<|lI!

7/08S

DEFSMSdss Storage Administration

Version 2 Release 1

SC23-6868-02

Note
FBefore using this information and the product it supports, read the information in|[“Notices” on page 655,

This edition applies to Version 2 Release 1 of z/OS (5650-ZOS) and to all subsequent releases and modifications
until otherwise indicated in new editions.

© Copyright IBM Corporation 1984, 2015.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents
Figures.x
Tables. Xxiii

About this document xv
Required product knowledgexv
z/0S information . . Xvii

How to send your comments to IBM Xix

If you have a technical problem xix
Summary of changes XXi
Summary of changes for z/OS Version 2 Release 1

(V2R1) as updated February 2015. xxi
Summary of changes for z/OS Version 2 Release 1

(V2R1) as updated September 2014 xxi
z/0S Version 2 Release 1 summary of changes . . xxi

Part 1. DFSMSdss Storage
Administration Guide 1

Chapter 1. Introduction to the
DFSMSdss component of DFSMS.
Understanding the role of DFSMSdss .
Managing user data with SMS
Sequential data striping.
Record counting .
Installation exit routines
Authorization checking . .
Managing availability with DFSMSdss
Backing up and restoring volumes and data sets
Using DESMShsm for backup.
Using concurrent copy .
Using the stand-alone restore program of
DFSMSdss . .
Managing data movement w1th DFSMSdss .
Moving data .
Moving data in an SMS managed env1ronment
Moving data with concurrent copy .
Moving data with FlashCopy .
Moving data with SnapShot . .
Converting data to and from SMS management
Converting data sets with data movement
Converting volumes without data movement .
Managing space with DFSMSdss .

N O ONUl Ul Ul W w W

O OO O O OO XX

—_ =

Chapter 2. Requirements for running
DFSMSdss1

Understanding the operating environment11
Storage requirements11
Hardware requirements13

© Copyright IBM Corp. 1984, 2015

Volume formats . .13
Indexed VTOC . 14
Data set organizations . . 14
Temporary data set names .15
Chapter 3. Logical and physical
processing and data set filtering .17
Defining logical and physical processing. .17
Logical processing . . .17
Physical processing . . 18
Data integrity cons1derat1ons . .19
Choosing data sets for processmg—ﬁltermg .20
Filtering by data set names . . 20
Filtering by data set characteristics .21
The FILTERDD keyword . .23
Uses of filtering . .23
Chapter 4. Invoking DFSMSdss . . 25
Invoking DFSMSdss with ISMF. . 25
How to invoke ISMF . .25
Invoking DFSMSdss with JCL . . . 25
Invoking DFSMSdss with the application 1nterface 25
User interaction module exit functions . 26
Chapter 5. Protecting DFSMSdss
functions. . 27
Protecting DFSMSdss and lSMF funct1ons w1th
RACF .27
ISMF functions you mlght want to protect .27
Setting up the authorization structure .27
Protecting DFSMSdss functions with RACF
FACILITY class profiles .29
Name-hiding . . 30
Chapter 6. Managing avallablllty with
DFSMSdss . . 33
Planning an availability strategy . 33
Backup and recovery . . 33
Disaster recovery . . 34
Maintaining vital records . . 36
Archiving data sets. . 36
Backing up data sets . 37
Logical data set dump. . 38
Physical data set dump . . . 38
Renaming data sets during dump processmg . 39
Backup with concurrent copy . . 40
Using DFSMSdss as a backup utility for CICSVR 42
A backup scenario43
Backing up data sets with spec1al requ1rements .44
Dumping HFS data sets . . 44
Dumping zFS data sets .44
Dumping multivolume data sets . 45
Dumping integrated catalog facility user catalogs 46
Dumping non-VSAM data sets that have aliases 47

iii

Dumping VSAM spheres .
Dumping indexed VSAM data sets
Dumping SYS1 system data sets
Dumping data sets containing records past the
last-used-block pointer
Backing up SMS-managed data sets
Backing up data sets being accessed with record
level sharing .
Backing up data sets w1th extended attrlbutes
Backing up volumes
Logical volume DUMP
Physical volume dump
Backing up system volumes .
Backing up VM-format volumes
Dumping data efficiently . .
Combining volume copy and Volume dump to
reduce your backup window
Space considerations
Performance considerations .
Shared DASD considerations
Backing up and restoring volumes w1th
incremental FlashCopy
Securing your tape backups .
Using host-based encryption to secure backups
DFSMSdss processing of dump encryptron
requests .
Restoring data sets .
Logical data set restore .
DFSMSdss handling of the explratron date
during logical restore .
DFSMSdss handling of the data set—changed
indicator during restore . .
Physical data set restore .
Coexistence considerations .
Restoring data sets with special requlrements .
Restoring multivolume data sets and restoring
data sets using multiple target volumes (spill
volumes)
Restoring mtegrated catalog fac1l1ty catalogs
Restoring non-VSAM data sets that have aliases
Restoring indexed sequential, unmovable, direct,
and absolute track data sets . .
Restoring an undefined DSORG data set
Restoring an extended-format VSAM data set
with stripe count of one .
Restoring a VSAM sphere .
Restoring a preallocated VSAM cluster .
Restoring the VVDS and the VTOCIX
Restoring a PDSE . .o
Restoring a damaged PDS .
Restoring data sets in an SMS- managed
environment .
Converting non—VSAM data sets to mult1volume
Restoring SMS-managed data sets .
Restoring GDG data sets . .
Restoring non-SMS-managed data sets

Logical restore of data sets with phantom catalog

entries .

Logical restore of preformatted empty VSAM

data sets .o .
Restoring volumes .

iV z/0S V2R1.0 DFSMSdss Storage Administration

. 47
. 48
. 48

. 48
. 49

. 49
. 50
. 50
. 50
. 50
. 51
. 51
. 51

. 51
. 54
. 55
. 60

. 60
. 63

64

. 69
.70
.71

.75

. 76
. 76
.77
.78

.78
.79

81

. 81
. 83

. 83
. 83
. 84
. 84
. 84
. 85

. 85

86

. 86
.90
.90

.90

.91
.92

Specifying output volumes
Recovering VM-format volumes
Coexistence considerations

Chapter 7. Managing data movement
with DFSMSdss .

Preparing for data movement
Evaluating the use of logical and phys1cal copy
Controlling what DFSMSdss copies
Moving data sets . .

Moving volumes

Logical data set copy .

Physical data set copy

Specifying input volumes

Selecting output volumes

Renaming data sets

Expiration date handling
SMS to SMS.

SMS to non-SMS
Non-SMS to SMS .
Non-SMS to non-SMS

Defining RACF profiles .

Moving data sets with utilities

Moving data sets with concurrent copy.
Specifying concurrent copy for COPY requests

Moving data sets with FlashCopy
Designating FlashCopy usage .

Moving data sets with SnapShot .

Moving data sets with special requirements
Moving undefined DSORG and empty
non-VSAM data sets . . .
Moving system data sets
Moving catalogs
Moving non-VSAM data sets that have al1ases
Moving multivolume data sets
Converting VSAM and non-VSAM data sets to
multivolume. e
Moving VSAM data sets
Moving a PDSE
Moving a damaged PDS.

Moving unmovable data sets .

Moving data sets to unlike devices .
Moving indexed sequential data sets
Moving direct access data sets.

Moving GDG data sets . .

Moving SMS-managed data sets .

Moving non-SMS-managed data sets
Moving to preallocated data sets .

Moving data sets being accessed with record
level sharing

Moving preformatted empty VSAM data sets

VTOC considerations for moving volumes.

Logical volume copy operation

Physical volume copy operation .

Moving volumes with FlashCopy.

Designating FlashCopy usage .

Determining why FlashCopy cannot be used
Freeing subsystem resources

Choosing space efficient FlashCopy w1th the
FCSETGTOK keyword .

. 93
. 94
. 95

. 97
.97

97

. 98
. 98
.99
.99
. 100
. 100
. 101
. 102
. 104
. 104
. 104
. 105
. 105
. 105
. 105
. 107

108

. 109
. 110
. 113
. 114

. 114
. 115
. 115

116

. 116

. 118
. 118
. 119
. 120
. 120
. 121
. 121
. 121
. 122
. 123
. 125
. 126

. 129

129

. 130
. 130
. 131
. 132
. 132

133

. 133

. 134

Initializing the volume with the FCWITHDRAW

keyword 135

Backing up volumes w1th FlashCopy

consistency groupo 135
Moving volumes with SnapShot ... 138

Designating SnapShot usage 138

Determining why SnapShot cannot be used . . 138

Moving volumes to like devices of equal capacity 139
Moving volumes to like devices of greater capacity 139
Moving volumes to unlike devices 140
Moving VM-format volumes 140

Chapter 8. Converting data to and
from SMS management 141

Evaluating conversion to SMS management . . . 141
Data sets ineligible for conversion to SMS. . . 141
Data sets ineligible for conversion from SMS 142
Volumes eligible for conversion to SMS. . . . 142

Conversion by data movement . . oL 142
Converting to SMS management by data
movement 142
Conversion from SMS management by data
movement 0143

Conversion without data movement ... 143
Simulating conversion14
Preparing a volume for conversion 144

Converting to SMS management without data

movement145
SMS report 146

Special data set requ1rements for conversion to

SMS I €1
VSAM sphere ehg1b1l1ty I 133
Multivolume datasets 147
GDG datasets148
Temporary datasets148
VIOC and VVDS 148

Converting from SMS management w1thout data

movement 148

Special data set requlrements for conversion from

SMS I %
Multivolume data sets e,
GDG datasets149
Temporary datasets149
VTIOC and VVDS 149

Special considerations for using non- SMS-managed

targets.149

Chapter 9. Managlng space with

DFSMSdss 151
Reclaiming DASD space. 151
Releasing unused space in data sets A 1
CompressingaPDS152
Deleting unwanted datasets 152
Combining data set extents. 153

Consolidating free space and extents on Volumes 155
When to run DEFRAG and CONSOLIDATE

functions155
Designating FlashCopy usage156
Preserve Mirror FlashCopy. . . . 156

Determining why FlashCopy cannot be used 157

Designating SnapShot usage 158
Determining why SnapShot cannot be used . . 158
Data sets excluded from DEFRAG or
CONSOLIDATE processing. 158
DEFRAG options . . . B 1)
Serialization. . . e () |
Security cons1derat1ons . . 163

Maximizing track utilization by reblockmg data

sets.l64

Chapter 10. Diagnosing problems in
DFSMSdss operations 167
Determining the source of the failure: DFSMSdfp,

DFSMSdss, or DFSMShsm . . . B (74
Using keywords to identify the problem 168
Component identification keyword 169
Release-level keyword 1e9
Type-of-failure and function keywords ... 169
Module keyword174
Maintenance-level keyword 176
Using the IBM Support Center 176
Using the software support facility 177
Using IBMLink/ServiceLink 177
Info/System.178

Chapter 11. ACS routine information 179

ACS variables available during Copy function . . 179

ACS variables available during RESTORE and

CONVERTV processing18
Using SIZE and MAXSIZE Var1ables L. 182

Chapter 12. Dumping and restoring
Linux for System z partitions and
volumes185

Preparing to work with Linux volumes. 185
Understanding the hardware environment. . . 185
Choosing VOLSERs for Linux volumes. . . . 186
Formatting and partitioning Linux volumes . . 186
Obtaining authorization for Linux volumes . . 187
Backing up a Linux volume with partitions . . 187

Using DFSMSdss dump and restore commands 188
Example 1. DUMP FULL 189
Example 2. DUMP FULL with CONCURRENT
COPY.19
Example 3. DUMP DATASET19
Example 4. COPY FULL.o 191
Example 5. COPY FULL COPYVOLID
ALLEXCP19
Example 6. RESTORE FULL192
Example 7. RESTORE DATASET 193
Example 8. COPYDUMP 195

Submitting JCL batch jobs to a z/OS system us1ng

FTP . 195

Using DFSMSdss stand alone services 195

Chapter 13. Format of the DFSMSdss

dump dataset. . . . e 197
Format of the DFSMSdss dump data set197
ADRBMB dataarea198

Contents V

ADRBMB constants
ADRBMB cross-reference
ADRTAPB data area .
ADRTAPB constants .
ADRTAPB cross-reference .

Chapter 14. DFSMSdss patch area
Sample JCL .

Forcing the use of preallocated VSAM data sets
(PN04574)

Ignoring VSAM duphcate key errors (PN05529)
Modifying the timeout period for enqueue lockout
detection (PL84514)

Controlling the wait/retry time for ser1a11zat1on of
system resources (PN11523)

Using CONVERTYV on data sets with a revoked
user ID in the RESOWNER field (OY59957)
Restoring inconsistent PDSE data sets (OY60301)
Changing default protection status during
RESTORE (PN37489) .

Restoring or copying undefined, mult1volume
SMS-managed data sets (OY63818) .

Bypassing backup-while-open processing
(OY63531) .
Bypassing storage and management class
authorization checking during RESTORE
(OY65348) .

Issuing notification for tape and mrgrated data sets
(0Y66092)

Using RESET with concurrent copy (OY65555)
Forcing RESTORE after message ADR482E
(0Y67532)

Restoring VSAM KSDS or VRRDS after messages
ADR789W, ADR364W, and ADR417W (OY67942)
Restoring VSAM data sets with expiration date of
1999365 (OW00780)

Restoring VSAM data sets w1th explratlon dates
beyond 2000 (OW00780) .

Changing default insertion of EOF track dur1ng
COPY with ALLDATA specified (OW15003) .

Using RESET or UNCATALOG in a logical data set
dump (PN60114) .

Changing secondary allocation quant1ty in format 1
DSCB for PDSE data sets (OW07755) .
Changing reference date default settings during
data set COPY and RESTORE processing
(OW12011) . .
Changing default protect1on processmg dur1ng
COPY (OW10314) . S
Bypassing management and storage class access
checks during COPY (PN72592) . .
Changing default handling of invalid tracks
created during data set COPY and RESTORE
processing (OW08174)

Forcing RESTORE to the same Volumes as the
source VSAM data set (OW07077)

Modifying number of volumes allocated for SMS
data sets during logical RESTORE and COPY
(OW15880) .

Dumping a keyed VSAM data set that has data
CAs without corresponding index CIs (OW17877)

Vi z/0S V2R1.0 DFSMSdss Storage Administration

. 199
. 199
. 199
. 208
. 208

217
. 217

. 217

218

. 219

. 219

. 220

220

. 221

. 221

. 222

. 222

. 223
. 223

. 224

. 224

. 225

. 225

. 226

. 226

. 227

. 228

. 229

. 229

. 230

. 230

. 231

. 232

Changing the default DEFRAG processing of

checkpointed data sets (OW20285) 233
Setting the percentage to overallocate target data

set space (OW27837)233
Bypassing RLS processing (OW32817) ... 234
Changing creation date default settings during

data set COPY and RESTORE (OW19618) 234
Copying and dumping a PDSE data set using the
VALIDATE PDSE option (OW48074). 235
Changing the default maximum number of act1ve
parallel subtasks 236

Changing the default 1n1t1ahzat1on processmg
during DUMP with FCWITHDRAW (OA18929) . . 236
Changing the default DEFRAG processing of

LINKLIST-indicated data sets (OW43874) 237
Changing the FASTREPLICATION default setting
during Copy and Defrag (OA11637). 238

Tuning hardware assisted compression (OA13300) 238
Resetting the data-set-changed indicator during
physical full or partial RESTORE operation

(OA20907) 239
Requesting that DFSMSdss double—check data set

high used RBA values for LDS data sets (OA23805) 239
Enabling or disabling use of the catalog search

interface for data set name filtering 240
Requesting that DFSMSdss restore the

VM-formatted volume that was DUMPed by z/OS
VIR10 before OA27531 was applied. 240
Adding timestamps to messages L. 241
Enabling building appropriate channel programs 241
Requesting that DFSMSdss attempt to fix ESDSes

with corrupted RDFs. . . . PR |
ADRPTCHB data area242
ADRPTCHB cross-reference245

Part 2. DFSMSdss Storage

Administration Reference . . 247
Chapter 15. Speclfylng DFSMSdss
commands . 249
Command syntax 249
How many subkeywords are allowed7 250
Specifying subkeywords in a command data set 250
How to read syntax diagrams.251
JCL that you need. 252
How to control DFSMSdss through PARM
information in the EXEC statement 254
Examples of invoking DFSMSdss with]CL . . 257
Chapter 16. DFSMSdss
filtering—choosing the data sets you
want processed e 259
How DFSMSdss filters data sets 259
Virtual storage access method (VSAM) data set
considerations259
Filtering by data set names. 260
Using an asterisk in partially qualrfred data set
names.260

Using a percent sign in partially qualified data
set names
Examples of fully and partlally quahﬁed data
set names .
Relative generatlon fllterrng

Filtering by data set characteristics .
Some examples of the BY keywords .

Standard catalog search order .
Broken data set considerations

Chapter 17. Syntax—DFSMSdss
function commands
What DFSMSdss commands do . .
Building the stand-alone IPL-able core 1mage
Using DUMP and RESTORE for backup and
recovery . o .
Moving data w1th COPY .
Converting to and from Storage Management
Subsystem (SMS) with CONVERTV .
Managing space with COMPRESS,
CONSOLIDATE, DEFRAG, and RELEASE.
Using COPY for partitioned data set (PDS) and
partitioned data set extended (PDSE)
conversions . .
Copying DFSMSdss—produced dump data w1th
COPYDUMP
Printing for diagnostic purposes w1th PRINT
BUILDSA command for DFSMSdss .
BUILDSA syntax . .
Explanation of BUILDSA command keywords
BUILDSA command examples. .o
CGCREATED command for DFSMSdss.
CGCREATED syntax .
Explanation of CGCREATED command
keywords. . .
COMPRESS command for DFSMSdss
COMPRESS syntax
Explanation of COMPRESS command keywords
Example of compress operations . .o
CONSOLIDATE command for DFSMSdss .
CONSOLIDATE command syntax
Explanation of CONSOLIDATE command
keywords. .
Example of a CONSOLIDATE operatlon
CONVERTV command for DFSMSdss .
CONVERTV command syntax.
Explanation of CONVERTV command
keywords.
Examples of CONVERTV operatlons
COPY Command for DFSMSdss .
Special Considerations for COPY .
COPY DATASET Command Syntax for Loglcal
Data Set . .
COPY DATASET Command Syntax for Physrcal
Data Set . . .
COPY FULL and COPY TRACKS Syntax .
Explanation of COPY Command Keywords
Data Integrity Considerations for Full or Tracks
Copy Operation
Examples of Full and Tracks Copy Operatlons
Examples of Data Set Copy Operations.

. 260

. 261
. 262
. 262
. 267
. 267
. 267

. 269
. 269

269

. 269
. 269

. 270

. 270

. 270

. 270

271

. 271
. 272

272

. 275
. 276
. 277

. 277
. 278

. 278
279

. 283
. 283
. 284

. 285
. 293
. 294
. 294

. 295
. 298
. 299

. 300

. 300

. 303
. 306
. 310

. 362

363

. 364

ALLDATA and ALLEXCP Interactions .

COPYDUMP command for DFSMSdss .
COPYDUMP syntax . .

Explanation of COPYDUMP command
keywords. .
Examples of COPYDUMP operatlons

DEFRAG command for DFSMSdss .

DEFRAG syntax .

Explanation of DEFRAG command keywords
Examples of DEFRAG operations.

Results of a successful DEFRAG operatlon

DUMP command for DFSMSdss .

Special considerations for dump .

DUMP FULL and DUMP TRACKS syntax

DUMP DATASET syntax for logical data set .

DUMP DATASET syntax for physical data set

Explanation of DUMP command keywords

Data integrity considerations for full or tracks

dump operation

Format of the output data set .

Examples of full and tracks dump operatlons

Examples of physical data set dump operations

Examples of logical data set dump operations
PRINT command for DFSMSdss .

PRINT syntax .

Explanation of PRINT command keywords

Examples of print operations .

RELEASE command for DFSMSdss . .
RELEASE syntax for physical processing .
RELEASE syntax for logical processing . .
Explanation of RELEASE command keywords
Example of a release operation S

RESTORE command for DFSMSdss .

Special considerations for RESTORE.

Data integrity considerations for full or tracks
restore operations .

RESTORE FULL and RESTORE TRACKS
command syntax . .

RESTORE DATASET command syntax for
logical data set .

RESTORE DATASET command syntax for
physical data set

Explanation of RESTORE command keywords
DFSMSdss RESTORE process .

Examples of full and tracks restore operatlons
Examples of physical data set restore operations
Examples of logical data set restore operations

Chapter 18. Syntax—auxiliary
commands .
Writing to the operator for DFSMSdss .
WTO command . .
WTOR command for DFSMSdss .
Scheduling tasks .
SERIAL command for DFSMSdss
PARALLEL command for DFSMSdss
Controlling task processing. .
SET command—setting condltlon codes and
patch bytes .
IF-THEN-ELSE command sequence for
DFSMSdss—using condition codes .

Contents

. 369
. 371
. 372

. 372
. 373
. 374
. 374

376

. 388
. 389
. 391
. 391
. 392
. 394

397

. 399

. 425
. 426

426
427
429

. 432
. 433
. 434
. 439
. 441
. 442
. 443

444

. 451
. 452
. 453
. 454
. 454
. 455

. 458

459

. 491

495
496
499

. 503
. 503
. 503
. 503
. 504
. 504
. 504
. 504

. 505

. 506

vii

EOJ command—ending your DFSMSdss step 510

Chapter 19. DFSMSdss stand-alone
services. . . 51
Preparing to run the stand alone services program 511

Running stand-alone services in 370 mode. . . 511
Running stand-alone services in XA or ESA
mode 512
Running stand- alone services w1th a predeﬁned
console . . . T &)
Using a tape l1brary Sb513
Using an automatic cartridge loaderble
Controlling command sequence processing . . 516
IPLing and running the Stand-Alone Services
Programble
IPLing Stand Alone Serv1ces . . 518

RESTORE—restoring a formatted dump tape 522
TAPECNTL—rewinding and unloading a tape 527

Building the IPL-able core image. 528
BUILDSA function.b528
Understanding BUILDSA Command
authorization levelsb528

Chapter 20. Data security and

authorization checking . 531
Effects of SPECIAL, OPERATIONS, and DASDVOL 531

SPECIAL.53
OPERATIONS532
DASDVOL53
General data security 1nformat1on53
Protecting resources and data sets 533
Protecting the usage of DFSMSdss 533
Password protection 534
Protected user and group data sets53
Generic and discrete profile considerations . . 536
Security-level, category, and label checking . . 537
Protect-all and always-call537
Standard naming conventions. 537
DFSMSdss temporary data set names 538
Discretely protected multivolume data set. . . 539
Erase-on-scratchb540
SMS-managed data set protectlon540
Loggingb540
DFSMSdss storage adm1nlstrator B E 1 |
ADMINISTRATOR keywordb541
FACILITY class profiles for the
ADMINISTRATOR keyword 542
DFSMSdss volume, data set and catalog access
authorityb43
Volume access and DASDVOL543
Data set access authorization levels 546
Protected catalogsb546
Non-SMS versus SMS author1zat10n .o . 547
System operator authorization, special data set
types 547
Access author1zat10n for DFSMSdss commands .. 547
CGCREATEDb548
COMPRESS.b548
CONSOLIDATEb548
CONVERTV.b548
viii z/0S V2R1.0 DFSMSdss Storage Administration

COPY . . 549
COPYDUMP . 553
DEFRAG . . 553
DUMP . 554
PRINT. . 555
RELEASE. . 555
RESTORE . 555
Chapter 21. Data
integrity—serialization . 561
Volume serialization . . 561
Avoiding lockout . . 562
The WAIT option . . 563
Data set serialization . . 563
Enqueuing—ENQ 563
Dumping HFS data sets . . 564
zFS data sets . . 565
Dynamic allocation (DYNALLOC) . 566
Enqueuing versus dynamic allocation of data
sets. . . 566
Read /Write ser1al1zat1on scheme . . 566
WAIT option . 569
An example of RESERVE ENQUEUE processmg 570
Backup-while-open data sets (CICS and DFSMStvs) 571
Backup-while-open status definition. . . 572
Backup-while-open processing. - . 572
Backup-while-open and concurrent copy . . 574
TOLERATE (ENQFAILURE) and SHARE
considerations . . . 574
CICS recovery data . . 574
Backup-while-open data sets (IMS) . . 575
Chapter 22. Appl|cat|on programming
interface . 577
Calling block structure . 577
User interactions . 580
Service considerations ... 581
Cross-memory Application Interface overview 581
Using the cross memory application interface to
control DFSMSdss . . 583
System programming 1nf0rmat10n . 584
Application interface blocks . 585
Exit identification block . . . 585
Application programming interface restr1ct1ons 589
Cross-memory application interface restrictions 589
User interaction module exit option descriptions 590
Function startup (Eioption 00) . . . 590
Reading SYSIN record (Eioption 01) . . 591
Printing SYSPRINT record (Eioption 02) . 591
Reading physical tape record (Eioption 03) . 592
Reading logical tape record (Eioption 04) . . 592
Writing logical tape record (Eioption 05) . 593
Writing physical tape record (Eioption 06) . . 593
Reading disk track (Eioption 07) . . 593
Writing disk track (Eioption 08) .o . 593
Reading utility SYSPRINT (Eioption 09) . 593
Writing SYSPRINT record (Eioption 10) . 594
Writing WTO message (Eioption 11). . 594
Writing WTOR message (Eioption 12) . 594
Presenting ADRUFO record (Eioption 13) . . 595

Function ending (Eioption 14) .

