN

specifies a control data set that contains the package control tags to control
GIMUNZIP processing (see “GIMUNZIP package control tags” on page 451).
The control data set may be a sequential data set or a single member of a
partitioned data set, and its attributes must be LRECL=80 and RECFM=F or
FB.

SMPDIR

specifies a directory in a UNIX file system that contains a GIMZIP package.
This directory is referred to as the package directory.

SMPWKDIR

specifies a directory in a UNIX file system that is used by GIMUNZIP for
temporary work files. This is an optional DD statement. If the SMPWKDIR DD
statement is not provided, GIMUNZIP will use the package directory specified
on the SMPDIR DD statement for temporary work files.

SMPCPATH

specifies a directory in the UNIX file system where the SMP/E Java classes
reside. The SMPCPATH DD statement is optional and only required to
calculate SHA-1 hash values if ICSF is not available.

SMPJHOME

specifies a directory in the UNIX file system where the Java runtime resides.
The SMPJHOME DD statement is optional and only required to calculate
SHA-1 hash values if ICSF is not available.

SMPOUT

specifies an output data set that will contain SMP/E messages issued during
GIMUNZIP processing. The data set attributes are LRECL=81 or LRECL=121
and RECFM=FBA.

SYSUT3 and SYSUT4

specifies work areas for the IEBCOPY utility to use for spill data sets on
DASD.

GIMUNZIP

450 SMP/E V3R6.0 for z/OS V2R1.0 Reference

SYSPRINT

specifies a data set to contain output and messages from the utilities called by
GIMUNZIP.

GIMUNZIP package control tags
GIMUNZIP service routine processing is controlled by package control tags. The
package control tags identify the archive files to be extracted by GIMUNZIP and
are specified in the SYSIN data set. The package control tags follow XML syntax
rules and their format is as follows:

GIMUNZIP package control tags

�� ��

GIMUNZIP:

<GIMUNZIP> � ARCHDEF </GIMUNZIP>

ARCHDEF:

<ARCHDEF name="archive name"
archid= " archive id " volume=" data set volume "

*

�

�
newname="data set name"
prefix="data set prefix"

no
replace= yes

no
preserveid= yes

> �

� </ARCHDEF>

<GIMUNZIP> Tag syntax
The <GIMUNZIP> and corresponding </GIMUNZIP> tags identify the beginning
and end of a set of archive retrieval requests.

<ARCHDEF> Tag syntax
The <ARCHDEF> and corresponding </ARCHDEF> tags identify the beginning
and end of a specific archive retrieval request. The following attributes may be
found on the <ARCHDEF> tag:

name="archive name"

specifies the path name for an archive file to be extracted by GIMUNZIP. The
path name may include a subdirectory name (provided by the subdir attribute
when the archive was created by GIMZIP). The path name value is a relative
value and it is relative to the package directory specified on the SMPDIR DD
statement. The name attribute is mutually exclusive with the archid attribute.

Note: If the archive file has been segmented in the package, you should
specify the name of the archive file, not the names of the archive segment files.
GIMUNZIP will combine the associated archive segment files to extract the
complete archive.

archid="archive id"

GIMUNZIP

Chapter 11. Service routines 451

specifies a unique archive id associated with an archive file to be extracted by
GIMUNZIP. GIMUNZIP will search the package attribute file looking for the
archive file with this unique archid. The archid attribute is mutually exclusive
with the archive name attribute.

volume="data set volume | *"

specifies the volume serial number of the volume on which GIMUNZIP is to
request the allocation of the data set to be extracted from the archive file. The
volume identifier must be from 1 to 6 alphanumeric characters or an asterisk
(*).

Note:

1. If you are extracting a sequential, partitioned, or VSAM data set into an
existing cataloged data set, you should not specify the volume attribute.

2. If you are extracting a sequential or partitioned data set:
v Into a new data set to be allocated on a specific volume, or into an

existing, uncataloged data set on a specific volume, you must specify
volume=data set volume. If you specify volume=* it is ignored.

v Into an existing, uncataloged data set on a specific volume, you must
specify volume=data set volume. If you specify volume=* it is ignored.

The data set is first allocated with a disposition of (OLD,KEEP) using the
specified volume. If the data set is not on the volume, the data set is
allocated again with a disposition of (OLD,KEEP) without specifying a
volume, to see if there is an existing cataloged data set that should be used
for the extraction. If an existing cataloged data set is allocated, the archive
is extracted into the cataloged data set, even though the volume on which
it is allocated is different from the volume specified.

3. If you are extracting a VSAM data set:
v Into a new data set, you can specify volume=data set volume,

Or,
You can specify volume=*. GIMUNZIP uses the value on the VOLUMES
parameter on the IDCAMS DEFINE command that GIMUNZIP will
generate to create the new VSAM data set. Using the VOLUMES(*)
parameter on the generated IDCAMS DEFINE command may allow SMS
to assign a volume for the new VSAM data set if the automatic class
selection (ACS) routines allow it.

v Into an existing destination data set, a data set volume you specify on
the volume attribute is ignored.
Since VSAM data sets must be cataloged, the catalog is checked first to
see if the VSAM destination data set already exists.

4. If you specify volume=data set volume, GIMUNZIP will use the specified
volume to dynamically allocate work space to the SYSUT1 ddname during
the processing of the archive. If you do not specify the volume attribute or
you specify volume=*, then you must make available at least one volume
of mounted storage or the allocation to the SYSUT1 ddname will fail.

5. If you are extracting a UNIX file or directory, you do not need to specify
the volume attribute. It is ignored. However, if you specify a volume
attribute, it must be syntactically correct.

newname="name"

specifies the data set name or absolute pathname to use for the data set or file
to be extracted from the archive file. This name replaces the original name of
the data set or file that is recorded in the archive's file attribute file.

GIMUNZIP

452 SMP/E V3R6.0 for z/OS V2R1.0 Reference

The newname specified must identify the same type of data as the file being
unzipped. That is, if the file being unzipped is a data set, newname must
represent a data set. If the file being unzipped is a file or directory in the UNIX
file system, newname must represent a file or directory in the UNIX file
system.
The first character of an absolute pathname of a file or directory in the UNIX
file system must be a slash (/). If the newname value does not begin with a
slash, GIMUNZIP processing will assume that it is an MVS data set name and
that it will conform to the MVS data set naming conventions. If the newname
value does begin with a slash, it is assumed to be a file or directory in the
UNIX file system. When a file or directory in the UNIX file system is specified,
the newname value can be from 1 to 1023 bytes long with 255 characters
between delimiters (/). The value can be any character from X'40' through
X'FE', except less than (<) and greater than (>) signs, ampersands (&), and
double quotation marks ("). All data beyond column 72 is ignored, including
blanks. The pathname of a file or directory in the UNIX file system is case
sensitive and will not be converted to uppercase alphabetic during processing
of the GIMUNZIP package control tags.
The newname specified may identify an existing data set, directory, or file. In
this case, the archived file is unzipped into the existing data structure specified
on the newname attribute. If the newname attribute is not specified for a file
or directory in the UNIX file system, the original name for the file or directory
is used. If neither the prefix nor the newname attributes are specified when a
data set is being extracted, the original name for the data set is used.

prefix="data set prefix"

specifies a data set prefix to use for the data set to be extracted from the
archive file. This prefix replaces the high-level qualifier of the original name for
the data set as recorded in the archive's file attribute file. The specified data set
prefix can be up to 26 characters long and must conform to standard data set
naming conventions.
The resolved name using the prefix attribute may be for an existing data set.
In this case, the archived data is extracted into the existing data set specified
using the prefix attribute.
A prefix value has no meaning when the file being unzipped is a file or
directory in the UNIX file system. In this case, the prefix value is parsed but
ignored.
If neither the prefix nor the newname attributes are specified, the original
name for the data set is used.

replace="YES | NO"

indicates whether data in an existing data set, file or directory should be
replaced by data from the archive file. A value of YES indicates the data in the
existing data set, file or directory should be replaced. A value of NO is
equivalent to not specifying the replace attribute and indicates the data should
not be replaced. The replace attribute is not meaningful when the data set, file
or directory does not already exist.
v For an archive of a partitioned data set or directory in the UNIX file system,

replace="YES" indicates that existing members in a partitioned data set and
files in a directory will be replaced by members or files with the same name
from the archive file. If replace="NO" is specified, or if the replace attribute
is not specified at all, existing members and files will not be replaced.

v For an archive of a sequential data set or a file in the UNIX file system,
replace="YES" indicates the existing data set or file and its attributes will be
replaced with the data from the archive file. If replace="NO" is specified, or

GIMUNZIP

Chapter 11. Service routines 453

if the replace attribute is not specified at all, the existing sequential data set
or file will not be replaced with the data from the archive file.

Note: GIMUNZIP will not check if a sequential data set or file is empty. If
the data set or file exists, it will not be replaced unless replace="YES" is
specified.

v For a VSAM data set (cluster), replace="YES" indicates that an existing
VSAM cluster should be populated with the data from the archive file. If
replace="NO" is specified, or if the replace attribute is not specified at all,
there will be no attempt to populate the existing VSAM cluster with the data
from the archive.

Note:

1. The existing VSAM cluster must be of the same type as the archived
cluster (ESDS, KSDS, LDS, or RRDS).

2. The existing VSAM cluster must have characteristics that are compatible
with the archived cluster (such as, record size, key size, and key offset).
GIMUNZIP does not verify the compatibility of these characteristics.

3. To replace the contents of an existing cluster, the cluster is altered to a
reusable state by using an IDCAMS ALTER command, if necessary,
before the data from the VSAM archive is copied into the cluster by
using an IDCAMS REPRO command. The REPRO command will use
both the REPLACE and REUSE operands. Following the REPRO
operation, the cluster is altered back to a nonreusable state if that was its
state to begin with.

preserveid="YES | NO"

indicates whether the UID and GID of the extracted file or directory should:
v Remain as defined when the archive was created, or
v Inherit the UID and GID of the userid performing the extract operation

(GIMUNZIP).

A value of YES indicates that the UID and GID from when the archive was
created will be preserved. A value of NO is equivalent to not specifying the
preserveid attribute and indicates that the UID and GID should be inherited
from the userid performing the extract operation (GIMUNZIP).

Note:

1. Preserving the UID and GID defined when the archive was created may
cause GIMUNZIP to fail if the installer does not have the proper
permissions.

2. The preserveid attribute applies only when extracting a UNIX file or
directory from an archive. When extracting a data set, preserveid is parsed
for syntax but otherwise ignored.

Syntax notes
1. GIMUNZIP ignores columns 73 through 80. If data is specified beyond column

72, GIMUNZIP ignores it, which may lead to the diagnosis of an error in a
following tag.

2. Package control tags may contain comments. Comments start with <!-- (hex
4C5A6060) and end with --> (hex 60606E). The first --> encountered after the
initial <!-- will end the comment. A comment may appear between a start-tag
and its matching end-tag, but never within a tag.

GIMUNZIP

454 SMP/E V3R6.0 for z/OS V2R1.0 Reference

Example of using GIMUNZIP
Suppose a GIMZIP package contains a set of archive files and you want to extract
the data sets and files from those archive files. In addition, you want to verify the
integrity of the archive files and rename the destination data sets and files in the
process. The following job stream can be used to perform such an operation.

Note: Blank lines and spaces have been added to the package control tags for
clarity, but are not required.

GIMUNZIP processing
The GIMUNZIP service routine extracts data sets and files from the archive files
that compose the GIMZIP package. An archive file consists of a portable image of a
data set or file and the information needed to reload the data from the portable
image (see “Archive files” on page 486 for details on archive file contents and
construction).

GIMUNZIP uses the UNIX System Services pax command to expand the following
component files from an archive file temporarily into a UNIX file system:
1. the portable image of the original data set or file, and

//JOBx JOB ...
//STEP1 EXEC PGM=GIMUNZIP,PARM="HASH=YES"
//SMPDIR DD PATH=’/u/smpe/ORDER123/’,PATHDISP=KEEP
//SMPCPATH DD PATH=’/usr/lpp/smp/classes/’,PATHDISP=KEEP
//SMPJHOME DD PATH=’/usr/lpp/java/J6.0/’,PATHDISP=KEEP
//SMPOUT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSUT3 DD UNIT=SYSALLDA,SPACE=(CYL,(50,10))
//SYSUT4 DD UNIT=SYSALLDA,SPACE=(CYL,(25,5))
//SYSIN DD *
<GIMUNZIP>

<ARCHDEF archid="SMPMCS"
replace="YES"
preserveid="YES"
newname="/userid/IBM/DO000029/SMPMCS">

</ARCHDEF>

<ARCHDEF archid="FMID001.F1"
newname="userid.IBM.FMID001.F1">

</ARCHDEF>

<ARCHDEF archid="FMID002.F2"
newname="userid.IBM.FMID002.F2">

</ARCHDEF>

<ARCHDEF archid="GLOBAL"
prefix="userid.IBM">

</ARCHDEF>

<ARCHDEF name="S0006.2003030335435443234.pax.Z"
replace="YES"
newname="/userid/IBM/DO000029/RootHFS/">

</ARCHDEF>

</GIMUNZIP>
/*

Figure 86. GIMUNZIP example

GIMUNZIP

Chapter 11. Service routines 455

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

2. the file attribute file that contains the information necessary to reload the data
from the archived data set or file.

GIMUNZIP then reads the file attribute file and uses the information recorded
there, along with information specified on the <ARCHDEF> tag, such as volume,
newname, or prefix, to allocate a new or existing data set or file. The portable
image of the original data set or file is stored in the data set or file just allocated
for that purpose.

When GIMUNZIP encounters a package that contains archive segments,
GIMUNZIP reassembles the archive segments into the original archive form,
optionally verifies the integrity of the archive, and recreates the original data.

If the HASH=YES option was specified, then GIMUNZIP performs SHA-1 hash
checking for the archive files. Specifically, GIMUNZIP reads the package attribute
file for the package. The package attribute file, GIMPAF.XML, is found in the
package directory, and contains the known hash values for the archives. These
hash values were recorded by GIMZIP when the package and archives were
created. GIMUNZIP then uses either ICSF services or Java 2 programs to compute
the current hash values for the archive files, and compares this value to the known
hash values for the archive files.

If the computed hash value matches the known hash value, then the integrity of
the archive file is ensured. However, if the computed hash value does not match
the known hash value, GIMUNZIP processing stops. This condition indicates that
the archive file was corrupted after it was produced by GIMZIP when the package
was created.

Determining the required size of SMPWKDIR
SMPWKDIR is a directory in the UNIX file system used by GIMUNZIP for storing
temporary work files. If this working directory is not identified by an SMPWKDIR
DD statement, GIMUNZIP will use the package directory specified on the SMPDIR
DD statement for storing temporary work files. In either case, the required size for
the working directory varies depending on the type of information contained
within an archive, and whether or not the archive is segmented. If an archive file is
segmented, the file name of each segment will have a file type that identifies the
segment position and the number of segments that make up the archive. For
example, if an archive file is split into three segments, the segment files will have
file types of 1of3, 2of3 and 3of3 in the package directory. Additionally, in the
Package Attribute File, each segment will be identified by an <ARCHSEG> tag and
matching </ARCHSEG> end tag. The required working directory size can be
calculated as the maximum of the following:
v the archive size for the largest segmented UNIX file system data set archive.

That is, the sum of the size of all the segments. All the segments are copied from
SMPDIR into the working directory to create a complete archive file. Using the
z/OS UNIX pax command, the archive is expanded into its end point location.

v twice the original data set size for the largest segmented PDSE, VSAM or
sequential data set archive. All the segments are copied from SMPDIR into the
working directory to create a complete archive file. Using the z/OS UNIX pax
command, the archive is expanded into a file in the working directory. The end
point data set is then loaded from the contents of the expanded file.

v the original data set size for the largest unsegmented PDSE, VSAM or sequential
data set archive. Using the z/OS UNIX pax command, the archive in SMPDIR is
expanded into a file in the working directory. The end point data set is then
loaded from the contents of the expanded file.

GIMUNZIP

456 SMP/E V3R6.0 for z/OS V2R1.0 Reference

Sample RECEIVE job for GIMUNZIP output
After GIMUNZIP has been run, the SMP/E RECEIVE command can be used to
process the data sets and files extracted by GIMUNZIP. Here is a sample RECEIVE
job that would process the SMPMCS and RELFILE data sets and files extracted by
GIMUNZIP in the sample in Figure 2:

Return codes
GIMUNZIP may end with the following return codes:

Return code
Meaning

00 The input data was processed successfully.

04 A call to a system service may not have completed successfully.

12 One of the following:
v Required file attributes could not be obtained.
v Input files were not sequential, partitioned, or VSAM data sets, or files

and directories in the UNIX file system
v Call to a required system service failed.
v Syntax errors in the SYSIN data set.
v Data sets could not be opened.
v SMPDIR was not allocated to a UNIX directory.
v Data sets, files, or directories were missing.
v Required modules could not be loaded.
v Existing data set, file, or directory is not compatible.
v Existing data set, file, or directory could not be replaced.

16 One of the following:
v An I/O error occurred.
v A syntax error was found on the EXEC statement parameters.

20 SMPOUT data set is missing.

> 20 Internal error. Report the error to the IBM Support Center.

GIMXSID software inventory data service routine
GIMXSID is an SMP/E service routine to be used as part of the ShopzSeries
offering. GIMXSID creates a single data source required by ShopzSeries to place
customized software product and service orders. The data source created by
GIMXSID, the software inventory data, is a composite of three kinds of information
as follows:

//JOBx JOB ...
//STEP1 EXEC PGM=GIMSMP
//SMPCSI DD DSN=SMPE.GLOBAL.CSI,DISP=SHR
//SMPPTFIN DD DSN=USERID.FMID001.SMPMCS,DISP=SHR
//SMPCNTL DD *

SET BDY(GLOBAL).
RECEIVE SYSMODS

RFPREFIX(USERID).
/*

Figure 87. Sample RECEIVE job for GIMUNZIP

GIMUNZIP

Chapter 11. Service routines 457

Feature list
a list of FEATUREs found in the SMPCSI data sets. The Feature List is used by
ShopzSeries to perform product requisite checking and also to prime the order
checklist when ordering a ServerPac.

FMID list
a list of the FMIDs found in the SMPCSI data sets. The FMID List is used by
ShopzSeries to scope service orders to the PTFs applicable solely to the user's
desired configuration of target and global zones.

PTF bitmap
a bitmap representation of the PTFs found in the specified target zones and
global zones. The PTF Bitmap is used by ShopzSeries to produce service
packages that do not contain PTFs that are already present in the user's
configuration.

GIMXSID is an independent load module residing in the MIGLIB library. It has an
addressing mode of 31 (AMODE=31), a residence mode of 24 (RMODE=24), and is
not authorized (AC=0). GIMXSID runs independently from the rest of SMP/E
processing.

Calling GIMXSID
The JCL statements needed to call GIMXSID are:

EXEC

is the statement used to call GIMXSID. The EXEC statement must specify
PGM=GIMXSID. The following options may be specified on the EXEC
statement PARM operand:

LANGUAGE=ENU | JPN

The LANGUAGE option defines which language to use for GIMXSID
messages. ENU is for US English, and JPN is for Japanese. LANGUAGE
can also be specified as L. If LANGUAGE is not specified, the default is
LANGUAGE=ENU.

WAIT=minutesMIN

where minutes is a decimal number between 0 and 9999. The WAIT option
is used to control how long GIMXSID should wait if an SMPCSI data set is
unavailable because it is in use by another SMP/E task.
WAIT=minutesMIN causes GIMXSID to wait for a data set for the specified
number of minutes. If a data set is still not available after the specified
number of minutes, then GIMXSID stops. If WAIT is not specified, the
default is WAIT=60MIN.
WAIT may be specified as WAIT=minutesMIN or WAIT=minutes. The MIN
keyword is optional.

//job JOB ...
//step EXEC PGM=GIMXSID,PARM=’options’
//SMPOUT DD SYSOUT=*
//SMPXTOUT DD DSN=output.dataset,DISP=(NEW,CATLG),
// SPACE=(TRK,(1,1)),UNIT=SYSALLDA
//SYSIN DD *
input control statements
/*

Figure 88. JCL to call GIMXSID

GIMXSID

458 SMP/E V3R6.0 for z/OS V2R1.0 Reference

SMPOUT

used for GIMXSID messages. The RECFM must be FBA and the LRECL must
be 81 or 121. GIMXSID formats messages to 80 characters in length, regardless
of the LRECL for SMPOUT.

SMPXTOUT

the output specification for the software inventory data collected by GIMXSID.
The output can be a sequential data set, a member of a partitioned data set, or
a file in a UNIX file system. If a data set, the RECFM must be FB and the
LRECL must be 12560. If a file in a UNIX file system, then
FILEDATA=BINARY and PATHOPTS(OWRONLY) must be specified on the
DD statement.

SYSIN

specifies an input data set that contains the GIMXSID control statements. The
input data set may be sequential, or a member of a partitioned data set. The
RECFM must be F or FB and the LRECL must be 80.

GIMXSID control statements
Following are the control statements used to direct the processing for GIMXSID.
These control statements are specified in the SYSIN data set.

CSI=dsname
indicates the data set name for an SMPCSI data set containing a global zone.
This is a required control statement. There can be multiple CSI statements to
identify multiple SMPCSI data sets and global zones to be processed.

dsname can be up to 44 characters long and must conform to standard data set
naming conventions

TARGET=zone, zone, ...
indicates the target zones controlled by the global zone identified on the
preceding CSI statement that are to be processed. There can be multiple
instances of the TARGET statement to allow many target zones to be specified.
The zone values can be from 1 to 7 characters and must be separated by a
comma and zero or more blank characters, or, one or more blank characters.

This is an optional control statement. If a TARGET statement is not specified
following a CSI control statement, all target zones controlled by the global
zone identified on the preceding CSI statement are processed.

Syntax notes
1. Control statements must each start on a new line.
2. Control statements can begin in any column of a line.
3. Control statements must end on the same line on which they begin (control

statements cannot span records).
4. SMP/E ignores columns 73 through 80 of lines in the SYSIN data set.

GIMXSID

Chapter 11. Service routines 459

Example of using GIMXSID

In this example, the ZOS14 and JES314 target zones are processed from the global
zone in the SMPE.ZOS.GLOBAL.CSI data set. In addition, all target zones from the
global zone in the SMPE.DB2.GLOBAL.CSI data set are processed.

Processing
There are several phases of GIMXSID processing.

Initialization
GIMXSID first verifies that the SMPOUT data set, which is used for messages, is
available. If SMPOUT is not allocated or cannot be opened, there is nowhere to
write a message. Therefore, GIMXSID terminates with a return code of 20.

GIMXSID then checks for the required data sets, opens these data sets, and ensures
they have the correct attributes.

Read and verify control statements
After the required data sets have been verified, GIMXSID reads the input control
statements from the SYSIN data set. The CSI control statement is a required control
statement and must precede any TARGET control statements. For each data set
specified on a CSI control statement, GIMXSID ensures that the data set exists.

Verifying the target zones
For each SMPCSI data set specified on a CSI control statement, a list of target
zones may be specified on one or more TARGET control statements. If target zones
are specified, GIMXSID ensures that the specified zones exist and are in fact target
zones.

Accessing resources
When reading SMPCSI data sets, it is possible one or more data sets are
unavailable for use by GIMXSID because the data sets are being used by another
SMP/E task. If so, GIMXSID waits for the data sets to become available based on
the value of the WAIT option (see “Calling GIMXSID” on page 458).

If a global zone data set or a target zone data set is not available, then GIMXSID
will wait until the data set is available, or until the number of minutes specified on
the WAIT option have elapsed (or 60 minutes by default). During the WAIT time,
GIMXSID attempts to read the data set every 30 seconds, just in case it becomes
available. If the specified number of minutes elapses and one or more of the data
sets are still not available, processing stops.

//job JOB ...
//BITMAP EXEC PGM=GIMXSID
//SMPOUT DD SYSOUT=*
//SMPXTOUT DD DSN=userid.GIMXSID.OUTPUT,DISP=(NEW,CATLG),
// SPACE=(TRK,(1,1)),UNIT=SYSALLDA
//SYSIN DD *
CSI=SMPE.ZOS.GLOBAL.CSI
TARGET=ZOS14, JES314
CSI=SMPE.DB2.GLOBAL.CSI
/*

Figure 89. GIMXSID example

GIMXSID

460 SMP/E V3R6.0 for z/OS V2R1.0 Reference

If WAIT=0MIN was specified, GIMXSID does not wait for SMPCSI data sets to
become available. The initial attempt is made to access the data sets, and if they
are not available, GIMXSID does not wait or make additional access attempts.

The number of minutes specified on the WAIT option (or defaulted) is the total
time GIMXSID waits for all data sets. For example, if WAIT=60MIN was specified
and the first SMPCSI data set causes a wait of 40 minutes, GIMXSID waits only a
maximum of 20 additional minutes for all subsequent SMPCSI data sets.

Building the GIMXSID record
To identify itself as the creator of the software inventory data, GIMXSID creates a
GIMXSID record and writes it to the output data set. This GIMXSID record is the
first record in the output data set, but will be written only if there is software
inventory data to produce (that is, if there are other records to be written). This
GIMXSID record provides the name and service level of the program that
produced the software inventory data, as well as the date and time it was
produced. Table 57 shows the format of the GIMXSID record.

Table 57. GIMXSID record format

Field Length Description

Header 60 The value is GIMXSID padded to the right with blanks, to
indicate the record type, and to identify the name of the
program used to create the software inventory data.

Version 2 Two-character representation of the version level of GIMXSID.

Release 2 Two-character representation of the release level of GIMXSID.

Modification 2 Two-character representation of the modification level of
GIMXSID.

PTF 3 Two-character representation of the PTF level of GIMXSID,
padded to the right with a blank.

Date 9 The date the software inventory data was created, padded to
the right with a blank. The date value is of the form mm/dd/yy.

Time 8 The time the software inventory data was created. The time
value is of the form hh:mm:ss.

Reserved 12474 Reserved field, padded with blanks.

Building the feature list
The Feature List segment of the software inventory data contains the combined
Feature information from all specified SMPCSI data sets. For each SMPCSI data set
specified on a CSI control statement:
v If target zones were specified on one or more TARGET control statements for an

SMPCSI data set, then the Feature List for that SMPCSI contains all FEATURE
subentries found in FUNCTION SYSMOD entries from all specified target zones.

v If no target zones were specified for an SMPCSI data set, then the Feature List
for that SMPCSI contains the name of all FEATURE entries found in the global
zone, in addition to all FEATURE subentries found in FUNCTION SYSMOD
entries from all target zones in the SMPCSI data set.

No regard is paid to the ERROR status of the FUNCTION SYSMOD entries; if a
FUNCTION SYSMOD entry happens to be in ERROR, then it is assumed an overt
attempt was made to install the FUNCTION and therefore its presence is desired.
However, if a FUNCTION SYSMOD has been superseded or deleted, then it is
ignored.

GIMXSID

Chapter 11. Service routines 461

The individual Feature Lists from each specified SMPCSI are then merged to create
the total Feature List. That is, the total Feature List set is the union of the
individual sets.

The total Feature List is represented in the output data set using the definition for
FEATURE records. Multiple FEATURE records may be produced in order to
contain the total FEATURE information.

Table 58. FEATURE record format

Field Length Description

Header 8 Value is FEATURE to indicate the record type,
padded to the right with blanks.

Feature Name 52 Feature name, padded to the right with blanks.

Product-id 9 The product identifier of the feature's associated
product, padded to the right with blanks. For IBM
products, this field is an IBM program product
number (5647-A01, for example). This field may
be all blank if the FEATURE entry is not found in
a global zone in an SMPCSI data set.

VRM 9 The version, release, and modification level of the
feature's associated product, padded to the right
with blanks. This field is of the form vv.rr.mm
where vv is the version, rr is the release, and mm
is the modification level. This field may be all
blank if the FEATURE entry is not found in a
global zone in an SMPCSI data set.

reserved 5 This field is reserved for future use.