Presenting WTOR response (Eioption 15) .

OPEN/EOV tape volume security and
verification exit (Eioption 16) .

OPEN/EOV nonspecific tape volume mount

(Eioption 17)

Insert logical VSAM record durmg restore

(Eioption 18) -

Output tape I/O error (Eroptron 19)
Volume notification (Eioption 20).
Data set verification (Eioption 21)
Bypass verification exit (Eioption 22)

Data set processed notification exit (Eioption 23)

Concurrent copy initialization complete
(Eioption 24)

Backspace physical tape record (Eloptlon 25)
Dump volume output notification (Eioption 26)
Physical data set processed notification exit

(Eioption 27)

Target data set allocatlon notlflcatlon ex1t

(Eioption 28)

Physical data set volume allocatlon notlﬁcatron

exit (Eioption 30) .
Avoiding lockout . .
Application interface summary
ADREIDO data area

Constants for ADREIDO

Cross reference for ADREIDO .

Example: invoking DFSMSdss by using an

application program .

How to determine DFSMSdss version, release

and modification level

. 595
. 595

. 595

. 595

. 596
. 596
. 596
. 597
. 597

601

. 602

603
604

. 604

. 605

. 605
. 606
. 606
. 607
. 616
. 617

. 621

. 622

Chapter 23. Examples of the

application program with the user

interaction module (UIM) . 625
Chapter 24. Data set attributes . . 643
Part 3. Appendixes 647
Appendix A. Coexistence
Considerations. . . 649
Restoring backups using DFSMSdss . 649
Appendix B. Accessibility . . 651
Accessibility features . . . 651
Consult assistive technologies . . . 651
Keyboard navigation of the user mterface . . 651
Dotted decimal syntax diagrams . . 651
Notices . . 655
Policy for unsupported hardware . 656
Minimum supported hardware . 657
Programming interface information . . 657
Trademarks . . 657
Glossary . 659
Index . . 673
Contents iX

X z/0OS V2R1.0 DFSMSdss Storage Administration

Figures

1.

10.

11.

12.

13.

14.

15.

16.

17.

Output from a Dump of an Integrated Catalog
Facility User Catalog

Output from Restore of Integrated Catalog
Facility User Catalog .

SMS Report .

Sample JCL for dumpmg the Contents of a
volume.

Sample JCL for dumpmg two or more output
tapes at the same time. .

Sample JCL for DUMP FULL wrth
CONCURRENT COPY.

Sample JCL for DUMP DATASET

Sample JCL for dumping all of the Linux
partitions..

Sample JCL for makmg a full Volume copy of
a volume. .

Sample JCL for creatmg a backup copy of a
Linux volume.

Sample JCL for restormg a full volume from a
DFSMSdss dump. . .

Sample JCL for restormg mdrvrdual partrtlons
or data sets. .

Sample JCL for renammg data sets to be
restored. .o

Sample JCL for restormg only one partrtron of
a volume.. .
Sample JCL for copymg Lmux volume
dumps.

Printed Output Resultmg from a Successful
DEFRAG Run on nonEAV: . .

A Section of the Printed Output Resultmg
from a Successful DEFRAG Run on EAV:

© Copyright IBM Corp. 1984, 2015

. 47

. 80
. 146

. 189

. 190

. 190
. 191

. 191

. 192

. 192

. 193

. 193

. 194

. 195

. 195

. 390

. 391

18.
19.
20.
21.

22.
23.

24.
25.
26.
27.
28.

29.

30.
31.
32.
33.
34.
35.
36.
37.
38.
39.
40.
41.
42.

Output Resulting from a PRINT Command
Restore Actions on Non-VSAM Data Sets
DFSMSdss Target Class Selection .
Stand-Alone Services Restore Process
Overview .

DFSMSdss Data Secur1ty Decrslons

Block Diagram for Backup-While-Open
Serialization . .
DFSMSdss Appllcatlon lnterface Structure
DFSMSdss Exit Interface Structure

The Application Program Process .
Application Interface Program Example
Application Interface Program Example
(continued) .o

Application Interface Program Example
(continued) ..

User Interaction Module Example

User Interaction Module Example (continued)
User Interaction Module Example (continued)
User Interaction Module Example (continued)
User Interaction Module Example (continued)
User Interaction Module Example (continued)
User Interaction Module Example (continued)
User Interaction Module Example (continued)
User Interaction Module Example (continued)
User Interaction Module Example (continued)
User Interaction Module Example (continued)
Output Resulting from Use of the UIM Exits
Output Resulting from Use of the UIM Exits
(continued) Lo

441
493

. 494

. 517
. 544

. 571

580

. 585
. 625

626

. 627

. 628
. 629

630
631
632
633
634
635
636
637
638
639
640

. 641

xi

xil z/0S V2R1.0 DFSMSdss Storage Administration

Tables

1. Minimum Storage Requirements for DFSMSdss
Operations with I/O Buffers below
16-Megabyte Virtual.

2. Minimum Storage Requlrements for DFSMSdss
Operations with I/O Buffers above
16-Megabyte Virtual. .

3. Minimum Storage Requirements for a Restore
to an Unlike Device.

4. Module Names for DFSMSdss / ISMF L1ne
Operators . .

5. Module Names for DFSMSdss / ISMF Data Set
Application Commands

6. RACF FACILITY Class Profile Names for
DFSMSdss Keywords

7. RSA private tokens and requrred cryptographre
hardware for decryption . .

8. DFSMSdss processing of dump encryptlon
requests.

9. DFSMSdss handhng of the data set changed
indicator during data set restore operations..

10. Data Mover Selection Matrix for Data Set
Copy . .

11. Default Sltuatlon for DFSMSdss to Allocate
the SMS-Managed GDG Data Set . .

12. Data Set Erase Table for DEFRAG with z/OS
Security Server (RACF element). . .

13. Summary of Type-of-Failure Keywords

14. Variables Passed to ACS Routines during
DFSMSdss Copy Function . .

15. Variables Passed to ACS Routines durmg
DFSMSdss Restore and CONVERTV
Processing .

16. ADRBMB Mappmg Macro .

17. ADRBMB Mapping Macro .

© Copyright IBM Corp. 1984, 2015

.12

.12

.12

. 28

. 28

. 29

. 67

. 69

. 76

. 106

. 123

. 164

169

. 179

. 181
. 198
. 199

18.
19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.

33.
34.

35.
36.
37.

38.
39.

ADRTAPB Mapping Macro .

ADRTAPB Mapping Macro .

ADRPTCHB Mapping Macro

BY Keywords .

ALLDATA and ALLEXCP Interactlons When
Copying to LIKE Device .

ALLDATA and ALLEXCP Interactrons When
Copying to UNLIKE Device.

Physical Data Set Restore Actions on
SMS-Managed Data Sets .

Stand-Alone Services Options when Usmg an
IBM 3494 or 3495 Tape Library.

DFSMSdss FACILITY Class Profiles .
DASDVOL Access Authority

Access Authority for the DFSMSdss COPY
Command .

DFSMSdss COPY Command and RACF
Profiles .

DFSMSdss Copy and Defme Dlscrete Profﬂe
Summary .

Access Authorrty for the DFSMSdSS DUMP
Command . S
Access Authority for the DFSMSdss
RESTORE Command . .

DFSMSdss Copy and Define Proﬁle Summary
Data Set Enqueue Options for Non-VSAM

Data Sets Specified on DFSMSdss Commands.

Read/Write Access Serialization Scheme
Resource Serialization.

DFSMSdss Support for IMS
Backup-While-Open Data Sets .
ADREIDO0 Mapping Macro . .

Data Set Attributes and How They Are
Determined. Lo

. 199
. 208
. 242
. 264
. 370
. 371
. 492
. 514
. 533
. 545
. 549
. 550
. 552

. 554

. 555
557

564
566

. 568

. 575
. 607

. 643

xiii

Xiv z/0S V2R1.0 DFSMSdss Storage Administration

About this document

This document describes how to use the DFSMSdss component of DFSMS to
perform various storage management tasks. It is intended primarily for storage
administrators and system programmers.

This guide also includes information intended to help you diagnose DFSMSdss
problems. Before you begin diagnostic procedures, follow these steps to verify that
the problem is not the result of incorrect command usage:

1. Verify that all of the parameters specified for each command are used correctly;
see [Part 2, “DFSMSdss Storage Administration Reference,” on page 247

2. Correct any errors you might find and resubmit the JCL

3. Use this document to build a set of keywords that describes the error and, if all
parameters appear to be correctly specified, contact IBM® for assistance.

Related reading: Refer to the following for more information.

* For descriptions and syntax of the DFSMSdss commands, |Chapter 17,|
[“Syntax—DFSMSdss function commands,” on page 269.|

* For information about DFSMSdss messages, [z/0S MV'S System Messages, Vol 1|

(ABA-AOM

For information about the accessibility features of z/OS®, for users who have a
physical disability, see|{Appendix B, “Accessibility,” on page 651

Required product knowledge

To use this document effectively, you should be familiar with:
DFSMSdfp

DFSMShsm

* job control language (JCL)

¢ RACF (a component of Security Server for z/OS)

e IBM Support.

Readers of this publication are presumed to have a background in
programming—especially programming with TSO commands—and in z/OS
concepts and terms. This book is written primarily for the system programmer and
storage administrator, both of whom must understand the information in
IDFSMS Introduction|before reading this publication.

© Copyright IBM Corp. 1984, 2015 XV

XVl z/0S V2R1.0 DFSMSdss Storage Administration

z/0OS information

This information explains how z/OS references information in other documents
and on the web.

When possible, this information uses cross document links that go directly to the
topic in reference using shortened versions of the document title. For complete
titles and order numbers of the documents for all products that are part of z/OS,
see |/OS Information Roadmap}

To find the complete z/OS library, go to the [[BM Knowledge Centeq
|(http: //www.ibm.com /support/knowledgecenter /SSLTBW / welcome)l

© Copyright IBM Corp. 1984, 2015 xvii

http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome
http://www.ibm.com/support/knowledgecenter/SSLTBW/welcome

XViil z/0S V2R1.0 DFSMSdss Storage Administration

How to send your comments to IBM

We appreciate your input on this publication. Feel free to comment on the clarity,
accuracy, and completeness of the information or provide any other feedback that
you have.

Use one of the following methods to send your comments:
1. Send an email to mhvrcfs@us.ibm.com.

2. Send an email from the['Contact us" web page for z/OS (http:// |
[www.ibm.com /systems /z/0s/zos/webgs.html)|

3. Malil the comments to the following address:
IBM Corporation
Attention: MHVRCFS Reader Comments
Department HGMA, Building 707
2455 South Road
Poughkeepsie, NY 12601-5400
us

4. Fax the comments to us, as follows:
From the United States and Canada: 1+845+432-9405
From all other countries: Your international access code +1+845+432-9405

Include the following information:

* Your name and address.

* Your email address.

* Your telephone or fax number.

* The publication title and order number:
z/0S V2R1.0 DFSMSdss Storage Administration
SC23-6868-02

* The topic and page number that is related to your comment.

* The text of your comment.

When you send comments to IBM, you grant IBM a nonexclusive right to use or
distribute the comments in any way appropriate without incurring any obligation
to you.

IBM or any other organizations use the personal information that you supply to
contact you only about the issues that you submit.

If you have a technical problem

Do not use the feedback methods that are listed for sending comments. Instead,
take one of the following actions:

* Contact your IBM service representative.
* Call IBM technical support.

* Visit the IBM Support Portal at [z/OS support page (http://www.ibm.com /|
[systems/z/support/)}

© Copyright IBM Corp. 1984, 2015 xix

http://www.ibm.com/systems/z/os/zos/webqs.html
http://www.ibm.com/systems/z/os/zos/webqs.html
http://www.ibm.com/systems/z/support/
http://www.ibm.com/systems/z/support/

XX z/0S V2R1.0 DFSMSdss Storage Administration

Summary of changes

This information includes terminology, maintenance, and editorial changes.
Technical changes or additions to the text and illustrations for the current edition
are indicated by a vertical line to the left of the change.

Summary of changes for z/OS Version 2 Release 1 (V2R1) as updated
February 2015

The following changes are made for z/OS V2R1 as updated February, 2015.

Changed

* These topics are updated for Incremental FlashCopy Version 2, which supports
multiple Incremental FlashCopy targets: [“Backing up and restoring volumes|
with incremental FlashCopy” on page 60“”Using the FCINCRVERIFY keyword”
on page 61 }[“Using the FCWAIT keyword” on page 61|and
“FCINCREMENTAL” on page 330.|

Summary of changes for z/OS Version 2 Release 1 (V2R1) as updated
September 2014

The following changes are made for z/OS V2R1 as updated September, 2014.

Changed

* [“'DUMP command for DFSMSdss” on page 391 includes a ZCOMPRESS
keyword, which specifies that DFSMSdss should write the dumped data in
compressed format to the output medium using zEDC Services. This decreases
the space occupied by the dumped data.

* [“Protecting DFSMSdss functions with RACF FACILITY class profiles” on page 29|
includes a new profile, STGADMIN.ADR.DUMP.ZCOMPRESS, which protects
the use of ZCOMPRESS with the DUMP command.

* |“ADRTAPB data area” on page 199

« |”ADREIDO data area” on page 607

z/OS Version 2 Release 1 summary of changes
See the following publications for all enhancements to z/OS Version 2 Release 1
(V2R1):

« [z/05 Migmtionl

* |2/OS Planning for Installation]

* [2/OS Summary of Message and Interface Changes|

* [z/OS Introduction and Release Guid

© Copyright IBM Corp. 1984, 2015 xxi

xxil z/0S V2R1.0 DFSMSdss Storage Administration

Part 1. DFSMSdss Storage Administration Guide

© Copyright IBM Corp. 1984, 2015

2 z/0S V2R1.0 DFSMSdss Storage Administration

Chapter 1. Introduction to the DFSMSdss component of
DFSMS

DFSMSdss is a direct access storage device (DASD) data and space management
tool. DFSMSdss works on DASD volumes only in the z/OS environment.

You can use DFSMSdss to do the following tasks:

* Copy and move data sets between volumes of like and unlike device types. Like
devices have the same track capacity and number of tracks per cylinder (for
example, 3380 Model D, Model E, and Model K). In contrast, unlike DASD have
different track capacities (for example, 3380 and 3390), a different number of
tracks per cylinder, or both.

* Dump and restore data sets, entire volumes, or specific tracks

* Convert data sets and volumes to and from storage management subsystem
(SMS) management

¢ Compress partitioned data sets
* Release unused space in data sets

* Reduce or eliminate DASD free space fragmentation by consolidating free space
on a volume, or consolidating data set extents.

Understanding the role of DFSMSdss

To understand the role of DFSMSdss in an SMS environment, you need a basic
understanding of SMS. Also, how you use DFSMSdss depends on which other
DFSMS components are in use at your site, such as the DFSMShsm component.

Managing user data with SMS

SMS allows you to match users” data characteristics (like data set organization,
size, and format) to the characteristics of storage devices, without requiring users
to know or to understand the hardware configuration at your site. With SMS, end
users can store and retrieve data without being aware of space limitations, device
characteristics, or volume serial numbers.

Using SMS, you can define allocation management criteria for the different types of
data at your site. The values you specify identify your users’ requirements for
space, availability, and performance. You define these values to SMS as:

Data Class
A named list of data set allocation attributes that SMS assigns to a data set
when it is created.

Storage Class
A named list of data set storage service attributes that identify performance
and availability requirements. SMS uses these attributes to control data
placement.

Management Class
A named list of management attributes that SMS uses to control
DFSMShsm actions for data set retention, migration, backup, and release of
allocated but unused space.

© Copyright IBM Corp. 1984, 2015 3

Storage Group
A named list of DASD volumes used for allocation of new SMS-managed
data sets or for a dummy storage group.

Automatic class selection (ACS) is the SMS mechanism for assigning SMS classes
and storage groups (also known as constructs). Depending on the DFSMSdss
command you are using, SMS invokes some or all of the ACS routines in the
following order:

1. Storage class ACS routine
2. Management class ACS routine
3. Storage group ACS routine

SMS uses the assigned constructs to automatically place and manage data and
storage. For example, you can use a storage class to keep performance-sensitive
data on high-speed storage devices and use management classes to control the
movement of less active data to tape.

If there are WRITE statements in the SMS ACS routines, these are only displayed
in the DFSMSdss output when the ACS routines return a nonzero return code. If
DFSMSdss processes a data set successfully, then no WRITE messages are
displayed.

Related reading: For more information about SMS, see the ACS routine
information in g/OS DFSMSdfp Storage Administration}

Sequential data striping

Extended-format sequential data sets and extended-format VSAM data sets, which
must reside on SMS volumes, can be striped. Striping is a subtype of the basic
record organizations: sequential and VSAM. With striping, the data is written
across multiple volumes, with consecutive “loading units” being striped (applied)
to different volumes. The “loading unit” for extended-format sequential data sets is
a track. The “loading unit” for striped extended-format VSAM data sets is a
control interval (CI).

Striping can reduce the processing time for batch jobs that process large data sets
sequentially.

DFSMSdss can dump, restore, copy, or release space from a striped data set.

Note:

1. DFSMSdss treats a striped data set in the same way as it does other
multivolume SMS data sets.

2. DFSMSdss can convert a striped extended-format VSAM data set to
extended-format during RESTORE processing. DFSMSdss can convert an
extended-format sequential data set to sequential during RESTORE or COPY
processing.

Related reading: For more information about striped data sets, see [z/0S DFSMS
[[mplementing System-Managed Storage]

Record counting

DFESMSdss provides a means for verifying results of certain operations:

4 z/0S V2R1.0 DFSMSdss Storage Administration

* Sequential extended-data sets—DFSMSdss performs and reports byte counting
for logical data set COPY, DUMP, and RESTORE operations. The byte counts are
reported in message ADR902I for copy, ADR903I for dump, and ADR906I for
restore.

* Indexed VSAM data sets—DFSMSdss performs and reports record counting for
logical data set DUMP and RESTORE operations if the VALIDATE support is
used during the dump processing. VALIDATE processing is the default for
dump.

During dump processing, the record count is reported in message ADR788I. In
restore processing, message ADR788I is issued if the restore record count
matches the dump count. Message ADR789W is issued if the dump and restore
record counts differ and both the dump and restore record counts are provided.

Related reading: For more information about these messages, see [z/0S MV.
[System Messages, Vol 1 (ABA-AOM)|

Installation exit routines

You can customize DFSMSdss by coding exit routines. The following installation
exit routines are supplied with DFSMSdss:

Authorization installation exit routine (ADRUPSWD)
Forces authorization checking of protected data sets

Enqueue installation exit routine (ADRUENQ)
Forces enqueuing of the volume table of contents (VTOC)

Options installation exit routine (ADRUIXIT)
Can override any default or user-specified command options in the input
stream

Reblock installation exit routine (ADRREBLK)
Allows DFSMSdss, during a data set copy or data set restore operation, to
use the block size it selects for the target data set.

Related reading: For more information about these exit routines, see [z/0S DFSMS|
[[nstallation Exits)

Authorization checking

Related reading: For information about authorization checking, see [Chapter 20
[‘Data security and authorization checking,” on page 531}

Managing availability with DFSMSdss

DFSMSdss availability management consists of backing up data on DASD to tape
and restoring from the backup if the original is lost, damaged, or inadvertently
changed.

There are two general forms of backup:

Data set backup
Protects against the loss of individual data sets

Volume backup
Protects against the loss of a volume.

Chapter 1. Introduction to the DFSMSdss component of DFSMS 5

For data set backup, you can perform incremental backups to help reduce
processing time while still meeting your backup requirements. Incremental backup
means that data sets are backed up only if they have changed since their last
backup.

Volume backups are used to protect against media failure. You can use volume
backups in conjunction with incremental data set backups to recover a volume. As
a result, you need not do volume backups as frequently. Incremental data set
backups should be done daily and volume backups weekly. If a volume is lost for
some reason, you can restore from the most recent volume backup and apply
incremental data set backups to the volume to bring it back to its most current
status.

Note:

1. If a large format data set is used as the output of a DUMP command, it cannot
be used as input to a RESTORE command on a system that is prior to z/OS
VIR?.

2. If an extended format data set is used as the output of a DUMP command, it
cannot be used as input to a RESTORE command on a system that is prior to
z/0S VIR12.

Backing up and restoring volumes and data sets

You can use the DFSMSdss DUMP command to back up volumes and data sets,
and you can use the DFSMSdss RESTORE command to recover them. You can
make incremental backups of your data sets by specifying a data set DUMP
command with RESET and filtering on the data-set-changed indicator.

In an SMS environment, DFSMSdss saves the class names for the data sets it
dumps. When you restore the data set to an SMS-managed volume, DFSMSdss
invokes ACS and passes it the class names saved with the data set. Based upon
this and other input from DFSMSdss (for example, class names specified with the
STORCLAS or MGMTCLAS keywords), ACS assigns SMS constructs to each data
set.

Because DFSMSdss restore invokes ACS, you can restore the data sets to
SMS-managed volumes. Conversely, data sets backed up as SMS-managed data
sets can be restored as non-SMS-managed data sets.

In addition to providing for routine backup requirements, you can use DFSMSdss
to back up application data for disaster recovery and vital records purposes. You
can back up all the data sets (including data that resides only on primary DASD;
you cannot use DFSMSdss to process migrated data sets) that are associated with a
particular application for disaster recovery or vital records by using DFSMSdss
logical data set dump, and filtering on data set names. If you do not want to
perform a separate dump operation for disaster recovery, you can specify more
than one OUTDDNAME to create up to 255 separate backup copies when you do
your routine backup. These extra copies can then be used for disaster recovery or
vital records purposes. The DUMP command can also be used to archive data sets
that have not been accessed for long periods of time.

Using DFSMShsm for backup

The DFSMShsm component of DFSMS provides automated incremental backup,
interactive recovery, and inventory of what it backs up. If DFSMShsm is used, you
should use DFSMSdss for volume backup of data sets not supported by

6 z/0S V2R1.0 DFSMSdss Storage Administration

DFSMShsm and for dumping SYSRES and special volumes such as the one
containing the master catalog. If DESMShsm is not installed, you can use
DFSMSdss for all volume and data set backups.

Using concurrent copy

Many online databases must be available at all times. If a backup is made while
the data is being updated, the backup could be unusable or could require that a
log be applied to the restored version to synchronize the data. The alternative is to
synchronize all parts of the database and stop all update activity during the
backup.

The concurrent copy (CC) function of DFSMSdss is a hardware and software
solution that allows you to back up a database or any collection of data at a point
in time and with minimum down time for the database. The database is
unavailable only long enough for DFSMSdss to initialize a concurrent copy session
for the data, which is a very small fraction of the time that the complete backup
will take. The copy that is made will not include any of the update activity; it will
be as if the backup were made instantaneously when it was requested. After
initialization, DFSMSdss releases all the serialization it holds on the data, informs
the user that the initialization is complete so that update activity may resume, and
begins reading the data.

Be aware, however, that concurrent copy does not remove all data integrity
exposures. For example, a DFSMSdss full-volume dump serializes the VIOC of the
source volume, but does not serialize the data sets on the volume. This ensures
that the existing data sets are not deleted or extended, and new data sets are not
allocated. However, there is an exposure in that the data in the existing data sets
can be changed. Without concurrent copy, this exposure exists for the entire
duration of the dump. With concurrent copy, the exposure exists only during
initialization.

Note:

1. If you are using concurrent copy on VM-format volumes, DFSMSdss does not
serialize VM data in any way.

2. VM minivolumes are supported if you are using RAMAC Virtual Array (RVA)
devices to the extent that they are supported by IBM Extended Facilities
Product (IXFP) device reporting.

If a dump requestor does not stop all updating of the data sets during the
concurrent copy session initialization, the backup data integrity is compromised.

If a concurrent copy operation fails after signaling that the concurrent copy
initialization was complete (and update activity on the data has resumed), it is not
possible to recover the data at the point-in-time at which the concurrent copy
operation was started. This is because the data may have been updated while the
copy operation was progressing.

Virtual concurrent copy
DFSMSdss uses virtual concurrent copy (VCC) to provide a concurrent copy-like
function when the source device supports data set FlashCopy® or SnapShot.

During virtual concurrent copy, data is "flashed" or “snapped” from the source
location to an intermediate location, and the data is gradually copied to the target
location through standard I/O methods. The operation is logically complete after
the source data is "flashed" or “snapped” to the intermediate location and
physically complete after the data is moved to the target media.

Chapter 1. Introduction to the DFSMSdss component of DFSMS 7

The working space data set is used as an intermediate location for virtual
concurrent copy. For more information, see [Virtual concurrent copy working]
lspace” on page 57

Using the stand-alone restore program of DFSMSdss

DFSMSdss stand-alone restore is a single-purpose program. It is designed to help
you restore vital system packs during disaster recovery without relying on a z/OS
environment.

You can restore the following from a physical dump:
A full volume or ranges of tracks
* Your system residence (SYSRES) volume, if your operating system fails to IPL.

Related reading: For more information about the DFSMSdss stand-alone restore
program, see [Chapter 19, “DFSMSdss stand-alone services,” on page 511

Managing data movement with DFSMSdss

8

DFSMSdss can help you move data to replace devices, add capacity, and meet
performance requirements. The three general types of data movement are data set,
volume, and track movement.

Moving data

Using the DESMSdss COPY command, you can perform data set, volume, and
track movement. The COPY command with DELETE causes DFSMSdss to delete
the source data set after it successfully copies the data set.

The full-volume COPY command is useful for moving data between like devices. If
you are moving volumes to like devices of larger capacity, generally you need a
larger VTOC because the larger device can hold more data sets. DFSMSdss
rebuilds indexed VTOCs and recognizes larger VTOCs on target volumes (as long
as the target VTOC is outside the range of the source volume) when the VTOCs
are moved to a like device of larger capacity.

For moving data between unlike devices, you must use the logical data set COPY
command for all the data sets on the volume. DFSMSdss fills the tracks as
completely as possible instead of just copying track for track. In addition, if the
reblockable indicator is set on, the data set is reblocked to a system-determined
block size efficient for the device.

Moving data in an SMS-managed environment

In an SMS-managed environment, ACS routines and VIOC/Data Set Services
(VDSS) determine the target volume in an SMS-managed environment.

DFSMSdss moves data sets to different volumes if their storage groups change.
However, even if their storage groups do not change, DFSMSdss might move the
data sets to a different location on the same volume or to different volumes. Target
volumes selected by the user might not be honored.

If a new, empty volume is added to a storage group, data sets moved into that
storage group are likely to be placed on that volume.

z/0OS V2R1.0 DFSMSdss Storage Administration

If a data set’s storage class has the guaranteed-space attribute and the user
specifies output volumes, the data set is placed on the SMS volumes specified in
the volume list if:

* All SMS-managed volumes specified with the OUTDDNAME or OUTDYNAM
keyword belong to the same storage group.

* The ACS storage group routine assigns the data set to the storage group that
contains the specified SMS volumes.

Note: SMS-managed data sets must be cataloged in the standard order of search.

Related reading: For more information about SMS, see [z/0S DFSMSdfp Storage]

Administratio

Moving data with concurrent copy

Concurrent copy and virtual concurrent copy can be used during copy as well as
dump.

Related reading: For more information about concurrent copy and how to use it,
see ["CONCURRENT” on page 316.|

Moving data with FlashCopy

FlashCopy is faster than traditional methods of data movement, especially for
moving large amounts of data. DFSMSdss can use the FlashCopy feature of the
Enterprise Storage Server® (ESS) to quickly move the data from the source location
to the target location. The source devices and the target devices must be in the
same ESS, and the data to be moved must not need manipulation.

Related reading: For more information about moving data using FlashCopy, see
(Chapter 7, “Managing data movement with DFSMSdss,” on page 97

Moving data with SnapShot

DFSMSdss can use SnapShot to quickly move the data from the source location to
the target location. The source and target devices must be in the RAMAC Virtual
Array (RVA) and the data must not need to be manipulated. SnapShot is much
faster than traditional methods, especially when large amounts of data are moved.

Related reading: For more information about moving data using SnapShot, see
[Chapter 7, “Managing data movement with DFSMSdss,” on page 97

Converting data to and from SMS management
DFSMSdss is the primary tool for converting data to and from SMS management.
There are two ways of converting data:
* Conversion of data sets with data movement
* Conversion of volumes without data movement

The following sections briefly describe these two kinds of conversion.

Converting data sets with data movement

To convert data sets by data movement, use the DFSMSdss COPY or
DUMP/RESTORE command. When moving data sets from non-SMS-managed
volumes to SMS-managed volumes, DFSMSdss invokes ACS, which may assign

Chapter 1. Introduction to the DFSMSdss component of DFSMS 9

class names to the data sets. Alternatively, you can specify the BYPASSACS and
STORCLAS keywords with the COPY or RESTORE command to force the data sets
to be SMS-managed.

When moving data sets out of SMS management, specify the BYPASSACS and
NULLSTORCLAS keywords with the COPY or RESTORE command. DFSMSdss
then bypasses ACS and drops the data set’s class names. ACS can also make data
sets non-SMS-managed.

Related reading: For more information about converting data sets, see [Chapter 8
[“Converting data to and from SMS management,” on page 141)

Converting volumes without data movement

To convert volumes to and from SMS management without data movement, you
can use the DFSMSdss CONVERTV command. This command lets you:

e Prepare a volume for conversion. Using the PREPARE keyword, you can stop
new allocations and data set extensions to another volume while still allowing
access to the data on the volume.

e Convert a volume to SMS management. Using the SMS keyword, you can
convert a volume and all its data sets to SMS management.

* Convert a volume from SMS management. Using the NONSMS keyword, you
can remove a volume and its data sets from SMS management.

* Simulate conversion. Using the TEST keyword, you can verify that the volume
and its data sets are eligible for conversion and see what class names ACS
would assign to the data sets.

Related reading: For more information about converting volumes, see |[Chapter 8,
[“Converting data to and from SMS management,” on page 141

Managing space with DFSMSdss

10

DESMSdss provides the following functions to help you manage DASD space:

COMPRESS
Compresses your partitioned data sets by taking unused space and
consolidating it at the end of the data set. To make the unused space
available for other data sets, you must use the RELEASE command. This
does not apply to PDSEs.

CONSOLIDATE
Performs data set extent consolidation or reduction on a volume.

DEFRAG
Consolidates the free space on a volume to help prevent out-of-space
abends on new allocations.

DUMP/RESTORE
Deletes unwanted data sets and combines data set extents. (You can also
use the COPY command to combine data set extents.)

RELEASE
Releases the unused space in sequential, partitioned, and extended-format
VSAM data sets for use by other data sets.

Related reading: For more information about managing space, see
[“Managing space with DESMSdss,” on page 151.]

z/0OS V2R1.0 DFSMSdss Storage Administration

Chapter 2. Requirements for running DFSMSdss

This topic describes the requirements for running DFSMSdss.

Understanding the operating environment

DFSMSdss is exclusive to z/OS and is available only as a component of z/OS.

You can run the DFSMSdss stand-alone restore program on an IBM System z°
server in $/390° mode, or on an IBM System 390 server in S/390 mode or S/370
mode. The available modes are dependent on your CPU type and model.

Additionally, you can run the DFSMSdss stand-alone restore program on a z/VM®
virtual machine in XA mode.

Storage requirements

In most cases, you can let DFSMSdss determine the amount of storage it uses for
an operation. Sometimes, however, you might want closer control of the amount of
storage DFSMSdss uses. Use the storage estimates in this topic as a starting point
for determining minimum region sizes in which DFSMSdss can run.
lpage 12and [Table 2 on page 12|show the minimum storage requirements, in bytes,
to run each DFSMSdss operation. |Table 3 on page 12|shows the minimum storage
requirements, in bytes, to restore partitioned and VSAM data sets to unlike

devices. The legend for [Table 1 on page 12} [Table 2 on page 12} and [Table 3 on page|
is displayed beneath [Table 3 on page 12} The values include the storage required
to load the DFSMSdss program into the region.

Storage requirements depend on your operating system configuration and your
device and data set characteristics. The storage requirement estimates shown for
the COPY, DUMP, and RESTORE commands are only for the full-volume copy,
dump, and restore operations; they might vary for a data set operation.

If DFSMSdss determines that the storage requirements are greater than the storage
available during processing, DFSMSdss issues error message ADR376E to indicate
this. The out-of-storage condition might cause abend 80A during DFSMSdss
postprocessing.

If you use buffers above 16 megabytes virtual storage, the buffer size is allocated
independently of the region size.

If you use the PARALLEL command to run two or more DFSMSdss tasks
concurrently, the total storage required is the sum of the storage required for all
functions to be run in parallel. However, because DFSMSdss is reentrant, the
DFSMSdss code is not duplicated in storage. Therefore, do not include the
DFSMSdss load module size more than once.

© Copyright IBM Corp. 1984, 2015 11

12

Table 1. Minimum Storage Requirements for DFSMSdss Operations with I/O Buffers below

16-Megabyte Virtual

DFSMSdss

Command Storage Requirements

COMPRESS dsssize + (2 * trksize of largest device) + (number of additional
volumes, up to five * copysize)

CONVERTV dsssize + (buffersize * 5)

COPY (FULL) dsssize + (trksize * 5)

COPYDUMP dsssize + (buffersize * 5)

DEFRAG dsssize + (trksize * 5) + (16KB if VSAM present) + (1KB * number

of non-VSAM entries in VVDS)

DUMP (FULL) OPT(1)

dsssize + (buffersize * 7)

DUMP (FULL) OPT(2)

dsssize + (buffersize * 6)

DUMP (FULL) OPT(3)

dsssize + (buffersize * 15)

DUMP (FULL) OPT(4)

dsssize + (buffersize * (3 * trk/cyl))

PRINT

dsssize + (3 * trksize)

RELEASE

dsssize + trksize

RESTORE (FULL)

dsssize + copysize + (buffersize * 6)

Table 2. Minimum Storage Requirements for DFSMSdss Operations with I/O Buffers above

16-Megabyte Virtual

DFSMSdss Command

Storage Below 16MB Virtual Storage Above 16MB Virtual

present) + (1KB * number of
non-VSAM entries in VVDS)

COMPRESS dsssize + (number of 2 * trksize of largest device
additional volumes, up to
five * copysize)

CONVERTV dsssize buffersize * 5

COPY (FULL) dsssize trksize * 5

COPYDUMP dsssize buffersize * 5

DEFRAG dsssize + (16KB if VSAM (trksize * 5) + (152 * number

of data set extents) + (144 *
number of VSAM
components) + (48 * number
of non-VSAM data sets)

DUMP (FULL) OPT(1) dsssize buffersize * 7

DUMP (FULL) OPT(2) dsssize buffersize * 6

DUMP (FULL) OPT(3) dsssize buffersize * 15

DUMP (FULL) OPT(4) dsssize buffersize * (3 * trk/cyl)
PRINT dsssize 3 * trksize

RELEASE dsssize trksize

RESTORE (FULL) dsssize buffersize * 6

Table 3. Minimum Storage Requirements for a Restore to an Unlike Device

Type of Data Set

Storage Requirements

Partitioned Data Sets

dsssize + (((trksize + 64) * 5) + 8KB)

VSAM Data Sets

dsssize + (((trksize + 64) * 5) + (2 * maximum record size) + (3 *
buffspace))

z/0OS V2R1.0 DFSMSdss Storage Administration

Legend: This legend applies to [Table 1 on page 12} [Table 2 on page 12} and [[able 3

KB 1024 bytes.

dsssize
DFSMSdss load module size, 2065KB.

copysize
IEBCOPY load module size + IEBCOPY storage requirements below the
16MB line (that is, IMB minimum, or 2MB if the data set being compressed
has more than 1000 members).

buffersize
256KB is the default for I/O to tape unless DESMSdss is forced to use a
smaller size. Otherwise, it is the maximum of the largest trksize used or
32KB.

buffspace
Buffer space specified in the DEFINE command when the data set was
allocated.

trksize
The size, in bytes, of a track on your DASD volume.

trks/cyl
The number of tracks per cylinder on your DASD volume.

Hardware requirements

You can use DFSMSdss with all IBM DASD, magnetic tape devices, system
consoles, printers, and card readers that are supported by DFSMS.

Note:

1. VSAM-extended addressability requires a cached storage subsystem that has
concurrent copy-capable licensed internal code.

2. DFSMSdss does not support virtual input/output (VIO) devices.

3. When running DFSMSdss operations against storage devices that do not
support 64-bit real addressing, you must tell DFSMSdss not to use the 1/O
buffers that can be backed above the 2-gigabyte bar. This can be done by either
specifying ZBUFF64R=OFF on the EXEC statement in your JCL or by turning
off the UFPZB64R bit in ADRUFO block with the Options Installation Exit
Routine, ADRUIXT.

Volume formats

You can use DFSMSdss with the following DASD volume formats:

* Volumes with indexed VTOCs, see [“Indexed VTOC” on page 14| for details.
* Volumes with nonindexed VIOCs

* OS/VS minivolumes in a VM environment

¢ VM-formatted volumes (full or mini) with an OS-compatible VTOC beginning
on track zero, record five.

All DASD volumes used by DFESMSdss must be initialized by Device Support
Facilities (ICKDSF) and be mounted and online.

Chapter 2. Requirements for running DFSMSdss 13

Note: You cannot use concurrent copy on minivolumes of any format unless they
are on an RVA. However, you can use concurrent copy on full VM-format volumes
that contain minivolumes to the extent that they are supported by IBM Extended
Facilities Product (IXFP) device reporting.

Indexed VTOC

DFSMSdss recognizes three different formats for a VIOC index:
* SYS1.VTOCIX.Voolser

* SYS1.VTOCIX.volser

¢ SYS1.VTOCIX.Volser.

If the first character of a VOLSER is numeric, DFSMSdss renames it (or prefixes it)
so that the VOLSER begins with the letter "V." For example:

e If a VOLSER is 12345, DFSMSdss renames it to V12345

e If a VOLSER is 123456, DFSMSdss renames it to V23456.

Data set organizations

14

DFSMSdss can copy, dump, and restore data sets of the following types:
-+ DB2°
* Direct access
* EXCP (execute channel program)
* Partitioned, including:
— PDS (partitioned data set)
— PDSE (partitioned data set extended)
— HFS (hierarchical file system) data set
* Sequential, including extended-format data sets and Large Format data sets
* VSAM data sets that are cataloged in an ICF catalog, including:
— ESDS (entry-sequenced data set)
— KSDS (key-sequenced data set)
— KSDS with key ranges
— LDS (linear data set)
— RRDS (relative record data set)
— VRRDS (variable relative record data set)

— Extended-format ESDS, KSDS, LDS, RRDS, and VRRDS, including striped
ESDS, KSDS, LDS, RRDS, and VRRDS

— Extended-addressable VSAM ESDS, KSDS, LDS, RRDS, and VRRDS,
including striped ESDS, KSDS, LDS, RRDS, and VRRDS

— zFS (z/0S File System) data set

¢ Unmovable data set types (PSU, POU, DAU, ABSTR, ISU, and direct with
OPTCD=A).

Note:

1. DFSMSdss does not provide conversion between non-extended-format VSAM
and extended-format VSAM.

2. DFSMSdss cannot be used to process migrated data sets.

3. DFSMSdss cannot be used to process VSAM data sets that are cataloged in a
catalog that is outside of the standard order of search.

z/0OS V2R1.0 DFSMSdss Storage Administration

Temporary data set names

DFSMSdss must allocate the following temporary data sets to perform certain
functions such as copy and restore. The high-level qualifiers of those data set
names can be protected, and your installation must ensure that these temporary
data sets can be allocated.

Message data set—
Allocated by DFSMSdss to store messages. This data set lets DFSMSdss
print out messages by task rather than intermixing them. This data set is
deleted when DFSMSdss completes the operation. System-generated
temporary names are used.

Special DEFRAG or CONSOLIDATE data set—
Allocated by DFSMSdss to contain information about relocated DASD
extents. The data set name is in the following format:

SYS1.DFDSS.DEFRAG.xxxxxxxx.volser.DUMMY

where xxxxxxxx represents 8 bytes of X'FF', and volser is the volume serial
number of the volume being defragmented. The data set is deleted when
the DEFRAG or CONSOLIDATE operation ends successfully.

If the operation is interrupted (for example, if DFSMSdss is canceled), the
data set is left on the volume. To delete the data set, repeat the DEFRAG
or CONSOLIDATE operation. Before doing so, however, observe the
following considerations:

* Determine whether you need to convert the index VTOC (IXFORMAT)
volume to a non-indexed VTOC (OSFORMAT) before rerunning the
DEFRAG or CONSOLIDATE operation. Otherwise, the volume free
space values might be incorrect.

* Use the hexadecimal qualifier to prevent the deletion of this data.

Temporary copied data sets
Allocated by DFSMSdss when a copy is performed and deleted when the
copy is completed.

The format of the temporary name depends on the number of qualifiers of
the data set being copied:

Number of qualifiers (1) Temporary name
1 dsnhlq.Atidasid.chmmsstt
2 First 2 qualifiers.Atidasid.chmmsstt
>2 First 3 qualifiers.Atidasid.chmmsstt

The next to last qualifier, Atidasid, is a combination of a fixed "A"
character followed by a task id (tid) and an address space id (asid).

The last qualifier is chmmsstt where ¢ is:
Target cluster name

Target data component name
Target index component name
Source cluster name

Source data component name

o m C©c - O -

Source index component name

Chapter 2. Requirements for running DFSMSdss 15

P Source path name

Q Target path name

and hmmsstt is the time stamp information in low-order hours digits (h),
minutes (mm), seconds (ss), and hundredths of a second (tt).

Note: In the course of copying data sets, DFSMSdss renames the source
data set using the above conventions. Whenever DFSMSdss renames a data
set that is protected by RACF®, a component of the Security Server for
z/0S, to a temporary name a RACF profile must exist for the temporary
data set name.

Temporary copied catalogs
Allocated by DFSMSdss when it copies a catalog. When DFSMSdss copies
a catalog, two temporary data sets are used.

First, DFSMSdss allocates a temporary data set into which records are
temporarily exported. The export data set name format is:

CATHLQ.EXPORT.Thmmsstt
e where,

CATHLQ
The first three high-level qualifiers of the catalog that is being
copied.

hmmsstt

The time-stamp information in low-order hours digits (h),
minutes (mm), seconds (ss), and hundredths of a second (tt).

Second, DFSMSdss allocates a temporary catalog. The temporary catalog
name format is:

CATHLQ.Thmmsstt
* where,

CATHLQ
The first four high-level qualifiers of the catalog being copied.

hmmsstt
The time-stamp information in low-order hours digits (h),
minutes (mm), seconds (ss), and hundredths of a second (tt).

Dummy data set—
Allocated by DFSMSdss when copying or restoring volumes and an
indexed-VTOC needs rebuilding or the volume free-space values need
recalculating. The data set name is in the following format:

SYS1.VTOCIX.DSS.TEMP.volser
where volser is the volume serial number of the restored volume.

Allocation of this data set is never successful because DFSMSdss uses
dummy allocation values.

16 z/0S V2R1.0 DFSMSdss Storage Administration

Chapter 3. Logical and physical processing and data set
filtering

Before you begin using DFSMSdss, you should understand the difference between
logical and physical processing and how to use data set filtering to select data sets
for processing. This topic describes these two aspects of DFSMSdss.

Defining logical and physical processing

DFSMSdss can perform two kinds of processing when executing COPY, DUMP,
and RESTORE commands:

* Logical processing operates against data sets independently of physical device
format.

e Physical processing moves data at the track-image level and operates against
volumes, tracks, and data sets.

Each type of processing offers different capabilities and advantages.

During a restore operation, the data is processed the same way it is dumped
because physical and logical dump tapes have different formats. If a data set is
dumped logically, it is restored logically; if it is dumped physically, it is restored
physically. A data set restore operation from a full-volume dump is a physical data
set restore operation.

Logical processing

A logical copy, dump, or restore operation treats each data set and its associated
information as a logical entity, and processes an entire data set before beginning
the next one.

Each data set is moved by tracks from the source device and is potentially written
to the target device as a set of data records, allowing data movement between
devices with different track and cylinder configurations. Checking of data record
consistency is not performed during dump operations.

DFSMSdss performs logical processing if:

* You specify the DATASET keyword with the COPY command. A data set copy is
always a logical operation, regardless of how or whether you specify input
volumes.

* You specify the DATASET keyword with the DUMP command, and either no
input volume is specified, or LOGINDDNAME, LOGINDYNAM, or STORGRP
is used to specify input volumes.

* The RESTORE command is performed, and the input volume was created by a
logical dump.

DESMSdss uses catalogs or VIOCs to select data sets for logical processing. If you
do not specify input volumes, DFSMSdss uses the catalogs to select data sets for
copy and dump operations. If you specify input volumes using the
LOGINDDNAME, LOGINDYNAM, or STORGRP keywords on the COPY or
DUMP command, DFSMSdss uses VIOCs to select data sets for processing.

© Copyright IBM Corp. 1984, 2015 17

18

Note: To copy or dump entire multivolume data sets, you do not need to specify
all the volumes in the LOGINDDNAME or LOGINDYNAM volume list. However,
you must specify the SELECTMULTI keyword with either the FIRST or ANY
subkeywords.

When to use logical processing
Use logical processing for the following situations:

* Data is copied to an unlike device type.
Logical processing is the only way to move data between unlike device types.
* Data that may need to be restored to an unlike device is dumped.

Data must be restored the same way it is dumped. This is particularly important
to bear in mind when making backups that you plan to retain for a long period
of time (such as vital records backups). If a backup is retained for a long period
of time, it is possible that the device type it originally resided on will no longer
be in use at your site when you want to restore it. This means you will have to
restore it to an unlike device, which can be done only if the backup was made
logically.

* Aliases of VSAM user catalogs are to be preserved during copy and restore
functions.
Aliases are not preserved for physical processing.

* Unmovable data sets or data sets with absolute track allocation are moved to
different locations.

* Multivolume data sets are processed.

* VSAM and multivolume data sets are cataloged as part of DFSMSdss processing.

* Data sets are deleted from the source volume after a successful dump or copy
operation.

* Non-VSAM and VSAM data sets are renamed after a successful copy or restore
operation.

* You want to rename data sets through the application program interface (API)
during logical dump processing.

* You want to control the percentage of space allocated on each of the output
volumes for copy and restore operations.

* You want to copy and convert a PDS to a PDSE or vice versa.

* You want to copy or restore a data set with an undefined DSORG to an unlike
device.

* You want to keep together all parts of a VSAM sphere.

Physical processing

Physical processing moves data based on physical track images. Because data
movement is carried out at the track level, only target devices with track sizes
equal to those of the source device are supported. Physical processing operates on
volumes, ranges of tracks, or data sets. For data sets, it relies only on volume
information (in the VTOC and VVDS) for data set selection, and processes only
that part of a data set residing on the specified input volumes.

Note:

1. VSAM data sets are not cataloged during physical processing within SMS or
non-SMS environments. The CATALOG keyword is ignored for VSAM data
sets during physical restore. Use IDCAMS DEFINE RECATALOG to catalog the
data sets after the physical restore.

z/0OS V2R1.0 DFSMSdss Storage Administration

2. The RENAME keyword is only supported for non-VSAM data sets during
physical data set restore. VSAM Alternate Indexes (AIX) cannot be renamed
during physical data set copy or restore.

DFSMSdss performs physical processing when the following conditions exist:

* You specify the FULL or TRACKS keyword with the COPY or DUMP command.
This results in a physical volume or physical tracks operation.

Attention: Take care when invoking the TRACKS keyword with the COPY and
RESTORE commands. The TRACKS keyword should be used only for a data
recovery operation. For example, you can use it to “repair” a bad track in the
VTOC or a data set, or to retrieve data from a damaged data set. You cannot use
it in place of a full-volume or a logical data set operation. Doing so could
destroy a volume or impair data integrity.

* You specify the DATASET keyword on the COPY or DUMP command and input
volumes with the PHYSINDDNAME or PHYSINDYNAM keyword. This
produces a physical data set copy or physical data set dump.

¢ The RESTORE command is executed and the input volume is created by a
physical dump operation.

When to use physical processing
Use physical processing when the following conditions exist:

¢ Backing up system volumes that you might want to restore with the DFSMSdss
stand-alone restore program (for physical dump tapes only).

e Performance is an issue.

Generally, the fastest way—measured by elapsed time—to copy or to dump an
entire volume is with a physical full-volume command. This is primarily
because minimal catalog searching is necessary for physical processing.

* Substituting one physical volume for another or recovering an entire volume.

With a COPY or RESTORE (full-volume or track) command, the volume serial
number of the input DASD volume can be copied to the output DASD volume.

* Dealing with I/O errors. Physical processing provides the capability to copy,
dump, and restore a specific track or range of tracks.

* Dumping or copying between volumes of the same device type but different
capacity.

Data integrity considerations

In some circumstances, DFSMSdss can detect and correct inconsistencies while
processing data. For example, DESMSdss checks to verify the reliability of a
partitioned data set (PDS) directory before it uses the PDS. You can also use the
CHECKVTOC keyword to instruct DFSMSdss to perform additional consistency
checking on the VTOC before data processing begins on that volume.