Description 65 A text description for the feature, padded to the
right with blanks. This field may be all blank if
the FEATURE entry is not found in a global zone
in an SMPCSI data set.

FMID List 12412 List of function SYSMODs that make up this
feature. This field is a list of 7-byte FMID names
separated by one blank space, padded to the right
with blanks. This field may be all blank if the
FEATURE entry is not found in a global zone in
an SMPCSI data set, or the FMID subentry is not
found for the FEATURE entry.

A single FEATURE may be represented in the output data set with more than one
FEATURE record. Although an unlikely case, it is necessary only to accommodate a
FEATURE that contains more FMIDs than can fit in the FMID List field of a single
FEATURE record.

Building the FMID list
The FMID List segment of the software inventory data contains the combined
FMID information from all specified SMPCSI data sets. For each SMPCSI data set
specified on a CSI control statement:
v If target zones were specified on one or more TARGET control statements for an

SMPCSI data set, then the FMID List for that SMPCSI contains the names of all
FUNCTION SYSMODs found in all specified target zones.

GIMXSID

462 SMP/E V3R6.0 for z/OS V2R1.0 Reference

v If no target zones were specified for an SMPCSI data set, then the FMID List for
that SMPCSI contains the names of all FUNCTION SYSMODs found in the
global zone, in addition to the names of all FUNCTION SYSMODs found in all
target zones for the SMPCSI data set.

No regard is paid to the ERROR status of the FUNCTION SYSMOD entries; if a
FUNCTION SYSMOD entry happens to be in ERROR, then it is assumed an overt
attempt was made to install the FUNCTION and therefore its presence should be
noted. However, if a FUNCTION SYSMOD in a target zone has been superseded
or deleted, then it is ignored.

The individual FMID Lists from each specified SMPCSI are then merged to create
the total FMID List. That is, the total FMID List set is the union of the individual
sets.

The total FMID List is represented in the output data set using the definition for
PRODLIST records. Multiple PRODLIST records may be produced in order to
contain the complete list of FMIDs.

Table 59. PRODLIST record format

Field Length Description

Header 60 Value is "PRODLIST" and padded to the right
with blanks.

FMID List 12500 List of 7-byte FMID names separated by one
blank space, padded to the right with blanks.

Building the PTF bitmap
The PTF bitmap segment of the software inventory data contains a composite of
PTF information from all specified SMPCSI data sets. The point of the PTF Bitmap
is to identify all PTFs that are already on-site and therefore do not need to be
included in a service order. That is, there is no need to deliver PTFs that are
already applied in all target zones in which they could be applied, or are already
in the global zones and could be applied to any target zone as needed.

For each SMPCSI data set specified on a CSI control statement, the individual
zones to be processed when creating the PTF information are determined as
follows:
v If target zones were specified on one or more TARGET control statements for an

SMPCSI data set, then those target zones are the current set of zones to be
processed.

v If no target zones were specified for an SMPCSI data set, then all target zones in
the global zone, and the global zone itself, are the current set of zones to be
processed.

For this discussion, a PTF is considered applicable to a target zone if the FMID of
the PTF is applied in that target zone. A PTF is considered applicable to a global
zone if the FMID of the PTF is received in the global zone. A PTF is considered
applicable to an SMPCSI data set if the PTF is applicable to any of the zones in the
current set, as determined previously.

The PTF information for an individual SMPCSI data set contains all PTFs that are
received in the global zone, or are applied in all target zones of the current set in
which they are applicable. Such PTFs are determined to be "present" in an SMPCSI
data set. That is, such PTFs can be considered already present and therefore no

GIMXSID

Chapter 11. Service routines 463

need exists to deliver such PTFs on behalf of this SMPCSI, because they are either
already in the global zone and can be applied to any target zone, or they are
already applied in all target zones in which they could be applied.

A PTF is considered applied in a target zone whether or not it is superseded. A
PTF is not considered applied in a target zone, or received in a global zone, if it's
SYSMOD entry is in ERROR status. Further, it is not always possible to know the
SYSMOD TYPE for a SYSMOD that has been superseded in a target zone.
Therefore, if the name of such a SYSMOD follows the IBM naming convention for
PTFs, then it is assumed to be a PTF and its presence is noted. Specifically, if the
first character of the name of such a SYSMOD is a character in the set
"LMNOPQRSTU" and the last five characters of the name are numeric, then it is
assumed to be a PTF.

The PTF information from each individual SMPCSI data set is combined to create
the total PTF bitmap. A PTF is included in the PTF bitmap only if it is present in
all SMPCSI data sets in which it is applicable. Stated another way, if a PTF is
applicable to n SMPCSI data sets, but it is present in only n-1 or fewer SMPCSI
data sets, then that PTF cannot be included in the PTF bitmap.

The total PTF Bitmap is represented in the output data set using the definition for
BITPTF records. Multiple BITPTF records can be produced in order to contain the
total PTF bitmap.

Table 60. BITPTF record format

Field Length Description

Header 6 Value is BITPTF to indicate the record type.
BITPTF indicates that the record contains a PTF
identification bit string.

PTF prefix 54 A two-character PTF prefix value, padded to the
right with blanks. The PTF prefix value is the first
two alphabetic characters in a PTF name. For
example, UR or UW.

Bit string 12500 Bit-string where each bit represents a number
from 00000 to 99999. The numbers from 00000 to
99999 correspond to the last five numeric
characters in a PTF name. The offset of a
particular bit corresponds to a particular number
from 00000 to 99999. This number, combined with
the PTF prefix, represent a specific PTF name. For
example, if the PTF prefix is "UW" and the bit at
offset 12345 is on, then the PTF with the name
"UW12345" is represented.

Zone and data set sharing considerations
GIMXSID uses the system enqueue facility to control access to SMPCSI data sets.
The following identifies the phases of GIMXSID processing and the zones and data
sets GIMXSID may require for shared use during those phases.
v For the initialization phase:

Global zones (as specified on CSI control
statements)

Read with shared enqueue.

v For the processing phase:

GIMXSID

464 SMP/E V3R6.0 for z/OS V2R1.0 Reference

|
|
|
|
|
|
|
|
|
|

Global zones (as specified on CSI control
statements)

Read with shared enqueue.

Target zones (as specified on TARGET
control statements)

Read with shared enqueue.

v Termination

All resources are freed.

Return codes
GIMXSID may complete with any of the following return codes.

Return code
Meaning

00 GIMXSID processing completed successfully.

12 One of the following:
v Required data sets were missing or could not be opened.
v Required modules could not be loaded.
v Syntax error was found in the SYSIN control statements.
v SMPCSI data sets were not available.
v Specified zones were not defined or are not target zones.

16 One of the following:
v An I/O error occurred.
v Syntax error was found on the EXEC statement parameters.

20 The SMPOUT data set is missing.

GIMXTRX service routine
GIMXTRX is intended for use as part of an offering called ShopzSeries. It provides
two basic functions:

List target zone names (LSTTZN)
Generate a list of target zone names associated with a given GLOBAL zone
SMPCSI data set name.

Create a BITMAP of an SMPCSI (BMPTZN)
Generate a BITMAP representation of FUNCTION and PTF SYSMODs
found in a given list of target zone names associated with a given
GLOBAL zone SMPCSI data set name.

The input to GIMXTRX is the name of a data set that contains the input
parameters. See “Input parameter data set contents” on page 466.

The results of each function is written to a data set created by GIMXTRX. See
“Processing” on page 469.

Note: GIMXTRX is a separate load module residing in the MIGLIB library and
runs independently from the rest of SMP/E, and is executable on a z/OS, OS/390,
or MVS system; it will not run on VM.

GIMXSID

Chapter 11. Service routines 465

Calling GIMXTRX
GIMXTRX has normal standard linkage and expects an input parameter that is a
character string that is a data set name. Following are the JCL statements needed
to call GIMXTRX:

EXEC

is the statement used to call GIMXTRX. The EXEC statement must specify
PGM=GIMXTRX. The following option must be specified on the EXEC
statement PARM operand:

parmdsn
name of the data set that contains the input parameters required for
the GIMXTRX function. See “Input parameter data set contents” for a
description of the data contained in the input parameter data set.

SYSTSPRT

is used by GIMXTRX for messages. The record format (RECFM) of SYSTSPRT
must be FBA, and the record length (LRECL) must be 121. GIMXTRX will
format messages to 120 characters in length.

Note: GIMXTRX messages are only issued in the U.S. English language.

SMPXTOUT

is the output data set. This DD statement is optional. If SMPXTOUT is
specified, GIMXTRX writes the output to the identified data set. If SMPXTOUT
is not specified, GIMXTRX allocates a new data set for the output. SMPXTOUT
must be a sequential data set, the record format (RECFM) must be FB, and the
record length (LRECL) must be 12560. If incorrect attributes are specified for
SMPXTOUT, GIMXTRX will change the attributes to the required values.

Input parameter data set contents
The input parameter data set is a fixed-block 80-byte record sequential data set.
Each input parameter consists of a keyword and an associated value. The rules for
the input parameter data set are as follows:
v There must be one keyword with its associated parameter data per 80-byte

record.
v All keywords must begin in column one of the records.
v No blanks are allowed after the keyword and before the equal sign
v No blanks are allowed after the equal sign and before the first parameter value
v Any data read from the input parameter data set that is not a recognized

keyword parameter is ignored and processing continues.

The keywords and parameters passed to the GIMXTRX program are as follows:

//JOBx JOB ...
//XTRX EXEC PGM=GIMXTRX,PARM=’parmdsn’
//SYSTSPRT DD SYSOUT=(*)
//SMPXTOUT DD DSN=outputdsn,DISP=(NEW,CATLG),
// UNIT=unit,SPACE=(TRK,(2,1))

Figure 90. JCL to call GIMXTRX

GIMXTRX

466 SMP/E V3R6.0 for z/OS V2R1.0 Reference

GIMXTRX input parameters

�� ��

SUFFNC keyword:

SUFFNC= LSTTZN
BMPTZN

SUFGBL keyword:

SUFGBL= globaldsn

SUFUNIT keyword:

SUFUNIT= unit

SUFVOL keyword:

SUFVOL= volume

SUFTGT keyword:

�SUFTGT= tzone name

SUFFNC
This is the name of the function to be processed by the GIMXTRX program.
The two allowable values are

LSTTZN
Generate a list of target zone names.

BMPTZN
Create a BITMAP of a set of target zones.

This is a required parameter.

There can only be one function executed per invocation of GIMXTRX.

SUFGBL
This is the data set name containing the GLOBAL zone to be processed. This
parameter is 44 characters long. This is a required parameter.

SUFUNIT
This is the UNIT value used to allocate a new output data set. The value is up
to 8 characters long. This parameter is optional. If no UNIT value is specified,
GIMXTRX uses a default UNIT value of SYSALLDA when allocating a new
output data set.

SUFVOL
This is the work volume used to allocate the output data set. The value is six
characters long, and must be a valid MVS volume name. This is an optional

GIMXTRX

Chapter 11. Service routines 467

parameter. If no volume is specified, GIMXTRX will attempt to allocate the
output data set without a volume serial.

SUFTGT
This is the list of target zone names that will be queried. Each target zone
name is 7 characters long separated by one blank space. If a target zone name
is less than 7 characters long it must be left-justified and padded with blanks.
Each SUFTGT record can contain up to nine target zones. This is a required
parameter when SUFFNC=BMPTZN. It is not required when
SUFFNC=LSTTZN.

There can be multiple instances of the SUFTGT record to allow for situations
where a single 80-byte record cannot contain the required input data.

Examples of using GIMXTRX
In the following examples, the input data set is created in the job stream. In the
first example, the output of GIMXTRX is written to a new data set created by
GIMXTRX.
//jobname JOB ...
//*
//* Create the input data set.
//*
//step1 EXEC PGM=IEBGENER
//SYSPRINT DD SYSOUT=*
//SYSIN DD DUMMY
//SYSUT2 DD DSN=userid.dataset.INPUT,DISP=(NEW,CATLG),
// DCB=(RECFM=FB,LRECL=80),
// UNIT=unit,SPACE=(TRK,(1,0))
//SYSUT1 DD DATA,DLM=$$
SUFFNC=BMPTZN
SUFGBL=userid.GLOBAL.CSI
SUFTGT=ZOSTGT
$$
//step2 EXEC PGM=GIMXTRX,PARM=’userid.dataset.INPUT’
//*
//* The output Bit-Map is written to a new data set
//* allocated with the name "userid.dataset.OUT"
//*
//SYSTSPRT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*

In the second example, the output of GIMXTRX is written to the data set specified
on the SMPXTOUT DD statement.
/jobname JOB ...
//step1 EXEC PGM=IEBGENER
//*
//* Create the input data set.
//*
//SYSPRINT DD SYSOUT=*
//SYSIN DD DUMMY
//SYSUT2 DD DSN=userid.dataset.INPUT,DISP=(NEW,CATLG),
// DCB=(RECFM=FB,LRECL=80),
// UNIT=unit,SPACE=(TRK,(1,0))
//SYSUT1 DD DATA,DLM=$$
SUFFNC=BMPTZN
SUFGBL=userid.GLOBAL.CSI
SUFTGT=ZOSTGT
$$
//step2 EXEC PGM=GIMXTRX,PARM=’userid.dataset.INPUT’
//*
//* The output Bit-Map is written to the data set specified
//* on the SMPXTOUT DD statement.
//*

GIMXTRX

468 SMP/E V3R6.0 for z/OS V2R1.0 Reference

//SMPXTOUT DD DSN=userid.dataset.OUT,DISP=(NEW,CATLG),
// UNIT=unit,SPACE=(TRK,(2,1))
//SYSTSPRT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*

Processing
GIMXTRX obtains the input parameter data set name from the PARM value passed
to it on the EXEC statement.

If the SMPXTOUT DD statement is specified, GIMXTRX uses the data set specified
for the output. If the SMPXTOUT DD statement is not specified, GIMXTRX
allocates a new data set for the output. GIMXTRX constructs the name of the
output data set using the input parameter data set name as a base. The last
qualifier of the input parameter data set name is changed to 'OUT' and this
becomes the name of the output data set. For example, if the input parameter data
set name is TEST.GIMXTRX.DATA.IN, the output data set name will be
TEST.GIMXTRX.DATA.OUT.

The output data set is allocated and cataloged as follows:
DSNAME=dsn.OUT
DSORG=PS
RECFM=FB
LRECL=12560
BLKSIZE=0
SPACE=(TRK,(10,1),RLSE)
UNIT=unit (supplied as SUFUNIT= on input) or default of SYSALLDA
VOLUME=volume name (supplied as SUFVOL= on input).

If the SMPXTOUT DD statement is not specified, GIMXTRX attempts to create the
output data set, which therefore must not exist at the time that GIMXTRX is
initiated. If there is no volume supplied as input, GIMXTRX will attempt the
allocation without a volume serial. If there is no unit supplied as input, GIMXTRX
will attempt the allocation with UNIT=SYSALLDA.

GIMXTRX then allocates and opens all of the required data sets and extracts the
input parameters from the input parameter data set.

Once the input parameters have been read and the output data set created,
GIMXTRX continues processing based on the function requested (LSTTZN or
BMPTZN).

List target zone names (LSTTZN)
This function of GIMXTRX produces a list of target zone names associated with a
given GLOBAL zone SMPCSI data set name. The results are written to the output
data set.

Inputs: The inputs to the List Target Zone Names function are:

SUFFNC
Name of the function to be executed (LSTTZN)

SUFGBL
GLOBAL zone SMPCSI data set name

SUFUNIT
UNIT to be used for output data set (optional)

SUFVOL
VOLUME to be used for output data set (optional)

GIMXTRX

Chapter 11. Service routines 469

A sample of the parameters contained in the input parameter data set for the List
Target Zone Names function is:

Using the SMP/E GIMAPI, GIMXTRX obtains the names of all of the target zones
associated with the specified global zone. GIMXTRX then writes the list of target
zone names to the output data set in 12560-byte records defined as follows:

Field Description

header
60-byte header character string starting with the literal "TARGETZN" in
uppercase. The remaining 52 bytes are set to blanks.

Target zone name list
7-character target zone names each separated by one blank space, up to
12500 bytes in length. For target zone names that are less than 7 characters
long, the field is left-justified and padded to the right with blanks. When
the list is less than 12500 bytes long, the remaining bytes contain blanks.

Example of a target zone name record: The following example indicates an SMPCSI
that has target zones MVST1, JESTGT1, CICTGA, DB2TG2.

Create a BITMAP of an SMPCSI (BMPTZN)
This function of GIMXTRX produces a BITMAP representation of the PTF service
present in a user's SMPCSI. This information is intended for shipment to IBM
where it can be analyzed to create a custom-built service package to be delivered
to the user over the internet.

The intent of the Create a BITMAP of an SMPCSI function is to identify and record
in a set of BITMAP records:
v All FMIDs and PTFs applied in the target zones identified in the input data set

(SUFTGT parameter).
v All PTFs received in the GLOBAL zone identified in the input data set (SUFGBL

parameter) that are associated with the FMIDs applied in the specified target
zones.

A PTF is considered applicable to a target zone if its FMID is applied in that target
zone. If a PTF is applied in all selected target zones to which it is applicable, it is
recorded in a BITMAP record. If a PTF is not applied in all of the selected target
zones to which it is applicable, then it is not recorded in a BITMAP record. For

1 2 3 4 5 6 7 8
----+----0----+----0----+----0----+----0----+----0----+----0----+----0----+----0
SUFFNC=LSTTZN
SUFGBL=TEST.GLOBAL.VSAM.CSI
SUFVOL=VOL111

Figure 91. Sample input parameter data set for function LSTTZN

1 2 3 4 5 6 7 8 9
----+----0----+----0----+----0----+----0----+----0----+----0----+----0----+----0----+----0

TARGETZN MVST1 JESTGT1 CICTGA DB2TG2

Figure 92. TARGETZN record

GIMXTRX

470 SMP/E V3R6.0 for z/OS V2R1.0 Reference

example, if an FMID is applied in 4 of the selected target zones, but a PTF
associated with that FMID is applied in only 3 of those zones, the PTF is not
recorded in the BITMAP record.

All PTFs that are received in the GLOBAL zone are checked against the FMIDs
applied in the selected target zones to determine if the PTFs are associated with
the applied FMIDs. All PTFs received in the GLOBAL zone that are applicable to
the FMIDs applied in the selected target zones are recorded in a BITMAP record.

Inputs: The inputs to the Create a BITMAP of an SMPCSI function are:

SUFFNC
Name of the function to be executed (BMPTZN)

SUFGBL
GLOBAL zone SMPCSI data set name

SUFUNIT
UNIT to be used for output data set (optional)

SUFVOL
VOLUME to be used for output data set (optional)

SUFTGT
Target zone names selected by the user

A sample of the input parameters contained in the input parameter data set for the
create a BITMAP of an SMPCSI function is:

The output records created by GIMXTRX for the BMPTZN function represent the
functions applied in the target zones selected by the user (PRODLIST record) and
the PTFs that are either applied or received (BITMAP records). GIMXTRX then
writes the PRODLIST and BITMAP records to the output data set in 12560-byte
records defined as follows:

PRODLIST record: The PRODLIST record contains the list of FMIDs applied in the
target zones identified by the user in the input data set. Following is the definition
of the PRODLIST record that is placed in the output data set by GIMXTRX.

Field Description

header
60-byte header starting with the literal "PRODLIST" in uppercase. The
remaining 52 bytes are set to blank.

FMID list
list of 7-character FMIDs each separated by one blank space. This field is
12500 bytes long. When the FMID list is less than 12500 bytes long, the
remaining bytes will be made blanks.

1 2 3 4 5 6 7 8
----+----0----+----0----+----0----+----0----+----0----+----0----+----0----+----0

SUFFNC=BMPTZN
SUFGBL=TEST.GLOBAL.VSAM.CSI
SUFVOL=VOL111
SUFTGT=TARGET1 TGT2 TARGET3 TGT4 TARGET5 TARGET6 TGT7

Figure 93. Sample input parameter data set for function BMPTZN

GIMXTRX

Chapter 11. Service routines 471

The following example of a PRODLIST record indicates an SMPCSI that has FMIDs
HBB6602, HMP1B00, JMP1B01 present.

The PRODLIST record will be placed before any BITMAP bitstring records in the
output data set.

BITMAP records: The BITMAP records represent the PTFs applied in the target
zones or received in the GLOBAL zone that are associated with the FMIDs listed in
the PRODLIST record.

The BITMAP bitstring logic is based on the following PTF naming convention:
v PTF names are architected by IBM to consist of a 2 character prefix followed by

5 decimal digits providing 100000 possible PTF numbers per prefix
(00000-99999).

v A BITMAP bitstring record simply contains 100000 bits and a 2-character PTF
prefix in the record header.

v For example, if the prefix is "UR", then the first bit in the bitstring represents
PTF UR00000, the second bit represents PTF UR00001, the third represents PTF
UR00002 and so on. The last bit in the bitstring represents UR99999.

v The bits representing the URnnnnn PTF numbers received or applied on the
customer system are turned on while the remaining bits are set to zero.

v One bitstring is required for each PTF prefix in the SMPCSI

Following is the definition of the BITMAP records that are placed in the output
data set by GIMXTRX.

Field Description

header
60-byte header starting with the literal "BITPTF" in uppercase, followed by
the 2-character PTF prefix for each unique PTF prefix present in the zones
being queried. This field is in uppercase. The remaining 52 bytes in the
header are set to blank.

bitstring
12500 bytes with 100000 bits representing PTF numbers present in the
SMPCSI associated with the two-character PTF prefix in this record. A bit
is set on to indicate a PTF number exists. All remaining bit positions are
set to zero.

The following example of a BITMAP bitstring record indicates an SMPCSI that has
PTFs UR00001 and UR00005 present.

1 2 3 4 5 6 7 8
----+----0----+----0----+----0----+----0----+----0----+----0----+----0----+----0----+

PRODLIST HBB6602 HMP1B00 JMP1B01

Figure 94. PRODLIST record

GIMXTRX

472 SMP/E V3R6.0 for z/OS V2R1.0 Reference

The bitstring section of the BITMAP record is expanded as follows (where each
mark of the scale line represents one bit position of the BITMAP record):

Return codes
To help you diagnose errors, GIMXTRX issues messages and return codes. The
messages are documented in SMP/E for z/OS Messages, Codes, and Diagnosis.

All nonzero return codes indicate unsuccessful completion of GIMXTRX. Here is a
description of the return codes:

Return code
Meaning

0 The requested GIMXTRX function was processes successfully.

4 A warning condition was encountered in a program called by GIMXTRX.

8 An error condition was encountered in a program called by GIMXTRX.

12 One of the following
v A required parameter is missing or incorrect.
v An allocation error occurred.
v An I/O error occurred.
v An error occurred while opening or closing a data set.
v GIMXTRX could not load either GIMAPI, GIMSGENU, or GIMKXENU.
v SMP/E could not obtain enough storage for processing.

If an error occurs with SYSTSPRT, there will be no message issued. Only a return
code will be returned through standard linkage.

GIMXTRX does not provide an ESTAE routine for recovery when an ABEND
occurs. Normal system ABEND processing occurs.

GIMZIP packaging service routine
The GIMZIP service routine creates portable packages of software and associated
materials. Typically the packages will contain SYSMODs, RELFILE data sets,
HOLDDATA, and associated materials such as documentation, samples, and text
files. These GIMZIP packages may be transported through a network, processed by
the GIMUNZIP service routine, and then processed by the SMP/E RECEIVE
command.

1 2 3 4 5 6 7 8
----+----0----+----0----+----0----+----0----+----0----+----0----+----0----+----0

BITPTFUR bitstring...........

Figure 95. BITMAP record

6 6 6 6 6 6 6 6 6 7
1-------2-------3-------4-------5-------6-------7-------8-------9-------0

01000100.........................

Figure 96. Bitstring section of BITMAP record

GIMXTRX

Chapter 11. Service routines 473

More specifically, a GIMZIP package consists of a single package definition file, a
set of archive files, and text files. The package definition file describes the total
package and identifies the archive files and text files contained in the package. An
archive file consists of :
1. a portable image of any of the following:

v a sequential data set
v a partitioned data set
v a VSAM data set
v a file in the UNIX file system
v a directory in the UNIX file system

2. and the information necessary to reload the data from the portable image.

A single GIMZIP package typically consists of several archive files.

Note:

1. GIMZIP is a separate load module residing in the MIGLIB library and runs
independently from the rest of SMP/E processing.

2. GIMZIP requires either the Integrated Cryptographic Services Facility (ICSF)
One-Way Hash Generate callable service or Java 2 Version 1 Release 4 to be
available for its use in order to compute an SHA-1 hash value.

Calling GIMZIP
The following figure shows the job control statements for GIMZIP:

EXEC

is the statement used to start GIMZIP. The EXEC statement must specify
PGM=GIMZIP. The following options may be specified on the EXEC statement
PARM operand:

LANGUAGE=xxx
where xxx can be one of the following:

ENU US English

JPN Japanese

The LANGUAGE option defines which language to use for GIMZIP
messages. LANGUAGE can also be specified as L. If LANGUAGE is not
specified, the default is LANGUAGE=ENU.

//JOBx JOB ...
//STEP1 EXEC PGM=GIMZIP,PARM=’option’
//SMPDIR DD PATH=’package_directory’,PATHDISP=KEEP
//SMPWKDIR DD PATH=’work_directory’,PATHDISP=KEEP
//SMPCPATH DD PATH=’smpclasses_directory’,PATHDISP=KEEP
//SMPJHOME DD PATH=’javaruntime_directory’,PATHDISP=KEEP
//SMPOUT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSUT2 DD UNIT=SYSALLDA,SPACE=(CYL,(200,20))
//SYSUT3 DD UNIT=SYSALLDA,SPACE=(CYL,(50,10))
//SYSUT4 DD UNIT=SYSALLDA,SPACE=(CYL,(25,5))
//SYSIN DD *

package control tags
/*

Figure 97. JCL to call GIMZIP

GIMZIP

474 SMP/E V3R6.0 for z/OS V2R1.0 Reference

SEGMENT=nnnnM
where nnnn is a decimal number between 1 and 9999. The SEGMENT
option indicates the archive files produced by GIMZIP are to be divided
into archive segments no larger than nnnn megabytes. If SEGMENT is not
specified, the default is to perform no archive segmenting.

SYSIN
specifies a control data set that contains the package control tags to direct
GIMZIP processing (see “GIMZIP package control tags” on page 476). The
control data set may be a sequential data set or a single member of a
partitioned data set and its attributes must be LRECL=80 and RECFM=F or FB.

SMPDIR
specifies a directory in a UNIX file system that is to contain the package
created by GIMZIP. All files and archives created by GIMZIP are stored in this
directory. This directory is referred to as the package directory.

The package directory must be empty at the start of GIMZIP processing. If any
files, including a previous package, already exist in the package directory, you
must move them to another directory, delete them, or specify a different
directory on the SMPDIR DD statement for the package directory.

SMPWKDIR

specifies a directory in a UNIX file system that is used by GIMZIP for
temporary work files. This is an optional DD statement. If the SMPWKDIR DD
statement is not provided, GIMZIP will use the package directory specified on
the SMPDIR DD statement for temporary work files.

SMPCPATH
specifies a directory in the UNIX file system where the SMP/E Java classes
reside. The SMPCPATH DD statement is optional and only required to
calculate SHA-1 hash values if ICSF is not available.

SMPJHOME
specifies a directory in the UNIX file system where the Java runtime resides.
The SMPJHOME DD statement is optional and only required to calculate
SHA-1 hash values if ICSF is not available.

SMPOUT
specifies an output data set that will contain SMP/E messages issued during
GIMZIP processing. The data set attributes are LRECL=81 or LRECL=121 and
RECFM=FBA.