If you are creating backups as part of disaster recovery preparedness, you may
want to take additional steps to ensure the validity of that data. You can establish
validity before you invoke DFSMSdss, or as part of the DFSMSdss invocation.

Note: Periodically running the Access Method Services DIAGNOSE function to
reorganize VSAM data sets establishes validity before you invoke DFSMSdss.
However, not specifying the NOPACK keyword establishes validity as part of the
DFSMSdss invocation. In this case, DFSMSdss verifies the PDS directory. If you
specify the CHECKVTOC keyword, DFSMSdss performs consistency checking on
the VTOC.

Chapter 3. Logical and physical processing and data set filtering 19

The choice between logical and physical processing depends on the expected type
of abnormal condition (if any). Neither processing mode provides a significantly
higher level of data integrity. Logical processing and physical processing are
simply different views of the same data. One mode could detect a condition that
the other mode would miss. For example, a frequent PDS abnormal condition that
does not cause problems during physical processing might cause problems during
logical processing. On average, the selected DFSMSdss processing mode should
closely mirror the mode in which you typically access data. Generally, logical
processing is the most applicable choice.

Broken data set considerations

Broken data sets are data sets that do not comply with defined z/OS data set
standards. These include data sets for which catalog entries, VIOC entries, or
VSAM volume data set (VVDS) entries are either missing or invalid. DFSMSdss
might not properly select broken data sets for processing because it relies on the
validity of these structures during filtering.

Choosing data sets for processing—filtering

You can select data sets for DFSMSdss processing by filtering on specified criteria.
DFSMSdss can filter on fully qualified or partially qualified data set names (by
using the INCLUDE or EXCLUDE keyword) and on various data set characteristics
(by using the BY keyword).

You can filter data sets with any of the following commands:
» COMPRESS

* CONSOLIDATE

* Data set copy

* Logical data set copy

* Logical data set dump

* Logical data set restore
* Physical data set copy

* Physical data set dump
* Physical data set restore
* RELEASE

At least one of the INCLUDE, EXCLUDE, or BY parameters must be specified with
the above commands.

Note: DFSMSdss cannot serialize all of the data sets being considered during filter
processing. It is possible that, between the time when DFSMSdss does the filtering
and builds the list of data sets to process and the time when DFSMSdss actually
processes the data sets, some or all of the data sets may be moved, deleted, or
migrated. The status of the moved, deleted, or migrated data sets will therefore
have changed by the time they are processed, which may in turn cause the
DFSMSdss operation to fail.

The following sections briefly describe what can be filtered and how to use the
available criteria.

Filtering by data set names

Using the INCLUDE or EXCLUDE keyword, you can filter on fully qualified or
partially qualified data set names. A fully qualified data set name is one in which

20 z/0S V2R1.0 DFSMSdss Storage Administration

all qualifiers are completely spelled out. For example:

((INCLUDE(SYSI.UTILB.LOAD)))

A partially qualified data set name is one in which the qualifiers are not
completely spelled out. Using asterisks (*) and percent signs (%), you can select
data sets without specifying their fully qualified names.

The single asterisk (*) is used in place of one qualifier. For example:

((INCLUDE(ABC.*.LOAD)))

This partially qualified name matches ABC.DEFELOAD and ABC.XYZ.LOAD. The
single * is also used to indicate that only part of a qualifier has been specified. For
example, if you want to filter using only the first three characters of the first
qualifier of a name, specify it as follows:

((INCLUDE(SYS*.**)))

This partially qualified name matches data sets whose first qualifier was SYS1 and
SYS1A. The other qualifiers in the data set name are ignored.

When used with other qualifiers, the double asterisk (**) indicates that one or more
leading, trailing, or middle qualifiers do not exist or they do not play a role in the
selection process. For example:

((INCLUDE(**.LOAD)))

This partially qualified name selects any data set with LOAD as its last qualifier
(such as data sets named LOAD, ABC.LOAD, and ABC.DEF.LOAD).

The percent sign (%) is used as an ignore character. Each % sign represents one
character in the name being filtered, and any character in that position is ignored.
One or more % signs can be specified in any qualifier. For example:

((INCLUDE(SYSLA%%B)))

This partially qualified name matches SYS1.AZZB and SYS1.AXYB, but not
SYS1.AXXXB.

Filtering by data set characteristics

The BY parameter can filter for the following data set characteristics:

Keyword
Criteria

ALLOC
Allocation type (cylinder, track, block, absolute track, or movable)

Chapter 3. Logical and physical processing and data set filtering 21

CATLG
Whether a data set is cataloged or not (using the standard catalog search
order)

CREDT
Creation date (absolute or relative)

DATACLAS
Data class for SMS

DSCHA
Whether the data-set-changed indicator is on

DSORG
Data set organization (SAM, PAM, PDS, PDSE, BDAM, EXCP, HFS, ISAM,
VSAM, or zFS)

EXPDT
Expiration date (absolute or relative)

EXTNT
Number of extents

FSIZE Data set size (number of allocated or used tracks)

MGMTCLAS
Management class for SMS

MULTI
Whether the VIOC shows that the data set is single-volume or
multivolume (allocated single-volume data sets that have never been
opened and are not cataloged may be selected as multivolume).

REFDT
Last-referenced date (absolute or relative)

STORCLAS
Storage class for SMS

You can use any of the following operators with the BY keyword:

Operator
Meaning

EQ or =
Equal to

LT or <
Less than

LE or <=
Less than or equal to

GT or >
Greater than

GE or >=
Greater than or equal to

NE or ~=
Not equal to

22 z/0S V2R1.0 DFSMSdss Storage Administration

When you specify multiple arguments for an NE operation, DFSMSdss selects only
those data sets not matching any of the arguments. When you specify multiple
arguments for an EQ operation, DFSMSdss selects those data sets matching any of
the arguments.

Some examples of filtering by data set characteristics
If you use the following specification of the BY keyword, DFSMSdss selects all
data sets allocated in cylinders:

(BY(ALLOC,EQ,CYL))

You can specify more than one criterion with the BY keyword. The following
example selects all data sets allocated in cylinders and whose management class is
MCNAMET:

(BY((ALLOC,EQ,CYL) (MGMTCLAS,EQ,MCNAMEL)))

You can specify multiple arguments for any of the filtering criteria. The following
example selects all data sets that have a data class of DCNAME1 or DCNAME2:

CBY(DATACLAS,EQ, (DCNAMEL,DCNAME2)))

The FILTERDD keyword

The FILTERDD keyword must be used if you have more than 255 entries in the
INCLUDE, EXCLUDE, or BY filtering lists. The FILTERDD keyword specifies the
name of the DD statement that identifies the sequential data set or member of a
partitioned data set that contains the filtering criteria to be used. This is in the
form of card-image records, in DFSMSdss command syntax, that contain the
INCLUDE, EXCLUDE, and BY keywords.

Uses of filtering

You will make the best use of filtering by data set names if you use meaningful
naming conventions. Your naming conventions should allow you to identify large
groups of data sets that can be treated similarly. With such conventions, you can
use data set name filtering to select large groups of data sets against which you
can run DFSMSdss functions.

Suppose you are a storage administrator and you want to do a daily backup of all
payroll data sets that have changed since they were last backed up. If the data sets
you want to back up have some identifying qualifiers (for example,
PAYROLL.FEDTAX), you can select them by coding:

Chapter 3. Logical and physical processing and data set filtering 23

/}/VRPAY JOB Accounting Information,MORGAN)
//STEP1 EXEC PGM=ADRDSSU,REGION=4000K
//SYSPRINT DD SYSOUT=*
//DROUT DD DSN=PAYROLL.DAY1,DISP=(NEW,CATLG),UNIT=3480,LABEL=(1,SL)
//SYSIN DD *
DUMP DATASET(INCLUDE (PAYROLL.FEDTAX.%%) -
BY ((DSCHA,EQ,YES) (MGMTCLAS,EQ,DAILY))) -
OUTDD (DROUT)
/*
o J

Filtering by data set characteristics also lets you process large groups of data sets.
You can use BY criteria to:

* Filter on the data-set-changed indicator to back-up only those data sets that have
not been backed up since they were last updated.

* Filter to select uncataloged data sets for deletion as a means of enforcing
cataloging.
* Filter to select data sets whose expiration date passed for deletion.

* Filter on the last referenced date to archive or delete data sets that have not been
referenced for a long period of time (for example, 18 months).

* Filter on data set size to ensure that when you use the COMPRESS and
RELEASE commands, you compress and release space only in data sets where
the savings may be significant.

* Filter on management class to perform space management (if in an
SMS-managed environment).

It is possible to pass DFSMSdss filtering criteria in a data set by using the
FILTERDD keyword. If you do this, the data set should have the following
characteristics:

* RECFM=F or FB
* LRECL=80
* BLKSIZE=80 for F (or a multiple of 80 for FB).

24 z/0S V2R1.0 DFSMSdss Storage Administration

Chapter 4. Invoking DFSMSdss

You can use the following methods to invoke DFSMSdss:
¢ Interactive Storage Management Facility (ISMF)

* Job control language (JCL)

* The application interface.

Invoking DFSMSdss with ISMF

You can use the menu-driven panels of ISMF to build job streams for many
DFSMSdss space management and backup functions. ISMF supports the DFSMSdss
commands COMPRESS, CONVERTV, COPY, DEFRAG, DUMP, RELEASE, and
RESTORE.

The information you supply on ISMF panels is used to build and submit job
streams like those you generate using JCL and DFSMSdss commands. Using ISMF
panels, you do not have to remember DFSMSdss keywords and syntax. Simply fill
in the values you want on the panels, and ISMF generates the job stream. You can
then either submit the job or save the job stream for later use.

Using ISMF panels, you can build a list of data sets or volumes according to
criteria that you provide. The list provides information about each volume or data
set (for example, allocated space and percent of unused space). You can use the list
to analyze and manage your data and storage more efficiently.

How to invoke ISMF

You invoke ISMF by logging on to TSO. If ISMF is installed as an option on the
ISPF Master Application Menu or as an option on the ISPF/PDF Primary Option
Menu, specify the selection option that corresponds to ISMF. You can use ISMF to
perform DFSMSdss functions against one or more data sets or volumes on a list
you create. Extensive help screens are available for all the DFSMSdss functions
supported by ISMF.

Related reading: For more information, see /OS DFSMS Using the Interactive|
[Storage Management Facility}

Invoking DFSMSdss with JCL

DFSMSdss is controlled by JCL statements and DFSMSdss commands. You can use
the JCL statements to invoke DFSMSdss and to define the data sets used and
created by it. The JCL defines the DFSMSdss commands that specify and control
tasks.

Related reading: For JCL information and examples, see the topic on specifying
DFSMSdss commands in [Chapter 15, “Specifying DFSMSdss commands,” on page|
-49.

Invoking DFSMSdss with the application interface

This topic documents General-Use Programming Interface and Associated
Guidance Information.

© Copyright IBM Corp. 1984, 2015 25

26

You can invoke DFSMSdss from an application program by using the application
interface. This allows you, for example, to gather statistical or auditing information
and to specify control variables.

The application interface allows you to:

¢ Fully utilize the invocation capabilities of DFSMSdss when the ATTACH, LINK,
or CALL system macro is specified in your application program.

* Optionally, specify a list of parameters to be used by DFSMSdss during the
processing caused by that invocation.

* Optionally, interact with DFSMSdss during processing of user installation
options after the installation options exit has been called.

* Optionally, interact with DFSMSdss during the processing at convenient points
where input/output (I/O) operations are being performed.

Note: DFSMSdss runs as an authorized problem program (nonsupervisor state);
any program invoking DFSMSdss must also be authorized and in non-supervisor
state.

Related reading: For more information about the application interface, see
[Chapter 22, “Application programming interface,” on page 577

User interaction module exit functions

When DFSMSdss is invoked from an application program, you can use the user
interaction module (UIM) to interact with DFSMSdss at points where I/O
operations are being performed. UIM exit functions can be used to:

* Replace, insert, delete, or modify a SYSIN record after DFSMSdss has read it or
a SYSPRINT record when DFSMSdss is ready to print it.

* Replace, insert, delete, or modify a write-to-operator message before DFSMSdss
writes it.

* Insert a statistics record during a logical dump operation.

* Modify the installation options specified in the ADRUFO control block to
override the specified options.

* Bypass password and expiration-date checking, or reject the tape volume and
request a scratch tape, when DFSMSdss is ready to open a tape.

* Request a specific volume serial when a nonspecific tape is passed to DFSMSdss.
* Get information about the data set being allocated.
* End a task or processing of individual data sets.

* Bypass authority checking for individual data sets. This includes both RACF and
password authorization.

* Bypass serialization checking of individual data sets.
* Show the status of the concurrent copy initialization.

* Specify some information on how a new target data is allocated.

Related reading: For more information about UIM exit functions, see thapter 23,|
“Examples of the application program with the user interaction module (UIM),” on|

page 625.|

z/0OS V2R1.0 DFSMSdss Storage Administration

Chapter 5. Protecting DFSMSdss functions

You can protect DFSMSdss/ISMF functions and some DFSMSdss keywords. This
topic discusses the functions of DFSMSdss for which you can control access
through the RACF element of z/OS Security Server.

Protecting DFSMSdss and ISMF functions with RACF

You can set authorization levels for the following ISMF elements by using the
program control feature of the z/OS Security Server RACF component:

* ISMF itself
* Each of the ISMF applications

* The individual line operators and commands

The RACEF report process and logging process for each ISMF function that you
identify also includes the RACF element for authorization checking. You can also
use standard RACF authorization checking to limit access to individual data sets,
volumes, or catalogs. Used in conjunction with program control, authorization
checking ensures that the appropriate ISMF data and functions are available to
users when they need them.

ISMF functions you might want to protect

Program control allows you to determine the ISMF functions to which users have
access. The authorization scheme you set up can apply to both individual users
and user groups. The ISMF functions you can protect fall into two general
categories: line operators and commands.

With program control, you can set up authorization levels for each category. You
can also vary the level within a category to suit the needs of your site. Before you
set up an authorization structure, consider the following:

* Do you want all users at your site to have access to ISMF?

* Do you want all users to have access to the data set, volume, or profile
applications?

* Are there line operators or commands to which you want to limit access?

Setting up the authorization structure

© Copyright IBM Corp. 1984, 2015

RACEF program control checks authorization before allowing access to an ISMF
function. Protection for each function is based on the authorization level of the
load module that contains the function. A user is allowed to execute an ISMF
function (for example, the RESTORE list command) when one of the following is
true:

* The user is authorized to execute the load module corresponding to the function
requested. Authorization is defined as READ level access or greater.

e The user’s RACF profile has the OPERATIONS attribute.
* The user’s group is authorized to execute the load module.

* The universal access authority (UACC) for the load module is READ or greater.
This makes the load module available to anyone who can access ISMFE.

27

28

Finding the DFSMSdss/ISMF module names

| Programming Interface Information

The names of the load modules for DFSMSdss/ISMF are stored in command tables
in both the panel library, DGTPLIB, and the load library, DGTLLIB. The load
module names are listed in [Table 4] and [Table 5| The module names are found in
the DGTSMMDI1 member of the panel library.

lists the names for the corresponding line operators. The module names for
line operators are found in the DGTTLPD3 member of the load library. lists
the names for commands. These names are in the DGTTCTD2 member of the load
library.

Table 4. Module Names for DFSMSdss/ISMF Line Operators

Line Operator I\D/[a:;uslztl\?a I;}:lication Volume Application Module Name
CGCREATE — DGTFCGO01

COMPRESS DGTFCMO01 DGTFCS01

CONSOLID — DGTECIO1

CONVERTV — DGTFCNO1

COPY DGTFCY01 DGTFCVO01

DEFRAG — DGTFDF01

DUMP DGTFDPO01 DGTFDMO01

RELEASE DGTFRLO1 DGTFRV01

RESTORE DGTERTO01 DGTFROO01

Table 5. Module Names for DFSMSdss/ISMF Data Set Application Commands

Command Module Name
COMPRESS DGTFCP01
COPY DGTFCOO01
DUMP DGTFDUO1
RELEASE DGTFREO1
RESTORE DGTFRR00

To view the command table, you need to know the data set names that your site
uses for the panel library and the load library. The installation of DFSMSdss/ISMF
puts the panel library in SYS1.DGTPLIB and the load library in SYS1.DGTLLIB.
However, your site’s postinstallation procedures might involve moving the
DFSMSdss/ISMF libraries. If they were moved, you can determine the data set
name by issuing the TSO LISTALC command and scanning the low-level qualifiers
for DGTPLIB and DGTLLIB.

| End Programming Interface Information

Note: DFSMSdss does not have special support for name hiding. You can prevent
the disclosure of names by DFSMSdss by moving DFSMSdss to a protected library
that only authorized users can access.

z/0OS V2R1.0 DFSMSdss Storage Administration

Protecting DFSMSdss/ISMF modules
The steps used to protect DFSMSdss/ISMF modules are listed below:

1. To define the modules you want to protect, use the RDEFINE command or the
ISPF RACF entry panels. When you define the modules to RACEF, supply the
name of the load module you want to protect, the name of the data set that
contains the module, and the volume serial number of the volume that contains
the data set. Each module you identify is added to the profile for the
PROGRAM general resource class. You have several options when you define
modules:

 If you want to define several modules at the same time, you can use asterisk
notation. For example, DGT* means all the modules beginning with the
letters DGT.

* You can add an access list with user IDs, group names with their associated
access authority to the profile, or both.

* You can define the UACC to give default access to all users or to none.
* You can use the AUDIT parameter to set up RACF logging or to bypass it.

2. To allow users to execute an application, line operator, or command, use the
PERMIT command.

For more information about how to perform these steps and the options you have
using program control, refer to [z/0S Security Server RACF Security Administrator’s|
‘

Protecting DFSMSdss functions with RACF FACILITY class profiles

Besides protecting DFSMSdss/ISMF functions, you can also protect certain
DFSMSdss keywords and functions. You do so by defining RACF FACILITY class
profiles and restricting access to those profiles. lists these keywords and
functions, and their associated RACF FACILITY class profiles.

For a given command or parameter, protection occurs when both of the following
conditions are met:

* RACF FACILITY class is active

* The indicated profile has been defined.

When the RACF FACILITY class is active and one of the profiles listed in is
defined, you must have READ access authority to use the indicated command or
keyword. Otherwise, anyone can use the indicated command or keyword. If RACF
FACILITY class checking is not set up for these keywords, any DFSMSdss user can
use them.

Table 6. RACF FACILITY Class Profile Names for DFSMSdss Keywords

Keyword or Function Profile Name

BYPASSACS with COPY STGADMIN.ADR.COPY.BYPASSACS
BYPASSACS with RESTORE STGADMIN.ADR.RESTORE.BYPASSACS
CGCREATED STGADMIN.ADR.CGCREATE
CONCURRENT with COPY STGADMIN.ADR.COPY.CNCURRNT
CONCURRENT with DUMP STGADMIN.ADR.DUMP.CNCURRNT
CONSOLIDATE STGADMIN.ADR.CONSOLID
CONVERTV STGADMIN.ADR.CONVERTV

DEFRAG STGADMIN.ADR.DEFRAG

Chapter 5. Protecting DFSMSdss functions 29

Table 6. RACF FACILITY Class Profile Names for DFSMSdss Keywords (continued)

Keyword or Function

Profile Name

DELETECATALOGENTRY with
RESTORE

STGADMIN.ADR.RESTORE.DELCATE

FCCGFREEZE with COPY

STGADMIN.ADR.COPY.FCFREEZE

FCFASTREVERSERESTORE with
COPY

STGADMIN.ADR.COPY.FCFRR

FCSETGTOK with COPY

STGADMIN.ADR.COPY.FCSETGT

FCTOPPRCPRIMARY with COPY

STGADMIN.ADR.COPY.FCTOPPRCP

FCTOPPRCPRIMARY with
DEFRAG

STGADMIN.ADR.DEFRAG.FCTOPPRCP

FlashCopy with CONSOLIDATE

STGADMIN.ADR.CONSOLID.FLASHCPY

FlashCopy with COPY

STGADMIN.ADR.COPY.FLASHCPY

FlashCopy with DEFRAG

STGADMIN.ADR.DEFRAG.FLASHCPY

IMPORT with RESTORE

STGADMIN.ADR.RESTORE.IMPORT

INCAT(catname) with COPY

STGADMIN.ADR.COPY.INCAT

INCAT(catname) with DUMP

STGADMIN.ADR.DUMP.INCAT

INCAT(catname) with RELEASE

STGADMIN.ADR.RELEASE.INCAT

NEWNAMEUNCONDITIONAL
with DUMP

STGADMIN.ADR.DUMP.NEWNAME

PROCESS(SYS1) with COPY

STGADMIN.ADR.COPY.PROCESS.SYS

PROCESS(SYS1) with DUMP

STGADMIN.ADR.DUMPPROCESS.SYS

PROCESS(SYS1) with RELEASE

STGADMIN.ADR.RELEASE.PROCESS.SYS

RESET with DUMP

STGADMIN.ADR.DUMPRESET

RESET(YES) with RESTORE

STGADMIN.ADR.RESTORE.RESET.YES

TOLERATE(ENQF) with COPY

STGADMIN.ADR.COPY.TOLERATE.ENQF

TOLERATE(ENQF) with DUMP

STGADMIN.ADR.DUMP.TOLERATE.ENQF

TOLERATE(ENQF) with RESTORE

STGADMIN.ADR.RESTORE. TOLERATE.ENQF

ZCOMPRESS with DUMP

STGADMIN.ADR.DUMP.ZCOMPRESS

You can bypass this type of RACF FACILITY class checking with the DFSMSdss

installation options exit routine that your installation may be using.

For more information about the installation options exit routine, refer to

[DESMS Installation Exits|

For more information about RACF class profiles, refer to |z/OS Security Server RACH

[Security Administrator’s Guidel

Name-hiding

DFSMSdss has no special support for the name-hiding function. Your installation is
responsible for protecting DFSMSdss functions and resources from unauthorized
users. You can use the existing procedures to limit the use of DFSMSdss function
by authorized users. For example, you can prevent disclosing names by placing
DFSMSdss in a protected library that only authorized users can use.

30 z/0S V2R1.0 DFSMSdss Storage Administration

For more information about how to protect a library, refer to
[DFSMSdss/ISMF modules” on page 29|

Chapter 5. Protecting DFSMSdss functions 31

32 7z/0S V2R1.0 DFSMSdss Storage Administration

Chapter 6. Managing availability with DFSMSdss

One of the major functions of DFSMSdss is the backup and recovery of data. Using
the DUMP and RESTORE commands, you can backup and recover data sets and
volumes. You can also use the DUMP and RESTORE commands on ranges of
tracks. However, this is usually done as a means of diagnosing 1/O errors rather
than as a means of backing up and recovering data.

Planning an availability strategy

In planning your overall availability strategy, you should consider the following
types of backup:

Backup of volumes and data sets—The general type of backup to guard
against users accidentally losing or incorrectly changing their data sets and
against losing volumes because of hardware failures.

Disaster recovery backup—Backup to protect against the loss of all your data
in a major disaster at your site. These backups are stored off site and, in the
event of a major disaster, are recovered at another site.

Vital records backup—Backup copies of data sets kept to meet externally
imposed retention requirements, such as tax records.

Archival—Backup of data that is unused for a long period of time. You remove
the data from DASD and retain it on tape in case it is needed again.

DFSMSdss is a flexible backup and recovery tool. You can use DFSMSdss by itself
to perform all backups listed above or to complement other backup and recovery
tools.

Backup and recovery

General backup should be done at both the data set and the volume level. To
protect against users accidentally deleting or changing their data sets, it is usually
more efficient to do incremental backup (logical backup of those data sets that
changed since they were last backed up). Incremental backups minimize processing
time because you are not backing up every data set. Logical backup lets you
restore data sets to unlike devices.

Data set backup

For data set backup, you need to consider the frequency of backup and the
number of versions you want to keep. A number of factors can influence this
decision, such as:

* The rate at which the data changes.
* The ease or difficulty of rebuilding the data (for example, it is easier to rebuild
an object library than a source library).

* The importance of the data. For data that is extremely important to your
business, you might want to keep extra backup versions.

Volume backup

Volume backup is necessary to guard against losing a volume, but it need not be
done often if you are doing incremental backup on a regular basis. If you lose a
volume, you can recover from the latest volume backup, and then recover data sets
from incremental backups to return the volume to its status before the failure. This
form of recovery is sometimes referred to as forward recovery. To perform it,

© Copyright IBM Corp. 1984, 2015 33

34

however, you must have a record of all of your backups. The DFSMShsm
component keeps its own inventory of the data sets it backs up and can perform
forward recovery using that inventory. DFSMSdss prints the names of the data sets
it dumps and the serial number and data set sequence number of the tape volumes
on which the dump begins and ends. You must use this printed record to perform
forward recovery with DFSMSdss.

Backup and recovery in an SMS-managed environment

Two kinds of data exist in an SMS-managed environment: SMS-managed and
non-SMS-managed data. DFSMSdss can help you fulfill your availability
requirements for both kinds of data.

SMS-managed data: The DFSMShsm component can perform automatic volume
backup (by invoking DFSMSdss) and incremental backup on SMS-managed data.
Each data set is assigned a management class that indicates how often DFSMShsm
should back it up and how many versions of the backup to keep. Using
DFSMShsm this way lets you manage availability at the data set level.

If DFSMShsm is not installed, you can use DFSMSdss to back up and recover data
sets and volumes. By filtering on management class name and the
data-set-changed indicator, you can perform incremental backup on all the data
sets belonging to a particular management class. To facilitate this backup
procedure, you can set up a DFSMSdss job to run periodically.

Non-SMS-managed data: Typically, non-SMS-managed data is data that SMS does
not support or data that is in transition from non-SMS to SMS management. If it is
data that SMS does not support, you can probably still use DFSMSdss to back it up
and recover it, because DFSMSdss supports many kinds of data that SMS does not.
If it is data in transition to SMS management, you can use DFSMShsm or
DFSMSdss to back up and recover it until it is placed under SMS management.

Backup and recovery in a non-SMS-managed environment

If SMS is not active, you are in a non-SMS-managed environment. For availability
management, the data in this environment can be treated much the same as the
non-SMS-managed data in an SMS-managed environment. DFSMSdss can be used
to back up and recover it at the data set and volume level.

Disaster recovery

Disaster recovery backups are made specifically for recovering data and
applications following a disaster. Never rely on your regular backup data sets (for
example, DEFSMShsm or DFSMSdss incremental backups) for disaster recovery.
Disaster recovery backups require special considerations that normally do not
apply to other types of backups.

Storing at a remote site

A basic difference between regular backups and disaster recovery backups is that
disaster recovery backups must be transported to a different site. The remoteness
of the recovery site depends upon the type of disaster you are preparing for (in the
case of a fire, the recovery site can be around the corner; in the case of an
earthquake or flood, it should be many miles away). The fact that the backups
must be taken to another site means that they must be on a portable media: tape.

Note: You can also automatically transmit backups to another site.

z/0OS V2R1.0 DFSMSdss Storage Administration

Using logical data set dump

Because the environment at the remote site might differ from your environment,
you should ensure that your disaster recovery backups can be restored in a
different environment. In general, it is recommended that you use the logical data
set DUMP command and filter on the data set name to make disaster recovery
backups. Logical data set dump processing allows you to back up only your
critical data sets and to restore to unlike devices.

Making logical data set dumps for disaster recovery backup requires a naming
convention or some other method to identify your critical data sets. If, for example,
you establish the convention of having the letters CRIT as the first four characters
in the first qualifier of critical data sets, you can back them up for disaster recovery
as follows:

DUMP -
DATASET (INCLUDE (CRIT*.*%) -
BY (MGMTCLAS,EQ,MCNAME)) -
OUTDDNAME (TAPE) -
COMPRESS

If for some reason you must do volume dumps for disaster recovery, you should
do logical volume dumps instead of physical volume dumps. That way, you can
restore the backups to unlike devices. You can perform logical volume dumps by
using DATASET (INCLUDE(**)) and either the LOGINDDNAME or
LOGINDYNAM keyword with the DUMP command.

Back up only critical data sets
You should back up only data sets that are critical to your operation. For example:

* Critical application data sets
* RACF inventory data sets

* System data sets

 Catalogs

Because you normally back up only critical data sets for disaster recovery, the
amount of data you have to back up is only a small percentage of all your data. To
identify those data sets that you want backed up for disaster recovery, you should
create a unique naming convention.

If you have DFSMShsm installed on your system, the recommended method of
disaster backup is to use aggregate backup and recovery support (ABARS).

To maintain versions of your disaster recovery backups, you can use generation
data group (GDG) dump data sets.

When recovering after a disaster, you might need to use the
DELETECATALOGENTRY or IMPORT keywords or both. For information about
using these keywords, refer to [“Logical restore of data sets with phantom catalog]|
fentries” on page 90

For more information about ABARS, refer to|z/OS DFSMShsm Storage|

Administration

Chapter 6. Managing availability with DFSMSdss 35

36

Maintaining vital records

Vital records are maintained to meet external retention requirements (such as legal
requirements).

Like disaster recovery backups, vital records are kept at a remote site and therefore
should reside on tape. Vital records are usually an even smaller percentage of all
data than disaster recovery backups. Unlike disaster recovery backups, vital
records are rarely necessary for normal processing.

Vital records are usually kept for long periods of time. The device they originally
resided on may no longer be in use at the time of recovery, and you may need to
restore them to unlike devices. Therefore, vital records should be dumped logically
so they can be restored to unlike devices. As with disaster recovery, using logical
data set DUMP processing requires a naming convention or some other method to
identify data sets for dumping.

If, for example, you establish the convention of having the letters VR as the first
two characters in the first qualifier of data sets to be backed up for vital records
purposes, you can dump them as follows:

DUMP -
DATASET (INCLUDE (VR . **) -
BY (MGMTCLAS,EQ,MCNAME)) -
OUTDDNAME (TAPE) -
COMPRESS

Archiving data sets

Archived data sets are data sets created to remove data from active status. This
data is placed on alternate storage media because it is not currently being used but
may be used in the future. Archived data sets are usually used for long-term
retention.

You can use DFSMSdss to archive data sets by periodically filtering on
last-referenced date and then dumping and deleting data sets that have not been
referenced for long periods of time. This frees space for data that is being accessed
more frequently and requires the faster access time of DASD. Because archived
data sets might not be recovered for a long time, they should be dumped logically
so they can be restored to unlike devices.

For example, the following logical DUMP command results in the archiving of all
data sets in management class MCNAMEI] that have not been referred to since
April 10, 1999:

DUMP -
DATASET (BY ((REFDT LT 99100) (MGMTCLAS EQ MCNAMEL1))) -
OUTDDNAME (TAPE1) -
DELETE -
COMPRESS -
PURGE

z/0OS V2R1.0 DFSMSdss Storage Administration

Backing up data sets

With the DUMP command, you can dump DASD data to a sequential data set,
which can be a generation in a generation data group (GDG). The storage medium
for the sequential data set can be tape or DASD. The output data set must be a
standard format sequential data set and cannot use any extended-format features,
such as compression. If the output resides on DASD, it may be a Large Format
data set.

DFSMSdss can dump data sets both logically and physically. Data sets are located
by searching either the catalog or the VTOC.

You can select data sets for dump processing based on data set names and
numerous data attributes, as discussed in [Chapter 16, “DFSMSdss]|
ffilteringe—choosing the data sets you want processed,” on page 259

To perform incremental backups with DFSMSdss, you can filter with
BY(DSCHA,EQ,1) to dump only data sets that have changed since the last dump
was taken. If you also code the RESET keyword, DFSMSdss changes the
data-set-changed indicator (DSCHA) after successfully dumping the data set. For
more information about the RESET keyword, refer to [“Backup with concurrent|
fcopy” on page 40|

Note:

1. If you are using DFSMSdss on data sets that DFSMShsm is also backing up,
you should not use the RESET keyword because it might cause confusion as to
which backup is the most current.

2. DFSMSdss does not permanently record the names of candidate volumes
during dump processing.

The data-set-changed indicator and the last-referenced date (REFDT) are supported
for VSAM and non-VSAM data sets.

Temporary data sets might be included in the data set list at the beginning of a
DFSMSdss job. These data sets are created and deleted by other jobs that are
running while DFSMSdss is running. Because they are temporary, these data sets
can disappear before DFSMSdss finishes. DFSMSdss can issue a message informing
the user what happened only at the time DFSMSdss tries to access the data sets. To
hold all the data sets in a volume for the entire DFSMSdss execution, write an
enqueue installation exit to enqueue the volume for the entire job.

When you create backups of data sets with the DUMP command, you can make
multiple (up to 255) dump copies with a single DUMP command. This is done by
specifying multiple ddnames on the OUTDDNAME parameter. To specify multiple
ddnames on the OUTDDNAME parameter, you could code:

DUMP

DATASET (INCLUDE (*+)
BY (MGMTCLAS,EQ,MCNAMEL)) -
OUTDDNAME (TAPE1,TAPE2,TAPE3) -

This technique can be helpful if you want to create several backup copies to be
used for different purposes.

Chapter 6. Managing availability with DFSMSdss 37

Unless overridden by the installation options exit routine, DFSMSdss continues
dumping while at least one output copy does not have an output error. In the
event of an abend, however, DFSMSdss ends without completing any backups.

For more information about the data-set-changed indicator and REFDT, refer to
2/0S DFESMS Installation Exits)

Logical data set dump

If you specify the DATASET keyword with the DUMP command and do not
specify input volumes, DFSMSdss performs a logical data set dump using
information in the catalogs to select data sets. For example, the following DUMP
command results in a logical data set dump:

DUMP -
DATASET (INCLUDE (%) -
BY (DSCHA,EQ,YES)) -
OUTDDNAME (TAPE1) -
COMPRESS

If you specify the DATASET keyword with the LOGINDDNAME, LOGINDYNAM,
or STORGRP keywords, DFSMSdss performs a logical data set dump by using
information in the VTOCs to select data sets. For example, the following DUMP
command results in a logical data set dump of all the single volume data sets on
volume 338001:

DUMP -
DATASET (INCLUDE(**)) -
LOGINDYNAM(338001) -
OUTDDNAME (TAPE) -
COMPRESS

The following data sets cannot be processed by logical data set dump or restore

operations:

* VSAM data sets not cataloged in an integrated catalog facility catalog

* Page, swap, and SYS1.STGINDEX data sets

* VSAM Volume Data Sets (VVDS)

* Partitioned data sets containing location-dependent information that does not
reside in note lists or in the directory.

Note: DFSMSdss cannot be used to dump data sets with a volume serial of
MIGRAT. The recommended method of dumping migrated data sets is to use
ABARS.

Physical data set dump

If you specify DATASET and INDDNAME or INDYNAM, DFSMSdss performs a
physical data set dump. For instance, the following DUMP command results in a
physical data set dump:

38 z/0S V2R1.0 DFSMSdss Storage Administration

DUMP -
INDDNAME (DASD1) OUTDDNAME (TAPE) -
DATASET (INCLUDE (**)) -
COMPRESS -
OPTIMIZE(4)

When multiple input volumes are specified for a physical data set dump operation,
multiple logical files (logical volumes) are created for each physical DASD source
volume.

DFSMSdss facilitates backup and recovery procedures for physical data set dumps
by printing the names of data sets dumped, and the serial and data set sequence
numbers of the backup tape volumes on which the dump of a DASD volume
begins and ends.

A physical data set dump or restore operation cannot process the following data
sets:

* KSDSs with key ranges. Logical processing should be used for this type of data
set.

¢ Extended-format VSAM data sets, including extended-addressable VSAM data
sets. Use logical processing for these types of data sets.

* VSAM data sets not cataloged in an integrated catalog facility catalog.
* Page, swap, and SYS1.STGINDEX data sets.

Note: When dumping multivolume data sets, take care to ensure that all volumes
where the data set resides are dumped at the same time and restored at the same
time. Dumping parts of a multivolume data set and then restoring them may leave
the entire data set or those parts unusable. In particular, keyed VSAM data sets are
easily damaged by such an operation.

Renaming data sets during dump processing

You can specify new names for dumped data sets through the
NEWNAMEUNCONDITIONAL keyword on the DUMP command. With this
keyword you assign new names to data sets during dump processing, rather than
renaming them later during restore processing. You might find
NEWNAMEUNCONDITIONAL to be useful if your installation keeps its dumped
data sets cataloged to avoid name contention between the data sets that are backed
up (dumped) and the production data sets.

The NEWNAMEUNCONDITIONAL keyword can only be used when invoking
DFSMSdss through the Application Programming Interface (API).

To assign a new name for a data set, you can specify a source data set with a
corresponding new name. For VSAM data sets, DFSMSdss derives VSAM
component names based on whether or not the name assigned for the VSAM
cluster is currently cataloged in the standard order of search. If the data set is not
cataloged, or the installation requests DFSMSdss to bypass checking to determine if
the new cluster name is cataloged in the standard order of search by the way of
the ADRUFO field, then DFSMSdss uses the same criteria that it uses for the
RENAME or RENAMEUNCONDITIONAL keywords to determine the new names
for the VSAM components (refer to[“Renaming data sets” on page 102). For
example, DFSMSdss might append .DATA (for a data component) and .INDEX (for
an index component) to the new cluster name when deriving the new VSAM
component names. If the new named data set is cataloged in the standard order of

Chapter 6. Managing availability with DFSMSdss 39

search, DFSMSdss associates the component names and the catalog name in the
dump records for the new named data set.

Data sets that do not meet the NEWNAMEUNCONDITIONAL criteria retain their
original names.

For the other dump records in the ADRTAPB Data Area, DFSMSdss associates the
source SMS constructs and volume serial numbers from the source data set.

To use the NEWNAMEUNCONDITIONAL keyword, you do not require access
authority to the source (READ) or the target (ALTER) data sets and their catalogs.
Instead, renaming data sets is authorized through the existing ADMINISTRATOR
keyword and is protected by the RACF FACILITY class,
STGADMIN.ADR.STGADMIN.DUMP.NEWNAME. This profile does not permit
you to delete a data set. Also, DFSMSdss propagates any passwords retrieved from
the source data set to the new named data set.

Note:

1. If you specify the NEWNAMEUNCONDITIONAL keyword with the SPHERE
keyword to process a base VSAM cluster, DFSMSdss processes the entire
VSAM sphere and assigns a new name to associated alternate indexes and
paths. If you do not specify rename filter criteria for all of the data sets in the
sphere, DFSMSdss issues an error message and does not process the source
data set.

2. If the new name filter has errors, DFSMSdss does not process the data set. The
new name is truncated to fit 44 characters. If it ends with a period, that period
is also truncated.

3. You cannot change the number of qualifiers unless you use fully-qualified
names, for example, NEWNAMEUNCONDITIONAL((A.B.C,A.B.C.D)). If the
new name is not fully qualified, it must contain the same number of qualifiers
as the old name. For example, given the old name filter DATE.**, the new name
filter DATE.*.*.LIST, DATEMARCH.TODAY.OLDLIST is renamed, but
DATE.MARCH.OLDLIST is not.

4. GDG relative generation filtering cannot be used for old or new names.

For more information about dump records, refer to [”ADRTAPB data area” on page]
199,

For more information about ADRUFO installation options exit routine, refer to
/OS DFSMS Installation Exits|

For more information about specifying the NEWNAMEUNCONDITIONAL
keyword, refer to ['NEWNAMEUNCONDITIONAL” on page 413

Backup with concurrent copy

| Programming Interface Information

DFSMSdss provides the concurrent copy function to allow you to backup data
while minimizing the amount of time in which the data is unavailable. The
database or application determines an appropriate time to start a backup, for
example, when the data is in a known state and update activity is stopped. You
can invoke DFSMSdss directly or through the DFSMSdss application program
interface (API) to do a concurrent copy of the entire database. After initialization,
DFESMSdss releases any serialization it holds on the data sets and prints a message

40 z/0S V2R1.0 DFSMSdss Storage Administration

to SYSPRINT and the console that the concurrent copy operation is logically
complete. If you invoke DFSMSdss through the API, DFSMSdss informs the caller
through the UIM exit option, Eioption 24, and the application can resume normal
operation.

| End Programming Interface Information |

If for any reason data cannot be processed with concurrent copy (for example, the
hardware being used does not support concurrent copy), DFSMSdss optionally
uses normal backup methods and does not release the serialization until the
backup is completed.

If the source device supports data set FlashCopy or SnapShot, DFSMSdss
optionally uses the FlashCopy or SnapShot to provide virtual concurrent copy.

For more information on concurrent copy and virtual concurrent copy, refer to
[“Performance considerations” on page 55)

Specifying concurrent copy for DUMP requests

On the DFSMSdss DUMP command, you can specify that DFSMSdss is to use the
concurrent copy function to process data. To do so, you specify the
CONCURRENT keyword, and, optionally, one of several available sub-keywords to
indicate the type of concurrent copy to be used and whether DFSMSdss can use
other methods of data movement. If you do not specify the CONCURRENT
keyword, your DUMP request does not use concurrent copy.

The CONCURRENT keyword applies to all of the data being dumped. You cannot
apply this function to a subset of the data being processed.

If you specify the CONCURRENT keyword, DFSMSdss might use a function
equivalent to the cache-based concurrent copy, called virtual concurrent copy. During
virtual concurrent copy, data is "flashed" or "snapped" from the source location to
an intermediate location, and then copied to the target location using standard
I/0O. The operation is logically complete after the source data is "flashed" or
"snapped" to the intermediate location and physically complete after the data is
moved to the target media.

If the source volume supports data set FlashCopy, DESMSdss uses FlashCopy to
provide virtual concurrent copy. If the source volume is a RAMAC Virtual Array
(RVA), DFSMSdss uses SnapShot. For more information about virtual concurrent
copy, refer to [“Using concurrent copy” on page 7.

Chapter 6. Managing availability with DFSMSdss 41

Attention: Use concurrent copy only during periods of light update activity for
the data sets or volumes involved. Performing cache-based concurrent copy
operations against many large data sets when there is also heavy update activity
(such as reorganizing data sets or initializing the volume the data sets reside on)
might result in a shortage of storage, because data is transferred to z/OS data
space storage faster than DFSMSdss can process it. When you use multiple
simultaneous concurrent copy tasks to process large, heavily updated data sets,
you might also experience long run times and contention for
SYS.DATA.SPACE.LATCH.SET. You must ensure that during the concurrent copy
operation another system does not reserve volumes that are to be processed. You
must also ensure that jobs and address spaces that are to use the concurrent copy
are assigned a WLM service class with a high execution velocity. Do not assign a
discretionary goal to concurrent copy work. You should spread multiple concurrent
copy jobs across as many LPARs as possible and avoid the use of PARALLEL
mode in DFSMSdss.

Note:
1. To help ensure data integrity, do not update the data during concurrent copy
initialization.

2. If a concurrent copy operation fails after signaling that the concurrent copy
initialization is complete (and update activity on the data has resumed), you
cannot recover the data to the point-in-time at which the concurrent copy
operation was started. The data might have been updated while the copy
operation was progressing.

3. VM mini-volumes are supported if you are using RVA devices to the extent that
they are supported by IBM Extended Facilities Product (IXFP) device reporting.

4. The use of concurrent copy and virtual concurrent copy with the DFSMSdss
DUMP command is controlled by the RACF FACILITY class profile,
STGADMIN.ADR.DUMP.CNCURRNT.

For information about specifying CONCURRENT and other DUMP command
keywords, refer to["'DUMP command for DESMSdss” on page 391 |

Invocation from an application program

Usage of the concurrent copy function can also be controlled through the
installation options exit, a product-sensitive programming interface intended for
customer use.

For more information about the installation options exit, refer to /OS DFSM
[[nstallation Exits)

For more information about the CONCURRENT keyword, refer to
[“CONCURRENT” on page 316/

Using DFSMSdss as a backup utility for CICSVR

CICSVR users can choose DFSMSdss as their backup utility by specifying the
CICSVRBACKUP keyword. DFSMSdss notifies the CICSVR server address space
every time that a CICSVR backup is made for a VSAM base cluster. CICSVR stores
the backup information in its recovery control data set (RCDS). This enables
CICSVR to manage backups that are made by DFSMSdss. Through the CICSVR
dialog panels, CICSVR provides data set, forward recovery automation by using
backups that DFSMSdss makes.

To use the DFSMSdss DUMP command to make CICSVR backups, you must create
DFSMSdss DUMP jobs that can be regularly submitted with a production planning

42 2/0S V2R1.0 DFSMSdss Storage Administration

system. Specify the CICSVRBACKUP keyword on the logical data set DUMP
command. The output data set name must be unique each time the job is run so
that multiple backup copies can be maintained.

You can also use the DFSMSdss COPY command to make CICSVR backups. There
are advantages to using the COPY command instead of the DUMP command:

* You can use data set FlashCopy to create the backup instantaneously when the
data set resides on an ESS that supports data set FlashCopy. You can use data
set FlashCopy to recover the data set instantaneously to a data set
FlashCopy-capable ESS.

* You can use SnapShot to create the backup instantaneously when the data set
resides on a RAMAC Virtual Array (RVA). You can use SnapShot to recover the
data set instantaneously to an RVA device.

To use the DFSMSdss COPY function to make CICSVR backups, you must create
DFSMSdss COPY jobs that can be regularly submitted with a production planning
system. Specify the CICSVRBACKUP and RENAMEUNCONDITIONAL keywords
on the data set COPY command. CICSVR provides DFSMSdss with a new name
for each VSAM base cluster that is copied when the CICSVRBACKUP keyword is
specified. DFSMSdss uses the CICSVR-generated new name instead of the one you
specify.

For more information about using the CICSVRBACKUP keyword on the DUMP
command, refer to [‘CICSVRBACKUP” on page 401

For more information about using different methods to generate a unique output
data set name, refer to CICS VSAM Recovery Implementation Guide.

For more information about the CICSVR generated new name and the required
RENAMEUNCONDITIONAL specification, refer to CICS VSAM Recovery
Implementation Guide.

A backup scenario

As discussed in|“Backup and recovery” on page 33 you should consider using a
combination of incremental and volume backup to fulfill your general availability
requirements. Some ways to implement this strategy are:

* Dump a full volume at a given interval—perhaps once a week. Use the RESET
keyword to reset the data-set-changed indicator. To do full-volume dumps of
two volumes at once (in parallel, which is most effective if tapes are on separate
channels), code the following:

PARALLEL
DUMP INDYNAM(111111) OUTDD(TAPE1) RESET OPTIMIZE(1)
DUMP INDYNAM(222222) OUTDD(TAPE2) RESET OPTIMIZE(2)

* Dump only changed data sets at a shorter interval—perhaps daily.

DUMP LOGINDY((111111),(222222)) OUTDD(TAPE3) RESET -
OPTIMIZE(3) DATASET(INCLUDE(**) -
BY (DSCHA, EQ, YES))

* Use data set naming conventions to set up a dumping scheme that takes account
of the relative importance of the data. For example, include CRIT in the

Chapter 6. Managing availability with DFSMSdss 43

first-level qualifier of all your critical data sets. With this convention in place,
you can back up your critical data sets as follows:

DUMP LOGINDY((111111),(222222)) OUTDD(TAPE4) RESET -
OPTIMIZE(4) DATASET(INCLUDE(CRIT*.**) -
BY (DSCHA, EQ, YES))

Other naming conventions can also be used to identify groups of data sets. For
instance, you can use department numbers, charge numbers, user initials, or
project codes to identify data sets you want to dump together.

For data set operations, SYSPRINT contains the names of all the data sets that
were dumped for each run. You should keep them for reference if you have to
restore a data set and you want it to be at the latest level. This prints a listing of
all the data sets that might be on the restore tape, and you can now find the latest
dumped version of a particular data set.

Backing up data sets with special requirements

Some data sets require special processing when they are backed up. The sections
below describe how to back up data sets that have special requirements.

Dumping HFS data sets

The following topics present guidelines for backing up an HFS data set with either
logical data set dump or physical data set dump.

Logical dump

Back up mounted HFS data sets with logical data set dump. Logical data set dump
provides the quiesce serialization mechanism (BPX1QSE) to ensure data integrity.
The quiesce ability allows you to dump an HFS data set while it is in use, as long
as you run the dump job on the same system that the HFS data set is currently
mounted on.

For more information about the serialization of HFS data sets, refer to|Chapter 21
[“Data integrity—serialization,” on page 561

Physical dump

Physical dump does not provide the quiesce serialization mechanism, and it is not
recommended for backing up mounted HFS data sets. If you do perform a physical
dump of an HFS, do not specify the SHARE keyword. The SHARE keyword
applies to the SYSDSN ENQ, and therefore does not provide protection against
updates during dump.

Attention: Exercise caution if you use TOL(ENQF) during a physical dump of
HFS data sets. Unlike other types of data sets, if an HFS is updated during a
physical dump with TOL(ENQEF), a subsequent restore will likely result in an
unusable data set.

Dumping zFS data sets

The following topics present guidelines for backing up an zFS data set with either
logical data set dump or physical data set dump.

44 z/0S V2R1.0 DFSMSdss Storage Administration

Logical dump

Back up mounted zFS data sets with logical data set dump. Logical data set dump
provides the quiesce serialization mechanism (BPX1PCT) to ensure data integrity.
The quiesce ability allows you to dump a zFS data set while it is in use, as long as
you run the dump job on the same system that the zFS data set is currently
mounted on.

Physical dump
Physical dump does not provide the quiesce serialization mechanism, and it is not
recommended for backing up mounted zFS data sets.