SYSUT2
specifies a work area for the IEBCOPY utility to use for the sequential unload
data sets placed on DASD as the result of an IEBCOPY unload operation. This
data set must be large enough to accommodate the largest partitioned data set
being processed by the current execution of GIMZIP.

SYSUT3 and SYSUT4
specifies work areas for the IEBCOPY utility to use for spill data sets on
DASD.

SYSPRINT
specifies a data set to contain output and messages from the utilities called by
GIMZIP.

GIMZIP

Chapter 11. Service routines 475

GIMZIP package control tags
GIMZIP service routine processing is controlled by package control tags. The
package control tags define the GIMZIP package to be created and are specified in
the SYSIN data set. The package control tags follow XML syntax rules and their
format is as follows:

GIMZIP package control tags

�� ��

GIMZIP:

<GIMZIP
description="package description"

> � FILEDEF </GIMZIP>

FILEDEF:

<FILEDEF name="file name"
archid="archive id" subdir="subdirectory name"

�

�
description="file description" type=" README "

SMPHOLD
SMPPTFIN
SMPRELF

�

�
volume="file volume"

> </FILEDEF>

<GIMZIP> Tag syntax
The <GIMZIP> and corresponding </GIMZIP> tags identify the beginning and
end of a GIMZIP package build request. The following attribute may be found on
the <GIMZIP> tag:

description="package description"

specifies a text description for the package. The description can be up to 500
characters long.

<FILEDEF> Tag syntax
The <FILEDEF> and corresponding </FILEDEF> tags identify the beginning and
end of a file definition. Each file described by a <FILEDEF> tag is input to
GIMZIP and is to be a component of the GIMZIP package. The following attributes
may be found on the <FILEDEF> tag:

name="file name"

specifies the name of a data set or file that is to be a component of the GIMZIP
package. The name attribute can specify either a sequential, partitioned, or
VSAM data set, or the absolute pathname for a file or directory in the UNIX
file system.
The first character of the absolute pathname of a file or directory in the UNIX
file system must be a slash (/). If the name does not begin with a slash,
GIMZIP processing will assume that it is an MVS data set name and that it
will conform to the MVS data set naming conventions. When a file or directory
in the UNIX file system is specified, the name can be from 1 to 1023 bytes long

GIMZIP

476 SMP/E V3R6.0 for z/OS V2R1.0 Reference

with 255 characters between delimiters (/). The value can contain any
character from X'40' through X'FE', except '<', '>', '&', and the double quotation
mark ("). All data beyond column 72 is ignored, including blanks. The
pathname of a file or directory in the UNIX file system is case sensitive and
will not be converted to uppercase alphabetic during GIMZIP processing. Data
set names are not case sensitive and will be converted to uppercase alphabetic
during GIMZIP processing.
Note the following facts:
1. When a VSAM data set is being specified, the true cluster name must be

used. Do not reference a VSAM data set by a path name. Although an
alternate index may be defined to the cluster, the alternate index does not
become part of the archive. If an alternate index is desired at the
destination site after the archive is unzipped, then the alternate index must
be defined and built at the destination site.

2. GIMZIP processing uses the z/OS UNIX System Services pax command for
creating archive files. Although GIMZIP will attempt to process UNIX file
and directory names of up to 1023 bytes in length, this processing is subject
to the limitations of the pax command. See z/OS UNIX System Services
Command Reference for information about the pax command.

archid="archive id"

specifies a unique archive id value to be associated with the archive file
created for the data set, file, or directory identified by the associated name
attribute. The value of this attribute will most likely be something like a
ddname or the low level qualifier of an MVS library name or some generic
specification for a file or directory in the UNIX file system.
The value can be from 1 to 243 characters in length. The value can contain any
character from X'40' through X'FE', except '<', '>', '&', '/' and the double
quotation mark ("). The archid value is case sensitive and will not be converted
to uppercase alphabetic by GIMZIP processing.
The same archid value may not be used in more than one file definition group
in the same package.

description="file description"

specifies a text description for the file. The description can be up to 500
characters long.

subdir="subdirectory name"

specifies the subdirectory in which to store the file specified by the
corresponding name attribute. The subdirectory name can be from 1 to 500
bytes long with 255 characters between delimiters (/).
This attribute can only be specified if the file type attribute is either not
specified or is README.
The subdirectory name is a relative pathname for the desired subdirectory, so
the first character of the subdirectory name cannot be a slash (/). However, the
subdirectory name may be specified with or without an ending slash.
"SMP", all capitalized, cannot be specified as the first three characters of the
subdir attribute value. Other case variations are allowed.

type="file type"

specifies a file type indicator that describes the contents of the file, identifies
how the file is to be processed by GIMZIP, and also how the file will be
processed by the SMP/E RECEIVE command. Any of the following values
may be specified:

GIMZIP

Chapter 11. Service routines 477

README
indicates that the associated file is a sequential text data set or a file in
the UNIX file system that is intended to be viewable text after it is
placed in the package. These files are not placed in archives by
GIMZIP and are not compressed. They are only copied into the
package by GIMZIP. The file name specified on the associated name
attribute must identify a file in the UNIX file system or a sequential
data set that does not have a record format of VS (variable spanned).

SMPHOLD
indicates that the associated data set or file contains SMP/E
HOLDDATA statements. These files are placed in archives by GIMZIP
and compressed. The name specified on the associated name attribute
must identify a sequential data set with a logical record length of
eighty (80) bytes and a record format of FB (fixed block), or it must
identify a file in the UNIX file system.

SMPPTFIN
indicates that the associated data set or file contains SMP/E
modification control statements (MCS). These files are placed in
archives by GIMZIP and compressed. The name specified on the
associated name attribute must identify a sequential data set with a
logical record length of eighty (80) bytes and a record format of FB
(fixed block), or it must identify a file in the UNIX file system.

SMPRELF
indicates the data set specified on the name attribute is an SMP/E
RELFILE data set associated with a SYSMOD contained in the
SMPPTFIN file. Data sets with the SMPRELF file type must be either a
partitioned data set or an IEBCOPY unloaded sequential image of a
partitioned data set. These data sets are placed in archives by GIMZIP
and compressed.

The type attribute must not be specified when a VSAM data set or a UNIX file
system directory is specified on the name attribute. If the type attribute is not
specified, then the data set specified on the name attribute can be either a
sequential, partitioned, or VSAM data set, or a file or directory in the UNIX
file system.

volume="file volume"

specifies the volume serial number of the volume containing the data set
specified on the name attribute. The volume identifier must be from 1 to 6
alphanumeric characters and should be specified only if the name attribute
identifies an uncataloged data set.
If the associated name attribute identifies a file or directory in the UNIX file
system (the name begins with a slash), the volume attribute will be checked for
syntax, but it will be ignored otherwise.

Note: The volume is used to allocate data sets. However, VSAM data sets
must be catalogued. Information needed for the archival of VSAM data sets is
gathered from the catalog and related areas, such as the VVDS - VSAM volume
data set.

Syntax notes
1. GIMZIP ignores columns 73 through 80. If data is specified beyond column 72,

GIMZIP ignores it, which may lead to the diagnosis of an error in a following
tag.

GIMZIP

478 SMP/E V3R6.0 for z/OS V2R1.0 Reference

2. Package control tags may contain comments. Comments start with <!-- (hex
4C5A6060) and end with --> (hex 60606E). The first --> encountered after the
initial <!-- will end the comment. A comment may appear between a start-tag
and its matching end-tag, but never within a tag.

Example of using GIMZIP
Suppose a GIMZIP package is to be created containing the following data sets,
files, and directories:
v /SAMPLE/ORDER123/readme.html - A README file.
v /SAMPLE/ORDER123/SMPMCS - an SMP/E MCS file
v SAMPLE.IBM.FMID001.F1 - An SMP/E PDS relative file
v SAMPLE.IBM.FMID001.F2 - An SMP/E PDSE relative file
v SAMPLE.ORDER123.DOCLIB - A PDS containing documents
v SAMPLE.ORDER123.RIMLIB - A PDS containing related installation materials
v SAMPLE.ORDER123.MVS.GLOBAL.CSI - A VSAM cluster
v /SAMPLE/ORDER123/RootHFS/ - the root directory

The following job stream can be used to create such a GIMZIP package:

GIMZIP

Chapter 11. Service routines 479

//JOBx JOB ...
//STEP1 EXEC PGM=GIMZIP,PARM=’SEGMENT=12M’
//SMPDIR DD PATH=’/u/smpe/GIMZIP/ORDER123/’,PATHDISP=KEEP
//SMPCPATH DD PATH=’/usr/lpp/smp/classes/’,PATHDISP=KEEP
//SMPJHOME DD PATH=’/usr/lpp/java/J6.0/’,PATHDISP=KEEP
//SMPOUT DD SYSOUT=*
//SYSPRINT DD SYSOUT=*
//SYSUT2 DD UNIT=SYSALLDA,SPACE=(CYL,(200,20))
//SYSUT3 DD UNIT=SYSALLDA,SPACE=(CYL,(50,10))
//SYSUT4 DD UNIT=SYSALLDA,SPACE=(CYL,(25,5))
//SYSIN DD *
<GIMZIP description="This is a sample software package.">

<!-- This sample package contains the files shown later. -->
<FILEDEF name="/SAMPLE/ORDER123/readme.html"

archid="readme.html"
description="This is the README file for the package."
subdir="README"
type="README">

</FILEDEF>

<FILEDEF name="/SAMPLE/ORDER123/SMPMCS"
description="This is the SMPMCS file for ORDER123."
archid="SMPMCS"
type="SMPPTFIN">

</FILEDEF>

<FILEDEF name="SAMPLE.IBM.FMID001.F1"
archid="FMID001.F1"
description="This is SMP/E RELFILE 1 for FMID001."
type="SMPRELF">

</FILEDEF>

<FILEDEF name="SAMPLE.IBM.FMID001.F2"
archid="FMID001.F2"
description="This is SMP/E RELFILE 2 for FMID001."
type="SMPRELF">

</FILEDEF>

<FILEDEF name="SAMPLE.ORDER123.DOCLIB"
subdir="DOCLIB"
description="This is the Document Library for the package.">

</FILEDEF>

<FILEDEF name="SAMPLE.ORDER123.RIMLIB"
subdir="RIMLIB"
description="This is the Related Installation Materials

Library for the package.">
</FILEDEF>

<FILEDEF name="SAMPLE.ORDER123.MVS.GLOBAL.CSI"
archid="GLOBAL"
description="This is a sample VSAM cluster.">

</FILEDEF>

<FILEDEF name="/SAMPLE/ORDER123/RootHFS/"
description="This is the entire root directory.">

</FILEDEF>

</GIMZIP>
/*

Figure 98. GIMZIP example

GIMZIP

480 SMP/E V3R6.0 for z/OS V2R1.0 Reference

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Note: Blank lines and spaces have been added to the package control tags for
clarity, but are not required.

GIMZIP processing
The GIMZIP service routine processes the following data structures as input to
create GIMZIP packages:
v sequential data sets
v partitioned (PDS and PDSE) data sets
v VSAM data sets
v UNIX files
v UNIX directory files

The packages produced are stored in the package directory in a UNIX file system.
The package directory is specified by the SMPDIR DD statement.

GIMZIP collects various attributes for the input data sets and files specified in the
package control tags. These attributes, along with portable images of the input data
sets, are temporarily stored in a UNIX file system. These images are then archived
and compressed to create archive files. Each GIMZIP package will contain one or
more archive files.

For each package there are two additional files:
v The package attribute file, which describes the contents of the package itself. The

package attribute file identifies the archives for a package and contains a hash
value for each archive within the package. The hash value for each archive is
used for data integrity purposes and can be checked when the original data set
is recreated from the archive using the GIMUNZIP service routine.

v An extensible stylesheet language (XSL) file, which describes how to format the
information found in the package attribute file. The XSL file is used for
rendering (displaying on a browser) the package attribute file.

Package attribute file
Each package contains a package attribute file. The name of this file is
GIMPAF.XML and it is stored in the package directory identified by the SMPDIR
DD statement. The file contains package definition control tags that describe the
contents of the package and how the package was created. The package definition
control tags follow XML syntax rules.

The format of the package definition control tags is as follows:

Package definition control tags (Part 1 of 2)

�� ��

PKGDEF:

<PKGDEF
date="yyyy.ddd" description="package description" files="filenum"

�

GIMZIP

Chapter 11. Service routines 481

�
gmt="hh:mm:ss" level="vv.rr.mm.pp" originalsize="original package size"

�

�
size= " package size "

> � ARCHDEF </PKGDEF>

ARCHDEF:

<ARCHDEF name="archive name"
archid="archive id" description="archive description"

�

� hash="archive hash value"
originalsize="original file size" size="archive size"

�

�
type=" README "

SMPHOLD
SMPPTFIN
SMPRELF

> �

ARCHSEG
</ARCHDEF>

ARCHSEG:

<ARCHSEG name="segment name" hash="segment hash value"
size="segment size"

> </ARCHSEG>

Package definition control tags (Part 2 of 2)

�� ��

PKGHASH:

<?PKGHASH hash="package hash value" ?>

<PKGDEF> Tag syntax
The <PKGDEF> and corresponding </PKGDEF> tags identify the beginning and
end of a GIMZIP package definition. The following attributes may be found on the
<PKGDEF> tag:

date="yyyy.ddd"
indicates the year and Julian day on which the package was created by the
GIMZIP service routine.

description="package description"
specifies a text description for the package. The value GIMZIP places here, is
the same as the description value, if specified, on the input <GIMZIP> tag.

GIMZIP

482 SMP/E V3R6.0 for z/OS V2R1.0 Reference

files="filenum"
indicates the total number of files that compose the package. This number
includes all archives, and any and all control files, such as the Package
Attribute File.

gmt="hh:mm:ss"
indicates the time at which the package was created by the GIMZIP service
routine. The time value is expressed as Greenwich Mean Time (GMT).

level="vv.rr.mm.pp"
indicates the service level of the GIMZIP service routine used to create this
package. The individual values are as follows:

vv version

rr release

mm modification level

pp PTF level

originalsize="original package size"
indicates the sum of all the values of originalsize attributes on ARCHDEF tags
in this package definition. It is used to determine the amount of auxiliary
storage required to retrieve all the archives in this package.

size="package size"
indicates the total size of the package, in bytes. This size is the sum of the sizes
of all files that compose the package.

<ARCHDEF> Tag syntax
The <ARCHDEF> and corresponding </ARCHDEF> tags identify the beginning
and end of a specific archive file definition. The following attributes may be found
on the <ARCHDEF> tag:

name="archive name"
specifies the relative path name for an archive file in the GIMZIP package. The
path name value is relative to the package directory specified on the SMPDIR
DD statement. See “Archive files” on page 486 for information about the
proper naming convention for archive files.

archid="archive id"
specifies a unique archive id associated with the archive specified in the
archive name attribute. There can be only one archid attribute in an archive
definition group. The value is taken from the archid value found on the file
definition tag in the GIMZIP package control tags (if one was specified). This is
an optional attribute.

description="archive description"
specifies a text description for the archive. The value GIMZIP produces is
copied from the description value, if specified, on the corresponding input
<FILEDEF> tag.

hash="archive hash"
indicates an SHA-1 hash value for the archive file.

originalsize="original file size"
indicates the total size, in bytes, of the original data set, directory, or file stored
in the archive file.

size="archive size"
indicates the total size of the archive file, in bytes.

GIMZIP

Chapter 11. Service routines 483

type="file type"
specifies an archive type indicator that describes the contents of the archive
and how the file will be processed by the SMP/E RECEIVE command. The
value is copied from the file type value, if specified, on the corresponding
<FILEDEF> statement, and may be any of the following values:

README
indicates the archive contains text data.

SMPHOLD
indicates the archive contains SMP/E HOLDDATA statements.

SMPPTFIN
indicates the archive contains SMP/E modification control statements
(MCS).

SMPRELF
indicates the archive contains an SMP/E RELFILE data set associated
with a SYSMOD contained in the SMPPTFIN file.

<ARCHSEG> Tag syntax
The <ARCHSEG> tag and matching </ARCHSEG> end tag identify a segment of
an archive file. The following attributes may be found on the <ARCHSEG> tag:

name="segment name"
specifies the path name of a segment file for an archive file in the GIMZIP
package. The path name value is a relative value and it is relative to the
package directory specified on the SMPDIR DD statement for GIMZIP. This
attribute and corresponding attribute value is always produced when archives
are to be segmented.

size="segment size"
indicates the total size of the segment file, in bytes. While GIMZIP always
produces a byte count when archives are to be segmented, this attribute and
attribute value is optional and is not used for GIMUNZIP or RECEIVE
processing.

hash="segment hash"
indicates an SHA-1 hash value for the segment file. This attribute and
corresponding attribute value is always produced when archives are to be
segmented.

<?PKGHASH> Tag syntax
hash="package hash"

indicates an SHA-1 hash value for the information in the package attribute file
between the starting <PKGDEF> tag and the ending </PKGDEF> tag.

Syntax notes
1. Data in columns 73 through 80 is ignored. If data is specified beyond column

72, it is ignored and an error in a following tag may be indicated.
2. Package definition control tags may contain comments. Comments start with

<!-- (hex 4C5A6060) and end with --> (hex 60606E). The first --> encountered
after the initial <!-- will end the comment. A comment may appear between a
start-tag and its matching end-tag, but never within a tag.

Package attribute file example
The package attribute file for the package produced by GIMZIP in Figure 98 on
page 480 would look like the following:

GIMZIP

484 SMP/E V3R6.0 for z/OS V2R1.0 Reference

<?xml version="1.0" ?>
<?xml-stylesheet type="text/xsl" href="GIMPAF.XSL"?>
<PKGDEF files="8"

originalsize="18755980"
size="14568080"
date="2003.090"
gmt="22:10:20"
level="03.03.00.00">

<ARCHDEF name="SMPPTFIN/S0001.SMPMCS.pax.Z"
archid="SMPMCS"
type="SMPPTFIN"
description="This is the SMPMCS file for FMID001"
originalsize="18432000"
size="14336000"
hash="22CA8A741CA2EE1BC57FAA2D0EBA22895727B8E9">

<ARCHSEG name="SMPPTFIN/2003030341435443234.1of2"
size="12288000"
hash="23EB39F41CA2EE1BC57FAA2D0EBA22895727B8E9">

</ARCHSEG>
<ARCHSEG name="SMPPTFIN/2003030341435443234.2of2"

size="2048000"
hash="58FA9A741CA2EE1BC57FAA2D0EBA22895727B8E9">

</ARCHSEG>
</ARCHDEF>

<ARCHDEF name="README/S0002.packlist.html"
type="README"
description="This is the packing list for your order"
originalsize="32620"
size="18256"
hash="CA2EE1BC57F2EE1BC57FAA2D0EBA2289C57FAA2D">

</ARCHDEF>

<ARCHDEF name="SMPRELF/CPACTST.FMID001.F1.pax.Z"
archid="FMID001.F1"
type="SMPRELF"
description="This is an SMPRELF file for FMID001.F1"
originalsize="55840"
size="32256"
hash="D0EBAA741CA2EE1BC57FAA2D0EBA2289EECE1BC5">

</ARCHDEF>

<ARCHDEF name="SMPRELF/CPACTST.FMID002.F2.pax.Z"
archid="FMID002.F2"
type="SMPRELF"
description="This is an SMPRELF file for FMID002.F2"
originalsize="55840"
size="32256"
hash="B7DBAA741CA2EE1BC57FAA2D0EBA2289EECE1BC5">

</ARCHDEF>

<ARCHDEF name="S0005.CPACTST.DO000029.MVS.GLOBAL.CSI.pax.Z"
archid="GLOBAL"
description="This is an example of a VSAM cluster
for the product."
originalsize="23218"
size="17556"
hash="D0DB27641CA2EE1BC5BFAA2D0EBA2EE9EECE1BC5">

</ARCHDEF>

<ARCHDEF name="S0006.2003030335435443234.pax.Z"
description="This is the entire root directory."
originalsize="155840"
size="132256"
hash="D0EB49385CA2EE1BC57FAA2D0EBA2289EECE1BC5">

</ARCHDEF>

<ARCHDEF name="GIMPAF.XSL"
description="This is an Extensible Stylesheet Language
(XSL) document used to render the package attribute file
(GIMPAF XML) on an internet browser This file has not

GIMZIP

Chapter 11. Service routines 485

Note: Spaces have been added to the example for clarity, but are not necessarily
produced by GIMZIP, nor are they required. Some of the values, such as size,
original size, and hash, are for illustration purposes only, and may not be accurate.

Displaying the package attribute file
The package attribute file (GIMPAF.XML) can be rendered on an internet browser
that supports XML and XSL (for example, Microsoft Internet Explorer 5). The
package directory containing the package attribute file must be accessible to the
browser through your z/OS web server. The accessibility of the package directory
is determined by your specific web server configuration.

For example, suppose /u/userid/public/ is defined by your z/OS web server to be
your publicly accessible directory. Further suppose, to view the contents of this
directory, you must specify an URL of the form http://host name/~userid. Then, in
order to view the package attribute file, your package directory must be contained
within the /u/userid/public/ directory, or a symbolic link that points to the package
directory must be in the /u/userid/public/ directory in a UNIX file system.
Furthermore, your z/OS web server must be configured to recognize .XML and
.XSL as text MIME types and, if appropriate, convert EBCDIC text to ASCII text.

The package attribute file can then be viewed on an internet browser by entering
an URL similar to the following:
http://host name/~userid/GIMPAF.XML

Archive files
The actual software and associated materials for a package are stored in archive
files. GIMZIP creates an archive file for each input data set or file specified by a
<FILEDEF> tag. An archive file consists of a portable image of the original data set
or file and attributes of the original data set or file needed to reload the data from
the portable image.

The attributes of the original data set or file are recorded in a file attribute file in
the UNIX file system called GIMFAF.XML. For data sets, the portable image of the
original data set is stored temporarily as a file in the UNIX file system (this step is
not required for UNIX files and directories). The name of this temporary file is the
type attribute value for the archive (SMPPTFIN, SMPHOLD, SMPRELF) or the
name MVSFILE if the archive has no type attribute specified. An archive file is
then created by using the UNIX System Services pax command to combine the
GIMFAF.XML file and the original data into an archive. Although a UNIX file is
not first stored as a temporary file with a name matching its type attribute value,
its name within the archive will be its type attribute value, or the name MVSFILE,
if the archive has no type attribute specified. The GIMUNZIP service routine and
the RECEIVE command both expect an archive file to contain the GIMFAF.XML
component file, and the following, depending on the original content:

For data sets:
a file named SMPPTFIN, SMPHOLD, SMPRELF, or MVSFILE

For UNIX files:
a file named SMPPTFIN, SMPHOLD, or MVSFILE

For UNIX directories:
the directory and its contents are stored in the archive using the original
names.

Data sets and files with a type of README are an exception to the previously
described archive processing. README data sets and files have no file attribute

GIMZIP

486 SMP/E V3R6.0 for z/OS V2R1.0 Reference

file and are not archived using pax, but rather are stored unchanged in a file in the
package directory. Likewise, README data sets and files are not subject to archive
segmentation.

The absolute names for archive and README files in the package directory use
the following format:
/package_directory/subdir/Snnnn.original__name.pax.Z

The absolute names for archive segment files in the package directory use the
following format:
/package_directory/subdir/date_timeofday.nofm

package_directory
indicates the package directory specified on the SMPDIR DD statement.

subdir
indicates the subdirectory into which the archive file is stored. GIMZIP creates
this subdirectory based on the filetype or the subdir attributes specified on the
<FILEDEF> tag for the data set. If neither attribute is specified, then no
subdirectory is used. If the file type is README, the subdirectory is created
only if the subdir attribute has been specified.

Snnnn
specifies the sequence indicator for the archive file. The sequence indicator is
necessary so the correct order can be determined for the SMPHOLD and
SMPPTFIN files when eventually processed by the SMP/E RECEIVE
command. GIMZIP processes the input data sets or files in the sequence in
which they are specified in the package control tags and the indicator is
assigned accordingly. All archive files, except those specified with a file type of
SMPRELF, are assigned a sequence indicator. If the file type is README and
an archid tag was specified, then no sequence number will be assigned.

original_name
specifies the original name of the data set, file, or directory, as indicated on the
<FILEDEF> tag. This could also be the archid for UNIX directories and
README data sets or files, or the date and time for UNIX directories, if the
archid is not specified.

pax.Z
is the file extension for all archive files, except those with a file type of
README. The pax.Z extension indicates a file that has been processed by the
UNIX System Services pax command with the compress option.

date_timeofday
the date and time of day value, unique for each archive, but the same for each
segment file of a particular archive.

n segment number

m the total number of segments for the archive.

File attribute file
The File Attribute File (FAF) is included in the archive file along with the data set,
file or directory when it is archived. The FAF contains control tags that:
v Describe the attributes of the original data set, file or directory
v Provide information needed by GIMUNZIP to process the archive

The GIMUNZIP service routine uses the information in an FAF to reload the data
from an archive file. The FAF for a file or directory in the UNIX file system is

GIMZIP

Chapter 11. Service routines 487

created in the temporary working directory, just as it is for data sets. The FAF
control tags follow XML syntax rules, and their format is as follows:

File attribute file control tags (Part 1 of 2)

�� ��

FILELIST:

<FILELIST> FILEATTR for MVS data set
FILEATTR for UNIX file system
FILEATTR for VSAM data set

</FILELIST>

FILEATTR for MVS data set:

<FILEATTR name="MVS data set name"
description="file description"

�

�
type=" SMPHOLD "

SMPPTFIN
SMPRELF

level="vv.rr.mm.pp" dsntype=" LIBRARY "
PDS

dsorg=" PO "
PS

�

� recfm="recfm" lrecl="length"
lreclu="length"

blksize="size"
blksizeu="size"

�

� primary="prispace"
secondary="secspace" dirblocks="blocks"

allocunits=" BLOCK "
CYLINDER
RECORD
TRACK

�

�
length=" block length "

record length
avgrec=" U "

K
M

> </FILEATTR>

File attribute file control tags (Part 2 of 2)

�� ��

FILEATTR for UNIX file system:

<FILEATTR name="file or directory name"
description="file" type=" SMPHOLD "

SMPPTFIN

�

�
level="vv.rr.mm.pp"

dsorg="UFS" dsntype=" FILE "
DIR

> </FILEATTR>

FILEATTR for VSAM data set:

<FILEATTR name="VSAM cluster name"
description="file description" level="vv.rr.mm.pp"

�

GIMZIP

488 SMP/E V3R6.0 for z/OS V2R1.0 Reference

� dsorg="VSAM" dsntype=" ESDS "
KSDS
LDS
RRDS

lreclu="LRECL of REPROed data" blksizeu="BLKSIZE of REPROed data" �

� recfm="recfm" primary="prispace"
secondary="secspace"

allocunits=" BLOCK "
CYLINDER
RECORD
TRACK

�

�
length=" block length "

record length
avgrec=" U "

K
M

> �

�

�<DEFINECLUSTER component=" DATA "> <OPERAND>IDCAMS DEFINE</OPERAND> </DEFINECLUSTER>
INDEX

�

� </FILEATTR>

<FILELIST> Tag syntax: The <FILELIST> and corresponding </FILELIST> tags
identify the beginning and end of a group of file definitions.

<FILEATTR> Tag syntax: The <FILEATTR> and corresponding </FILEATTR>
tags identify the beginning and end of a file attribute definition for an archive file.
The following attributes may be found on the <FILEATTR> tag:

name="file name | pathname"
specifies one of the following:
v The name of the original MVS data set or VSAM cluster in this archive
v The pathname for the original UNIX file or directory in this archive

Note:

1. The first character of the absolute pathname of a file or directory in the
UNIX file system must be a slash (/).

2. If the value of the name attribute does not begin with a slash, it is assumed
to be an MVS data set name (sequential, partitioned, and VSAM data sets)
and must conform to the MVS data set naming conventions.

3. When a file or directory in the UNIX file system is specified, the name can
be from 1 to 1023 bytes long with 255 characters between delimiters (/).
The value can be any character from X'40' through X'FE' except '<', '>', '&',
and double quotation mark ("). All data beyond column 72 is ignored,
including blanks. The pathname of a file or directory in the UNIX file
system is case sensitive and will not to be converted to uppercase
alphabetic during GIMUNZIP processing. (Data set names are not case
sensitive. They will be converted to uppercase alphabetic during
GIMUNZIP processing.)

description="file description"
specifies a text description for the file. The value GIMZIP produces is copied
from the description value, if specified, on the corresponding input
<FILEDEF> tag. The description can be up to 500 characters long.

type="file type"
specifies a file type indicator that describes the contents of the file, identifies

GIMZIP

Chapter 11. Service routines 489

how the file is to be processed by GIMZIP, and also how the file will be
processed by the SMP/E RECEIVE command. Any of the following values
may be specified:

SMPHOLD
indicates that the data set or file contains SMP/E HOLDDATA
statements.

SMPPTFIN
indicates that the data set or file contains SMP/E modification control
statements (MCS).

SMPRELF
indicates that the data set contains an SMP/E RELFILE data set
associated with a SYSMOD contained in the SMPPTFIN file.

If the type attribute is not specified, then the data set specified on the name
attribute can be either sequential or partitioned.

level="vv.rr.mm.pp"
indicates the service level of the GIMZIP service routine used to create this file
attribute file. The individual values are as follows:

vv version

rr release

mm modification level

pp PTF level

dsntype="type"
specifies the type of partitioned data set, VSAM cluster, or UNIX file or
directory for the original data.

DIR indicates a directory in the UNIX file system.

FILE indicates a file in the UNIX file system.

ESDS indicates a VSAM cluster that is an entry sequence data set.

KSDS indicates a VSAM cluster that is a keyed sequence data set.

LDS indicates a VSAM cluster that is a linear data set.

RRDS indicates a VSAM cluster that is a relative record data set.

LIBRARY
indicates a PDSE partitioned data set.

PDS indicates a PDS partitioned data set.

dsorg="organization"
specifies the organization of the original data set, file, or directory.

PO indicates a partitioned data set

PS indicates a sequential data set

UFS indicates a file or directory in the UNIX file system

VSAM
indicates a VSAM cluster

recfm="format"
specifies:

GIMZIP

490 SMP/E V3R6.0 for z/OS V2R1.0 Reference

v When dsorg="PS" or dsorg="PO", the record format of the sequential or
partitioned MVS data set in an archive

v When dsorg="VSAM", the record format of the data set used to contain the
REPROed VSAM data

The value can be from 1 to 3 alphabetic characters.

lrecl="length"
specifies the logical record length of the original data set. The value can be
from 1 to 5 decimal digits.

lreclu="length"
specifies:
v When dsorg="PO", the logical record length of the IEBCOPY unloaded

format of the original data set
v When dsorg="VSAM", the logical record length of the data set used to

contain the REPROed VSAM data from the cluster

In either case, the value can be from 1 to 5 decimal digits.

blksize="size"
specifies the block size of the original data set. The value can be from 1 to 5
decimal digits in the range of 00000 through 32760.

blksizeu="size"
specifies:
v When dsorg="PO", the block size of the IEBCOPY unloaded format of the

original data set
v When dsorg="VSAM", the block size of the data set used to contain the

REPROed VSAM data from the cluster

In either case, the value can be from 1 to 5 decimal digits in the range of 00000
through 32760.

primary="prispace"
specifies:
v When dsorg="PS" or dsorg="PO", the primary space needed to reload the

sequential or partitioned MVS data set in an archive
v When dsorg="VSAM", the primary space needed to create a temporary data

set to contain the REPROed VSAM data

The value must be non-zero and can be from 1 to 8 decimal digits.

secondary="secspace"
specifies:
v When dsorg="PS" or dsorg="PO", the secondary space needed to reload the

sequential or partitioned MVS data set in an archive
v When dsorg="VSAM", the secondary space needed to create a temporary

data set to contain the REPROed VSAM data

The value must be non-zero and can be from 1 to 8 decimal digits.

dirblocks="blocks"
specifies the number of directory blocks in the original data set. The value
must be non-zero and can be from 1 to 5 decimal digits.

allocunits="units"
specifies:

GIMZIP

Chapter 11. Service routines 491

v When dsorg="PS" or dsorg="PO", the units to be used when allocating the
data set used to reload the sequential or partitioned MVS data set in an
archive

v When dsorg="VSAM", the units to be used to create a temporary data set to
contain the REPROed VSAM data

The value can be one of the following:

BLOCK
indicates space is to be allocated in blocks. The size of the blocks is
specified on the length attribute.

CYLINDER
indicates space is to be allocated in cylinders.

RECORD
indicates space is to be allocated in records. The average length of
these records is specified on the length attribute.

TRACK
indicates space is to be allocated in tracks.

length="average record length | block length"
specifies either the block length, or the average record length, used to allocate
the primary and secondary space for reloading the data from the archive. If
allocunits="BLOCK" is specified, then this value represents the block length. If
allocunits="RECORD" is specified, then this value represents the average
record length. The value of the length attribute must be from 1 to 5 decimal
digits and must be non-zero.

avgrec="multiplier"
indicates the multiplier for the primary and secondary space allocation values
only when allocunits="RECORD".

U indicates that the primary and secondary space quantities represent the
number of records in units (multiplier of 1).

K indicates that the primary and secondary space quantities represent the
number of records in thousands (multiplier of 1024 or 1K).

M indicates that the primary and secondary space quantities represent the
number of records in millions (multiplier of 1048576 or 1M).

v When dsorg="PS" or dsorg="PO", this value represents the multiplier to be
used for allocating the sequential or partitioned data set in an archive.

v When dsorg="VSAM", this value represents the multiplier to be used for
allocating the temporary data set to contain the REPROed VSAM data.

<DEFINECLUSTER> Tag syntax: The <DEFINECLUSTER> tag and
corresponding </DEFINECLUSTER> tag identify the beginning and end of
information that is needed to define a new VSAM cluster during GIMUNZIP
processing. The <DEFINECLUSTER> tag may be specified for the data component
of a VSAM cluster. The <DEFINECLUSTER> tag may also be specified for the
index component of a VSAM cluster if the cluster is a KSDS. The following
attribute is found on the <DEFINECLUSTER> tag:

component=
specifies the name of the component type of a VSAM cluster, and may be one
of the following values:

GIMZIP

492 SMP/E V3R6.0 for z/OS V2R1.0 Reference

"DATA"
indicates that the following <OPERAND> tags are providing
information to define the data component of a VSAM cluster.

"INDEX"
indicates that the following <OPERAND> tags are providing
information to define the index component of a VSAM KSDS cluster.

Following the <DEFINECLUSTER> tag is the <OPERAND> tag.

<OPERAND> Tag syntax: The <OPERAND> tag and corresponding
</OPERAND> tag identify the beginning and end of a valid IDCAMS DEFINE
command operand for GIMUNZIP processing when a new VSAM cluster must be
created in order to extract a VSAM archive. The <OPERAND> and
</OPERAND>tags can only be specified within a <DEFINECLUSTER> tag and
corresponding </DEFINECLUSTER> tag.

A maximum of 50 characters is allowed between the <OPERAND> tag and its
corresponding </OPERAND> end tag. Multiple <OPERAND> tags may be
specified to provide IDCAMS DEFINE command information.

NOTE::

Note: A portable package of software can be built either using GIMZIP, or
manually (without using GIMZIP). If a packager is building a GIMZIP-like
package manually and always intends that the users of the package will predefine
a VSAM cluster for usage by GIMUNZIP, the <DEFINECLUSTER> tag and its
imbedded <OPERAND> tags may be omitted from the FAF.

Syntax notes:

1. Data in columns 73 through 80 is ignored. If data is specified beyond column
72, it is ignored and an error in a following tag may be indicated.

2. File definition control tags may contain comments. Comments start with <!--
(hex 4C5A6060) and end with --> (hex 60606E). The first --> encountered after
the initial <!-- will end the comment. A comment may appear between a
start-tag and its matching end-tag, but never within a tag.

3. The space allocation for an archived data set is stored in the File Attribute File
in terms of AVGREC regardless of how the data set was originally allocated.
GIMZIP converts the current allocation information for a data set (as obtained
from its DSCBs) into record type allocation information using AVGREC (usually
set to U, although K could be used for extremely large data sets) and an
average record length equal to the data set block size. The data set allocated
using this information when an archive is retrieved by GIMUNZIP will
approximately equal in size (number of bytes) the original data set, but will not
use the same allocation units as the original data set that was archived by
GIMZIP.

File attribute file examples: The following is an example of a file attribute file for
a sequential data set containing modification control statements.

GIMZIP

Chapter 11. Service routines 493

The file attribute file included with the archive for file /CPACTST/DO000029/
SMPMCS from the example in Figure 99 on page 485 would look something like
this:

The file attribute file included with the archive for VSAM cluster
CPACTST.DO000029.MVS.GLOBAL.CSI from the example in Figure 99 on page
485 would look something like this:

<?xml version="1.0" ?>
<FILELIST>

<FILEATTR name="SAMPLE.FMID001.SMPMCS"
description="This is the SMPMCS file for FMID001."
level="02.07.00.35"
type="SMPPTFIN"
dsorg="PS"
recfm="FB"
lrecl="80"
blksize="6160"
allocunits="RECORD"
length="6160"
avgrec="U"
primary="24000">

</FILEATTR>

</FILELIST>

Figure 100. File attribute file (GIMFAF.XML) example for a sequential data set

<FILELIST>
<FILEATTR

name="/CPACTST/DO000029/SMPMCS"
description="This is the SMPMCS file for DO000029"
level="03.03.00.00"
type="SMPPTFIN"
dsntype="FILE"
dsorg="UFS">

</FILEATTR>
</FILELIST>

Figure 101. File attribute file example for a UNIX file

GIMZIP

494 SMP/E V3R6.0 for z/OS V2R1.0 Reference

Note: Blank lines and spaces have been added to the file attribute file for clarity,
but are not necessarily produced by the GIMZIP service routine, nor are they
required.

Return codes
GIMZIP may end with the following return codes:

Return code
Meaning

00 The input data was processed successfully.

04 A call to a system service may not have completed successfully.

12 One of the following:
v Required file attributes could not be obtained.
v Input data sets were not sequential, partitioned, or VSAM data sets, nor

files and directories in the UNIX file system.
v Call to a required system service failed.
v Syntax errors in the SYSIN data set.
v Data sets could not be opened.
v SMPDIR was not allocated to a UNIX directory.
v SMPDIR directory was not empty.
v Data sets, directories, or files were missing.
v Required modules could not be loaded.

16 One of the following:
v An I/O error occurred.

<FILELIST>
<FILEATTR

name="CPACTST.DO000029.MVS.GLOBAL.CSI"
description="This is an example VSAM cluster for the product."
level="03.03.00.00"
dsorg="VSAM"
dsntype="KSDS"
lreclu="32760"
blksizeu="27998"
recfm="VBS"
primary="2004"
secondary="1"
allocunits="BLOCK"
length="27998">
<DEFINECLUSTER component="DATA">

<OPERAND>KEYS(24 0)</OPERAND>
<OPERAND>RECORDSIZE(24 143)</OPERAND>
<OPERAND>FREESPACE(10 5)</OPERAND>
<OPERAND>CONTROLINTERVALSIZE(8192)</OPERAND>
<OPERAND>CYLINDERS(5 2)</OPERAND>
<OPERAND>SHAREOPTIONS(2 3)</OPERAND>

</DEFINECLUSTER>
<DEFINECLUSTER component="INDEX">

<OPERAND>CONTROLINTERVALSIZE(4096)</OPERAND>
<OPERAND>TRACKS(1 1)</OPERAND>
<OPERAND>SHAREOPTIONS(2 3)</OPERAND>

</DEFINECLUSTER>
</FILEATTR>
</FILELIST>

Figure 102. File attribute file example for a VSAM cluster

GIMZIP

Chapter 11. Service routines 495

v A syntax error was found on the EXEC statement parameters.

20 SMPOUT data set is missing.

> 20 Internal error. Report the error to the IBM Support Center.

GIMZIP

496 SMP/E V3R6.0 for z/OS V2R1.0 Reference

Chapter 12. GIMIAP: Copy utility invocation program

The SMP/E GENERATE command creates a job stream that builds a set of target
libraries from a set of distribution libraries. For data elements or hierarchical file
system elements, the GENERATE command builds a job (DEIINST for data
elements or HFSINST for hierarchical file system elements) to invoke the
appropriate copy utility for those elements. Each job step in the job installs
multiple elements from multiple distribution libraries into a single target library.
This is done by invoking the SMP/E program GIMIAP, which calls the appropriate
copy utility to do the actual installation.

Although GIMIAP is to be used only by SMP/E, you may need to understand the
control statements passed to the program. For example, you may need to diagnose
errors detected by GIMIAP (such as syntax errors or missing information). To help
you with this task, this chapter describes:
v The control statements used to invoke GIMIAP
v The return codes issued by GIMIAP
v The JCL statements used in the job that invokes GIMIAP

Control statements used to invoke GIMIAP
The GIMIAP program runs as a background job and is driven by control
statements that identify the following:
v The copy utility to be invoked
v The distribution and target libraries to be used for each invocation of GIMIAP
v The elements to be installed
v The parameters to be passed to the copy utility

These control statements are created by SMP/E during GENERATE processing and
are for use during GIMIAP processing. Each invocation of GIMIAP can install
many elements through multiple invocations of the copy utility. Each invocation of
the copy utility by GIMIAP installs a single element. These are the control
statements used for input to a GIMIAP step:
v INVOKE
v COPY
v SELECT

The INVOKE control statement
The INVOKE control statement identifies the copy utility that GIMIAP should
invoke.

The INVOKE control statement is always produced. There is one INVOKE control
statement for each job step (that is, one INVOKE control statement for each
invocation of GIMIAP). The INVOKE control statement must be the first control
statement and must be a single-card image (one 80-byte record).

© Copyright IBM Corp. 1986, 2014 497

INVOKE control statement

�� INVOKE COPY (name) LIST (YES)
NO REPLACE

HFSCOPY (name)

RC (rc) PRINT (ddname) • ��

The following operands are required on the INVOKE statement:

COPY
Specifies the name of the copy utility to be used when copying data elements
that do not need reformatting and are being installed into a partitioned data
set. The value of COPY is either the value of the NAME operand in the
UTILITY entry in effect at GENERATE time or the default of IEBCOPY.

HFSCOPY
Specifies the name of the copy utility to be used when copying hierarchical file
system elements. The value of HFSCOPY is either the value of the NAME
operand in the UTILITY entry in effect at GENERATE time or the default of
BPXCOPY.

LIST
Applies only when copying data elements. It specifies whether member names
should be listed during copy processing. This value is derived from the copy
utility entry in effect when the GENERATE command was issued.

YES
Indicates that member names should be listed during copy processing. This
is the default.

NO Indicates that the list of member names should be suppressed during copy
processing.

PRINT
Specifies the ddname that is to be used for print output generated by the
specified copy utility. The value of PRINT is either the value of the PRINT
operand in the UTILITY entry in effect at GENERATE time or the default of
SYSPRINT.

Note: If SYSTSPRT is specified as the PRINT value for the copy utility, it is
ignored and the default of SYSPRINT is used instead.

RC Specifies the highest acceptable return code from the specified copy utility. The
value of RC is either the value of the RC operand in the UTILITY entry in
effect at GENERATE time or the default of 0.

REPLACE
Applies only when copying data elements. It specifies whether existing
members are to be replaced when copying an element. If REPLACE is specified
on the GENERATE command, then it is specified on the INVOKE control
statement for data elements.

COPY control statement
A COPY control statement identifies the input and output libraries to be used for
the SELECT control statements that follow it. Each COPY statement identifies a
distribution library that has elements to be copied to a single target library.
Multiple COPY statements can identify the same target library.

GIMIAP

498 SMP/E V3R6.0 for z/OS V2R1.0 Reference

A COPY control statement must follow an INVOKE or SELECT control statement.
Also, each COPY control statement must be followed by at least one SELECT
control statement.

COPY control statement

�� COPY FROMLIB(ddname) TOLIB(ddname) • ��

The following operands are required on the COPY statement:

FROMLIB
is the ddname used by the copy utility as its input file for the source of the
element (that is, the distribution library). The name can be 1 to 8 characters
and must be composed of uppercase alphabetic, numeric, or national ($, #, @)
characters.

TOLIB
is the ddname used by the copy utility as its output file identifying where the
element is to be installed (that is, the target library). The name can be 1 to 8
characters and must be composed of uppercase alphabetic, numeric, or national
($, #, @) characters.

The SELECT control statement
The SELECT control statement identifies the element to be installed and the
operands to be passed to the copy utility or SMP/E to enable its installation. The
SELECT control statement must follow a COPY control statement and may span
multiple 80-byte records.

SELECT control statement

�� SELECT type(name)

�

�

,

ALIAS(alias)
,

EPARM(option)

SHSCRIPT ('/directory/file')
,PRE ,POST

• ��

type
is the type of the element to be processed. Any valid data element type or
hierarchical file system element type, including those with national language
identifiers, may be specified. An element type name is formed by stripping the
++ from the beginning of the name of the MCS for that element. For example,
the element type for an element defined by a ++CLIST MCS is CLIST, while
the element type for a ++HFSRMS MCS is HFSRMS. See “Data element MCS”
on page 10 for a list of data element MCS and “Hierarchical file system
element MCS” on page 26 for a list of hierarchical file system element MCS.

name
is the name of element to be processed.

ALIAS
specifies the list of alias names for the data element. This operand applies only
to data elements.

EPARM
is the parameter list to be passed for this invocation of the HFSCOPY utility.
This operand applies only to hierarchical file system elements. The parameter
list consists of an LL value and the actual execution parameters.

GIMIAP

Chapter 12. GIMIAP 499

v LL represents a halfword hexadecimal length of the character string (the
HFSCOPY utility execution parameters) immediately following it as part of
the EPARM value. The length of the character string described does not
include the opening parenthesis preceding the LL value nor the closing
parenthesis following the last option specified.
No blanks are allowed between the opening parenthesis and the LL value.
The opening parenthesis and the LL value must be in the same record.
Because the LL value is nondisplayable (ready-to-use) hexadecimal, it may
appear as blanks or odd characters. This is valid data and should not be
removed or modified.

v The option values are the execution parameters to be used by the HFSCOPY
utility for this invocation of the utility. SMP/E always supplies execution
parameters to the HFSCOPY utility, and the parameters are separated by
commas with no intervening blanks.
If the HFSCOPY UTILITY entry that is in effect supplies execution
parameters, these values precede the SMP/E-generated information. For
example, suppose the UTILITY entry has the following values:

NAME
MYHFSCPY

PRINT
MYPRINT

PARM A-PARM-FOR-MYHFSCPY
The character string for the execution parameters would be generated as:
LLA-PARM-FOR-MYHFSCPY,ELEMENT(hfselm1),TYPE(TEXT),LINK(’linknm01’))

If a PARM value of user_info is specified in an element's MCS, the character
string for the execution parameters would be generated as:
LLA-PARM-FOR-MYHFSCPY,user_info,ELEMENT(hfselm1),TYPE(TEXT),LINK(’linknm01’))

These are the parameters that are generated by SMP/E, using information in
the hierarchical file system element entry:

ELEMENT(element_name)
the name of the element to be installed in a UNIX file system. The
element_name is an unquoted character string 1 to 8 bytes long. It is
composed of uppercase alphabetic, numeric, or national ($, #, @)
characters.

LINK('linkname1','linkname2','linkname3'...)
the alternate names by which this element can be known in the target
library within a UNIX file system. A linkname can be up to 1023
characters long and can contain special characters other than just
uppercase alphabetic, numeric, or national ($, #, and @) characters.

SMP/E always puts apostrophes around each linkname and separates
multiple values with commas with no intervening blanks.

SYMLINK('linkname1','linkname2','linkname3'...)
a list of symbolic links, which are file names that can be used as
alternate names for referring to this element in a UNIX file system. Each
linkname listed here is associated with a pathname listed in the
SYMPATH operand. A symbolic link can be up to 1023 characters long
and can contain characters in the range X'40' through X'FE'.

SMP/E always puts apostrophes around each symbolic link and
separates multiple values with commas with no intervening blanks.

GIMIAP

500 SMP/E V3R6.0 for z/OS V2R1.0 Reference

SYMPATH('pathname1','pathname2','pathname3'...)
a list of pathnames that are associated with symbolic links identified by
the SYMLINK operand. A symbolic pathname can be up to 1023
characters long and can contain characters in the range X'40' through
X'FE'.

SMP/E always puts apostrophes around each symbolic pathname and
separates multiple values with commas with no intervening blanks.

SYMPATH appears if SYMLINK appears, otherwise it is omitted.

For information about how the pathnames and linknames are associated,
see the description of the SYMPATH operand and “Example 3:
Packaging a SYSMOD with a symbolic link” on page 35 in “Hierarchical
file system element MCS” on page 26.

TYPE(TEXT|BINARY)
the installation format for the element in a UNIX file system. SMP/E
generates this parameter from information stored in the element entry in
the target zone. If no setting exists for TEXT mode or BINARY mode,
SMP/E does not pass this parameter to the HFS copy utility.

SHSCRIPT
indicates that a UNIX shell script is to be invoked to complete the installation
of the selected element. This operand applies only to hierarchical file system
elements whose ELEMENT entry contains a SHSCRIPT subentry.

/directory/file
is the full path specification for the shell script to be invoked. The
/directory/file is derived from the SHELLSCR entry that matches the name
in the hierarchical file system element's SHSCRIPT subentry. The SYSLIB
subentry of the shell script identifies the ddname of the directory and the
shell script name itself is the file.

PRE
indicates the shell script is to be invoked before the selected element is
copied to the directory in a UNIX file system. This value is obtained from
the SHSCRIPT subentry of the selected element.

POST
indicates the shell script is to be invoked after the selected element is
copied to the directory in a UNIX file system. This value is obtained from
the SHSCRIPT subentry of the selected element.

Return codes
To help you diagnose errors, GIMIAP issues messages and return codes. The
messages are documented in SMP/E for z/OS Messages, Codes, and Diagnosis. Here is
a description of the return codes:

Return code Meaning
00 GIMIAP processing was successful. The message issued by GIMIAP states

that the invocation of GIMIAP was successful.
04 GIMIAP processing was successful. The message issued by GIMIAP states

that the invocation of GIMIAP was successful, but one or more of the
following has occurred:

v An ALIAS was not installed during element installation.

v The COPY or HFSCOPY utility issued a non-zero return code that is less
than or equal to the acceptable return code as defined in the RC operand of
the INVOKE statement.

GIMIAP

Chapter 12. GIMIAP 501

Return code Meaning
08 SMP/E processing errors occurred or a return code from the copy utility was

higher than the acceptable return code specified on the INVOKE control
statement. At least one element was not installed correctly, although an
attempt was made to install all elements to the target library. Review the copy
utility print output and SMPOUT output to determine the error. Correct the
problem and rerun the job step.

12 GIMIAP encountered an invalid control statement. As a result, the elements in
that job step were not installed. Once a control statement error is
encountered, no more elements are processed for that job step. The statement
must be corrected and the job step must be rerun. However, subsequent job
steps will be processed. The message issued by GIMIAP indicates how many
80-byte records had been processed when the syntax error was encountered.

16 A severe error was encountered. As a result, the elements in that job step
were not installed. After correcting the problem, the job step must be rerun.
However, subsequent job steps will be processed. The message issued by
GIMIAP indicates the cause of the problem, such as an I/O error on SYSIN,
an open failure on SYSIN or another ddname, a syntax error on the EXEC
parm, a syntax error on the control cards, or the absence of the copy utility.

20 A terminating error was encountered. The SMPOUT data set is not allocated
or cannot be opened. GIMIAP is terminated.

JCL statements used in the DEIINST or HFSINST job
JCL statements are created for the DEIINST or HFSINST job during the
GENERATE process. Along with the GIMIAP control statements for each job step,
the JCL is composed of:
v A JOB statement. The JOB statement describes current installation-dependent

parameters. The jobname is “DEIINST” when GIMIAP is to install data elements
or “HFSINST” for hierarchical file system elements.

v One or more EXEC statements. The EXEC statement specifies
PGM=GIMIAP,PARM='option'.
The step name is the name of the target library.
The following is an example of the EXEC statement to call GIMIAP:

EXEC
is the statement used to call GIMIAP. The EXEC statement must specify
PGM=GIMIAP. The following option may be specified on the EXEC
statement PARM operand:

LANGUAGE=xxx
where xxx can be one of the following:

ENU US English

JPN Japanese

The LANGUAGE option defines which language to use for GIMIAP
messages. LANGUAGE can also be specified as L. The LANGUAGE
value will be the same as was used on GIMSMP while the GENERATE
command was executed. If LANGUAGE is not specified, the default is
LANGUAGE=ENU.

//jobname JOB ...
//stepname EXEC PGM=GIMIAP,PARM=’option’

Figure 103. JCL to call GIMIAP

GIMIAP

502 SMP/E V3R6.0 for z/OS V2R1.0 Reference

v DD statements. The DD statements define the data sets to be used by GIMIAP
processing. The following ddnames are required:

dlib The file identified by a FROMLIB operand on a COPY control statement.

syslib The file identified by a TOLIB operand on a COPY control statement.

print This ddname is used by the copy utility for messages and processing
information. If no DDDEF is found for the print file during GENERATE
processing, the default of SYSOUT=* is generated. The ddname is the
same as is specified for the PRINT operand of the INVOKE statement
being used for the current invocation of GIMIAP.

SYSIN
Defines the input control stream for GIMIAP.

SMPOUT
The file to be used by the GIMIAP for message writing.

SYSPRINT
Contains output when GIMIAP is processing data elements or
hierarchical file system elements with shell scripts.

The following DD statements are required when processing data elements:

SYSUT1
The file identified for containing the input statements to the copy
program.

SYSUT3
A work file to be used by the copy program.

SYSUT4
A work file to be used by the copy program.

The following DD statement is required when processing file system elements
that require the invocation of a UNIX shell script, and the shell script uses Java
commands:

SMPJHOME
Directory in the UNIX file system that contains the Java runtime.

During GIMIAP processing (invoked from the JCL produced by the
GENERATE command), SMP/E can invoke a UNIX shell script to
perform installation activities on behalf of a ++HFS file. If the UNIX
shell script issues a Java command, the SMPJHOME DD statement is
required.

An SMPJHOME DD statement is created in the HFSINST job by the
GENERATE command, if an SMPJHOME DDDEF entry is defined at the
time the GENERATE command is run.

Figure 104 on page 504 illustrates the JCL statements that could be generated to
invoke GIMIAP processing for data elements and Figure 105 on page 505 illustrates
the JCL statements that could be generated to invoke GIMIAP processing for
hierarchical file system elements.