Attention: Exercise caution if you use TOL(ENQF) during a physical dump of
zFS data sets. Unlike other types of data sets, if a zFS data set is updated during a
physical dump with TOL(ENQEF), a subsequent restore will likely result in an
unusable data set.

Dumping multivolume data sets

An important advantage of DFSMSdss as a backup tool is that it can back up
multivolume data sets without having to specify any or all of the input volumes. If
you do not specify any input volumes (you are using catalog filtering),
multivolume data sets will be automatically processed in their entirety. The
catalogs are scanned to select an entire data set; that is, the data set is processed in
its entirety from all the volumes it resides on. Logical processing consolidates the
extents of the data set in one dump data set for you.

If you specify input volumes using the LOGINDDNAME or LOGINDYNAM
volume list, a data set is selected based on the following criteria:

* When you either specify SELECTMULTI(ALL) or specify input volumes without
specifying the SELECTMULTI keyword, all of the volumes that contain a part of
a non-VSAM or VSAM cluster must be in the volume list.
For VSAM data sets, the volume list is affected by the use of the SPHERE
keyword as follows:
— Specify SPHERE and you must list all parts of the base cluster in the volume
list.

— Do not specify SPHERE and you must list all parts of the base cluster and the
associated indexes in the volume list.

* When you specify SELECTMULTI(ANY), any part of the non-VSAM data set or

VSAM base cluster can be on a volume in the volume list.

For VSAM data sets, the volume list is affected by the use of the SPHERE

keyword as follows:

— Specify SPHERE and you must list any part of the base cluster in the volume
list.

— Do not specify SPHERE and you must list any part of the base cluster and the
associated alternate indexes in the volume list.

* When you specify SELECTMULTI(FIRST), the volume list must include the
volume that contains the first part of either the non-VSAM data set or the
primary data component of the base cluster for a VSAM sphere.

For VSAM data sets, the volume list is affected by the use of the SPHERE
keyword as follows:

— Specify SPHERE and you must list the volume that contains the first extent of
the data component for the base cluster in the volume list.

Chapter 6. Managing availability with DFSMSdss 45

46

— Do not specify SPHERE and you must specify the following information in
the volume list:
- The volume that contains the first extent of the data component for the
base cluster.
- The volume that contains the first extent of the data component for the
associated alternate indexes.

Guideline: You are not required to specify the SELECTMULTI option when you
build a list of volumes using the STORGRP keyword. The volume list contains all
of the volumes in a storage group.

The following is an example of the DUMP command with SELECTMULTI
specified:

DUMP -
DATASET (INCLUDE (**)) -
SELECTMULTI -
LOGINDYNAM(338001) -
OUTDDNAME (TAPE) -
COMPRESS

SELECTMULTI works only for logical data set dumps. If you dump a multivolume
data set physically, you must ensure that the segments from all the volumes are
dumped together. If you dump a multivolume data set physically, it is dumped
from all the volumes that are passed. The output dumped data contains a logical
file for each selected volume.

A DFSMSdss logical data set dump operation attempts to ensure that all parts of a
multivolume non-VSAM data set exist. In cases where a part of the data set is
missing, such as an inadvertent scratching of the VTOC entry on a volume,
DFSMSdss issues an error message and discontinues processing the data set.

DFSMSdss cannot process the following non-VSAM data sets because they are

missing one or more parts:

* Multivolume data sets whose catalog volume order differs from the VTOC
volume order

* Single volume data sets with the same name that are cataloged as one
multivolume data set

* Multivolume data sets whose last volume indicator in the VTOC entry is not set.

A multivolume data set standard user label is not supported.

Dumping integrated catalog facility user catalogs

Another important use of DFSMSdss as a backup tool is the backing up of
integrated catalog facility user catalogs and their aliases (using logical data set
dump). The user catalog name must be fully qualified with the INCLUDE keyword
on the DUMP command. The LOCK attribute of an integrated catalog facility user
catalog is dumped. The LOCK status is preserved if the catalog does not exist at
restore time. Otherwise, the LOCK status of the existing catalog is used.

The following example shows the JCL used to dump an integrated catalog facility
user catalog. RACF access to the catalog is not required if you have RACF
DASDVOL update access or if the installation authorization exit routine bypasses
authorization checking.

z/0OS V2R1.0 DFSMSdss Storage Administration

/}/STEPT006 EXEC PGM=ADRDSSU
//SYSPRINT DD SYSOUT=x
//TAPE DD DISP=(NEW,PASS),LABEL=(1,SL)
VOL=SER=(A00760) ,DSN=PUBSEXMP.DUMP,
UNIT=3590,DCB=(BLKSIZE=32760)
//SYSIN DD *
DUMP DS (INC(TEST.CAT.PUBSEXMP)) -
OUTDDNAME (TAPE)
/*
o %

shows printed output produced by the dump.

DUMP

OUTDDNAME (TAPE)
ADR1OLI (R/I)-RIOL (01),
ADR109I (R/I)-RIOL (01),
ADROL6I (001)-PRIME(01),
ADROO6I (001)-STEND(01),
ADR8O1I (001)-DTDSC(01),

ADR4541 (001)-DTDSC(01),

ADROO6I (001)-STEND(02),
ADRO13I (001)-CLTSK(01),
\fDROlZI (SCH)-DSSU (01),

/;AGE 0001 5695-DF175 DFSMSDSS V2R10.0 DATA SET SERVICES 1999.211 14:54

DS(INCL(TEST.CAT.PUBSEXMP)) -

TASKID 001 HAS BEEN ASSIGNED TO COMMAND 'DUMP

1999.211 14:54:32 INITIAL SCAN OF USER CONTROL STATEMENTS COMPLETED.
RACF LOGGING OPTION IN EFFECT FOR THIS TASK

1999.211 14:54:32 EXECUTION BEGINS

DATA SET FILTERING IS COMPLETE. 1 OF 1 DATA SETS WERE SELECTED: O FAILED
SERIALIZATION AND @ FAILED FOR OTHER REASONS.

THE FOLLOWING DATA SETS WERE SUCCESSFULLY PROCESSED

CLUSTER NAME ~ TEST.CAT.PUBSEXMP

CATALOG NAME SYS1.MVSRES.MASTCAT

COMPONENT NAME TEST.CAT.PUBSEXMP

COMPONENT NAME TEST.CAT.PUBSEXMP.CATINDEX

1999.211 14:54:32 EXECUTION ENDS

1999.211 14:54:32 TASK COMPLETED WITH RETURN CODE 0000

1999.211 14:54:32 DFSMSDSS PROCESSING COMPLETE. HIGHEST RETURN CODE IS 0000

Figure 1. Output from a Dump of an Integrated Catalog Facility User Catalog

For more information about the LOCK attribute, refer to |;/OS DFSMS Managing|

For more information about the installation authorization exit routine, refer to
[DESMS Installation Exits|

Dumping non-VSAM data sets that have aliases

DEFSMSdss does not support INCLUDE filtering of non-VSAM data sets using an
alias. To include a non-VSAM data set that has an alias for dump processing, you
must use the data set’s real name, as shown in the VTOC. DFSMSdss does not
detect or preserve aliases of non-VSAM data sets. You will need to redefine the
aliases after the data set is dumped and restored.

Dumping VSAM spheres

Using the SPHERE keyword, you can dump an entire VSAM sphere (base cluster
and all associated alternate index clusters and paths). To dump the base cluster
and the other components, all you need to specify is the base cluster name.

An example of the DUMP command with the SPHERE keyword is:

DUMP -
OUTDDNAME (TAPE) -
DATASET (INCLUDE (PARTS.VSAM1)) -
SPHERE -
PSWD (PARTS.VSAML/MASTUPW1) -
COMPRESS

Chapter 6. Managing availability with DFSMSdss 47

48

Note: You should be aware that you cannot restore a sphere unless it is dumped
as a sphere with the SPHERE keyword.

Dumping indexed VSAM data sets

Indexed VSAM data sets (such as key sequenced or variable relative record data
sets) can be logically dumped either without regard for the track contents or with
validity checking of each track as the tracks are written. If dumped in the latter
format, they must be restored on a system that supports the validate function.

The VALIDATE keyword, which is the default, specifies that the index and data
track contents are to be validated as the tracks are dumped. Spanned record errors
and split errors are detected and reported, but the dump continues. If other errors
are detected, a message is issued and the dump stops.

The validate function can be overridden with the NOVALIDATE keyword, which
specifies that no validation is done as the tracks are dumped. Some errors may not
be detected until the data set is restored.

Note: Extended-format VSAM data sets cannot be dumped with the
NOVALIDATE keyword.

Dumping SYS1 system data sets

DFSMSdss allows data sets with a high-level qualifier of SYS1 to be dumped,
deleted, and uncataloged. You must use the PROCESS(SYS1) keyword with the
DUMP command. The SYS1.VVDS and SYS1.VTOCIX data sets are an exception to
this processing.

SYS1.VVDS and SYS1.VTOCIX data sets can be physically, but not logically,
dumped. Also, the SYS1.VVDS data set cannot be deleted or uncataloged.

Guideline: To limit the use of the PROCESS keyword, it is recommended that the
PROCESS keyword be protected by a security program, such as RACFE.

For more information about the RACF FACILITY class profile, refer to
[Security Server RACF Security Administrator’s Guidd

Dumping data sets containing records past the
last-used-block pointer

Some data sets on your system may contain records past the last-used-block
pointer in the data set’s VTOC entry. This could be a result of a data set not being
properly closed or an application that accesses data in such a way as to bypass the
updating of this field. In this case, special consideration needs to be given to these
data sets as DFSMSdss recognizes this block pointer as the end of the used space
in the data set and, therefore, the end of the real data.

Using the ALLDATA or ALLEXCP keyword will result in all the allocated space
being dumped for applicable data sets. This includes all the data up to the last
block pointer as well as all the data to the end of the allocated space. However,
whether or not all the data is restored depends on data set characteristics and
device characteristics during the restore. For example, if the data set must be
reblocked (either because the target is an unlike device, the REBLOCK keyword is
specified, or the data set is marked reblockable) only the used space will actually
be restored. This limitation is due to the fact that any residual data (that is in the
unused portion of the data set) will likely have different characteristics than the

z/0OS V2R1.0 DFSMSdss Storage Administration

real data (that is in the used portion of the data set). This inconsistency would
result in data incompatibilities causing the restore to fail, and thereby inhibiting
the ability to restore the real data. Because of this, DFSMSdss will only restore the
data in the used portion of the data set when the data characteristics must change.

If you require that all of the unused space is restored, then you should ensure that
the data set is restored to a like device type and not reblocked or compressed.
(Compress is the default for PDS data sets on restore unless you use the
NOPACKING keyword.) In this case, the characteristics of the data do not change,
and DFSMSdss will restore all the allocated space.

Backing up SMS-managed data sets
When backing up data sets in an SMS-managed environment, you need to think
about some special conditions in addition to those discussed under
[data sets” on page 37| The following sections discuss how you can back up
SMS-managed data sets in an SMS-managed environment.

In most cases, you should let DFSMShsm back up SMS-managed data sets for you.
However, if you do not have DESMShsm or if you prefer not to rely on it for all
your backup requirements, you can use DFSMSdss to back up your SMS-managed
data sets.

Filter on class names

DFSMSdss can select data sets for dump processing based on their storage,
management, and data class names. Because management class is the construct
that contains a data set’s availability attributes, you might want to filter on it when
selecting data sets for dump processing.

If you want to back up data sets in a particular management class, you can filter
on the management class name. For example, if you want to perform incremental
backup on data sets in management classes MCNAME1 and MCNAME?2, specify
the DUMP command as follows:

DUMP -
DATASET (INCLUDE (**) -
BY ((MGMTCLAS,EQ, (MCNAME1,MCNAME2)) (DSCHA,EQ,YES))) -
OUTDDNAME (OUTVOL1)

Class names saved
DFSMSdss saves the class names of the data sets it dumps. These names are then
used as input to ACS routines when the data set is restored.

Backing up data sets being accessed with record level
sharing

During logical data set dump operations of SMS-managed VSAM data sets,
DFSMSdss communicates with VSAM RLS to perform quiesce processing of data
sets that are being accessed by another job using Record Level Sharing (RLS).

By default, DFSMSdss does not use timeout protection during RLS quiesce
processing. You can control whether or not DFSMSdss uses timeout protection
during RLS quiesce processing and what the timeout value should be using the
DSSTIMEOUT parameter of the IGDSMSxx PARMLIB member.

Chapter 6. Managing availability with DFSMSdss 49

You can also change the timeout value without IPLing the system using the
SETSMS DSSTIMEOUT (nnnnn) command.

For more information about the RLS timeout value used during DFSMSdss
operations, refer to [z/OS DFSMSdfp Storage Administration]

For more information about the SETSMS command, refer tdz/OS MVS Systen|

ommands

Backing up data sets with extended attributes

When you use DFSMSdss to back up data sets with the extended attributes
variable DSIEATTR set in the VTOC, you must make sure that these data sets can
be restored into an environment that supports them. If the vendor attributes in the
F9 DSCB are essential to the validity of the data set, make sure that the
environment in which they might be restored has EAVs to support these F9 fields.

Backing up volumes

50

With DFSMSdss, you can back up volumes either logically or physically. If the
volume is to be restored to an unlike device, you must dump it logically.

For information about using DFSMSdss to back up Linux for System z partitions
and volumes, refer to|Chapter 12, “Dumping and restoring Linux for System
fpartitions and volumes,” on page 185

Logical volume DUMP

To perform a logical volume dump, you specify DATASET(INCLUDE(**)) with
either LOGINDDNAME or LOGINDYNAM. LOGINDDNAME identifies the input
volume that contains the data sets to be dumped. LOGINDYNAM specifies that
the volumes containing data sets to be dumped be dynamically allocated.

Here is an example of how you specify the DUMP command to perform a logical
volume dump:

DUMP DATASET (INCLUDE (%)) -
LOGINDDNAME (DASD1) -
OUTDDNAME (TAPE)

Note: Certain data sets can be restored only to like devices even though they were
dumped logically.

Physical volume dump

To perform a physical volume dump, specify the DUMP command with
INDDNAME or INDYNAM and OUTDDNAME. Because FULL is the default
keyword for the DUMP command, you need not specify it. Unallocated tracks are
not dumped. The following example shows how you can specify the DUMP
command to physically back up a volume:

G)UMP INDDNAME (DASD1) OUTDDNAME (TAPE))

z/0OS V2R1.0 DFSMSdss Storage Administration

Backing up system volumes

If you plan to use the DFSMSdss stand-alone restore program to restore a volume
without the use of a host system environment, you must dump the volume
physically. In addition, when doing a full physical volume dump to back up a
system residence volume, you must use JCL to invoke DFSMSdss.

You cannot use the DFSMSdss stand-alone restore program with an encrypted
tape. DFSMSdss does not interface with the Encryption Key Manager or the Tape
Controller and therefore the correct keys cannot be provided to the controller to
decrypt data. If you attempt to use a stand-alone restore with an encrypted tape,
DFSMSdss issues message ADRY35011 to indicate that the dump data set resides
on an encrypted tape and thus, cannot be read with the stand-alone restore
program. DFSMSdss also issues message ADRY509D to prompt the operator to
continue or end the function.

Backing up VM-format volumes

You can use DFSMSdss to back up VM-format volumes that are accessible to your
z/0OS system. The volumes must have OS-compatible VTOCs starting on track
zero, record five. DFSMSdss can only retrieve device information from the
OS-compatible VTOC; it cannot interpret any VM-specific information on the
volume.

Use the CPVOLUME keyword and specify the range of tracks to be backed up
with the TRACKS keyword. You can use concurrent copy on VM-format volumes
by specifying the CONCURRENT keyword. Because DFSMSdss cannot check
access authorization for VM data, CP°VOLUME is only allowed with the
ADMINISTRATOR keyword.

Exercise caution when using DFSMSdss to back up VM-format volumes, because
DFSMSdss does not serialize any VM data in any way. You cannot use the
DEFSMSdss stand-alone restore program to restore dumps of VM-format volumes.

Dumping data efficiently

When backing up data, you can specify both the OPTIMIZE and the COMPRESS
keywords to improve performance and save dump space. The two keywords can
be used together.

A selective data set dump operation saves space, while a full-volume dump
operation saves time. The same applies to the COMPRESS keyword. It saves dump
space, but involves some processing overhead. In general, if you are dumping to
tape, saving space is probably less of a concern than performance. Usually, saving
space is important only when it results in using fewer tapes to store the data.
Using fewer tapes reduces the number of tape mounts that are necessary to recover
the data.

Combining volume copy and volume dump to reduce your
backup window

You can use physical full volume copy in conjunction with FlashCopy or SnapShot
to reduce the amount of time that your data is unavailable when you back it up.

Full volume copy, in conjunction with FlashCopy or SnapShot, can produce a copy
of a volume in seconds. Then, DFSMSdss can dump the copy to tape while your

applications are accessing the data on the original volume.

Chapter 6. Managing availability with DFSMSdss 51

52

For more information about full volume copy, FlashCopy, and SnapShot, refer to
[“Moving volumes” on page 99|

Combining the functions
To combine the volume copy and volume dump functions to reduce your backup
windows, perform the following procedure:

1. Stop application access to the volumes.

2. Copy the volumes by using full volume copy. Do not specify
FASTREPLICATION(NONE). The copies complete very quickly if DFSMSdss
can use FlashCopy or SnapShot.

3. Enable application access to the volumes.
4. Backup the copies to tape using full volume dump.

Special considerations

When you combine the volume copy function with the volume dump function,
you must give consideration to how you will use the following keywords:

+ DUMPCONDITIONING

* FCNOCOPY

* FCWITHDRAW

These keywords are described in the sections that follow.

DUMPCONDITIONING — Allows you to make a copy of the source volume in a
full volume copy operation—including volume index information—while keeping
the target volume online. Use this keyword when you want to create a copy of the
source volume for backup purposes, rather than to allow applications to use the
target volume.

With DUMPCONDITIONING in effect, the volume serial number of the target
volume does not change, and the target volume remains online after the copy. The
VVDS and VTOC index names on the target volume do not change to match the
target volume serial number; they continue to match the source volume serial
number.

In Step EI for example, you can include the DUMPCONDITIONING keyword on
the full volume copy command to allow the target volume to remain online for
dumping.

The target of a full volume copy operation using DUMPCONDITIONING is
referred to as a conditioned volume. A full volume dump of a conditioned volume
appears as if it were dumped from the original source volume of the copy
operation. However, if the conditioned volume is copied back using
DUMPCONDITIONING, conditioning is not performed on the original source
volume. Instead, DFSMSdss recognizes that it is copying from the target of a
previous conditioned-backup and recovers the original source volume.

For example, suppose that you specify the DUMPCONDITIONING keyword when
you perform a full volume copy of volume VOLO001 to volume VOL002. If you
then perform a full volume dump of VOL002 to tape, the output appears as if you
had dumped VOLO001 directly. Now suppose that you copy VOL002 back to
VOLO001. Here, the VOL002 volume serial number is not copied to VOL001's
volume label, because DFSMSdss treats VOL002 as a copy of VOL001.

This example assumes that the source volume VOL001 has an indexed VTOC. If
the source volume does not have an indexed VTOC, a full volume dump of the

z/0OS V2R1.0 DFSMSdss Storage Administration

conditioned volume VOL002 would not look as if it was dumped from the original
source volume VOLO0O1. Rather, it would be an exact image of the conditioned
volume. A subsequent full volume restore with the COPYVOLID keyword
specified results in the target volume having the same serial number as the
conditioned volume.

FCNOCOPY/FCWITHDRAW — Using these two keywords in your procedure is
recommended when you use FlashCopy.

* You can specify the FCNOCOPY keyword on the COPY command to prevent
the ESS subsystem from performing a full physical copy of the volume. Doing so
can save subsystem resources and can help to avoid affecting the performance of
other I/O operations done by the ESS subsystem.

* You can specify the FCWITHDRAW keyword on the DUMP command to cause
DFSMSdss to withdraw the FlashCopy relationship after the volume has been
successfully dumped. Doing so frees the subsystem resources that are used to
maintain the FlashCopy relationship.

During DUMP FULL and DUMP TRACKS operations, DFSMSdss invokes ICKDSF

to initialize the source volume of the DUMP operation at the end of dump

processing, when all of the following conditions are true:

e FCWITHDRAW is specified

* The VTOC tracks on the source volume of the DUMP operation are the target of
a FlashCopy relationship

+ If TRACKS is specified, it designates one extent range that represents the entire
volume

* The volume is not a VM-format volume (CP volume)

¢ The volume supports data set FlashCopy or space efficient FlashCopy.

Note: If you perform a dump operation with FCWITHDRAW specified, and the
dump source volume is shared between multiple systems, ensure that the DASD is
offline to all systems except the one performing the dump.

Timing is an important factor in the successful use of these keywords. In your
procedure, allow only a short amount of time to elapse between the completion of
step 2 (copy function) and the start of step 4 (backup function). Here, you can
specify the FCNOCOPY keyword in step 2 and the FCWITHDRAW keyword in
step 4.

Do not use the FCNOCOPY and FCWITHDRAW keywords if the backup (step 4)
will not be performed within a reasonable amount of time after the copy (step 2).
Otherwise, the use of FlashCopy consumes the subsystem resources for an
extended amount of time.

Restrictions:

* For cases in which the FlashCopy target volume could not be initialized during
FCWITHDRAW processing, using the FCNOCOPY keyword on the full volume
copy and the FCWITHDRAW keyword on the full volume dump leaves the
target volume (of the copy) in an indeterminate state. Some tracks on the
volume might contain data from the source volume; other tracks might contain
residual data from the target volume that existed before the copy. This
indeterminate state can cause problems when accessing the target volume
following the dump, if the VTOC locations of the source volumes and the target
volumes are different before the copy. To avoid this problem, do one of the
following:

Chapter 6. Managing availability with DFSMSdss 53

54

— Ensure that the VTOC locations for the source volumes and the target
volumes are the same before you initiate the copy.

— Add an ICKDSF INIT step for the target volume of the COPY in step 2. Add
this step after step 4 (Backup the copies to tape using full volume dump). The
target volume of the copy initializes and returns to a consistent state.

¢ The FCWITHDRAW keyword is not supported for volumes attached at device
address X'0000'.

Related information:
For more information about the DUMPCONDITIONING keyword, refer to
['DUMPCONDITIONING” on page 325.|

For more information about the FCNOCOPY keyword, refer to[*FCNOCOPY” on|

For more information about the FCWITHDRAW keyword, refer to
[“FCWITHDRAW” on page 406

For information about ICKDSF, refer to[Device Support Facilities (ICKDSF) User’s|
(Guide and Reference)

Space considerations

Using larger block sizes saves dump space and improves performance by
minimizing the number of 1/O operations performed during a dump operation.

The default block size for output records that are written to tape is the optimum
block size for the output device (262 144 is the maximum). You can change this
default to 32 760 by using the installation options exit routine. Refer to the
discussion of system-determined block size in|z/OS DFSMS Using Data Sets|for a
description of the optimum block sizes of the supported tape devices.

For more information about the installation options exit routine, refer to
[DESMS Installation Exits|

For output records that are written to DASD, the block size is the track length of
the output volume for devices whose track length is less than 32KB. It is one half
the track length for devices whose track length is greater than 32KB. You can select
a different block size for tape or DASD by coding DCB=BLKSIZE=block size in the
corresponding data set definition (DD) statement. The minimum block size is 7 892
bytes; the maximum is 32 760 bytes.

Note: To include the block size specification in the tape label, specify the BLKSIZE
parameter in the tape DD statement.

You can also use the following options to save dump space:

e Dump only the used space (the default if you do not use keywords ALLDATA
or ALLEXCP), instead of all allocated space, in sequential and partitioned data
sets or in data sets with a null DSORG field. For VSAM key sequenced data sets,
the VALIDATE keyword (the default) dumps only the used data instead of all of
the allocated space.

* Use the COMPRESS keyword.

Note:

1. DFSMSdss ignores the COMPRESS keyword if you specify it during a logical
data set dump for physical sequential extended-format data sets.

z/0OS V2R1.0 DFSMSdss Storage Administration

2. If your tape drive has the improved data recording capability (IDRC) and
you want to use hardware data compaction, you do not need to use the
COMPRESS keyword with the DUMP command. If you want software
compression, specify the COMPRESS keyword, but you do not need to
specify DCB=TRTCH=COMP in the JCL. In most cases, hardware data
compaction without software data compression gives the best performance.
However, you can use software compression and hardware compaction at the
same time.

* Perform incremental data set backup instead of volume backup. This reduces the
amount of dumped data and decreases processing time.

* When dumping to DASD, specify an output dump data set that is extended
format in the compressed format. Avoid specifying the COMPRESS or
HWCOMPRESS keywords when the output dump data set is extended format in
the compressed format. Performance could be degraded since the data may be
compressed twice.

Performance considerations

This information provides tips for improving the performance of copy and dump
operations.