GIMIAP

Chapter 12. GIMIAP 503

----+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
�1�

//DEIINST JOB ’accounting info’,MSGLEVEL=(1,1)
�2�

//tgtlib01 EXEC PGM=GIMIAP,PARM=’LANGUAGE=ENU’ EXECDEI
//distlib1 DD distribution library DD info. distlib1
//distlib2 DD distribution library DD info. distlib2
//tgtlib01 DD target library 1 DD info tgtlib01
//* ------ work data sets ----------------
//SYSUT1 DD UNIT=SYSDA,SPACE=(TRK,(x,y)),DISP=(NEW,DELETE) SYSUT1
//SYSUT3 DD UNIT=SYSDA,SPACE=(TRK,(x,y)),DISP=(NEW,DELETE) SYSUT3
//SYSUT4 DD UNIT=SYSDA,SPACE=(TRK,(x,y)),DISP=(NEW,DELETE) SYSUT4
//SYSPRINT DD SYSOUT=* DEFAULT
//SMPOUT DD SYSOUT=* SMPOUT
//SYSIN DD * DEFAULT
INVOKE COPY(IEBCOPY) RC(0) PRINT(SYSPRINT) REPLACE.
COPY FROMLIB(distlib1) TOLIB(tgtlib01).
SELECT CLIST(elem1).
SELECT CLIST(elem2) ALIAS(elemA,elemB).
COPY FROMLIB(distlib2) TOLIB(tgtlib01).
SELECT CLIST(elem3) ALIAS(elemC).
SELECT CLIST(elem4).
/*

�2�
//tgtlib02 EXEC PGM=GIMIAP,PARM=’LANGUAGE=ENU’ EXECDEI
//distlib3 DD distribution library DD info. distlib3
//distlib4 DD distribution library DD info. distlib4
//tgtlib02 DD target library 2 DD info. tgtlib02
//* ------ work data sets ----------------
//SYSUT1 DD UNIT=SYSDA,SPACE=(TRK,(x,y)),DISP=(NEW,DELETE) SYSUT1
//SYSUT3 DD UNIT=SYSDA,SPACE=(TRK,(x,y)),DISP=(NEW,DELETE) SYSUT3
//SYSUT4 DD UNIT=SYSDA,SPACE=(TRK,(x,y)),DISP=(NEW,DELETE) SYSUT4
//SYSPRINT DD SYSOUT=* DEFAULT
//SMPOUT DD SYSOUT=* SMPOUT
//SYSIN DD * DEFAULT
INVOKE COPY(IEBCOPY) RC(0) PRINT(SYSPRINT) REPLACE.
COPY FROMLIB(distlib3) TOLIB(tgtlib02).
SELECT HELPENU(elem3).
SELECT HELPENU(elem4) ALIAS(elemD,elemE).
COPY FROMLIB(distlib4) TOLIB(tgtlib02).
SELECT HELPENU(elem5) ALIAS(elemF).
SELECT PNLENU(elem6).
/*

Additional information:

�1� The job name “DEIINST” is generated during the job creation process. A single job installs the data
elements.

�2� The job step name is the target library. Each job step installs multiple data elements from multiple
distribution libraries into a single target library.

Figure 104. Sample DEIINST job for GIMIAP

GIMIAP

504 SMP/E V3R6.0 for z/OS V2R1.0 Reference

----+----1----+----2----+----3----+----4----+----5----+----6----+----7----+----8
�1�

//HFSINST JOB ’accounting info’,MSGLEVEL=(1,1)
�2�

//tghfs01 EXEC PGM=GIMIAP EXECIAP
//distlib1 DD distribution library DD info. distlib1
//distlib2 DD distribution library DD info. distlib2
//tghfs01 DD PATH=’/Hierarchical/File/System/library1/DD/info/’ tghfs01
//SYSPRINT DD SYSOUT=* DEFAULT
//SYSIN DD * DEFAULT
INVOKE HFSCOPY(BPXCOPY) RC(0) PRINT(SYSPRINT)
COPY FROMLIB(distlib1) TOLIB(tgthfs01)
SELECT HFS(hfselm1) EPARM(LLELEMENT(hfselm1),LINK(’linkname01’,’linkname
thatislongerthanthefirstoneandshouldbemoreuserfriendly’),TYPE(BINARY))
SELECT HFS(hfselm2) EPARM(LLELEMENT(hfselm2),LINK(’linknm01’),TYPE(TEXT)
)
COPY FROMLIB(distlib2) TOLIB(tgthfs01)
SELECT HFS(hfselm3) EPARM(LLELEMENT(hfselm3),TYPE(TEXT))
SELECT HFS(hfselm4) EPARM(LLELEMENT(hfselm4),LINK(’linknm01’,’linknm02’,
’linknm03’,’linknm04’,’linknm05’))
/*

�2�
//tghfs02 EXEC PGM=GIMIAP EXECIAP
//distlib3 DD distribution library DD info. distlib3
//distlib4 DD distribution library DD info. distlib4
//tghfs02 DD PATH=’/Hierarchical/File/System/library2/DD/info/’ tghfs02
//SYSPRINT DD SYSOUT=* DEFAULT
//SYSIN DD * DEFAULT
INVOKE HFSCOPY(BPXCOPY) RC(0) PRINT(SYSPRINT)
COPY FROMLIB(distlib3) TOLIB(tgthfs02)
SELECT HFS(hfselm3) EPARM(LLELEMENT(hfselm3),LINK(’linknm01’,’linknm02’,
’linknm03’,’linknm04’),TYPE(TEXT))
SELECT HFS(hfselm4) EPARM(LLELEMENT(hfselm4),LINK(’linknm01’),TYPE(TEXT)
)
COPY FROMLIB(distlib4) TOLIB(tgthfs02)
SELECT HFS(hfselm5) EPARM(LLELEMENT(hfselm5),TYPE(TEXT))
SELECT HFS(hfselm6) EPARM(LLELEMENT(hfselm6),LINK(’linknm01’,’linknm02’,
’linknm03’,’linknm04’,’linknm05’),TYPE(TEXT))
/*

Additional information:

�1� The job name “HFSINST” is generated during the job creation process. A single job installs all
hierarchical file system elements.

�2� The job step name on the EXEC statement is the target library within a UNIX file system. Each job step
installs multiple hierarchical file system elements from multiple distribution libraries into a single target
library within a UNIX file system.

Figure 105. Sample HFSINST job for invoking GIMIAP

Chapter 12. GIMIAP 505

506 SMP/E V3R6.0 for z/OS V2R1.0 Reference

Appendix A. SMP/E naming conventions

This appendix describes the naming conventions used by SMP/E. Table 61
summarizes the naming conventions you need to follow when using SMP/E. After
this table are details on the naming conventions IBM follows for:
v HOLD reason IDs and classes
v Source IDs
v SYSMODs

Table 61. Summary of SMP/E naming conventions

Entry or value Number of characters Other requirements

DDDEF entry 1–8 alphabetic (A–Z), national (@, #, or $), or
numeric (0–9) characters

v The first character must be alphabetic or
national

v Must match ddname of data set

DLIB zone or
DLIBZONE entry

1–7 alphanumeric (A–Z, 0–9) or national ($,
#, @) characters

The first character must be alphabetic.

Element entry 1–8 alphanumeric (A–Z, 0–9) characters Naming convention for first character:

A–I Used by IBM

J–Z Available for users

FMID see SYSMOD ID

FMIDSET entry 1–8 alphanumeric (A–Z, 0–9) characters

Global zone or
GLOBALZONE entry

Must be GLOBAL

Hold class 1–7 alphanumeric (A–Z, 0–9) characters Naming convention for first character:

A Reserved for IBM use

V Reserved for user-assigned values

For a description of the hold classes used by
IBM, see “Class values” on page 510.

Hold reason ID: error 1–7 alphanumeric (A–Z, 0–9) characters Number of the APAR used to report an error
in a PTF

For details on the conventions IBM follows,
see “Error reason IDs” on page 508.

Hold reason ID:
system

1–7 alphanumeric (A–Z, 0–9) characters Naming convention for first character:

A–U Reserved for IBM use

V–Z Reserved for user-assigned values

For a description of the system reason IDs
used by IBM, see “System reason IDs” on
page 508.

Hold reason ID: user 1–7 alphanumeric (A–Z, 0–9) characters To avoid conflicts with IBM reason IDs,
follow the conventions for system reason
IDs.

For details on the conventions IBM follows,
see “User reason IDs” on page 510.

© Copyright IBM Corp. 1986, 2014 507

Table 61. Summary of SMP/E naming conventions (continued)

Entry or value Number of characters Other requirements

OPTIONS entry 1–8 alphanumeric (A–Z, 0–9) characters

Source ID 1–64 characters in length, consisting of any
nonblank character (X'41' through X'FE')
except single quotation mark ('), asterisk (*),
percent (%), comma (,), left parenthesis ((),
and right parenthesis ()).

For a description of the source IDs used by
IBM, see “Naming conventions for source
IDs” on page 511.

SYSMOD ID 7 alphanumeric (A–Z, 0–9) characters Must start with a letter. Naming convention
for first character:

A–K Used by IBM for functions

L–T Available for users

U Used by IBM for PTFs

V–Z Used by IBM for APARs

For details on the conventions IBM follows,
see “Naming conventions for SYSMODs” on
page 512.

Target zone or
TARGETZONE entry

1–7 alphanumeric (A–Z, 0–9) or national ($,
#, @) characters

The first character must be alphabetic.

UTILITY entry 1–8 alphanumeric (A–Z, 0–9) characters Must match the associated name specified in
the appropriate OPTIONS entry

Should match the name of the associated
utility program

ZONESET entry 1–8 alphanumeric (A–Z, 0–9) characters Avoid using the same name as any of the
target or DLIB zones defined in the global
zone containing the ZONESET entry

Naming conventions for HOLD reason IDs and HOLD classes
The ++HOLD statement prevents SMP/E from installing a SYSMOD until some
special action is taken. The type of action is indicated by the reason ID or class
specified on the ++HOLD statement. A reason ID or class value can contain from 1
to 7 alphanumeric characters. To prevent conflicts between IBM- and user-specified
values, there are naming conventions for the three types of HOLD reason IDs
(error, system, and user), as well as for HOLD classes.

Error reason IDs
The reason ID for an error HOLD is the number of the APAR used to report an
error in a PTF. Therefore, error reason IDs follow the naming conventions for
APARs. These are described under “PTF, APAR, and USERMOD SYSMOD IDs” on
page 512.

System reason IDs
The reason ID for a system HOLD is generally a brief indication of the kind of
processing the SYSMOD requires. These are the values currently used by IBM:

ID Explanation

ACTION
The SYSMOD needs special handling before or during APPLY processing,
ACCEPT processing, or both.

Naming conventions

508 SMP/E V3R6.0 for z/OS V2R1.0 Reference

AO The SYSMOD may require action to change automated operations
procedures and associated data sets and user exits in products or in
customer applications. The PTF cover letter describes any changes (such as
to operator message text, operator command syntax, or expected actions
for operator messages and commands) that can affect automation routines.

DB2BIND
A DB2 application REBIND is required for the SYSMOD to become
effective.

DDDEF
Data set changes or additions as required.

DELETE
The SYSMOD contains a ++DELETE MCS, which deletes a load module
from the system.

DEP The SYSMOD has a software dependency.

DOC The SYSMOD has a documentation change that should be read before the
SYSMOD is installed.

DOWNLD
Code that is shipped with maintenance that needs to be downloaded.

DYNACT
The changes supplied by the SYSMOD may be activated dynamically
without requiring an IPL. The HOLD statement describes the instructions
required for dynamic activation. If those instructions are not followed, then
an IPL is required for the SYSMOD to take effect.

EC The SYSMOD needs a related engineering change.

ENH The SYSMOD contains an enhancement, new option or function. The
HOLD statement provides information to the user regarding the
implementation and use of the enhancement.

EXIT The SYSMOD contains changes that may affect a user exit. For example,
the interface for an exit may be changed, an exit may need to be
reassembled, or a sample exit may be changed.

EXRF The SYSMOD must be installed in both the active and the alternative
Extended Recovery Facility (XRF) systems at the same time to maintain
system compatibility. (If you are not running XRF, you should bypass this
reason ID.)

FULLGEN
The SYSMOD needs a complete system or subsystem generation to take
effect.

IOGEN
The SYSMOD needs a system or subsystem I/O generation to take effect.

IPL The SYSMOD requires an IPL to become effective. For example, the
SYSMOD may contain changes to LPA or NUCLEUS, the changes may
require a CLPA, or a failure to perform an IPL might lead to catastrophic
results, such as could be caused by activation of a partial fix.

Note: If you plan to perform an IPL with CLPA after the SYSMOD has
been applied, then no further investigation of the HOLD is required;
simply bypass the IPL reason ID. However, if you are not planning to

Naming conventions

Appendix A. SMP/E naming conventions 509

perform an IPL with CLPA, then the details of the HOLD statement must
be investigated to determine what kind of actions are required to activate
the SYSMOD.

MSGSKEL
This SYSMOD contains message changes that must be compiled for
translated versions of the message changes to become operational on
extended TSO consoles.

If you want to use translated versions of the messages, you must run the
message compiler once for the library containing the English message
outlines, and once for each additional language you want to be available
on your system. For details, see z/OS MVS Planning: Operations.

If you want to use only the English version of the messages, you do not
need to run the message compiler. You should bypass this reason ID.

MULTSYS
Identifies fixes that need to be applied to multiple systems, in one of three
cases: preconditioning, coexistence, or exploitation.

RESTART
To become effective, the SYSMOD requires a special subsystem restart
operation. The HOLD statement contains information regarding the
required restart actions.

User reason IDs
The reason ID for a user HOLD is whatever you think is appropriate to describe
why the SYSMOD should be held. Because IBM does not use these reason IDs,
there are no restrictions on the values you can use. However, to prevent possible
confusion with other IBM reason IDs, follow the naming conventions for system
reason IDs.

Class values
A class value indicates an alternative way to release a held SYSMOD. These are the
values currently used by IBM:

Class Explanation

ERREL
The SYSMOD is held for an error reason ID but should be installed
anyway. IBM has determined that the problem the SYSMOD resolves is
significantly more critical than the error reflected by the holding APAR.

HIPER
The SYSMOD is held with a hold class of HIPER (High Impact)

PE The SYSMOD is held with a hold class of “PTF in Error”.

UCLREL
UCLIN needed for the SYSMOD has been handled by IBM and no longer
requires your attention.

YR2000
Identifies PTFs that provide Year 2000 function, or fix a Year 2000-related
problem.

Naming conventions

510 SMP/E V3R6.0 for z/OS V2R1.0 Reference

Naming conventions for source IDs
With the SOURCEID operand, you can associate a name (a source ID) with each
SYSMOD processed by a single RECEIVE command, and then later process those
SYSMODs as a group by using that source ID. The following values are currently
used by IBM.

RSUyymm
This is the indicator used to identify a Recommended Service Upgrade. For
more information about RSU, see SMP/E for z/OS User's Guide.

PUTyymm
Each PTF is assigned a source ID in the format PUTyymm.
v yy is the year the PTF was made available as preventive service.
v mm is the month the PTF was made available as preventive service.

The PUTyymm source ID represents a monthly accumulation of PTFs that
have been COR-closed (made available for corrective service) within a
given month and assigned a RETAIN VOLID indicating this. The RETAIN
VOLID reflects the monthly PUTyymm level no later than the 15th of the
following month. For example, PUT0706 represents PTFs that were
COR-closed in June 2008 and assigned a RETAIN VOLID of 0706 between
July 1 and July 15.

SMCCOR
This indicates a PTF that is approved for distribution, but has not been
assigned a monthly PUTyymm source ID at the time your order was
created. SMCCOR PTFs are not necessary for installation; however, they
are made available for corrective service. If you plan to install any of the
PTFs with this source ID, refer to the CORPE PSP bucket or latest available
PUT bucket for the most current HOLD information. These PTFs are
provided in case you experience the problem they fix and need to install
them as corrective service.

SMCREC
This indicates a PTF that is approved for distribution and is recommended
for installation, but has not been assigned a monthly PUTyymm source ID
at the time your order was created. These PTFs should be installed on your
system. They were assigned a source ID of SMCREC for one of the
following reasons:
v The PTF is needed to install a product.
v The PTF is needed to support new hardware.
v The PTF resolves an error for another PTF (PE-PTF).

To further enhance your ability to selectively install PUTyymm and
SMCREC PTFs, the additional SOURCEIDs listed in this section are
assigned to the applicable PTFs. (There will be PUTyymm and SMCREC
PTFs that do not fit into the following categories and, therefore, are not
assigned multiple source IDs.)

HIPER
Identifies PTFs resolving a high-impact APAR

SPE Identifies PTFs that are small programming enhancements

PRP Identifies PTFs that resolve PTFs in error

OS390Rn
This indicates a PTF that is at the integration tested level for OS/390
Release n.

Naming conventions

Appendix A. SMP/E naming conventions 511

YR2000
This identifies PTFs that provide Year 2000 function, or fix a Year
2000-related problem.

Naming conventions for SYSMODs
The specific naming conventions for a SYSMOD ID depend on the type of
SYSMOD: function, PTF, APAR, or USERMOD. The following sections define IBM's
naming conventions for SYSMOD IDs. This information is provided to help you
develop a naming scheme for your own SYSMODs and avoid conflicts with
IBM-written SYSMODs. However, these conventions are not requirements for
user-written SYSMODs, and SMP/E does not check whether a SYSMOD ID follows
these conventions.

Function SYSMOD IDs
The IBM convention for the SYSMOD ID of a function SYSMOD is tcccrrr, where:

t is the type of function. These are the values used by IBM:

A Licensed vendor or business partner base function

B Licensed vendor or business partner dependent function

C, D Reserved for future use

E Unlicensed base function

F Unlicensed dependent function

G Reserved for future use

H Licensed base function

I Reserved for future use

J Licensed dependent function

K Reserved for future use

Names of user-written functions can start with any letters other than these.

ccc For functions provided by IBM, this is the product code. It must be three
alphanumeric characters (no vowels).

rrr For functions provided by IBM, this is the release number. It identifies a
specific function within a product. These three characters identify a specific
release of a product function and must be alphanumeric.

Note: The former convention for the SYSMOD ID of a function was tvvvrrr.

PTF, APAR, and USERMOD SYSMOD IDs
The IBM convention for the SYSMOD ID of a service SYSMOD (APAR, APAR fix,
PTF) or USERMOD is tannnnn, where:

t identifies the type of SYSMOD. It is a single alphanumeric character. These
are the values used by IBM:

A–K Used by IBM for various levels of an APAR fix

L–T Available for users

U Used by IBM for PTFs

V–Z Used by IBM for various levels of an APAR fix

Naming conventions

512 SMP/E V3R6.0 for z/OS V2R1.0 Reference

a is any alphabetic character (A-Z). Any valid character can be used for user
SYSMODs.

nnnnn is an additional identifier for the SYSMOD. For PTFs and APAR fixes
supplied by IBM, it is a number from 00001 to 99999. Any valid characters
can be used for user SYSMODs.

Naming conventions

Appendix A. SMP/E naming conventions 513

Naming conventions

514 SMP/E V3R6.0 for z/OS V2R1.0 Reference

Appendix B. Accessibility

Accessible publications for this product are offered through the z/OS Information
Center.

If you experience difficulty with the accessibility of any z/OS information, please
send a detailed message to mhvrcfs@us.ibm.com or to the following mailing
address:

IBM Corporation
Attention: MHVRCFS Reader Comments
Department H6MA, Building 707
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Accessibility features

Accessibility features help a user who has a physical disability, such as restricted
mobility or limited vision, to use software products successfully. The major
accessibility features in z/OS enable users to:
v Use assistive technologies such as screen readers and screen magnifier software
v Operate specific or equivalent features using only the keyboard
v Customize display attributes such as color, contrast, and font size.

Using assistive technologies
Assistive technology products, such as screen readers, function with the user
interfaces found in z/OS. Consult the assistive technology documentation for
specific information when using such products to access z/OS interfaces.

Keyboard navigation of the user interface
Users can access z/OS user interfaces using TSO/E or ISPF. Refer to z/OS TSO/E
Primer, z/OS TSO/E User's Guide, and z/OS ISPF User's Guide Vol I for information
about accessing TSO/E and ISPF interfaces. These guides describe how to use
TSO/E and ISPF, including the use of keyboard shortcuts or function keys (PF
keys). Each guide includes the default settings for the PF keys and explains how to
modify their functions.

Dotted decimal syntax diagrams
Syntax diagrams are provided in dotted decimal format for users accessing the
z/OS Information Center using a screen reader. In dotted decimal format, each
syntax element is written on a separate line. If two or more syntax elements are
always present together (or always absent together), they can appear on the same
line, because they can be considered as a single compound syntax element.

Each line starts with a dotted decimal number; for example, 3 or 3.1 or 3.1.1. To
hear these numbers correctly, make sure that your screen reader is set to read out
punctuation. All the syntax elements that have the same dotted decimal number
(for example, all the syntax elements that have the number 3.1) are mutually

© Copyright IBM Corp. 1986, 2014 515

http://www-01.ibm.com/support/knowledgecenter/SSLTBW/welcome?lang=en
http://www-01.ibm.com/support/knowledgecenter/SSLTBW/welcome?lang=en
http://www-01.ibm.com/support/knowledgecenter/SSLTBW/welcome?lang=en

exclusive alternatives. If you hear the lines 3.1 USERID and 3.1 SYSTEMID, you
know that your syntax can include either USERID or SYSTEMID, but not both.

The dotted decimal numbering level denotes the level of nesting. For example, if a
syntax element with dotted decimal number 3 is followed by a series of syntax
elements with dotted decimal number 3.1, all the syntax elements numbered 3.1
are subordinate to the syntax element numbered 3.

Certain words and symbols are used next to the dotted decimal numbers to add
information about the syntax elements. Occasionally, these words and symbols
might occur at the beginning of the element itself. For ease of identification, if the
word or symbol is a part of the syntax element, it is preceded by the backslash (\)
character. The * symbol can be used next to a dotted decimal number to indicate
that the syntax element repeats. For example, syntax element *FILE with dotted
decimal number 3 is given the format 3 * FILE. Format 3* FILE indicates that
syntax element FILE repeats. Format 3* * FILE indicates that syntax element *
FILE repeats.

Characters such as commas, which are used to separate a string of syntax
elements, are shown in the syntax just before the items they separate. These
characters can appear on the same line as each item, or on a separate line with the
same dotted decimal number as the relevant items. The line can also show another
symbol giving information about the syntax elements. For example, the lines 5.1*,
5.1 LASTRUN, and 5.1 DELETE mean that if you use more than one of the
LASTRUN and DELETE syntax elements, the elements must be separated by a
comma. If no separator is given, assume that you use a blank to separate each
syntax element.

If a syntax element is preceded by the % symbol, this indicates a reference that is
defined elsewhere. The string following the % symbol is the name of a syntax
fragment rather than a literal. For example, the line 2.1 %OP1 means that you
should refer to separate syntax fragment OP1.

The following words and symbols are used next to the dotted decimal numbers:
v ? means an optional syntax element. A dotted decimal number followed by the ?

symbol indicates that all the syntax elements with a corresponding dotted
decimal number, and any subordinate syntax elements, are optional. If there is
only one syntax element with a dotted decimal number, the ? symbol is
displayed on the same line as the syntax element, (for example 5? NOTIFY). If
there is more than one syntax element with a dotted decimal number, the ?
symbol is displayed on a line by itself, followed by the syntax elements that are
optional. For example, if you hear the lines 5 ?, 5 NOTIFY, and 5 UPDATE, you
know that syntax elements NOTIFY and UPDATE are optional; that is, you can
choose one or none of them. The ? symbol is equivalent to a bypass line in a
railroad diagram.

v ! means a default syntax element. A dotted decimal number followed by the !
symbol and a syntax element indicates that the syntax element is the default
option for all syntax elements that share the same dotted decimal number. Only
one of the syntax elements that share the same dotted decimal number can
specify a ! symbol. For example, if you hear the lines 2? FILE, 2.1! (KEEP), and
2.1 (DELETE), you know that (KEEP) is the default option for the FILE keyword.
In this example, if you include the FILE keyword but do not specify an option,
default option KEEP will be applied. A default option also applies to the next
higher dotted decimal number. In this example, if the FILE keyword is omitted,
default FILE(KEEP) is used. However, if you hear the lines 2? FILE, 2.1, 2.1.1!

516 SMP/E V3R6.0 for z/OS V2R1.0 Reference

(KEEP), and 2.1.1 (DELETE), the default option KEEP only applies to the next
higher dotted decimal number, 2.1 (which does not have an associated
keyword), and does not apply to 2? FILE. Nothing is used if the keyword FILE
is omitted.

v * means a syntax element that can be repeated 0 or more times. A dotted
decimal number followed by the * symbol indicates that this syntax element can
be used zero or more times; that is, it is optional and can be repeated. For
example, if you hear the line 5.1* data area, you know that you can include one
data area, more than one data area, or no data area. If you hear the lines 3*, 3
HOST, and 3 STATE, you know that you can include HOST, STATE, both
together, or nothing.

Note:

1. If a dotted decimal number has an asterisk (*) next to it and there is only one
item with that dotted decimal number, you can repeat that same item more
than once.

2. If a dotted decimal number has an asterisk next to it and several items have
that dotted decimal number, you can use more than one item from the list,
but you cannot use the items more than once each. In the previous example,
you could write HOST STATE, but you could not write HOST HOST.

3. The * symbol is equivalent to a loop-back line in a railroad syntax diagram.
v + means a syntax element that must be included one or more times. A dotted

decimal number followed by the + symbol indicates that this syntax element
must be included one or more times; that is, it must be included at least once
and can be repeated. For example, if you hear the line 6.1+ data area, you must
include at least one data area. If you hear the lines 2+, 2 HOST, and 2 STATE,
you know that you must include HOST, STATE, or both. Similar to the * symbol,
the + symbol can only repeat a particular item if it is the only item with that
dotted decimal number. The + symbol, like the * symbol, is equivalent to a
loop-back line in a railroad syntax diagram.

Appendix B. Accessibility 517

518 SMP/E V3R6.0 for z/OS V2R1.0 Reference

Notices

This information was developed for products and services offered in the U.S.A. or
elsewhere.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

© Copyright IBM Corp. 1986, 2014 519

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

Site Counsel
IBM Corporation
2455 South Road
Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this information and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement, or any equivalent agreement
between us.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

COPYRIGHT LICENSE:

This information might contain sample application programs in source language,
which illustrate programming techniques on various operating platforms. You may
copy, modify, and distribute these sample programs in any form without payment
to IBM, for the purposes of developing, using, marketing or distributing
application programs conforming to the application programming interface for the
operating platform for which the sample programs are written. These examples
have not been thoroughly tested under all conditions. IBM, therefore, cannot
guarantee or imply reliability, serviceability, or function of these programs. The
sample programs are provided "AS IS", without warranty of any kind. IBM shall
not be liable for any damages arising out of your use of the sample programs.

Policy for unsupported hardware
Various z/OS elements, such as DFSMS, HCD, JES2, JES3, and MVS, contain code
that supports specific hardware servers or devices. In some cases, this
device-related element support remains in the product even after the hardware
devices pass their announced End of Service date. z/OS may continue to service
element code; however, it will not provide service related to unsupported
hardware devices. Software problems related to these devices will not be accepted

520 SMP/E V3R6.0 for z/OS V2R1.0 Reference

for service, and current service activity will cease if a problem is determined to be
associated with out-of-support devices. In such cases, fixes will not be issued.

Minimum supported hardware
The minimum supported hardware for z/OS releases identified in z/OS
announcements can subsequently change when service for particular servers or
devices is withdrawn. Likewise, the levels of other software products supported on
a particular release of z/OS are subject to the service support lifecycle of those
products. Therefore, z/OS and its product publications (for example, panels,
samples, messages, and product documentation) can include references to
hardware and software that is no longer supported.
v For information about software support lifecycle, see: IBM Lifecycle Support for

z/OS (http://www.ibm.com/software/support/systemsz/lifecycle/)
v For information about currently-supported IBM hardware, contact your IBM

representative.

Programming interface information
This publication is intended to help you understand the output from SMP/E
processing.

This publication also documents intended Programming Interfaces that allow the
customer to write programs to obtain the services of IBM SMP/E for z/OS, V3R6.
This Programming Interface information is identified where it occurs by an
introductory statement to a chapter or section.

This publication also documents information that is not intended to be used as a
Programming Interface of IBM SMP/E for z/OS, V3R6. This information is
identified where it occurs by an introductory statement to a chapter or section.