DUMP

Dump to tape, where the larger block size reduces the number of I/O operations.

e Use OPTIMIZE(2), (3), or (4) to read more than one track per read operation.
This results in the reading of two tracks, five tracks, or a full cylinder,
respectively. The default, OPTIMIZE(1), reads one track at a time. OPTIMIZE(2),
(3), or (4) results in less elapsed time and fewer 1/O operations on the DASD
device whenever the load on the tape channel is low enough and the tape speed
is high enough to keep pace with the data being read from the DASD volume.
To obtain the best performance with DFSMSdss and 3592's, specify
OPTIMIZE(4).

* Use the PARALLEL feature to simultaneously dump multiple DASD volumes.

Guideline: Simultaneous dumping occurs only when the output goes to separate
output devices. If the OUTDDNAME keyword specifies the same device,
DFSMSdss runs the steps serially.

Concurrent copy
To get an exact copy of your data at a specific time, do not update it during the
concurrent copy (CC) initialization.

CC initialization includes the time DFSMSdss spends filtering data sets. Therefore,
the more precisely you specify the data sets to be processed, the sooner the
initialization is completed and the sooner you can update your data again. Here
are some ways to reduce initialization time:

* Keep data to be dumped by one DUMP command cataloged in one catalog, if
possible.

* Do not specify the DYNALLOC keyword if you do not need dynamic allocation
for your data sets.

* Specify fully or almost fully qualified data set names. This reduces the amount
of time that DFSMSdss spends searching the catalogs for data sets to process.

* Specify smaller groups of data sets to process together in a DFSMSdss operation.
* Minimize the use of wildcards with the INCLUDE keyword.

¢ Minimize the use of sophisticated BY filtering to determine the data to be
processed.

Chapter 6. Managing availability with DFSMSdss 55

56

* Ensure that DFSMSdss can obtain serialization on all data sets being processed.

* Specify WAIT(0,0) to prevent DFSMSdss from waiting for serialization when it
cannot be obtained.

* Do not specify the NOTIFYCONCURRENT keyword if you do not need
notification of each data set included in the CC session.

* Do not specify the SPHERE keyword if you are not processing VSAM spheres.

* Use the ADMINISTRATOR keyword or DASDVOL RACF protection (where
applicable) to bypass authorization checks for each data set being processed.

* Ensure that the volumes containing the VTOC and catalog entries for the data
sets to be processed have caching enabled. Also ensure that the catalogs
involved are enabled for the in-storage cache (ISC) or the catalog data space
cache (CDSC).

* Ensure that data sets being processed have not been migrated by DFSMShsm.

CC uses storage in the control unit cache and in the processor. Here are some ways

to minimize the storage needed:

* Limit the amount of data included in the CC operation.

* Use CC during periods of low update activity (as most backups are currently
done today).

* Concentrate the update activity in a subset of the data being processed by CC.

Concurrent copy storage requirements

The concurrent copy (CC) support for the 3990 Model 6 Storage Control uses z/OS
data spaces to contain track image copies of the data being processed by the
DFSMSdss. The data spaces are backed by expanded storage and local paging
spaces. The amount of expanded storage and local paging space required for CC
usage is dependent on a number of variables. Based on simulations and test
scenarios, a typical data space size is about 10% of the amount of data being
dumped or copied with CC.

If your data space size exceeds this nominal value, you may need to consider the
following planning guidelines for determining how much expanded storage or
local paging space may be required for the following CC functions:

* Full volume and tracks copy; and full volume, tracks and physical data set
dump operations:

All volumes are processed on a track-by-track basis by DFSMSdss. The data
space requirements can vary from 0% for a volume that has no updates during
the DFSMSdss operation to 100% if the entire volume is updated before
DFSMSdss can process it. For example, a 3390-3 that is 80% full (2671 cylinders)
may require up to 2671 cylinders of data space storage if the volume is
completely rewritten before DFSMSdss can process it. An example of this
situation would be that a volume contains many VSAM data sets and a
reorganization is done for all of the VSAM data sets on the volume while the
CC job is being run for the volume.

* Logical data set copy and dump processing of non-VSAM data sets and
nonindexed VSAM data sets (for example, VSAM ESDS), logical data set copy of
indexed VSAM data sets (for example, VSAM KSDS), and logical data set dump
of indexed VSAM data sets processed with NOVALIDATE are described as
follows:

These data sets are processed on a track-by-track basis by DFSMSdss. The data
space is used to contain updates for tracks that have not yet been processed by
DFSMSdss. The data space requirements can vary from 0% for a data set that
has no updates during the DFSMSdss operation to 100% if the entire data set is
updated before DFSMSdss can process it. For example, a 50-cylinder data set

z/0OS V2R1.0 DFSMSdss Storage Administration

may require up to 50 cylinders of data space storage if the data set is completely
rewritten before DFSMSdss can process it.

* Logical data set dump of indexed VSAM data set (for example, VSAM KSDS)
processed with VALIDATE is described below:

These data sets are processed with numerous accesses to sequence set
information in the index component and track-by-track accesses to the data
component. In all cases, update activity to either the data component or the
index component maintains a copy of the updated track in the data space until
the track is either processed by DFSMSdss or the dump operation is ended for
all data sets.

Index component tracks that do not contain sequence set information and data
component tracks that are beyond the high used relative byte address are
included in the CC operation but are never read by DFSMSdss. If those tracks
are updated, they will remain in the data space for the duration of the dump
operation for all data sets. If the data set has the sequence set information
imbedded in the data component (using the IMBED attribute), no additional
(nonupdated) tracks are maintained in the data space. If the data set has the
sequence set information in the index component, then all index component
tracks containing sequence set information will be maintained in the data space
(whether they were updated or not) for the duration of the dump processing for
the data set. For example, if the index for a VSAM data set is 20 cylinders and
the data is 2500 cylinders, plan paging space of 20 cylinders for the index
component.

Based on the update activity during the dump operation, plan to use a paging
space of between 0 and 2500 cylinders for the data. The most data space is used
when doing a complete reorganization while dumping the VSAM data set. This
requires 2520 cylinders of space. If only 10% of the data will change during the
operation, you will need 20 cylinders for the index and 250 cylinders for the
data or 270 cylinders of paging space.

In using CC against aggregate groups, determine the data space storage
requirements based on the expected update rate to the data sets during the dump
operations. Failure to allocate sufficient local paging space may result in system
failures due to insufficient paging storage.

Note: All storage requirements will be in addition to the working set of storage
required by all other applications active (including all other CC operations) during
the execution of the DFSMSdss CC operation.

Virtual concurrent copy working space

DFSMSdss might use virtual concurrent copy for storage devices that support
SnapShot or data set FlashCopy when the CONCURRENT keyword is specified
with the DFSMSdss commands. During virtual concurrent copy, data is "flashed" or
"snapped" from the source location to the intermediate location, and then copied to
the target location using standard I/O. The operation is logically complete after the
source data is "flashed" or "snapped" to the intermediate location and physically
complete after the data is moved to the target media.

Virtual concurrent copy using SnapShot:

Before you can use the SnapShot function for virtual concurrent copy, you must
ensure that working space is available by allocating working space data sets
(WSDS) on one or more volumes in the same RAMAC Virtual Array (RVA)
subsystem as the source data sets. System Data Mover (SDM) uses the working
space data sets as the intermediate location for virtual concurrent copy.

Chapter 6. Managing availability with DFSMSdss 57

58

The naming convention for these working space data sets is:
SYS1.ANTMAIN.Ssysname. SNAPnnnn.

Variable sysname is the system identifier and nnnn is a four-digit decimal number
in the value range 0001-9999. If the system identifier is eight characters, 'S’ replaces
the first character.

The SnapShot working space data sets must be physical sequential,
non-extended-format, single volume, and cataloged. SDM performs a numerically
sequential catalog search for each data set, starting with

hlg. ANTMAIN.Ssysname. SNAP00O1 until a data set is found or until it encounters a
catalog locate error, indicating that the data set was not found. SDM does not use
working space data sets with the naming convention beyond the data set that was
not found. The SnapShot working space data sets can be SMS-managed or
non-SMS-managed. You cannot allocate VSAM or multivolume data sets as
SnapShot working space data sets.

If you want to allocate secondary space, you must extend the data set by filling it
with data before you start the DFSMSdss job. System Data Mover (SDM) does not
extend a working space data set. SDM holds an enqueue for the data set when the
SnapShot operation uses working space data set and releases the enqueue after
SnapShot operation finishes using the data set. You can reallocate or extend a
working space data set only when SDM does not have the data set enqueued.
SDM uses the new reallocated or extended data set on subsequent runs of the
SnapShot operation.

You can add more working space data sets after ANTMAIN completes the
initialization process. SDM uses these data sets the first time it encounters an
out-of-working-space condition during a SnapShot operation. When this condition
occurs, SDM refreshes the list of working space data sets by performing a catalog
search that starts with SYS1.ANTMAIN.Ssysname.SNAP0001.

The LRECL and block size can be any valid combination. The tracks within the
data set are used as the target of SnapShot operations, and you should not try to
access them using normal data access methods.

Virtual concurrent copy using FlashCopy:

Before you can use the FlashCopy function for virtual concurrent copy, you must
ensure that working space is available by allocating working space data sets
(WSDS) on one or more volumes in the same, data set FlashCopy enabled, storage
subsystem as the source data sets. System Data Mover (SDM) uses the working
space data sets as the intermediate location for virtual concurrent copy.

The naming convention for using these working space data sets is:

hlg. ANTMAIN.FCWKnnnn

Variable hlqg is the high level qualifier that you specify in the SDM PARMLIB
member and nnnn is a four-digit decimal number in the value range 0000-9999. If
you use both VSAM and physical sequential data sets, you must specify unique

nnnn component of the name across both kinds of data sets.

The working space data sets must be cataloged. SDM performs a catalog search for
usable working space data sets that match the naming convention. You must

z/0OS V2R1.0 DFSMSdss Storage Administration

allocate data sets as single-volume, non-indexed VSAM data sets such as LDS and
ESDS, or non-extended-format sequential data sets. You can use extended-format
non-indexed VSAM data sets. The data sets can be SMS-managed or
non-SMS-managed.

If you want to allocate secondary space, you must extend the data set by filling it
with data before you start the DFSMSdss processing. System Data Mover (SDM)
does not extend a working space data set. SDM holds an enqueue for the data set
when the FlashCopy operation uses working space data set and releases the
enqueue after FlashCopy operation finishes using the data set. You can reallocate
or extend a working space data set only when SDM does not have the data set
enqueued. SDM uses the new reallocated or extended data set on subsequent runs
of the FlashCopy operation.

You can add more working space data sets after ANTMAIN completes the
initialization process. SDM uses these data sets the first time it encounters an
out-of-working-space condition. When this condition occurs during a FlashCopy
operation, SDM refreshes the list of working space data sets by performing a
catalog search for data set names that match the naming convention.

The LRECL and block size can be any valid combination. The VSAM control
interval (CI) size can be any value. SDM uses the tracks within the data set as the
target of FlashCopy operations, and you should not try to access them using
normal data access methods.

Common working space data sets considerations:

To ensure that unauthorized users cannot access sensitive data, IBM recommends
that your installation use RACF, or an equivalent security product, to protect the
working space data sets.

You must allocate data sets on a volume in each storage subsystem that you are
using for virtual concurrent copy. If you define more than one device type on the
storage subsystem, you must allocate a working space data set on each device type
that contains a data set that you intend to process using SnapShot or FlashCopy.

You must allocate at least one working space data set, if a system or device type
for concurrent copy operation runs simultaneously from more than one system and
accesses data on the same storage subsystem. For example, you must allocate three
working space data sets to process data on an RVA subsystem from three z/OS
systems, on devices of each device type containing data processed with concurrent

copy.

The total size of all working space data sets that you allocate on each storage
subsystem should be equal to or exceed the largest total amount of data to be
processed in a single DFSMSdss COPY or DUMP operation on that storage
subsystem. If there is insufficient space, the concurrent copy initialization for one
or more data sets in the job fails.

For more information about virtual concurrent copy and working space data sets,
refer to z/OS DFSMS Advanced Copy Services,

Read DASD 1/0 pacing

You can tune the performance of a system by pacing the DFSMSdss read DASD
I/0 operations. Pacing reduces the channel utilization and lets other I/O (for

Chapter 6. Managing availability with DFSMSdss 59

60

example, from the database application) be processed in a more timely fashion. The
pacing is done by waiting a specified amount of time before issuing each channel
program that reads from DASD.

Note: The additional wait time does not apply to error recovery channel programs
or concurrent copy I/O. The System Data Mover dynamically controls pacing for
concurrent copy 1/0.

Invocation from a customer program: The value of the READIOPACING
parameter can also be controlled through the installation options exit, a
product-sensitive programming interface intended for customer use.

For more information about the installation options exit, refer to f/OS DFSM
Installation Exits|

Shared DASD considerations

Shared DASD presents volume and data set serialization problems not encountered
in nonshared DASD environments. Care should be taken when you enlist data set
operations if programs operating in another processor might be accessing the data
sets at the same time.

A data set can be dumped from one processor while being processed from another.
The dumped version may be partially updated on JES2 systems. This same
exposure is present on a full dump operation.

Backing up and restoring volumes with incremental
FlashCopy

You can use Incremental FlashCopy to create an initial point-in-time copy of a
source volume and refresh the target volume by copying only the changed data.
Incremental FlashCopy operates at the full volume level.

After the initial full volume copy of the source volume to the target volume, the
FlashCopy relationship remains (persists) between the source and target volume
pair and the changes on the source and target volumes since the last point-in-time
copy are tracked. When you refresh the target volume at a new point-in-time, only
the changed tracks are copied. Incremental FlashCopy helps reduce the physical
background copy time when only a subset of the data on the source or target has
changed.

The direction of the refresh can be reversed when you indicate the original target
now becomes the source and the original source becomes the target. If the new
target is the source of a Multiple Incremental FlashCopy relationship (Incremental
FlashCopy Version 2), before reversing the direction of the FlashCopy, you must
withdraw any other relationships. Only the changed data since the last
point-in-time copy is copied. If no updates were made to the target since the last
incremental copy, the reverse of FlashCopy direction can be used to restore the
original source back to the previous point-in-time state.

Using the FCINCREMENTAL keyword

You can use the FCINCREMENTAL keyword for a COPY FULL or COPY TRACKS
CPVOLUME commands to perform an initial full volume copy if no Incremental
FlashCopy relationship exists between the volume pair. If there is an existing
Incremental FlashCopy relationship between the volume pair, DFSMSdss copies the
changed tracks in the new direction specified on the INDDNAME/INDYNAM and

z/0OS V2R1.0 DFSMSdss Storage Administration

OUTDDNAME/OUTDYNAM keywords. The new direction can be the same or the
reverse of the original (existing) direction.

Using the FCINCREMENTALLAST keyword

You can use the FCINCREMENTALLAST keyword on the COPY FULL or COPY
TRACKS CPVOLUME commands to copy the changed tracks when there is an
Incremental FlashCopy relationship between the volume pair.
FCINCREMENTALLAST specifies that the new FlashCopy relationship is to be
non-persistent and change recording is to be stopped after the final increment has
been established. The FlashCopy relationship ends when background copy for the
final increment has completed.

Using the FCINCRVERIFY keyword

You can use the FCINCRVERIFY(NOREVERSE | REVERSE) keyword to verify that
the existing Incremental FlashCopy direction is what you expected. DFSMSdss fails
the copy attempt if the existing direction is not as expected or the original source
volume has existing Incremental FlashCopy relationships.

Using the FCWAIT keyword

When you reverse the direction of an Incremental FlashCopy, the storage facility
requires that the previous background copy be completed. You can specify the
FCWAIT keyword with a query interval value in seconds and a number of retries
value to direct DFSMSdss to wait for background copy completion before initiating
the new Incremental FlashCopy:.

Note:

1. Incremental FlashCopy Version 2 supports up to the maximum number of full
volume flashcopies allowed for a source, which is 12. The initial Incremental
FlashCopy support, known as Incremental FlashCopy Version 1, allows only 1
full volume FlashCopy to be incremental. A Version 1 Incremental FlashCopy
relationship can coexist with Version 2 Incremental FlashCopy relationships.

2. Incremental FlashCopy is only possible with a persistent relationship. With
persistent relationships, the relation between the source and target is
maintained after the background copy has completed.

3. DFSMSdss allows you to copy full volumes to target devices of greater capacity.
However, if the original FlashCopy target volume is bigger than the source
volume, you cannot reverse the FlashCopy direction.

4. When you specify DUMPCONDITIONING with FCINCREMENTAL, the
volume serial number of the target volume does not change, and the target
volume remains online after the copy. A subsequent incremental copy can be
made without additional procedure.

5. When you specify COPYVOLID with FCINCREMENTAL, the volume serial
number of the target volume is changed to match the source's. When the
volume serial number on a DASD volume is changed, the operator is notified.
The operating system then initiates a demount of the volume. Before
performing a subsequent incremental copy using DFSMSdss, the offline
volume's volume serial number must be changed through a utility such as
ICKDSF and the volume must be varied online.

6. The PURGE keyword might be required on subsequent incremental copies.

Usage scenario 1: periodic dump to tape
The following example describes how Incremental FlashCopy can be used to create
periodic backups to tapes.

Chapter 6. Managing availability with DFSMSdss 61

62

* Step 1 - Copy volume VOLOOA->VOLOOB by performing initial Incremental
FlashCopy from volume VOLOOA to VOLOOB. Background copy task copies all
the tracks on the source volume to the target volume.

COPY FULL INDYNAM(VOL@OA) OUTDYNAM(VOLOOB) DUMPCONDITIONING -
ADMIN PURGE FCINCREMENTAL

* Step 2 - Backup volume VOLOOA by performing full volume dump from volume

VOLOOB to tape.

DUMP FULL INDYNAM(VOLOOB) OUTDD(TAPE®1)
* Step 3 - Allow update to volume VOLOOA

* Step 4 - Refresh volume VOLOOB by performing subsequent Incremental
FlashCopy from volume VOLOOA to volume VOLOOB. Background copy task
copies changed tracks from volume VOLOOA to VOLOOB.

COPY FULL INDYNAM(VOLOOA) OUTDYNAM(VOLOOB) DUMPCONDITIONING -
ADMIN PURGE FCINCREMENTAL

* Step 5 - Repeat steps 2-4.

Usage scenario 2: check-point batch processing with
incremental FlashCopy

Below is an example of how DFSMSdss Incremental FlashCopy can be used in
check-point batch processing. DFSMSdss Incremental FlashCopy does not inhibit
target writes. To be able to restore the original source to the state of the previous
point-in-time copy, the user must not have written to the target volume after

DFSMSdss finished the previous copy operation. To improve performance, the user
can also specify the optional ADMINISTRATOR keyword.

e Step 1 - Backup volume VOLOOA->VOLOOB by performing initial Incremental
FlashCopy from volume VOLOOA to VOLOOB. Background copy task copies all
the tracks on the source volume to the target volume.

COPY FULL INDYNAM(VOLOOA) OUTDYNAM(VOLOOB) DUMPCONDITIONING -
ADMIN PURGE FCINCREMENTAL

* Step 2 - Start batch application which makes updates to volume VOLOOA.

* Step 3 - Backup volume VOLOOA->VOL0OB by performing subsequent
Incremental FlashCopy. Background copy task copies only updated tracks from
volume VOLOOA to volume VOLOOB.

COPY FULL INDYNAM(VOLOOA) OUTDYNAM(VOLOOB) DUMPCONDITIONING -
ADMIN PURGE FCINCREMENTAL

* Step 4 - Start batch application which makes updates to volume A.

* Step 5 - When batch updates are incomplete or the batch job ends abnormally,
tell DFSMSdss to wait for background copy completion (here, we use a query
interval value of 30 seconds and 10 retries) and perform Incremental FlashCopy
in reversed direction to restore the previous point-in-time copy (made in step 3).
Background copy task copies only updated tracks from volume VOLOOB to
VOLOOA. The user indicates the original source (VOL00A) is now the target and
the original target (VOLOOB) is now the source on the DFSMSdss COPY
command. FCINCREMENTAL indicates Change Recording and Persistent
Relationship should continue.

COPY FULL INDYNAM(VOLOOB) OUTDYNAM(VOLOOA) DUMPCONDITIONING -
ADMIN PURGE FCINCREMENTAL
FCWAIT(30,10)
Optionally, FCINCRVERIFY(REVERSE) can be specified to verify that the
Incremental FlashCopy direction is what was expected:
COPY FULL INDYNAM(VOLOOB) OUTDYNAM(VOLOGA) DUMPCONDITIONING -

ADMIN PURGE FCINCREMENTAL -
FCINCRVFY (REVERSE) FCWAIT(30,10)

z/0OS V2R1.0 DFSMSdss Storage Administration

* Step 6 - Restart batch application which makes updates to volume VOL00OA.

* Step 7 - When batch application errors occur, perform Incremental FlashCopy
without reversing the direction. There is no need to wait for background copy
completion.

COPY FULL INDYNAM(VOLOOB) OUTDYNAM(VOLOOA) DUMPCONDITIONING -
ADMIN PURGE FCINCREMENTAL

Restart batch application which updates volume VOLO0A.
If batch application errors occur again, repeat step 7.

* Step 8 - Upon successful batch application completion, perform Incremental
FlashCopy in reversed direction and make a new backup copy of VOL00A:

COPY FULL INDYNAM(VOLOOA) OUTDYNAM(VOLOOB) DUMPCONDITIONING -
ADMIN PURGE FCINCREMENTAL FCWAIT(30,10)

e Step 9 - Restart batch application which updates volume VOLOOA.

For more information, refer to[“FCINCREMENTAL” on page 330)
“FCINCREMENTALLAST” on page 331J['FCINCRVERIFY” on page 332} and
“FCWAIT” on page 337

For more information about Incremental FlashCopy and Persistent FlashCopy, refer
to /OS DFSMS Advanced Copy Serviced.

Securing your tape backups

Data encryption is an important tool for protecting against the possible misuse of
confidential information that could occur should tapes be lost or stolen. Unless the
possessor of the tape has the required key, any encrypted data on the tape will
remain confidential and will be unreadable. Thus, securing tape backups should be
part of your installation's overall security plan.

You can secure your tape backups either through tape device encryption (with an
encryption-capable tape drive) or through host-based encryption — that is, by
requesting that DFSMSdss encrypt the data before writing it to the dump data set
on DASD or tape (during a DUMP or COPYDUMP operation).

With tape device encryption, you secure data by using encryption capable tape
drives that encrypt data as the output is written to tape during DUMP and
COPYDUMP functions. To request that a tape device encrypt data, you specify JCL
DD keywords or DATACLAS definitions for the output DFSMSdss dump data set.
You can restore tape device encrypted dump data sets through the RESTORE and
COPYDUMP functions.

DFSMSdss allows a mixture of encrypting and non-encrypting tape devices for the
output of DUMP and COPYDUMP commands.

In general, you can use tape device encryption or software encryption to encrypt a
particular tape volume, but not both methods. If you request software encryption
and one of the output devices is encrypting the data written to it, then DFSMSdss
overrides software encryption. DFSMSdss does not write the data to any of the
output devices that do not encrypt data and issues an ADR519E message
indicating that some outputs are not processed. DFSMSdss issues the ADR519E
message for each of the output data sets that are not backed up. DFSMSdss
continues processing.

If you do not request software encryption, DFSMSdss writes to multiple outputs
where some are encrypting data in the hardware and some are not. DFSMSdss

Chapter 6. Managing availability with DFSMSdss 63

64

continues to notify an application through its Application Programming Interface
(Exit 06 and Exit 26) that the particular output is encrypting the data written to it.

Observe the following considerations:

* Use tape device encryption if your installation includes one or more
encryption-capable tape drives. Here, you specify by data class which data is to
be encrypted when stored on the tape drives.

* Use host-based encryption if you do not have an encryption-capable tape drive.
You can encrypt tape backups through the host-based encryption method
described in the sections that follow.

For a description of how DESMSdss handles conflicting encryption requests, refer
to ["DFSMSdss processing of dump encryption requests” on page 69|

Using host-based encryption to secure backups

When backing up your data, you can secure it through host-based encryption. You
request host-based encryption on the DFSMSdss DUMP command. As with tape
device encryption, host-based encryption through DFSMSdss provides a means of
encrypting your installation's tape volumes.

Usually, DESMSdss does not allow double encryption of data with the DUMP
command. For a description of how DFSMSdss handles conflicting encryption
requests, refer to [“DFSMSdss processing of dump encryption requests” on page 69,

In the unlikely event that your installation requires double encryption for a dump
data set, you can use the procedure described in|“If double encryption is required”|
i

n page 70/to dump and restore a doubly-encrypted data set.

Types of host-based encryption

DFESMSdss can use the following types of host-based encryption to secure your
data:

* Triple-length Data Encryption Standard (TDES) clear keys

* Secure TDES keys

* 128-bit Advanced Encryption Standard (AES) clear keys.