Trademarks
IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at "Copyright and
trademark information" at Copyright and Trademark information
(http://www.ibm.com/legal/copytrade.shtml).

Special attributions
Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

Notices 521

http://www.ibm.com/software/support/systemsz/lifecycle/
http://www.ibm.com/software/support/systemsz/lifecycle/
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

522 SMP/E V3R6.0 for z/OS V2R1.0 Reference

Index

Special characters
?PKGHASH

tag syntax 484
++APAR MCS

examples 6
operands

DESCRIPTION 6, 23
FILES 6
REWORK 6
RFDSNPFX 7
SYSMOD ID 7

overview 6
syntax 6

++ASMIN
ASSEM subentry 183

++ASSIGN MCS
coding considerations 8
examples 8
operands

SOURCEID 8
TO 8

overview 8
syntax 8

++DELETE MCS
coding considerations 17
examples 17
operands

ALIAS 17
name 18
SYSLIB 18

overview 17
syntax 17

++ENDASMIN
ASSEM subentry 183

++ENDLMODIN
LMOD subentry 250

++FEATURE MCS
coding considerations 21
example 21
operands 21

DESCRIPTION 21
FMID 21
PRODUCT 21
REWORK 21

overview 21
syntax 21

++FUNCTION MCS
coding considerations 23
examples 23
operands

FESN 23
FILES 23
REWORK 24
RFDSNPFX 24
SYSMOD ID 24

overview 23
syntax 23

++HOLD MCS
coding considerations 37
examples 37

++HOLD MCS (continued)
operands

CATEGORY 37
CLASS 38
COMMENT 39
DATE 40
ERROR 40
FIXCAT 40
FMID 40
REASON 40
RESOLVER 43
SYSMOD ID 43
SYSTEM 40
USER 40

overview 37
syntax 37

++IF MCS
coding considerations 45
examples 45
operands

FMID 45
REQ 45
THEN 45

overview 45
syntax 45

++JAR MCS
coding considerations 53
examples 53
operands

DELETE 48
DISTLIB 48
JARPARM 49
LINK 49
name 50
PARM 50
RELFILE 51
RMID 51
SHSCRIPT 51
SYMLINK 52
SYMPATH 52
SYSLIB 53
TXLIB 53
UMID 53
VERSION 53

overview 47
syntax 47

++JARUPD MCS
coding considerations 54
examples 54
operands

JARPARM 55
LINK 55
name 56
PARM 56
RELFILE 56
SYMLINK 56
SYMPATH 57
TXLIB 57

overview 54
syntax 54

++JCLIN MCS
coding considerations 59
examples 59
operands

ASM 59
CALLLIBS 59
COPY 59
LKED 60
OPCODE 60
RELFILE 60
TXLIB 60
UPDATE 61

overview 59
syntax 59

++LMODIN
LMOD subentry 250

++MAC MCS
coding considerations 68
example 68
operands

ASSEM 64
DELETE 65
DISTLIB 65
DISTMOD 65
DISTSRC 65
MALIAS 66
name 66
PREFIX 66
RELFILE 67
RMID 67
SSI 67
SYSLIB 67
TXLIB 67
UMID 67
VERSION 68

overview 64
syntax 64

++MACUPD MCS
coding considerations 71
example 71
operands

ASSEM 71
DISTLIB 71
DISTMOD 72
DISTSRC 72
MALIAS 72
name 72
PREFIX 72
SYSLIB 72

overview 71
syntax 71

++MOD MCS
coding considerations 80
examples 80
operands

CSECT 76
DALIAS 76
DELETE 76
DISTLIB 76
LEPARM 77
LKLIB 78

© Copyright IBM Corp. 1986, 2014 523

++MOD MCS (continued)
operands (continued)

LMOD 78
name 79
RELFILE 79
RMID 79
TALIAS 79
TXLIB 79
UMID 80
VERSION 80

overview 75
syntax 75

++MOVE MCS
coding considerations 85
examples 85
operands

DISTLIB 84
FMID 84
LMOD 84
MAC 84
MOD 84
name 85
SRC 84
SYSLIB 85
TODISTLIB 85
TOSYSLIB 85

overview 84
syntax 84

++NULL MCS
overview 87
syntax 87

++PRODUCT MCS
coding considerations 88
example 88
operands 88

DESCRIPTION 88
PRODSUP 89
REWORK 90
SREL 89
URL 89
VENDOR 89

overview 88
syntax 88

++PROGRAM MCS
coding considerations 93
examples 94
operands

ALIAS 91
DELETE 91
DISTLIB 92
FROMDS 92
LKLIB 92
name 93
RELFILE 93
RMID 93
SYSLIB 93
VERSION 93

overview 91
syntax 91

++PTF MCS
coding considerations 96
examples 96
operands

DESCRIPTION 96
FILES 96
REWORK 97
RFDSNPFX 97

++PTF MCS (continued)
operands (continued)

SYSMOD ID 97
overview 96
syntax 96

++RELEASE MCS
coding considerations 99
examples 99
operands

DATE 100
ERROR 99
FIXCAT 99
FMID 100
REASON 100
SYSMOD ID 102
SYSTEM 99
USER 99

overview 99
syntax 99

++RENAME MCS
coding considerations 104
examples 104
operands

oldname 104
TONAME 104

overview 104
syntax 104

++SRC MCS
coding considerations 108
examples 109
operands

DELETE 106
DISTLIB 107
DISTMOD 107
name 107
RELFILE 107
RMID 108
SSI 108
SYSLIB 108
TXLIB 108
UMID 108
VERSION 108

overview 106
syntax 106

++SRCUPD MCS
coding considerations 111
examples 111
operands

DISTLIB 111
DISTMOD 111
name 111
SYSLIB 111

overview 111
syntax 111

++USERMOD MCS
coding considerations 114
examples 114
operands

DESCRIPTION 114
FILES 114
REWORK 115
RFDSNPFX 115
SYSMOD ID 115

overview 114
syntax 114

++VER MCS
coding considerations 117

++VER MCS (continued)
examples 117
operands

DELETE 117
FMID 117
NPRE 118
PRE 118
REQ 118
SREL 118
SUP 119
VERSION 119

overview 117
syntax 117

++ZAP MCS
coding considerations 123
examples 123
operands

DALIAS 123
DISTLIB 123
name 123
TALIAS 123

overview 123
syntax 123

A
AC=1

LMOD subentry 246
MOD entry 270

ACCDATE
SYSMOD subentry

distribution zone 315
ACCEPT

SYSMOD subentry
distribution zone 312

accessibility 515
contact IBM 515
features 515

ACCID
SYSMOD subentry

global zone 326
ACCJCLIN

DLIBZONE subentry 212
ACCTIME

SYSMOD subentry
distribution zone 315

ACTION reason ID 41, 100, 508
ALIAS

++DELETE MCS operand 17
++PROGRAM MCS operand 91
data element entry 190
data element MCS operand 13
PROGRAM entry 301
SELECT control statement

operand 499
alias names

++DELETE MCS operand 17
load modules 79

ALIASES
LMOD subentry 246

ALIGN2
LMOD subentry 246
MOD entry 270

allocating data sets
DDDEF entry 194
summary 139

524 SMP/E V3R6.0 for z/OS V2R1.0 Reference

AMODE=24
LMOD subentry 246
MOD entry 270

AMODE=31
LMOD subentry 246
MOD entry 270

AMODE=64
LMOD subentry 246
MOD entry 271

AMODE=ANY
LMOD subentry 246
MOD entry 271

AMODE=MIN
LMOD subentry 247
MOD entry 271

AMS
OPTIONS subentry 285

AMS utility
default values 285, 340
UTILITY entry for 285

AO reason ID 41, 100, 509
APAR fixes

defining 6
MCS statement for 6
naming conventions 512
SYSMOD subentry for

distribution zone 313
global zone 327
target zone 313

APARS
ORDER subentry 296

APPDATE
SYSMOD subentry

target zone 315
APPID

SYSMOD subentry
global zone 327

application programming interface
for SMP/E CSI 351
for SMP/E exit routines 433
for SMP/E shell scripts 407
library change file records 413

APPLY
SYSMOD subentry

target zone 313
APPLY command

LEPARM processing 81
APPTIME

SYSMOD subentry
target zone 315

ARCHDEF
tag syntax 451, 483

archid
ARCHDEF attribute 452
FILEDEF attribute 477

archive files
contents of 486
creating 486
extracting data from 449
in GIMZIP package 474
introduction to 473

ARCHSEG
tag syntax 484

ASM
++JCLIN MCS operand 59
OPTIONS subentry 285
UTILITY entry for 340

ASMA90 utility 341
ASSEM

++MAC MCS operand 64
++MACUPD MCS operand 71
SYSMOD subentry

distribution zone 313
target zone 313

ASSEM entry
listing 183
subentries

ASSEMBLER INPUT 183
LASTUPD 183
LASTUPDTYPE 183

summary 183
UCLIN for 183
unloading 183

ASSEMBLE
MOD entry 268

assembler
data structures in 394
sample GIMAPI program 397

ASSEMBLER INPUT
ASSEM subentry 183

assembler OPCODEs
in SMPPARM 135

assembler utility
++JCLIN MCS operand 59
default values 285, 340, 341, 342
OPTIONS entry 285
specifying on JCLIN 59
UTILITY entry for 285, 340

assistive technologies 515

B
BACKUP entries

listing 187
subentries 187
summary 187
UCLIN for 187

BINARY
hierarchical file system element

entry 225
hierarchical file system element MCS

operand 28
binder 341

UTILITY entry for 342
BLOCK

DDDEF entry 195
BMPTZN option

of GIMXTRX 470
BYPASS

SYSMOD subentry
distribution zone 313
target zone 313

C
C

data structures in 390
sample GIMAPI program 397

CALL
effect of CALLLIBS subentry on 341
LMOD subentry 247

CALLLIBS
LMOD subentry 245

CALLLIBS (continued)
specifying on JCLIN 59

CASE
LMOD subentry 247

CATALOG
DDDEF entry 195

CATEGORY
++HOLD MCS operand 37

CBPDO
Recommended service upgrade 511

ccc value of FMID 512
CHANGEFILE

OPTIONS subentry 285
CHANGEFILE(YES) subentry

required for library change file
records 413

CIFREQ
SYSMOD subentry

distribution zone 313
target zone 313

CLASS
++HOLD MCS operand 38
naming conventions 510
values

ERREL 38, 510
HIPER 38, 510
PE 38, 510
SECINT 38
UCLIN 38, 510
YR2000 38, 510

CLIENT, defining 139
CLIST data element

installing in variable block library 10
COMMENT

++HOLD MCS operand 39
COMP

OPTIONS subentry 286
UTILITY entry 340

COMPACT
OPTIONS subentry 286

COMPACT option
of GIMCPTS 442

compacting SMPPTS data set
with GIMCPTS 441

COMPAT
LMOD subentry 247
MOD entry 271

COMPAT option
of GIMSMP 437

compress utility
default values 286, 340, 341
OPTIONS entry 286
UTILITY entry for 286, 340

CONCAT
DDDEF entry 195

concatenating data sets
DDDEF entry 195
not allowed for SMPPTS spill data

sets 157
SYSLIB data sets

++MAC 68
++MACUPD 73
order 167
SMPMTS 153
use 167

conditional requisites
defining 45, 54

Index 525

CONTENT
ALL value

ORDER subentry 295
ORDER subentry 295

COPY
++JCLIN MCS operand 59
INVOKE control statement

operand 498
LMOD subentry 245
OPTIONS subentry 286
UTILITY entry for 340

COPY control statement
for GIMIAP 498

copy utility
default values 286, 340, 341
OPTIONS entry 286
specifying on JCLIN 59
UTILITY entry for 286, 340

corequisite SYSMODs
++IF MCS 45
++JAR MCS 53
defining 118

CSECT
++MOD MCS operand 76
MOD entry 268

CSI
application programming interface

for 351
ASSEM entry

distribution zone 183
target zone 183

data element entry
distribution zone 190
target zone 190

DDDEF entry
distribution zone 194
global zone 194
target zone 194

defining 143
DLIB entry

distribution zone 208
target zone 208

DLIBZONE entry 212
FEATURE entry 215
FMIDSET entry 218
GIMAPI for 351
GLOBALZONE entry 220
HOLDDATA entry 234
LMOD entry

distribution zone 244
target zone 244

PRODUCT entry 298
PROGRAM entry

distribution zone 300
target zone 300

CSI option
of GIMSMP 437

CYLINDERS
DDDEF entry 195

D
DALIAS

++MOD MCS operand 76
++ZAP MCS operand 123
MOD entry 269

data element entry
listing 190
subentries 190
summary 190
UCLIN for 190
unloading 190

data element MCS
coding considerations 15
examples 15
operands

ALIAS 13
DELETE 13
DISTLIB 14
FROMDS 14, 29, 48, 59, 65, 77,

107
name 14
RELFILE 15
RMID 15
SYSLIB 15
TXLIB 15
VERSION 15

overview 10
syntax 13

data elements
adding 10, 16
defining 10
deleting

data element MCS 13
listing 190
renaming 16, 104
replacing

data element MCS 10
SYSMOD subentry

distribution zone 314
global zone 327
target zone 314

unloading 190
data set organization 171
data sets

CLIENT 139
defining 139
distribution library 139
INFILE 140
link library 140
LKLIB 140
ORDERSERVER 140
OUTFILE 141
SERVER 141
SMPCLNT 142
SMPCNTL 142
SMPCPATH 143
SMPCSI 143
SMPDATA1 144
SMPDATA2 145
SMPDEBUG 146
SMPDIR 146
SMPDUMMY 146
SMPHOLD 147
SMPHRPT 148
SMPJCLIN 148
SMPJHOME 149
SMPLIST 149
SMPLOG 150
SMPLOGA 150
SMPLTS 151
SMPMTS 152
SMPnnnnn 166

data sets (continued)
SMPNTS 153
SMPOBJ 154
SMPOUT 154
SMPPARM 154
SMPPTFIN 155
SMPPTS 156
SMPPTS spill 157
SMPPUNCH 158
SMPRPT 158
SMPSCDS 159
SMPSNAP 159
SMPSRVR 160
SMPSTS 160
SMPTLIB 160
SMPTLOAD 162
SMPWKDIR 163
SMPWRK1 163
SMPWRK2 164
SMPWRK3 164
SMPWRK4 165
SMPWRK6 165
SYSIN 166
SYSLIB 166
SYSPRINT 167
SYSPUNCH 168
SYSUT1 168
SYSUT4 169
target library 169
text library 169
TXLIB 169
zonename 170

data structures
for QUERY command 353
in assembler 394
in C 390
in PL/I 392

data transformation service routine
(GIMDTS) 444

DATACLAS
DDDEF entry 196

DATASET
DDDEF entry 196

DATE
++HOLD MCS operand 40
++RELEASE MCS operand 100

DATE option
of GIMSMP 437

DB2BIND reason ID 41, 100, 509
DC

LMOD subentry 247
MOD entry 271

DDDEF entry
listing 194
subentries

BLOCK 195
CATALOG 195
CONCAT 195
CYLINDERS 195
DATACLAS 196
DATASET 196
DELETE 195
DIR 197
DSNTYPE 197
DSPREFIX 197
KEEP 195
MGMTCLAS 197

526 SMP/E V3R6.0 for z/OS V2R1.0 Reference

DDDEF entry (continued)
subentries (continued)

MOD 198
NEW 198
OLD 198
PATH 198
PROTECT 198
SHR 198
SPACE 199
STORCLAS 199
SYSOUT 199
TRACKS 195
UNIT 199
VOLUME 200
WAIT 200

summary 194
UCLIN for

distribution zone 194
global zone 194
target zone 194

unloading 194
DDDEF reason ID 41, 100, 509
default utilities used by SMP/E 340
defaults

OPTIONS entry
distribution zone 212
global zone 220
on the SET command 285

OPTIONS subentry
target zone 336

SMPTLIB
data set space 287
disposition 161

subentries
NOPURGE 289
NOREJECT 289
ORDERRET 290
PAGELEN 290
PEMAX 290
RETRYDDN 291
SAVEMTS 291
SAVESTS 291
SUPPHOLD 292

utility programs
access method services 285, 340
assembler 285, 340, 342
compress 286, 340
copy 286, 340
link-edit utility 288, 340, 343
retry 291, 340
superzap 292, 340
update 292, 340

DEFINECLUSTER
tag syntax 492

defining data sets
data set descriptions 139
DDDEF entry 194

DEIINST job, built by GENERATE 497
DELBY

SYSMOD subentry
distribution zone 313
target zone 313

DELETE
++JAR MCS operand 48
++MAC MCS operand 65
++MOD MCS operand 76
++PROGRAM MCS operand 91

DELETE (continued)
++SRC MCS operand 106
++VER MCS operand 117
data element MCS operand 13
DDDEF entry 195
hierarchical file system element MCS

operand 28
MCS statement 17
SYSMOD subentry

distribution zone 313
global zone 327
target zone 313

DELETE reason ID 41, 101, 509
deleting elements

data elements 13
hierarchical file system elements 28
JAR elements 48
macros 65
modules 76
modules, MCS for 83
source 106

deleting functions
++VER MCS 117
dummy function SYSMOD 122
example of 122

deleting load modules
++DELETE MCS 17

DELLMOD
SYSMOD subentry

distribution zone 313, 327
target zone 313, 327

DEP reason ID 41, 101, 509
description

FILEDEF attribute 477
GIMZIP attribute 476

DESCRIPTION
++APAR MCS operand 6, 23
++FEATURE MCS operand 21
++PRODUCT MCS operand 88
++PTF MCS operand 96
++USERMOD MCS operand 114
FEATURE entry 215
PRODUCT entry 298
SYSMOD subentry

distribution zone 314, 327
target zone 314, 327

DIR
DDDEF entry 197

directories
SMPDIR 146
SMPNTS 153
SMPWKDIR 163

directory information for pathname 198
DISTLIB

++JAR MCS operand 48
++MAC MCS operand 65
++MACUPD MCS operand 71
++MOD MCS operand 76
++MOVE MCS operand 84
++PROGRAM MCS operand 92
++SRC MCS operand 107
++SRCUPD MCS operand 111
++ZAP MCS operand 123
data element entry 190
data element MCS operand 14
hierarchical file system element

entry 225

DISTLIB (continued)
hierarchical file system element MCS

operand 28
JAR entry 237, 238
MAC entry 261
MOD entry 269
PROGRAM entry 301
SRC entry 305

DISTMOD
++MAC MCS operand 65
++MACUPD MCS operand 72
++SRC MCS operand 107
++SRCUPD MCS operand 111

distribution libraries
defining 139

distribution zone
ASSEM entry 183
data element entry 190
DDDEF entry 194
DLIB entry 208
DLIBZONE entry 212
hierarchical file system element

entry 224
JAR entry 237
LMOD entry 244
MAC entry 261
MOD entry 268
PROGRAM entry 300
SRC entry 305
SYSMOD entry 312
zone description provided by

user 213
DISTSRC

++MAC MCS operand 65
++MACUPD MCS operand 72

DLIB entry
listing 208
subentries

LASTUPD 208
LASTUPDTYPE 209
SYSLIB 209
UCL syntax 208

summary 208
UCLIN for 208
unloading 208

DLIBZONE entry
listing 212
subentries

ACCJCLIN 212
name 212
OPTIONS 212
RELATED 212
SREL 213
UCL syntax 212
UPGLEVEL 213, 337
ZDESC 213

summary 212
UCLIN for 212

DLMOD
SYSMOD subentry

distribution zone 314, 327
target zone 314, 327

DOC reason ID 41, 101, 509
DOWNLD reason ID 41, 101, 509
DOWNLDATE

ORDER subentry 296

Index 527

DOWNLTIME
ORDER subentry 296

DSNTYPE
DDDEF entry 197

DSPREFIX
conflict with RFDSNPFX value 286
DDDEF entry (global zone only) 197
OPTIONS subentry 286
SYSMOD subentry

global zone 331
DSSPACE

OPTIONS subentry 286
dummy data sets

defined in DDDEF entry 196
not allowed for SMPPTS 157
not allowed for SMPPTS spill data

sets 157
dummy function SYSMOD to delete

another function 122
dummy volumes

restriction for SMPTLIB data sets 161
DYNACT reason ID 41, 101, 509
DYNAM

LMOD subentry 247
dynamic allocation

CSI parameter on EXEC statement for
GIMSMP 437

DDDEF entry 194
specifying data sets in

GIMDDALC 127

E
EC reason ID 41, 101, 509
elements 83

deleting
data elements, MCS for 13
hierarchical file system elements,

MCS for 28
JAR elements, MCS for 48
macros, MCS for 65
modules, MCS for 76
source, MCS for 106

moving
++MOVE MCS 84

renaming
data elements, MCS for 16
hierarchical file system elements,

MCS for 34
macros, MCS for 69
modules, MCS for 82
source, MCS for 109

ELEMMOV
SYSMOD subentry

distribution zone 314, 327
target zone 314, 327

EMOVE
SYSMOD subentry

distribution zone 314, 327
target zone 314, 327

ENH reason ID 41, 101, 509
Enhanced HOLDDATA

in ++HOLD MCS 39
entries

ASSEM entry 183
BACKUP entries 187
CSI 173

entries (continued)
data element entry 190
DDDEF entry 194
DLIB entry 208
DLIBZONE entry 212
FEATURE entry 215
FMIDSET entry 218
GLOBALZONE entry 220
hierarchical file system element

entry 224
HOLDDATA entry 234
JAR entry 237
LMOD entry 244
MAC entry 261
MCS entry 266
MOD entry 268
MTSMAC entry 283
OPTIONS entry 285
ORDER entry 295
PRODUCT entry 298
PROGRAM entry 300
relationship between

distribution zone 173
global zone 173
target zone 173

SMPMTS 283
SMPPTS 266
SMPSCDS 187
SMPSTS 311
SRC entry 305
STSSRC entry 311
SYSMOD entry

distribution zone 312
global zone 326
target zone 312

TARGETZONE entry 336
UTILITY entry 340
ZONESET entry 347

entry types valid for QUERY
command 358

environment
defining 117

EPARM
SELECT control statement

operand 499
ERREL class value 38, 510
ERROR 508

++HOLD MCS operand 40
++RELEASE MCS operand 99
reason IDs 41, 100, 508
SYSMOD subentry

distribution zone 314
global zone 327
target zone 314

error reason IDs
naming conventions 508

exception SYSMOD management
++HOLD MCS 37, 99

operands 37, 99
exception SYSMODs

holding 37
releasing 99

EXEC statement
for GIMCPTS 441
for GIMDTS 444
for GIMGTPKG 446
for GIMSMP 437

EXEC statement (continued)
for GIMUNZIP 449
for GIMXSID 458
for GIMXTRX 466
for GIMZIP 474
for invoking SMP/E 437

EXIT reason ID 41, 101, 509
exit routines

specifying in GIMEXITS
summary 131

exit routines for SMP/E 433
parameter list mapping 433
RECEIVE exit (Exit 1) 433
Retry Exit (Exit 2) 435
summary 433

EXPAND option
of GIMCPTS 442

EXPAND statement
++ZAP input 124

expanding SMPPTS data set
with GIMCPTS 441

EXRF reason ID 42, 101, 509
EXRTYDD

OPTIONS subentry 287
extensible stylesheet language (XSL) file

browser for 486
definition of 481

external HOLDDATA 37, 234

F
FEATURE

SYSMOD subentry 314, 327
FEATURE entry

listing 215
subentries

DESCRIPTION 215
FMID 216
name 215
PRODUCT 216
RECDATE 216
RECTIME 216
REWORK 216
UCLDATE 216
UCLTIME 216

summary 215
UCLIN for 215

FESN
++FUNCTION MCS operand 23
SYSMOD subentry

distribution zone 314
global zone 328
target zone 314

FETCHOPT
LMOD subentry 247
MOD entry 271

file attribute file
definition of 487
example of 493
name of 486

FILEATTR
tag syntax 489

FILEDATA operand
for CLIENT 139, 142, 147, 148, 160,

166
for ORDERSERVER 141
for SERVER 142

528 SMP/E V3R6.0 for z/OS V2R1.0 Reference

FILEDATA operand (continued)
for SMPCLNT 142
for SMPDEBUG 146
for SMPLIST 150
for SMPOUT 154
for SMPPTFIN 156
for SMPPUNCH 158
for SMPRPT 159

FILEDEF
tag syntax 476

FILELIST
tag syntax 489

FILES
++APAR MCS operand 6
++FUNCTION MCS operand 23
++PTF MCS operand 96
++USERMOD MCS operand 114

FILL
LMOD subentry 247
MOD entry 271

filter parameter
of QUERY command 355

FIXCAT
++HOLD MCS operand 40
++RELEASE MCS operand 99
OPTIONS subentry 287
reason IDs 42, 100

FMID
++FEATURE MCS operand 21
++HOLD MCS operand 40
++IF MCS operand 45
++MOVE MCS operand 84
++RELEASE MCS operand 100
++VER MCS operand 117
data element entry 190
FEATURE entry 216
FMIDSET entry 218
GLOBALZONE subentry 220
hierarchical file system element

entry 225
JAR entry 238
MAC entry 261
MOD entry 269
PROGRAM entry 301
SRC entry 305
SYSMOD subentry

distribution zone 314
global zone 328
target zone 314

FMIDSET entry
listing 218
subentries

FMID 218
UCL syntax 218

summary 218
UCLIN for 218

FREE command
of GIMAPI 386

FROMDS
++PROGRAM MCS operand 92
data element MCS operand 14, 29,

48, 59, 65, 77, 107
FROMLIB

COPY control statement operand 499
FULLGEN reason ID 42, 101, 509
FUNCTION

MCS statement 23

FUNCTION (continued)
SYSMOD subentry

distribution zone 315
global zone 328
target zone 315

function SYSMODs
deleting

++VER MCS 117
naming conventions 512

functions
defining 23

G
GENASM

MAC entry 262
GIMAPI

data structures for 351
FREE command of 386
overview of 351
QUERY command of 351
sample assembler program 397
sample C program 397
sample PL/I program 397
used by GIMXTRX 470
VERSION command of 387

GIMCPTS 441
GIMDDALC control statements

defined in SMPPARM 127
GIMDDALC member

sample 130
use of 127

GIMDTS
inline data elements 15, 33
inline program elements 93
summary 444

GIMEXITS control statements
defined in SMPPARM 131

GIMEXITS member
in SMPPARM 131
sample 133
specifying exit routines in

control statements for 131
RECEIVE exit routine 433
Retry exit routine 435

use of 131
GIMFAF.XML 486
GIMGTPKG

summary 445
GIMIAP 497
GIMMPUXP 433
GIMOPCDE

sample member supplied 135, 155
overriding values in, example

of 137
GIMOPCDE members

operands 136
GIMPAF.XML

browser for 486
definition of 481

GIMSMP 437
GIMUNZIP

determining the required size of
SMPWKDIR 456

example of using 455
package control tags 451
processing 455

GIMUNZIP (continued)
sample RECEIVE job for 457
summary 449
SYSIN data set for 166
tag syntax 451
use of ICSF 449

GIMXSID 457
GIMXTRX 465

calling 466
processing 469

GIMZIP
calling 474
example of using 479
package control tags 476
processing 481
sample job stream 479
summary 473
SYSIN data set for 166
tag syntax 476

global zone
DDDEF entry 194
FEATURE entry 215
FMIDSET entry 218
GLOBALZONE entry 220
HOLDDATA entry 234
OPTIONS entry 285
ORDER entry 295
PRODUCT entry 298
SYSMOD entry 326
upgrade level for 213, 221
UTILITY entry 340
zone description provided by

user 221
ZONESET entry 347

GLOBALZONE entry
listing 220
subentries

FMID 220
OPTIONS 220
SREL 220
UCL syntax 220
UPGLEVEL 221
ZONEDESCRIPTION 221
ZONEINDEX 221

summary 220
UCLIN for 220

H
HASH option

of GIMUNZIP 450
HEWLH096 utility 341
HFSCOPY

INVOKE control statement
operand 498

OPTIONS subentry 288
HFSINST job, built by GENERATE 497
hierarchical file system

copy utility
default values 341

MCS statement 26
placing pre-built program object

in 34
syntax 26

hierarchical file system element entry
hierarchical file system element

MCS 26

Index 529

hierarchical file system element entry
(continued)

listing 224
subentries

BINARY 225
DISTLIB 225
FMID 225
LASTUPD 225
LASTUPDTYPE 226
LINK 226
PARM 226
RMID 227
SHSCRIPT 227
SYMLINK 227
SYMPATH 227
SYSLIB 228
TEXT 225
UCL syntax 224

summary 224
unloading 224

hierarchical file system element MCS
coding considerations 33
examples 34
operands

BINARY 28
DELETE 28
DISTLIB 28
LINK 29
name 30
PARM 30
RELFILE 30
RMID 31
SHSCRIPT 31
SYMLINK 31
SYMPATH 32
SYSLIB 32
TEXT 33
TXLIB 33
VERSION 33

overview 26
hierarchical file system elements 26

adding 26, 34
defining 26
deleting 28
example of symbolic link 35
hierarchical file system element

MCS 28
renaming 34, 104
replacing

hierarchical file system element
MCS 26

SYSMOD subentry
distribution zone 315
global zone 328
target zone 315

HIPER class value 38, 510
HOBSET

LMOD subentry 247
MOD entry 271

HOLD 508
HOLD reason IDs

class values
++HOLD MCS 38
ERREL 38, 510
HIPER 38, 510
naming conventions 510
PE 38, 510

HOLD reason IDs (continued)
class values (continued)

SECINT 38
UCLIN 38, 510
YR2000 38, 510

error reason IDs
++HOLD MCS 41
++RELEASE MCS 100
naming conventions 508

fix category reason IDs
++HOLD MCS 42

fixcat reason IDs
++RELEASE MCS 100

naming conventions 508
system reason IDs

++HOLD MCS 41
++RELEASE MCS 100
ACTION 41, 100, 508
AO 41, 100, 509
DB2BIND 41, 100, 509
DDDEF 41, 100, 509
DELETE 41, 101, 509
DEP 41, 101, 509
DOC 41, 101, 509
DOWNLD 41, 101, 509
DYNACT 41, 101, 509
EC 41, 101, 509
ENH 41, 101, 509
EXIT 41, 101, 509
EXRF 42, 101, 509
FULLGEN 42, 101, 509
IOGEN 42, 101, 509
IPL 42, 101, 510
MSGSKEL 42, 101, 510
MULTSYS 42, 102, 510
naming conventions 508
RESTART 42, 102, 510

user reason IDs
++HOLD MCS 42
++RELEASE MCS 102
naming conventions 510

HOLDDATA 508
external 37, 234
internal 37, 102, 234

HOLDDATA entry
listing 234
saving after ACCEPT processing

(NOPURGE) 289
summary 234

HOLDERROR
SYSMOD subentry

global zone 328
HOLDFIXCAT

SYSMOD subentry
global zone 328

HOLDSYSTEM
SYSMOD subentry

global zone 328
HOLDUSER

SYSMOD subentry
global zone 328

I
ICSF

use by GIMUNZIP 449
use by GIMZIP 474

IDCAMS utility 340
IEBCOPY utility 341
IEBUPDTE utility 341
IEHIOSUP utility

OPTIONS entry 288
UTILITY entry for 288

IEWBLINK utility 341
IEWL utility 341
IF

MCS statement 45
IFREQ

SYSMOD subentry
distribution zone 315
target zone 315

IMASPZAP utility 341
INFILE

defining 140
inline elements 15, 33, 53, 68, 80, 93, 108
inline JCLIN

packaging 61
INSTALLDATE

SYSMOD subentry
distribution zone 315
target zone 315

INSTALLTIME
SYSMOD subentry

distribution zone 315
target zone 315

internal HOLDDATA 37, 102, 234
INVOKE control statement

for GIMIAP 497
IOGEN reason ID 42, 101, 509
IOSUP

OPTIONS subentry 288
IPL reason ID 42, 101, 510

J
JAR

SYSMOD subentry
distribution zone 315
global zone 329
target zone 315

JAR elements 47
++JAR MCS 47, 48
adding 47
defining 47
deleting 48
replacing 47

JAR entry
++JAR MCS 47
listing 237
subentries

DISTLIB 237, 238
FMID 238
LASTUPD 238
LASTUPDTYPE 238
LINK 238
PARM 239
RMID 239
SHSCRIPT 239
SYMLINK 240
SYMPATH 240
SYSLIB 241
UMID 241

summary 237
unloading 237

530 SMP/E V3R6.0 for z/OS V2R1.0 Reference

JARPARM
++JAR MCS operand 49
++JARUPD MCS operand 55

JARUPD
SYSMOD subentry

distribution zone 315
global zone 329
target zone 315

JCLIN
GIMOPCDE member for assembler

OPCODEs in SMPPARM 135
GIMOPCDE members

summary 135
syntax 136

packaged inline 61
SYSMOD subentry

distribution zone 315
global zone 329
target zone 315

K
KEEP

DDDEF entry 195
keyboard

navigation 515
PF keys 515
shortcut keys 515

L
language abbreviations used on MCS for

data elements 12
LANGUAGE option

of GIMCPTS 442
of GIMGTPKG 446
of GIMSMP 438
of GIMUNZIP 449
of GIMXSID 458
of GIMZIP 474

LASTSUP
SYSMOD subentry

distribution zone 316
target zone 316

LASTUPD
ASSEM subentry 183
data element entry 190
DLIB entry 208
hierarchical file system element

entry 225
JAR entry 238
LMOD subentry 245
MAC entry 262
MOD entry 269
PROGRAM entry 301
SRC entry 305
SYSMOD subentry

distribution zone 316
target zone 316

LASTUPDTYPE
ASSEM subentry 183
data element entry 191
DLIB entry 209
hierarchical file system element

entry 226
JAR subentry 238

LASTUPDTYPE (continued)
LMOD subentry 246
MAC entry 262
MOD entry 270
PROGRAM entry 301
SRC entry 306
SYSMOD subentry

distribution zone 316
target zone 316

LC_ALL variable
used for shell scripts 408

LEPARM
++MOD MCS operand 77
example of use 81

library change file records
file records 413
record types 413
SMPDATA1 data set for 144
SMPDATA2 data set for 145
spill processing for 145

LINK
++JAR MCS operand 49
++JARUPD MCS operand 55
hierarchical file system element MCS

operand 29
JAR subentry 238

LINK command
hierarchical file system element

entry 226
link edits

multi-tasking of 344
link-edit utility

default values 288, 340, 341, 343
effect of LEPARM 81
OPTIONS entry 288
specifying on JCLIN 60
UTILITY entry for 288, 340

LIST
INVOKE control statement

operand 498
UTILITY entry 342

LKED
++JCLIN MCS operand 60
OPTIONS subentry 288
UTILITY entry for 340

LKED ATTRIBUTES
LMOD subentry 246
MOD entry 270

LKED CONTROL
LMOD subentry 250

LKLIB
++MOD MCS operand 78
++PROGRAM MCS operand 92
defining 140

LLA
effect on ++ZAP processing 125

LMOD
++MOD MCS operand 78
++MOVE MCS operand 84
MOD entry 273

LMOD entry
listing 244
subentries

CALLLIBS 245
COPY 245
LASTUPD 245
LASTUPDTYPE 246

LMOD entry (continued)
subentries (continued)

LKED ATTRIBUTES 246
LKED CONTROL 250
MODDEL 250
RC 250
SIDEDECKLIB 250
SYSLIB 251
UTIN 251
XZMOD 251
XZMODP 252

summary 244
UCLIN for 244
unloading 244

load modules
aliases for 79
deleting 17
moving 84
renaming 104
updating 123

local shared resources (LSR) 143, 170
LSTTZN option

of GIMXTRX 469

M
MAC

++MOVE MCS operand 84
MCS statement 64
OPCODE statement 136
SYSMOD subentry

distribution zone 316
global zone 329
target zone 316

MAC entry
++MAC MCS 64
listing 261
subentries

DISTLIB 261
FMID 261
GENASM 262
LASTUPD 262
LASTUPDTYPE 262
MALIAS 262
RMID 262
SYSLIB 262
UCL syntax 261
UMID 263

summary 261
UCLIN for 261
unloading 261

macros
++MAC MCS 65
++MACUPD MCS 71
adding 64
defining 64
deleting

++MAC MCS 65
MCS statement 65, 71
moving 84
renaming 69, 104
replacing

++MAC MCS 64
updating

++MACUPD MCS 71
MACUPD

MCS statement 71

Index 531

MACUPD (continued)
SYSMOD subentry

distribution zone 316
global zone 329
target zone 316

MALIAS
++MAC MCS operand 66
++MACUPD MCS operand 72
MAC entry 262

master CSI
specified on EXEC statement 437
use 143

MAXBLK
LMOD subentry 248
MOD entry 271

MCS entry
listing 266
subentries 266
summary 266

MCS statements
++APAR 6
++ASSIGN 8
++DELETE 17
++FEATURE 21
++FUNCTION 23
++HOLD 37
++IF 45
++JAR 47
++JARUPD 54
++JCLIN 59
++MAC 64
++MACUPD 71
++MOD 75
++MOVE 84
++NULL 87
++PRODUCT 88
++PROGRAM 91
++PTF 96
++RELEASE 99
++RENAME 104
++SRC 106
++SRCUPD 111
++USERMOD 114
++VER 117
++ZAP 123
data element 10
general syntax rules 2
hierarchical file system 26
overview 5

MGMTCLAS
DDDEF entry 197

MOD
++MOVE MCS operand 84
DDDEF entry 198
MCS statement 75
SYSMOD subentry

distribution zone 316
global zone 329
target zone 316

MOD entry
++MOD MCS 75
listing 268
subentries

ASSEMBLE 268
CSECT 268
DALIAS 269
DISTLIB 269

MOD entry (continued)
subentries (continued)

FMID 269
LASTUPD 269
LASTUPDTYPE 270
LKED ATTRIBUTES 270
LMOD 273
RMID 273
RMIDASM 273
TALIAS 273
UMID 274
XZLMOD 274
XZLMODP 274

summary 268
UCLIN for 268
unloading 268

MODDEL
LMOD subentry 250

modules
++MOD MCS 75
++ZAP MCS 123
adding 75
adding to an existing load

module 80
defining 75
deleting 83

++MOD MCS 76
moving 84
renaming 82, 104
replacing

++MOD MCS 75
++PROGRAM MCS 91

updating
++ZAP MCS 123

moving elements
++MOVE MCS 84

moving load modules
++MOVE MCS 84

MSGFILTER
OPTIONS subentry 289

MSGSKEL reason ID 42, 101, 510
MSGWIDTH

OPTIONS subentry 288
MTSMAC entry

saving through the OPTIONS
subentry 291

subentries 283
summary 283
UCLIN for 283

multi-tasking of link edits 344
multicultural support

language abbreviations used on MCS
for data elements 12

MULTSYS reason ID 42, 102, 510

N
name

++DELETE MCS operand 18
++FEATURE MCS operand 21
++JAR MCS operand 50
++JARUPD MCS operand 56
++MAC MCS operand 66
++MACUPD MCS operand 72
++MOD MCS operand 79
++MOVE MCS operand 85
++PROGRAM MCS operand 93

name (continued)
++SRC MCS operand 107
++SRCUPD MCS operand 111
++ZAP MCS operand 123
ARCHDEF attribute 451
data element MCS operand 14
FEATURE entry 215
FILEDEF attribute 476
hierarchical file system element MCS

operand 30
NAME

UTILITY entry 342
naming conventions

CLASS 510
HOLD reason IDs 508
reason IDs 508
SOURCEIDs 511
summary 507
SYSMOD IDs

APARs 512
function 512
PTFs 512
summary 512
USERMODs 512

zones 212, 336
national language identifiers used on

MCS for data elements 12
navigation

keyboard 515
NCAL

effect of CALLLIBS subentry on 341
LMOD subentry 248

NE
LMOD subentry 248
MOD entry 271

negative prerequisite SYSMODs
defining with the NPRE operand 118

NEW
DDDEF entry 198

newname
ARCHDEF attribute 452

NOCALL
LMOD subentry 248
MOD entry 271

NOPURGE
default value 289
OPTIONS subentry 289

NOREJECT
default value 289
OPTIONS subentry 289

Notices 519
NPRE

++VER MCS operand 118
SYSMOD subentry

distribution zone 316
global zone 329
target zone 316

NULL
MCS statement 87

NULLFILE used for dummy data sets
not allowed for SMPPTS 157
not allowed for SMPPTS spill data

sets 157

532 SMP/E V3R6.0 for z/OS V2R1.0 Reference

O
OGET

creating ++HFS MCS with 34
OL

LMOD subentry 248
MOD entry 272

OLD
DDDEF entry 198

OPCODE 155
++JCLIN MCS operand 60
defined in SMPPARM 135
JCLIN OPCODEs

overview 135
member for assembler OPCODEs in

SMPPARM 135
OPCODE statement 136
syntax 136

OPERAND
tag syntax 493

OPTIONS
DLIBZONE subentry 212
GLOBALZONE subentry 220
TARGETZONE subentry 336

Options entry
subentries

MSGWIDTH 288
OPTIONS entry

defining default
distribution zone 212
global zone 220

listing 285
subentries

AMS 285
ASM 285
CHANGEFILE 285
COMP 286
COMPACT 286
COPY 286
DSPREFIX 286
DSSPACE 286
EXRTYDD 287
FIXCAT 287
HFSCOPY 288
IOSUP 288
LKED 288
MSGFILTER 289
NOPURGE 289
NOREJECT 289
ORDERRET 289
PAGELEN 290
PEMAX 290
RETRY 291
RETRYDDN 291
SAVEMTS 291
SAVESTS 291
SUPPHOLD 292
UPDATE 292
ZAP 292

summary 285
UCLIN for 285

OPTIONS subentry
defining default

target zone 336
ORDER entry

listing 295
subentries

APARS 296

ORDER entry (continued)
subentries (continued)

CONTENT 295
DOWNLDATE 296
DOWNLTIME 296
ORDERDATE 296
ORDERID 296
ORDERSERVER 296
ORDERTIME 296
PKGID 296
PTFS 296
STATUS 295
USERID 296
ZONES 296

summary 295
UCLIN for 295

ORDERDATE
ORDER subentry 296

ORDERID
ORDER subentry 296

ORDERRET
default value 290
OPTIONS subentry 289

ORDERSERVER
ORDER subentry 296

ORDERSERVER, defining 140
ORDERTIME

ORDER subentry 296
organization of SMP/E data sets 171
OS21 element entry

UCLIN for 224
OS390Rn SOURCEID 511
OUTFILE

defining 141
OVLY

LMOD subentry 248
MOD entry 272

P
package attribute file

control tags 481
definition of 481
displaying 486
example of 484
GIMPAF.XML 481

packaging SYSMODs
indirect libraries

LKLIB 78
TXLIB 33, 53, 57, 60, 67, 80, 108

LKLIB 78
relative files (RELFILEs)

FILES operand on ++APAR 6, 23
FILES operand on

++FUNCTION 23
FILES operand on ++JAR MCS 51
FILES operand on ++JARUPD

MCS 56
FILES operand on ++MAC 67
FILES operand on ++PTF 96
FILES operand on

++USERMOD 114
FILES operand on hierarchical file

system element MCS 30
reference material 23
RELFILE operand on

++JCLIN 60, 61

packaging SYSMODs (continued)
relative files (RELFILEs) (continued)

RELFILE operand on ++MOD 79
RELFILE operand on ++PTF 96
RELFILE operand on ++SRC 108
RFDSNPFX operand on

++APAR 7
RFDSNPFX operand on

++FUNCTION 24
RFDSNPFX operand on

++PTF 97
RFDSNPFX operand on

++USERMOD 115
TXLIB 33, 53, 57, 60, 67, 80, 108

PAGELEN
default value 290
OPTIONS subentry 290

PARM
++JAR MCS operand 50
++JARUPD MCS operand 56
hierarchical file system element

entry 226
hierarchical file system element MCS

operand 30
JAR subentry 239
UTILITY entry 342

PATH
DDDEF entry 198

PATH variable
used for shell scripts 408

pathname, DDDEF entry for 198
PATHOPTS operand

for CLIENT 139, 142, 147, 148, 160,
166

for ORDERSERVER 141
for SERVER 142
for SMPCLNT 142
for SMPDEBUG 146
for SMPLIST 150
for SMPOUT 154
for SMPPTFIN 156
for SMPPUNCH 158
for SMPRPT 159

pax command
use by GIMUNZIP 455
use by GIMZIP 486

PDSE
specification in DDDEF entry 197

PE class value 38, 510
PEMAX

default value 290
OPTIONS subentry 290

performance
local shared resources (LSR) feature of

VSAM 143, 170
PKGDEF

tag syntax 482
PKGID

ORDER subentry 296
PL/I

data structures in 392
sample GIMAPI program 397

PRE
++VER MCS operand 118
SYSMOD subentry

distribution zone 316
global zone 329

Index 533

PRE (continued)
SYSMOD subentry (continued)

target zone 316
pre-built program object

++HFS MCS for 34
pre-defined load module

++PROGRAM MCS 91
adding 91
defining 91

prefix
ARCHDEF attribute 453

PREFIX
++MAC MCS operand 66
++MACUPD MCS operand 72

prefix for relative file data sets 7
prerequisite SYSMODs

++IF MCS 45
++JAR MCS 53
defining 118

preserveid
ARCHDEF attribute 454

PRINT
INVOKE control statement

operand 498
UTILITY entry 344

PROCESS option
of GIMSMP 438

prodid
++PRODUCT MCS operand 88
PRODUCT entry 298

PRODSUP
++PRODUCT MCS operand 89
PRODUCT entry 298

PRODUCT
++FEATURE MCS operand 21
FEATURE entry 216

PRODUCT entry
listing 298
subentries

DESCRIPTION 298
prodid 298
PRODSUP 298
RECDATE 298
RECTIME 299
REWORK 299
SRL 298
UCLDATE 299
UCLTIME 299
URL 298
VENDOR 298

summary 298
UCLIN for 298

product release specified in FMID 512
PROGRAM

MCS statement 91
SYSMOD subentry

distribution zone 316
global zone 329
target zone 316

program element
++PROGRAM MCS 91
adding 91
defining 91

program element entry
++PROGRAM MCS 91

program element MCS
examples 94

program elements
listing 300
unloading 300

PROGRAM entry
listing 300
subentries 300
summary 300
UCLIN for 300
unloading 300

PROTECT
DDDEF entry 198

PTF
defining 96
MCS statement 96
naming conventions 512
SYSMOD subentry

distribution zone 317
global zone 329
target zone 317

PTFS
ORDER subentry 296

PUTyymm
SOURCEID

naming conventions 511

Q
QUERY command

data structures for 353
example of 351
of GIMAPI 351
parameters of 351

R
RC

INVOKE control statement
operand 498

LMOD subentry 250
UTILITY entry 344

README data sets 486
REASON

++HOLD MCS operand 40
++RELEASE MCS operand 100

reason IDs
naming conventions 508

RECDATE
FEATURE entry 216
PRODUCT entry 298
SYSMOD subentry

distribution zone 317
global zone 329
target zone 317

RECEIVE exit routine 433
Recommended service upgrade 511
RECTIME

FEATURE entry 216
PRODUCT entry 299
SYSMOD subentry

distribution zone 317
global zone 329
target zone 317

REFR
LMOD subentry 248
MOD entry 272

REGEN
SYSMOD subentry

distribution zone 317
target zone 317

RELATED
DLIBZONE subentry 212
TARGETZONE subentry 336

related zone
defining

for a distribution zone 212
for a target zone 336

summary 175
relative files (RELFILEs)

prefix for 7
release

specified in FMID 512
releasing a held SYSMOD

++RELEASE MCS 99
RELFILE

++JAR MCS operand 51
++JARUPD MCS operand 56
++JCLIN MCS operand 60
++MAC MCS operand 67
++MOD MCS operand 79
++PROGRAM MCS operand 93
++SRC MCS operand 107
data element MCS operand 15
hierarchical file system element MCS

operand 30
renaming elements 104

data elements, MCS for 16
hierarchical file system elements, MCS

for 34
macros, MCS for 69
modules, MCS for 82
source, MCS for 109

renaming load modules
++RENAME MCS 104

RENLMOD
SYSMOD subentry

distribution zone 317, 330
target zone 317, 330

RENT
LMOD subentry 248
MOD entry 272

replace
ARCHDEF attribute 453

REPLACE
INVOKE control statement

operand 498
REQ

++IF MCS operand 45
++VER MCS operand 118
SYSMOD subentry

distribution zone 317
global zone 330
target zone 317

RESDATE
SYSMOD subentry

target zone 317
RESOLVER

++HOLD MCS operand 43
RESTART reason ID 42, 102, 510
RESTIME

SYSMOD subentry
target zone 318

534 SMP/E V3R6.0 for z/OS V2R1.0 Reference

RESTORE
SYSMOD subentry

target zone 318
restrictions

dummy volumes for SMPTLIB data
sets 161

retry
exit routine 435

RETRY
excluding data sets 287
including data sets 291
OPTIONS subentry 291
UTILITY entry for 340

retry utility
default values 291, 341
defaults 291, 340
OPTIONS subentry 291
UTILITY entry for 291, 340

RETRYDDN
OPTIONS subentry 291

return codes
for GIMIAP 501
utilities

maximum acceptable value,
specifying 344

summary 344
REUS

LMOD subentry 248
MOD entry 272

REUS(NONE)
LMOD subentry 249
MOD entry 272

REWORK
++APAR MCS operand 6
++FEATURE MCS operand 21
++FUNCTION MCS operand 24
++PRODUCT MCS operand 90
++PTF MCS operand 97
++USERMOD MCS operand 115
FEATURE entry 216
PRODUCT entry 299
SYSMOD subentry

distribution zone 318
global zone 330
target zone 318

RFDSNPFX
++APAR MCS operand 7
++FUNCTION MCS operand 24
++PTF MCS operand 97
++USERMOD MCS operand 115
conflict with DSPREFIX value 286

RLMOD
SYSMOD subentry

distribution zone 318, 330
target zone 318, 330

RMID
++JAR MCS operand 51
++MAC MCS operand 67
++MOD MCS operand 79
++PROGRAM MCS operand 93
++SRC MCS operand 108
data element entry 191
data element MCS operand 15
hierarchical file system element

entry 227
hierarchical file system element MCS

operand 31

RMID (continued)
JAR subentry 239
MAC entry 262
MOD entry 273
PROGRAM entry 301
SRC entry 306

RMIDASM
MOD entry 273

RMODE=24
LMOD subentry 249
MOD entry 272

RMODE=31
LMOD subentry 249, 272

RMODE=ANY
LMOD subentry 249
MOD entry 272

RMODE=SPLIT
LMOD subentry 249
MOD entry 272

S
sample GIMAPI program 397
SAVEMTS

default value 291
OPTIONS subentry 291

SAVESTS
default value 291
OPTIONS subentry 291

SCTR
LMOD subentry 249
MOD entry 273

SECINT class value 38
SELECT control statement

for GIMIAP 499
sending comments to IBM xi
SERVER, defining 141
service routines 441

GIMDTS 444
GIMGTPKG 445
GIMUNZIP 449
GIMXSID 457
GIMXTRX 465
GIMZIP 473

SETSSI statement
++ZAP input 124

shell scripts for SMP/E
description 407
example 409
returning control from 409

ShopzSeries
GIMXSID service routine 457
GIMXTRX service routine 465

shortcut keys 515
SHR

DDDEF entry 198
SHSCRIPT

++JAR MCS operand 51
hierarchical file system element

entry 227
hierarchical file system element MCS

operand 31
JAR subentry 239
SELECT control statement

operand 499
SIDEDECKLIB

LMOD subentry 250

SMCCOR SOURCEID
naming conventions 511

SMCREC SOURCEID
naming conventions 511

SMODTYPE
additional subentry type for

GIMAPI 359
value for superseded only

SYSMODs 374, 377
SMP_Action variable

used for shell scripts 408
SMP_Directory variable

used for shell scripts 407
SMP_File variable

used for shell scripts 408
SMP_Phase variable

used for shell scripts 408
SMP/E data set entries 171
SMP/E data sets, descriptions of 139
SMP/E MCS statements 5
SMP/E service routines 441
SMPCLNT option

of GIMGTPKG 447
SMPCLNT, defining 142
SMPCNTL, defining 142
SMPCPATH option

of GIMGTPKG 447
of GIMUNZIP 450

SMPCPATH, defining 143
SMPCSI

hierarchical file system element entry
distribution zone 224
target zone 224

JAR entry
distribution zone 237
target zone 237

MAC entry
distribution zone 261
target zone 261

MOD entry
distribution zone 268
target zone 268

OPTIONS subentry 285
ORDER subentry 295
SRC entry

distribution zone 305
target zone 305

SYSMOD entry
distribution zone 312
global zone 326
target zone 312

TARGETZONE entry 336
UTILITY entry 340
ZONESET entry 347

SMPDATA1
defining 144

SMPDATA2
defining 145

SMPDEBUG
defining 146

SMPDIR
defining 146

SMPDIR option
of GIMUNZIP 450

SMPDUMMY
defining 146
for definition side deck library 146

Index 535

SMPHOLD
defining 147

SMPHRPT
defining 148

SMPJCLIN
defining 148

SMPJHOME
defining 149

SMPJHOME option
of GIMGTPKG 447
of GIMUNZIP 450

SMPLIST
defining 149

SMPLOG
defining 150

SMPLOGA
defining 150

SMPLTS
defining 151

SMPMTS
ACCEPT processing 283
APPLY processing 283
defining 152
MTSMAC entry 283
saving MTSMAC entries after

ACCEPT processing
(SAVEMTS) 291

SMPnnnnn
defining 166

SMPNTS
defining 153

SMPNTS option
of GIMGTPKG 447

SMPOBJ
defining 154

SMPOUT
defining 154

SMPOUT option
of GIMGTPKG 446
of GIMUNZIP 450
of GIMXSID 459

SMPPARM
defining 154
members of 127
syntax rules 2

SMPPTFIN
defining 155

SMPPTS
compacting 441
defining 156
expanding 441
MCS entry 266
saving MCS entries after ACCEPT

processing (NOPURGE) 289
saving MCS entries after RESTORE

processing (NOREJECT) 289
SMPPTS spill

defining 157
SMPPUNCH

defining 158
SMPRPT

defining 158
SMPSCDS

BACKUP entries 187
defining 159

SMPSNAP
defining 159

SMPSRVR option
of GIMGTPKG 447

SMPSRVR, defining 160
SMPSTS

ACCEPT processing 311
APPLY processing 311
defining 160
saving STSSRC entries after ACCEPT

processing (SAVESTS) 291
STSSRC entry 311

SMPTLIB
ACCEPT processing 289
conflict between DSPREFIX value and

RFDSNPFX value 286
defaults

disposition 161
space 287

defining 160
DSPREFIX value for data set name

DDDEF entry 197
OPTIONS subentry 286

DSSPACE value for 286
saving after ACCEPT processing

(NOPURGE) 289
SMPTLOAD

defining 162
SMPWKDIR

defining 163
SMPWKDIR option

of GIMUNZIP 450
of GIMZIP 475

SMPWRK1
defining 163

SMPWRK2
defining 164

SMPWRK3
defining 164

SMPWRK4
defining 165

SMPWRK6
defining 165

SMPXTOUT option
of GIMXSID 459
of GIMXTRX 466

SMS
DATACLAS specification in DDDEF

entry 196
MGMTCLAS specification in DDDEF

entry 197
PDSE (LIBRARY) specification in

DDDEF entry 197
STORCLAS specification in DDDEF

entry 199
UNIT specification not needed in

DDDEF entry 200
VOLUME specification not needed in

DDDEF entry 200
software inventory data

GIMXSID service routine 457
source

++SRC MCS 106
++SRCUPD MCS 111
adding 106, 109
defining 106
deleting

++SRC MCS 106
moving 84

source (continued)
renaming 104, 109
replacing

++SRC MCS 106
updating

++SRCUPD MCS 111
SOURCEID

++ASSIGN MCS operand 8
assigning 8
naming conventions 511
OS390Rn 511
PUTyymm 511
RSUyymm 511
SMCCOR 511
SMCREC 511
SYSMOD subentry

distribution zone 318
global zone 330
target zone 318

YR2000 512
SPACE

DDDEF entry 199
SRC

++MOVE MCS operand 84
MCS statement 106
SYSMOD subentry

distribution zone 318
global zone 330
target zone 318

SRC entry
++SRC MCS 106
listing 305
subentries

DISTLIB 305
FMID 305
LASTUPD 305
LASTUPDTYPE 306
RMID 306
SYSLIB 306
UMID 306

summary 305
UCLIN for 305
unloading 305

SRCUPD
MCS statement 111
SYSMOD subentry

distribution zone 319
global zone 330
target zone 319

SREL
++PRODUCT MCS operand 89
++VER MCS operand 118
DLIBZONE subentry 213
GLOBALZONE subentry 220
SYSMOD subentry

global zone 330
TARGETZONE subentry 336

SRL
PRODUCT entry 298

SSI
++MAC MCS operand 67
++SRC MCS operand 108

STATUS
ORDER subentry 295

STD
LMOD subentry 249
MOD entry 273

536 SMP/E V3R6.0 for z/OS V2R1.0 Reference

STORCLAS
DDDEF entry 199

STORENX parameter 343
STSSRC entry

saving through the OPTIONS
entry 291

subentries 311
summary 311
UCLIN for 311

subdir
FILEDEF attribute 477

subentry types valid for QUERY
command 359

SUP
++VER MCS operand 119

SUPBY
SYSMOD subentry

distribution zone 319
target zone 319

superseded SYSMODs
defining 119

superzap utility
default values 292, 340, 341
examples 123
OPTIONS entry 292
UTILITY entry for 292, 340

SUPING
SYSMOD subentry

distribution zone 319
global zone 331
target zone 319

SUPPHOLD
default value 292
OPTIONS subentry 292

SYMLINK
++JAR MCS operand 52
++JARUPD MCS operand 56
hierarchical file system element

entry 227
hierarchical file system element MCS

operand 31
JAR subentry 240

SYMPATH
++JAR MCS operand 52
++JARUPD MCS operand 57
hierarchical file system element

entry 227
hierarchical file system element MCS

operand 32
JAR subentry 240

syntax of SMP/E control statements
how to read 1
rules for coding

MCS statements 2
OPCODE members 2
SMPPARM members 2
XML statements 3

syntax rules 2, 3
SYSDEFSD

DUMMY data set 146
SYSIN

defining 166
SYSIN data set 166
SYSIN option

of GIMUNZIP 450
of GIMXSID 459

SYSLIB
++DELETE MCS operand 18
++JAR MCS operand 53
++MAC MCS operand 67
++MACUPD MCS operand 72
++MOVE MCS operand 85
++PROGRAM MCS operand 93
++SRC MCS operand 108
++SRCUPD MCS operand 111
copied from DLIB entry 208
data element entry 191
data element MCS operand 15
defining 166
DLIB entry 209
hierarchical file system element

entry 228
hierarchical file system element MCS

operand 32
JAR subentry 241
LMOD subentry 251
MAC entry 262
PROGRAM entry 302
SRC entry 306

SYSMOD entry
distribution zone

summary 312
global zone

saving after ACCEPT processing
(NOPURGE) 289

saving after RESTORE
(NOREJECT) 289

summary 326
listing 312, 326
subentries

ACCDATE 315
ACCEPT 312
ACCID 326
ACCTIME 315
APAR 313, 327
APPDATE 315
APPID 327
APPLY 313
APPTIME 315
ASSEM 313
BYPASS 313
CIFREQ 313
DELBY 313
DELETE 313, 327
DELLMOD 313, 327
DESCRIPTION 314, 327
DLMOD 314, 327
DSPREFIX 331
ELEMMOV 314, 327
EMOVE 314, 327
ERROR 314, 327
FEATURE 314, 327
FESN 314, 328
FMID 314, 328
FUNCTION 315, 328
hierarchical file system

elements 315, 328
HOLDERROR 328
HOLDFIXCAT 328
HOLDSYSTEM 328
HOLDUSER 328
IFREQ 315
INSTALLDATE 315

SYSMOD entry (continued)
subentries (continued)

INSTALLTIME 315
JAR 315, 329
JARUPD 315, 329
JCLIN 315, 329
LASTSUP 316
LASTUPD 316
LASTUPDTYPE 316
MAC 316, 329
MACUPD 316, 329
MOD 316, 329
NPRE 316, 329
PRE 316, 329
PROGRAM 316, 329
PTF 317, 329
RECDATE 317, 329
RECTIME 317, 329
REGEN 317
RENLMOD 317, 330
REQ 317, 330
RESTIME 318
RESTORE 318
REWORK 318, 330
RLMOD 318, 330
SOURCEID 318, 330
SRC 318, 330
SRCUPD 319, 330
SREL 330
SUPBY 319
SUPING 319, 331
SZAP 319, 331
UCL syntax 312, 326
UCLDATE 319
UCLTIME 319
USERMOD 319, 331
VERNUM 320
VERSION 320, 331
XZAP 320, 331

summary 312, 326
target zone

summary 312
UCLIN for

distribution zone 312
global zone 326
target zone 312

unloading 312
SYSMOD ID

++APAR MCS operand 7
++FUNCTION MCS operand 24
++HOLD MCS operand 43
++PTF MCS operand 97
++RELEASE MCS operand 102
++USERMOD MCS operand 115
naming conventions 512

SYSOUT
DDDEF entry 199

SYSPRINT
defining 167
specified in UTILITY entry 344

SYSPRINT option
of GIMGTPKG 446
of GIMUNZIP 451

SYSPUNCH
defining 168

SYSTEM 508
++HOLD MCS operand 40

Index 537

SYSTEM (continued)
++RELEASE MCS operand 99
reason IDs 41, 100, 508

system generation
indicated by REGEN subentry 317

system reason IDs
naming conventions 508
values

ACTION 41, 100, 508
AO 41, 100, 509
DB2BIND 41, 100, 509
DDDEF 41, 100, 509
DELETE 41, 101, 509
DEP 41, 101, 509
DOC 41, 101, 509
DOWNLD 41, 101, 509
DYNACT 41, 101, 509
EC 41, 101, 509
ENH 41, 101, 509
EXIT 41, 101, 509
EXRF 42, 101, 509
FULLGEN 42, 101, 509
IOGEN 42, 101, 509
IPL 42, 101, 510
MSGSKEL 42, 101, 510
MULTSYS 42, 102, 510
RESTART 42, 102, 510

SYSTSPRT
specified in UTILITY entry 344

SYSTSPRT option
of GIMXTRX 466

SYSUT1
defining 168

SYSUT3 option
of GIMUNZIP 450

SYSUT4
defining 169

SYSUT4 option
of GIMUNZIP 450

SZAP
SYSMOD subentry

distribution zone 319
global zone 331
target zone 319

T
TALIAS

++MOD MCS operand 79
++ZAP MCS operand 123
MOD entry 273

target libraries
defining 169

target zone
ASSEM entry 183
cross-zone, automatic updating 337
cross-zone, information added by

LINK MODULE command 337
data element entry 190
DDDEF entry 194
DLIB entry 208
hierarchical file system element

entry 224
JAR entry 237
LMOD entry 244
MAC entry 261
MOD entry 268

target zone (continued)
PROGRAM entry 300
SRC entry 305
SYSMOD entry 312
TARGETZONE entry 336
upgrade level for 337
zone description provided by

user 338
TARGETZONE entry

listing 336
subentries

name 336
OPTIONS 336
RELATED 336
SREL 336
TIEDTO 337
XZLINK 337
ZONEDESCRIPTION 338

summary 336
UCLIN for 336

TEXT
hierarchical file system element

entry 225
hierarchical file system element MCS

operand 33
TIEDTO

TARGETZONE subentry 337
TLIBPREFIX

SYSMOD subentry
global zone 331

TODISTLIB
++MOVE MCS operand 85

TOLIB
COPY control statement operand 499

TONAME
++RENAME MCS operand 104

TOSYSLIB
++MOVE MCS operand 85

totally copied library
JCLIN processing 208

TRACKS
DDDEF entry 195

TXLIB
++JAR MCS operand 53
++JARUPD MCS operand 57
++JCLIN MCS operand 60
++MAC MCS operand 67
++MOD MCS operand 79
++SRC MCS operand 108
data element MCS operand 15
defining 169
hierarchical file system element MCS

operand 33
type

FILEDEF attribute 477
TYPE operand

OPCODE statement 136

U
UCL syntax

ASSEM entry 183
data element entry 190
DDDEF entry

distribution zone 194
target zone 194

DLIB entry 208

UCL syntax (continued)
DLIBZONE entry 212
FMIDSET entry 218
GLOBALZONE entry 220
hierarchical file system element entry

summary 224
LMOD entry

summary 244
MAC entry

summary 261
MOD entry

summary 268
OPTIONS entry 285
ORDER entry 295
PROGRAM entry 300
SRC entry

summary 305
SYSMOD entry

distribution zone 312
global zone 326
target zone 312

TARGETZONE entry 336
UTILITY entry

summary 340
ZONESET entry 347

UCLDATE
FEATURE entry 216
PRODUCT entry 299
SYSMOD subentry

distribution zone 319
target zone 319

UCLIN class value 38, 510
UCLTIME

FEATURE entry 216
PRODUCT entry 299
SYSMOD subentry

distribution zone 319
target zone 319

UMID
++JAR MCS operand 53
++MAC MCS operand 67
++MOD MCS operand 80
++SRC MCS operand 108
JAR subentry 241
MAC entry 263
MOD entry 274
SRC entry 306

uniform resource locator (URL)
in ++PRODUCT MCS 89

UNIT
DDDEF entry 199

UNIX file system
data sets residing in

CLIENT 139, 142, 147, 148, 160,
166

ORDERSERVER 141
SERVER 142
SMPCLNT 142
SMPDEBUG 146
SMPLIST 150
SMPOUT 154
SMPPTFIN 156
SMPPUNCH 158
SMPRPT 159

HFS copy utility
interaction with hierarchical file

system element entry 343

538 SMP/E V3R6.0 for z/OS V2R1.0 Reference

UNIX file system (continued)
HFS copy utility (continued)

OPTIONS entry 288
UTILITY entry for 288

UPCASE
LMOD subentry 249
MOD entry 273

UPDATE
++JCLIN MCS operand 61
OPTIONS subentry 292
UTILITY entry for 340

update utility
default values 292, 340, 341
OPTIONS subentry 292
restrictions 344
specifying on JCLIN 61
UTILITY entry for 292, 340

UPGLEVEL
DLIBZONE subentry 213
GLOBALZONE subentry 221
TARGETZONE subentry 337

URL
++PRODUCT MCS operand 89
PRODUCT entry 298

usage recommendations
library change file records 432

USER 510
++HOLD MCS operand 40
++RELEASE MCS operand 99
reason IDs 42, 102, 510

user interface
ISPF 515
TSO/E 515

user modification 512
user reason IDs

naming conventions 510
USERID

ORDER subentry 296
USERMOD

defining 114
naming conventions 512
source update example 111
SYSMOD subentry

distribution zone 319
global zone 331
target zone 319

UTILITY entry
listing 340
subentries

LIST 342
NAME 342
PARM 342
PRINT 344
RC 344
summary 340

summary 340
UCLIN for 340

utility programs
default values

access method services
(AMS) 285, 340

assembler 285, 341
compress 286, 341
copy 286, 341
HFS copy 288
hierarchical file system copy 341
link-edit utility 288, 341

utility programs (continued)
default values (continued)

retry 291, 341
superzap 292, 341
update 292, 341

OPTIONS entry pointer to
access method services 285
assembler 285
compress 286
copy 286
HFS copy utility 288
IEHIOSUP utility 288
link-edit utility 288
superzap 292
update 292

OPTIONS subentry pointer to
retry 291

parameters passed to 340, 342
return codes for

default values 340
threshold 344

SYSPRINT output 340, 344
UTILITY entries for 340

UTIN
LMOD subentry 251

V
variable block library

installing CLIST data element in 10
VENDOR

++PRODUCT MCS operand 89
PRODUCT entry 298

VER
MCS statement 117

VERNUM
SYSMOD subentry

distribution zone 320
target zone 320

VERSION
++JAR MCS operand 53
++MAC MCS operand 68
++MOD MCS operand 80
++PROGRAM MCS operand 93
++SRC MCS operand 108
++VER MCS operand 119
data element MCS operand 15
hierarchical file system element MCS

operand 33
SYSMOD subentry

distribution zone 320
global zone 331
target zone 320

VERSION command
of GIMAPI 387

VLF
effect on ++ZAP processing 125

volume
ARCHDEF attribute 452
FILEDEF attribute 478

VOLUME
DDDEF entry 200

vv.rr.mm
PRODUCT entry 298

W
WAIT

DDDEF entry 200
WAIT option

of GIMXSID 458
WAITFORDSN

DDDEF entry 200

X
XML statements

general syntax rules 3
XREF

sample LIST output
ASSEM subentry 184
data element entry 192
hierarchical file system element

entry 229
JAR entry 242
LMOD subentry 253
MAC entry 264
MOD entry 277
PROGRAM entry 303
SRC entry 307
SYSMOD subentry 323

XSL (extensible stylesheet language) file
browser for 486
definition of 481

XZAP
SYSMOD subentry

distribution zone 320
global zone 331
target zone 320

XZLINK
TARGETZONE subentry 337

XZLMOD
MOD entry 274

XZLMODP
MOD entry 274

XZMOD
LMOD subentry 251

XZMODP
LMOD subentry 252

XZREQCHK
ZONESET entry 348

Y
YR2000 class value 38, 510
YR2000 SOURCEID

naming conventions 512

Z
z/OS SecureWay Security Server

protection for data sets 198
ZAP

MCS statement 123
OPTIONS subentry 292
UTILITY entry for 340

ZONE
ZONESET entry 348

ZONEDESCRIPTION
DLIBZONE subentry 213
GLOBALZONE subentry 221

Index 539

ZONEDESCRIPTION (continued)
TARGETZONE subentry 338

ZONEINDEX
GLOBALZONE subentry 221

zones
defining 170
naming conventions 212, 336

ZONES
ORDER subentry 296

ZONESET entry
listing 347
subentries

XZREQCHK 348
ZONE 348

summary 347
UCLIN for 347

540 SMP/E V3R6.0 for z/OS V2R1.0 Reference

����

Printed in USA

SA23-2276-01

	Contents
	Figures
	Tables
	About this document
	SMP/E publications

	How to send your comments to IBM
	If you have a technical problem

	Summary of changes
	Changes made in SMP/E Version 3 Release 6
	Changes made in SMP/E Version 3 Release 5
	Changes made in SMP/E Version 3 Release 4

	Chapter 1. Syntax notation and rules
	How to read the syntax diagrams
	Syntax rules for MCS and SMPPARM members
	Syntax rules for XML statements

	Chapter 2. SMP/E modification control statements
	++APAR MCS
	++ASSIGN MCS
	Data element MCS
	Supporting several languages
	Syntax
	Operands
	Usage notes
	Examples

	++DELETE MCS
	Example 1: Deleting a single load module
	Example 2: Deleting an alias from a load module
	Example 3: Deleting an alias from a load module in a UNIX file system

	++FEATURE MCS
	++FUNCTION MCS
	Hierarchical file system element MCS
	Adding or replacing a hierarchical file system element
	Deleting a hierarchical file system element
	Operands
	Usage notes
	Examples

	++HOLD MCS
	Example 1: Noting a special documentation change
	Example 2: Marking a PTF that is in error
	Example 3: Specifying a hold class
	Example 4: Identifying APARs and their associated fix categories

	++IF MCS
	++JAR MCS
	Adding or replacing a JAR element
	Deleting a JAR element
	Operands
	Usage notes
	Examples

	++JARUPD MCS
	++JCLIN MCS
	Example 1: ++JCLIN data packaged inline
	Example 2: ++JCLIN data packaged in a RELFILE
	Example 3: ++JCLIN data packaged in a TXLIB with a user utility program name

	++MAC MCS
	Adding or replacing a macro
	Deleting a macro
	Operands
	Usage notes
	Examples

	++MACUPD MCS
	++MOD MCS
	Adding or replacing a module
	Deleting a module
	Operands
	Usage notes
	Examples

	++MOVE MCS
	Moving to another DISTLIB
	Moving to another SYSLIB
	Operands
	Usage notes
	Examples

	++NULL MCS
	++PRODUCT MCS
	++PROGRAM MCS
	Adding or replacing a program element
	Deleting a program element
	Operands
	Usage notes
	Examples

	++PTF MCS
	++RELEASE MCS
	Example 1: Removing a SYSMOD from HOLDUSER status
	Example 2: Incorrect use of ++RELEASE
	Example 3: A ++RELEASE statement with a FIXCAT HOLD

	++RENAME MCS
	++SRC MCS
	Adding or replacing source
	Deleting source
	Operands
	Usage notes
	Examples

	++SRCUPD MCS
	Example 1: Updating an existing source
	Example 2: Making subsequent source updates

	++USERMOD MCS
	++VER MCS
	Example 1: Defining base and dependent functions
	Example 2: Defining intersecting dependent functions
	Example 3: Deleting a previous level of a function
	Example 4: Deleting a function without replacing it (dummy delete)

	++ZAP MCS
	Example 1: Changing all load modules that contain the same module
	Example 2: Changing the only load module that contains a given module
	Example 3: Changing one of several load modules that contain a given module
	Example 4: Expanding a module

	Chapter 3. Defining control statements in SMPPARM members
	GIMDDALC control statements
	Syntax
	Operands
	Syntax notes
	Sample GIMDDALC member

	GIMEXITS control statements
	Syntax
	Operands
	Syntax notes
	Sample GIMEXITS member

	OPCODE control statements
	Syntax
	Operands
	Usage notes
	Examples

	Chapter 4. SMP/E data sets and files
	CLIENT
	Distribution library (DLIB)
	INFILE
	Link library (LKLIB)
	ORDERSERVER
	OUTFILE
	SERVER
	SMPCLNT
	SMPCNTL
	SMPCPATH
	SMPCSI
	SMPDATA1
	SMPDATA2
	SMPDEBUG
	SMPDIR
	SMPDUMMY
	SMPHOLD
	SMPHRPT
	SMPJCLIN
	SMPJHOME
	SMPLIST
	SMPLOG
	SMPLOGA
	SMPLTS
	SMPMTS
	SMPNTS
	SMPOBJ
	SMPOUT
	SMPPARM
	SMPPTFIN
	SMPPTS
	SMPPTS spill data set
	SMPPUNCH
	SMPRPT
	SMPSCDS
	SMPSNAP
	SMPSRVR
	SMPSTS
	SMPTLIB
	SMPTLOAD
	SMPWKDIR
	SMPWRK1
	SMPWRK2
	SMPWRK3
	SMPWRK4
	SMPWRK6
	SMPnnnnn
	SYSIN
	SYSLIB
	SYSPRINT
	SYSPUNCH
	SYSUT1, SYSUT2, and SYSUT3
	SYSUT4
	Target library
	Text library (TXLIB)
	Zone statement

	Chapter 5. SMP/E data set entries
	How the data sets are organized
	How data set entries are organized
	Entries that control processing
	Entries that define status and structure

	ASSEM entry (distribution and target zone)
	Example 1: Deleting an ASSEM entry
	Example 2: Adding a new ASSEM entry

	BACKUP entries (SMPSCDS)
	Example: Deleting BACKUP entries

	Data element entry (distribution and target zone)
	Example: Adding a new data element entry

	DDDEF entry (distribution, target, and global zone)
	Example 1: Defining global zone DDDEFs for cataloged data sets
	Example 2: Defining DLIB zone DDDEFs for cataloged data sets
	Example 3: Defining target zone DDDEFs for cataloged data sets
	Example 4: Defining a DDDEF for a noncataloged data set
	Example 5: Defining a concatenated DDDEF entry
	Example 6: Defining DDDEFs for temporary data sets
	Example 7: Defining a global zone DDDEF for SMPTLIB data sets
	Example 8: Defining a DLIB zone DDDEF for SMPTLIB data sets
	Example 9: Protecting data sets
	Example 10: Defining pathnames in a UNIX file system

	DLIB entry (distribution and target zone)
	Example: Changing the destination of a copied library

	DLIBZONE entry (distribution zone)
	Example 1: Defining a DLIBZONE entry
	Example 2: Formatting a zone description

	FEATURE entry (global zone)
	Example: Adding a FEATURE entry

	FMIDSET entry (global zone)
	Example 1: Defining an FMIDSET entry
	Example 2: Modifying an FMIDSET entry

	GLOBALZONE entry (global zone)
	Example 1: Defining the GLOBALZONE entry
	Example 2: Deleting two ZONEINDEX entries
	Example 3: Formatting a zone description
	Example 4: Renaming an SMPCSI data set and updating a ZONEINDEX

	Hierarchical file system element entry (distribution and target zone)
	Example 1: Adding a new hierarchical file system element entry
	Example 2: Defining a linkname for an existing hierarchical file system element
	Example 3: Adding a hierarchical file system element entry with a PARM subentry

	HOLDDATA entry (global zone)
	JAR entry (target and distribution zone)
	LMOD entry (distribution and target zone)
	Example 1: Adding a new LMOD entry
	Example 2: Changing the link-edit attributes of an LMOD
	Example 3: Deleting a MODDEL subentry
	Example 4: Completing cross-zone updates
	Example 5: Adding a CALLLIBS subentry list to an LMOD entry
	Example 6: Deleting link-edit control statements
	Example 7: Adding a UTIN and SIDEDECKLIB subentry to an LMOD
	Example 8: Deleting a UTIN subentry from an LMOD

	MAC entry (distribution and target zone)
	Example 1: Adding a new MAC entry
	Example 2: Defining an alias for an existing macro

	MCS entry (SMPPTS)
	MOD entry (distribution and target zone)
	Example 1: Adding a new MOD entry
	Example 2: Forcing assembly of a module
	Example 3: Completing cross-zone updates

	MTSMAC entry (SMPMTS)
	Example: Deleting an MTSMAC entry

	OPTIONS entry (global zone)
	Example 1: Connecting an OPTIONS entry to UTILITY entries
	Example 2: Changing the SMPOUT page length
	Example 3: Preparing to receive RELFILEs
	Example 4: Identifying libraries for retry processing

	ORDER entry (global zone)
	Example: Deleting an ORDER entry

	PRODUCT entry (global zone)
	Example: Adding a PRODUCT entry

	PROGRAM entry (distribution and target zone)
	Example: Adding a new PROGRAM entry

	SRC entry (distribution and target zone)
	Example 1: Adding a new SRC entry
	Example 2: Recording the application of a corrective fix

	STSSRC entry (SMPSTS)
	Example: Deleting an STSSRC entry

	SYSMOD entry (distribution and target zone)
	Example 1: Creating a SYSMOD entry
	Example 2: Removing the ERROR indicator

	SYSMOD entry (global zone)
	Example 1: Changing the SOURCEID of a SYSMOD
	Example 2: Indicating that a SYSMOD was applied

	TARGETZONE entry (target zone)
	Example 1: Defining a TARGETZONE entry
	Example 2: Formatting a zone description

	UTILITY entry (global zone)
	Example 1: Changing the DD statement for SYSPRINT output
	Example 2: Defining link-edit utility parameters
	Example 3: Defining a user utility program

	ZONESET entry (global zone)
	Example: Defining a ZONESET entry

	Chapter 6. SMP/E CSI application programming interface
	Overview of GIMAPI
	QUERY command
	QUERY command parameters
	Building the QUERY parameters data structure
	Filter parameter syntax
	Valid entry types
	Valid subentry types
	QUERY command processing
	QUERY command output
	Example of QUERY command
	Data structures for QUERY command

	FREE command
	FREE command parameters
	FREE command processing

	VERSION command
	VERSION command parameters
	VERSION command processing
	VERSION command output

	Programming in C
	Data structures in C

	Programming in PL/I
	Data structures in PL/I

	Programming in assembler
	Data structures in assembler

	Additional programming considerations
	Sample programs that use GIMAPI
	Sample C/370 program
	Sample PL/I program
	Sample assembler program

	Chapter 7. Writing UNIX shell scripts
	Designing a shell script for SMP/E processing
	Designing for copy actions
	Designing for delete actions
	Designing for diagnosis
	Returning control to SMP/E

	Example shell script

	Chapter 8. Library change file records
	Library change file record structure
	Library change file record types
	A0 - Alias record type 0
	A1 - Alias record type 1
	C0 - Continuation record type 0
	E0 - Element record type 0
	E1 - Element record type 1
	H0 - Header record type 0
	L0 - Library record type 0
	L1 - Library record type 1
	L2 - Library record type 2
	P0 - SYSMOD status record type 0
	S0 - SMP/E environment record type 0
	T0 - Trailer record type 0

	Valid action types
	Usage recommendations

	Chapter 9. SMP/E exit routines
	RECEIVE exit routine
	Changing records within SMPPTFIN
	Inserting records within SMPPTFIN
	Inserting records at the end of SMPPTFIN
	Skipping records in SMPPTFIN

	Retry exit routine

	Chapter 10. JCL statements required to invoke SMP/E
	JOB statement
	EXEC statement
	DD statements

	Chapter 11. Service routines
	GIMCPTS: SYSMOD compaction service routine
	Calling GIMCPTS
	Example
	Return codes

	GIMDTS: Data transformation service routine
	Calling GIMDTS
	Processing
	Return codes

	GIMGTPKG service routine
	Calling GIMGTPKG
	GIMGTPKG processing
	Return codes

	GIMUNZIP file extraction service routine
	Calling GIMUNZIP
	GIMUNZIP package control tags
	Example of using GIMUNZIP
	GIMUNZIP processing
	Determining the required size of SMPWKDIR
	Sample RECEIVE job for GIMUNZIP output
	Return codes

	GIMXSID software inventory data service routine
	Calling GIMXSID
	GIMXSID control statements
	Example of using GIMXSID
	Processing
	Zone and data set sharing considerations
	Return codes

	GIMXTRX service routine
	Calling GIMXTRX
	Input parameter data set contents
	Processing
	Return codes

	GIMZIP packaging service routine
	Calling GIMZIP
	GIMZIP package control tags
	Example of using GIMZIP
	GIMZIP processing
	Package attribute file
	Archive files
	Return codes

	Chapter 12. GIMIAP: Copy utility invocation program
	Control statements used to invoke GIMIAP
	The INVOKE control statement
	COPY control statement
	The SELECT control statement
	Return codes
	JCL statements used in the DEIINST or HFSINST job

	Appendix A. SMP/E naming conventions
	Naming conventions for HOLD reason IDs and HOLD classes
	Error reason IDs
	System reason IDs
	User reason IDs
	Class values

	Naming conventions for source IDs
	Naming conventions for SYSMODs
	Function SYSMOD IDs
	PTF, APAR, and USERMOD SYSMOD IDs

	Appendix B. Accessibility
	Accessibility features
	Using assistive technologies
	Keyboard navigation of the user interface
	Dotted decimal syntax diagrams

	Notices
	Policy for unsupported hardware
	Minimum supported hardware
	Programming interface information
	Trademarks
	Special attributions

	Index
	Special characters
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