What is DES and AES?: To manage cryptographic keys for encrypted data,

DFSMSdss uses IBM Cryptographic Services Facility (ICSF), which supports the

following cryptographic standards and architectures:

* IBM Common Cryptographic Architecture (CCA) that is based on the ANSI Data
Encryption Standard (DES)

* Advanced Encryption Standard (AES).

With DES, two parties share secret keys that are used to protect data and keys that
are exchanged on the network. The sharing of secret keys establishes a secure
communications channel. The only way to protect the security of the data in a
shared secret key cryptographic system is to protect the secrecy of the secret key.
ICSF also supports triple DES encryption for data privacy. TDES triple-length keys
use three, single-length keys to encipher and decipher the data. This results in a
stronger form of cryptography than that available with single DES encipher.

With AES, data can be encrypted and decrypted using 128-bit, 192-bit, and 256-bit
clear keys. CBC and ECB encryption are also supported. For public key
cryptography, ICSF supports both the Rivest-Shamir-Adelman (RSA) algorithm 1,
and the NIST Digital Signature Standard (DSS) algorithm. RSA and DSS are the
most widely used public key encryption algorithms. In this system, each party

z/0OS V2R1.0 DFSMSdss Storage Administration

establishes a pair of cryptographic keys, which includes a public key and a private
key. Both parties publish their public keys in a reliable information source, and
maintain their private keys in secure storage.

Cryptographic keys and DFSMSdss: DFSMSdss uses TDES triple-length keys and
128-bit AES keys for host-based encryption. On a system with secure cryptographic
hardware, you can use DFSMSdss to generate TDES and AES keys and encrypt
them for protection through RSA public keys. On systems without secure
cryptographic hardware, a password allows the generation of clear TDES and AES
keys. The use of these cryptographic keys with DFSMSdss depends on the type of
processor and the type of cryptographic hardware that you have installed.

RSA public and private keys for encryption can be stored in the ICSF Public Key
Data Set (PKDS). These RSA keys are used by DFSMSdss to protect the symmetric
keys that protect the data. You can use RACF commands to store public/private
keys.

Considerations for host-based encryption

The choice of which type of host-based encryption to use depends on several

factors, including performance and level of security. On the DFSMSdss DUMP

command, you can request the different types of host-based encryption:

* A clear TDES key; specify the CLRTDES subparameter of the ENCRYPT
keyword

* A secure TDES key; specify the ENCTDES sub parameter of the ENCRYPT
keyword

e A clear 128-bit AES key; specify the CLRAES128 subparameter of the ENCRYPT
keyword.

The decision to use CLRTDES or ENCTDES key values depends on the kind of
cryptographic hardware you have, the level of security you want, and the level of
performance you require.

For DFSMSdss, a CLRTDES key is a triple-length TDES key that is generated
dynamically. Unlike the ENCTDES key value the CLRTDES key value can appear
in application storage. If DFSMSdss is running on a z890, 2990, or System z9® 109,
the data is encrypted using the clear TDES key on the CPACE, and this usually
results in better performance than if you are using the ENCTDES key value.

The ENCTDES key is a triple-length TDES key that is generated within the secure
boundary of the cryptographic hardware (CCF, PCICC, PCIXCC, or CEX2C), and it
uses the ICSF symmetric master key to encrypt the data. The clear value of an
ENCTDES key never leaves the boundary of the secure cryptographic hardware.
Encryption and decryption of data using an ENCTDES key requires secure
cryptographic hardware to be available.

Each type of key is equally secure in regards to the data that appears in the output
data set.

The CLRAES128 option generates a 128-bit AES key. The key value can appear in
application storage. If DFSMSdss is running on a z9 or z10 processor, the data is

encrypted using CPACE. If DFSMSdss is running on any other type of processor,

the data is encrypted by ICSE.

Chapter 6. Managing availability with DFSMSdss 65

66

During DUMP processing, only user data may be encrypted. This means that
VTOC and VVDS tracks that are processed are not encrypted. The data set names
and other content from the VTOC will appear unencrypted in the output dump
data set.

Key management considerations

The RSA and KEYPASSWORD keywords are used for key management by
DFSMSdss. The choice of one over the other depends on your environment and
needs.

KEYPASSWORD Keyword: Generally, if you are encrypting low volumes of data or
if you do not have secure cryptographic hardware installed, you can specify the
KEYPASSWORD keyword. NOTE: Passwords are case sensitive.

The iteration count (ICOUNT) in Password Based Encryption (PBE) is intended to
strengthen weak passwords. If the password is robust (that is, 32 random
characters), the default of 16 provides reasonable security and performance. Most
PBE schemes assume that weak password are chosen; thus, iteration counts of 1000
or higher are often normal.

Note:

You must take care when using the KEYPASSWORD keyword. The same password
specified on the DUMP task must be specified on the RESTORE task. The
password is not stored in the dump data set in any form. If the password is lost,
the encrypted data in the dump data set cannot be decrypted.

The same password with the same iteration count (ICOUNT) generates the same
data key. This means that if the same password is used for many DUMP tasks, all
of the data from those DUMP jobs are protected by the same key. If the password
is compromised, all of the dump data is vulnerable.

RSA Keyword: The RSA keyword makes use of public/private keys for encryption
and the exchange of digital certificates. You specify the label of the public key that
is stored in the ICSF PKDS on the RSA keyword when you dump and encrypt the
data. The corresponding RSA private key must be present at the recovery site
when you decipher the data. A recipient at another site can only decrypt the data
through the private key that is specified on the RSA keyword during the RESTORE
job. If the original RSA key and label exist in the system's ICSF PKDS, then the
RSA keyword need not be specified. The original RSA label is stored on the dump
data set for convenience.

If the same RSA label and key are used during multiple dumps, each dump has its
data encrypted with a different symmetric key. Thus, if the symmetric key of one
dump is discovered, the data in the other dumps is still secure.

Using compression with host-based encryption
When archiving large amounts of encrypted data, you can compress the data, for
example, to reduce the number of tape volumes needed.

Some tape devices make use of their own compression when you store data.
Encrypted data is not highly compressible, so you might want to compress your
data prior to encryption using the HWCOMPRESS keyword.

z/0OS V2R1.0 DFSMSdss Storage Administration

During DUMP processing, only user data may be compressed. This means that
VTOC and VVDS tracks that are processed are not compressed. The data set names
and other content from the VTOC will appear uncompressed in the output dump
data set.

Examples of host-based encryption

In the following example, DFSMSdss is used to perform a full volume dump and
to compress and encrypt the volume data using a clear TDES key. The clear TDES
key is protected using an RSA private key.

DUMP FULL INDYNAM(VOLOO1) OUTDD(TAPEL) -

ENCRYPT(CLRTDES) RSA(SYSTEM.PRIVATE.S01024) -
HWCOMPRESS OPTIMIZE(4)

The following is an example of the RESTORE command you would use to restore
the data on a system that has the same RSA private key with the same label:

RESTORE FULL INDD(TAPE1) OUTDYNAM(VOL0OO1)

The following example shows the keywords needed to restore the data on a
different system that has had the original RSA private key loaded into ICSF under
a different label:

RESTORE FULL INDD(TAPE1) OUTDYNAM(VOLOO1) -
RSA(NEWSYSTEM. PRIVKEY.S01024)

The following example shows the backup and recovery of data sets while using
128-bit AES encryption to secure the data. Note that a password is used for key
management:

DUMP DATASET (INCLUDE (SOURCE.*%)) -

OUTDDNAME (TAPE2) HWCOMPRESS -

KEYPASSWORD (mySecretPASSWORD) -
ENCRYPT (CLRAES128)

RESTORE DATASET (INCLUDE (SOURCE.#%)) -
INDDNAME (TAPE2) -
REPLACE KEYPASSWORD (mySecretPASSWORD)

Hardware requirements for encryption and decryption

If you plan to use the RSA option with DFSMSdss to encrypt the data-encrypting
key, you must consider the cryptographic hardware that exists at the site that will
decrypt the data. Not all types of RSA private keys are supported by all types of

cryptographic hardware.

summarizes the RSA private tokens and required cryptographic hardware
for decryption.

Table 7. RSA private tokens and required cryptographic hardware for decryption

RSA private key token (internal) Required cryptographic hardware
RSA private key token 1024 — One of the following:
Modulus-Exponent Internal form * Cryptographic Coprocessor feature

* PCI X Cryptographic Coprocessor
* Crypto Express2 Coprocessor.

RSA private key token 1024 — Chinese One of the following:

Remainder Theorem Internal form * PCI Cryptographic Coprocessor

* PCI X Cryptographic Coprocessor
* Crypto Express2 Coprocessor.

Chapter 6. Managing availability with DFSMSdss 67

68

Table 7. RSA private tokens and required cryptographic hardware for decryption (continued)

RSA private key token (internal) Required cryptographic hardware
RSA private key token 2048 — Chinese One of the following:
Remainder Theorem Internal form * PCI Cryptographic Coprocessor with LIC

January 2005 or later, and z/OS ICSF
HCR?770B or later

* PCI X Cryptographic Coprocessor

* Crypto Express2 Coprocessor.

For more information, refer to[z/OS Cryptographic Services ICSF Application|
[Programmer’s Guidd

Performance and processor types

The performance of host-based encryption can vary, depending on the type of
processor and encryption being used. For example, DFSMSdss can use the Cipher
Message with Chaining (KMC) System z instruction for some types of encryption if
it is running on the appropriate processor. If the KMC instruction is not available
or the type of encryption requires it, DFSMSdss uses the appropriate ICSF service
to perform the encryption.

The table below describes the method of encryption that is used under various
encryption types and processors.

Processor Method of Encryption
Encryption Type

z/800, z/900

o Clear TDES ICSF Service

o Clear 128-bit AES ICSF Service

o Secure TDES ICSF Service
2/890, 2990

o Clear TDES KMC instruction
o Clear 128-bit AES ICSF Service

o Secure TDES ICSF Service
z8, z9 109

o Clear TDES KMC instruction
o Clear 128-bit AES KMC instruction
o Secure TDES ICSF Service

Software requirements for encryption and decryption

To perform encryption and decryption, DFSMSdss requires the following software
to be installed and active on your system:

* Encryption Facility DFSMSdss Encryption Feature (HCF773D)

* IBM Cryptographic Services Facility (ICSF) (HCR770B or higher).

ICSF callable services for DFSMSdss

DFSMSdss invokes ICSF callable services for the DUMP command. If your
installation uses RACF or a similar security product, ensure that the security
administrator authorizes DFSMSdss to use the following services and any
cryptographic keys that are specified as input:

* CSFCKM Multiple clear key Import

* CSFENC Encipher

* CSFRNG Generate a random number

* CSFSYE Encipher using clear DES/AES key

* CSFPKE Public key encrypt

* CSFSYG Generate and wrap a symmetric key

z/0OS V2R1.0 DFSMSdss Storage Administration

¢ CSFSYX Export a symmetric key
¢ CSFOWH One-way hash.

Similarly, ensure that the security administrator authorizes DFSMSdss to use the
following ICSF callable services and cryptographic keys for the RESTORE

command:
* CSFCKM Multiple clear key import
* CSFDEC Decipher

* CSFSYD Decipher using clear DES/AES key

¢ CSFOWH One-way hash
e CSFPKD Public key decrypt
* CSFSYI Import a symmetric key.

For information about ICSF callable services, refer to|z/OS Cryptographic Services|

ICSF Application Programmer’s Guidd

DFSMSdss processing of dump encryption requests

You can use tape device encryption or host-based encryption to encrypt a tape
volume, but not both methods. Because DFSMSdss avoids performing double
encryption of tape data, you must determine which type of encryption, if any, is to
be used for your tape volumes. In general, DFSMSdss prevents you from
combining both types of encryption to perform double encryption of tape volumes.

shows how DFSMSdss processes potential double encryption requests,
specified through the DFSMSdss DUMP command.

Table 8. DFSMSdss processing of dump encryption requests

Dump encryption request

DFSMSdss action

Your DUMP command specifies host-based
encryption (through the RSA or
KEYPASSWORD keywords), and all of the
available tape drives are encryption-capable
tape drives. Your request might also specify
host-based compression (through the
HWCOMPRESS keyword).

* DFSMSdss issues informational message
ADR518I to indicate that tape device
encryption was used instead of host-based
encryption

DFSMSdss ignores the compression
request, if any.

Your DUMP command specifies host-based
encryption and one or more of the available
tape drives are not encryption enabled. Your
request might also specify host-based
compression.

* DFSMSdss issues error message ADR519E
to indicate that one or more of the
available tape drives cannot perform
encryption. To avoid performing double
encryption of data, DFSMSdss uses only
encryption-capable tape drives. DFSMSdss
issues error message ADR324E to list the
unused output devices.

* DFSMSdss ignores the compression
request, if any.

* DFSMSdss continues processing the
DUMP request as long as there are usable
tape drives. On completion, DFSMSdss
ends the task with return code 8.

Your DUMP command does not specify
host-based encryption and all of the
available tape drives are encryption-capable
tape drives. Your request might also specify
host-based compression.

* Encryption-capable tape drives perform
encryption

DFSMSdss performs host-based
compression, if requested.

Chapter 6. Managing availability with DFSMSdss

69

Table 8. DFSMSdss processing of dump encryption requests (continued)

Dump encryption request DFSMSdss action
Your DUMP command does not specify * DUMP requests for encryption-capable
host-based encryption and one or more of tape drives are encrypted by the tape
the available tape drives are not encryption drives
enabled. Your request might also specify * DUMP requests for non-encrypting tape
host-based compression. drives are processed without encryption
of any type
* DFSMSdss performs host-based
compression, if requested.

For tapes that require host-based encryption, ensure that your dump-requesting
jobs use only tape drives that are not encryption capable. To do so, check the data
classes of the output ddnames to ensure that the jobs do not specify a data class
that requests encryption from the encryption-capable tape drives.

If double encryption is required

In the unlikely event that your installation requires double encryption for a dump

data set, you can use the following procedure:

1. Request host-based encryption for the data set (through the RSA or
KEYPASSWORD keywords) and write the data set to a non-encrypting output
device

2. Use the DFSMSdss COPYDUMP command to copy the dump data set to an
encrypting tape device.

To restore the double-encrypted dump data set, use the DFSMSdss RESTORE
command. The encryption capable tape drive decrypts the dump data set and then
DFSMSdss performs host-based decryption for the data set.

Restoring data sets

70

With the RESTORE command, you can restore data to DASD volumes from
DFSMSdss-produced dump volumes, which are identified with the INDDNAME
keyword.

The restore function is logical or physical, depending upon the dump volume. If
the dump volume was made physically, a physical restore is made. If it was made
logically, a logical restore is made. If the data was compressed when it was
dumped, it is automatically expanded to its original form during the restore
operation.

Using the ALLDATA or ALLEXCP keyword during a dump affects target data set
allocation during a restore. Only used space is dumped for both a physical and
logical data set dump unless the ALLDATA or ALLEXCP keyword is specified as
part of the DUMP command.

When ALLDATA or ALLEXCP is specified, the total allocated space is dumped.
During a physical data set restore, the target data set is allocated with the same
amount of space as the source data set. During a logical data set restore (without
the ALLDATA or ALLEXCP keyword), the target data set is allocated according to
the amount of space used in the data set, thereby releasing unused space. If logical
data set processing is used and the target data set must preserve the total
allocation of the source, the ALLDATA or ALLEXCP keyword should be specified
during the dump.

z/0OS V2R1.0 DFSMSdss Storage Administration

When ALLDATA or ALLEXCP is specified for an extended-format sequential data
set, data beyond the last-used-block pointer is not retained. The target data set is
allocated with the same amount of space as the source data set during a logical
restore or copy operation.

As with a data set DUMP command, you can use filtering to select data sets for
restore processing. DFSMSdss reads the entire dump data set once during a restore
regardless of how much data is actually being restored. This will result in multiple
tape mounts if the dump data set is on multiple tapes.

Attention: You should restore a dumped data set that has extended attributes in an
F9 DSCB to a volume that supports F8/F9 DSCBs. Otherwise, these extended
attributes are lost. DFSMSdss propagates the vendor attributes if they exist in the
F9 DSCB of the primary volume when DFSMSdss performs catalog processing or if
they exist in the first volume that DFSMSdss processes when you specify input
volumes. To prevent losing extended attributes, all volumes that contain data sets
with vendor attributes in the F9 DSCB must be extended address volumes.

Note: Fully qualified names are required to restore the following data sets:
* VVDS

* VTOCIX

¢ SYS1.STGINDEX

* Integrated catalog facility catalogs

e OS catalog

* VSAM read-only data sets (temporarily exported with the INHIBITSOURCE
parameter).

For more information about filtering, refer to [Chapter 16, “DFSMSdss|
filterine—choosing the data sets you want processed,” on page 259

For information about using automatic class selection (ACS) routines during
DFSMSdss restore operations, refer to [Chapter 11, “ACS routine information,” on|

Logical data set restore

A logical data set restore is performed if you are restoring from a volume created
with a logical dump operation and if you specify the DATASET keyword. For
instance, the following RESTORE command generates a logical data set restore if
the volume was created with a logical dump operation.

RESTORE INDDNAME(TAPE) -
DATASET (INCLUDE (USER1.0LDDS)) -
REPLACE

Note: DFSMSdss logical restore processing cannot be used to process partitioned
data sets containing location-dependent information that does not reside in note
lists or the directory.

Output volume selection
In most cases, specifying output volumes is optional for a logical data set
RESTORE command. Output volume specification is required only if the data set:

e Exists and is to be restored to a volume that is different from the current
location

Chapter 6. Managing availability with DFSMSdss 71

72

* Does not exist and is to be restored to a volume that is different from the source
volume.

Specify output volumes with the OUTDDNAME or OUTDYNAM keywords. An
example of a logical data set RESTORE command with OUTDDNAME is:

RESTORE -
INDDNAME (TAPE) OUTDDNAME (DASD1) -
DATASET (INCLUDE (**))

When not specified, the volume on which the source data set currently resides is
found from the catalog and is dynamically allocated. To do this, you must include
the REPLACE keyword. This is particularly useful on a data set restore operation
from a data-set-selection-by-catalog dump because you need not know where the
data sets resided at dump time.

You can specify multiple output DASD volumes on a logical data set RESTORE
command. This is required when all the data sets to be restored cannot fit on a
single volume. An example of a logical data set restore operation with a spill
volume specified is:

RESTORE -
INDDNAME (TAPE) OUTDYNAM((338001), (338002)) -
DATASET (INCLUDE (PARTS.*x)) -
PCTU(80)

Note the use of the PERCENTUTILIZED (PCTU) keyword in the above example.
With PERCENTUTILIZED, you can set a limit on the amount of space DFSMSdss
can fill on the volume. When this limit is reached, subsequent data sets are
allocated to other volumes. In the above example, PERCENTUTILIZED is used to
specify that only 80% of the first target volume is to be filled. This leaves 20% free
space for the data sets to extend, if necessary.

PERCENTUTILIZED is ignored for SMS-managed volumes.

Note: User data-set labels on DASD volumes are supported during a data set
restore operation. However, either the data set on both the source and target
volumes must have these labels, or neither must have them.

Restoring to preallocated target data sets

In some instances, you might want to control the placement of a data set on a
volume when you restore it. Some data sets (such as data sets allocated by
absolute track) have location-dependent data and must be preallocated. Others
(such as catalogs) should be placed for performance reasons.

For information about restoring such data sets, refer to[“Restoring indexed)|

sequential, unmovable, direct, and absolute track data sets” on page 81/ and

“Restoring integrated catalog facility catalogs” on page 79

To use a preallocated data set, you must specify the REPLACE or
REPLACEUNCONDITIONAL keyword. If the REPLACE keyword is specified, the
preallocated target data set name must be identical to the source data set name. If
the REPLACEUNCONDITIONAL keyword is specified and the RENAME or

z/0OS V2R1.0 DFSMSdss Storage Administration

RENAMEUNCONDITIONAL keyword is also specified, the preallocated target
data set name must match the new name filter criteria.

If a target data set is preallocated, it is scratched and reallocated if it is not large
enough to contain the dumped data set. VSAM preallocated target data sets are
also scratched and reallocated when:

* Any of the following source and target data set attributes do not match:

CI size

Record length

Key length (only KSDS and key range data sets)
SPANNED

* The preallocated target is multivolume and the space of the target data set on
the first volume is not large enough to contain all of the dumped data.

* The data set was not defined as reusable and the high-used relative byte address
(RBA) of a target VSAM KSDS is not 0.

¢ The target data set has the IMBED or REPLICATE attributes. It will be
reallocated without those attributes.

You may use data set RESTORE to upgrade your standard format sequential data
sets to large format data sets. To do this, simply preallocate a large format data set.
In restoring a standard format sequential data set, if a preallocated large format
data set is found, the preallocated large format data set will be the target of the
restore. If the preallocated large format data set is not large enough to hold the
data being restored, it is scratched and reallocated as a large sequential data set. In
restoring a large format data set, if a preallocated standard format sequential data
set is found, the standard format sequential data set is used and is upgraded to a
large format data set. If the preallocated standard format sequential data set is not
large enough to hold the data being restored, it is scratched and reallocated as a
large format data set.

If a user wishes to downgrade a large format data set to a standard format
sequential data set, restore the large format data set with no preallocated target,
allocate a standard format sequential data set, and use a utility such as IEBCOPY
to copy the data from the large format data set to the standard format sequential
data set.

If a user wishes to upgrade or downgrade an extended format sequential data set
you must preallocate the target data set to the extended format version number.

You may also use data set RESTORE to upgrade your data sets that are not
enabled for CA reclaim to data sets that are enabled for CA reclaim. To do this,
simply preallocate a data set that is enabled for CA reclaim to use as the target of
the restore. In restoring a data set that is not enabled for CA reclaim, if a
preallocated data set that is enabled for CA reclaim is found, the preallocated data
set that is enabled for CA reclaim is used for the target of the restore. If the
preallocated data set that is enabled for CA reclaim is not large enough to hold the
data being restored, it is scratched and reallocated as a data set that is enabled for
CA reclaim. In restoring a data set that is enabled for CA reclaim, if a preallocated
data set that is not enabled for CA reclaim is found, the data set that is not enabled
for CA reclaim is used for the target of the restore. If the preallocated data set that
is not enabled for CA reclaim is not large enough to hold the data being restored,
it is scratched and reallocated as a data set that is not enabled for CA reclaim. For
more information, refer to the topic on [CA reclaim|in p/OS DFSMS Using Data Sets}

Chapter 6. Managing availability with DFSMSdss 73

74

During logical restore processing, a compression is performed when partitioned
data sets are restored to both like and unlike devices. If the partitioned data set is
being restored to an unlike device, the device-dependent information (such as TTR
pointers and note lists) is in a usable form after the restore. DFSMSdss is unable to
resolve device-dependent information for all other data set types being restored to
unlike devices.

The NOPACKING keyword is effective only for partitioned data sets. If
NOPACKING is specified for preallocated partitioned data sets, the preallocated
target must reside on the same or a like device. Processing is stopped for the data
set if the target resides on an unlike device. The target is not deleted and
reallocated.

The preallocated data set is usable if all of the following conditions that apply to
the data set being processed are met:

* The user is authorized to update the target data set.

e If VSAM, the cluster types match

* The DSORG matches.

e If the data set being processed is multivolume or single volume and the
non-SMS preallocated data set matches the multivolume or single volume.

Cataloging data sets during logical restore processing

When you restore a data set, you might need to catalog it in the standard order of
search or recatalog it in its original catalog. The CATALOG keyword catalogs the
data set in the standard order of search. The RECATALOG(*) keyword catalogs it
in the same catalog that points to the source data set.

When a data set is restored as an SMS-managed data set, it is cataloged using the
standard order of search. The RECATALOG keyword is ignored.

Examples of the CATALOG and RECATALOG keywords in a logical data set
RESTORE command follow:

- ™
RESTORE -
INDDNAME (TAPE) -
DATASET (INCLUDE (USER1.*%)) -
CATALOG
J
- ™
RESTORE -
INDDNAME (TAPE) -
DATASET (INCLUDE (USER1.*%)) -
RECATALOG (*))

When a VSAM KSDS or key range data set is being restored to an unlike device,
the data set must be cataloged in the standard order of search.

Renaming data sets during logical restore processing

In addition to cataloging data sets when they are restored, you can rename
restored data sets by using the RENAME keyword. For instance, you can code the
following to rename a data set you are restoring:

z/0OS V2R1.0 DFSMSdss Storage Administration

RESTORE -
INDDNAME (TAPE) -
DATASET (INCLUDE (USER2.0LDDS)) -
RENAME (*.0LDDS, *.NEWDS)

Note: The RENAME keyword works only if the data set exists on the output
DASD with the old name. If you really want to unconditionally rename a data set,
use RENAMEUNCONDITIONAL. Both VSAM and non-VSAM data sets can be
renamed. The rules for renaming VSAM clusters are the same as for non-VSAM
data sets. You can rename only clusters. DFSMSdss assigns a new name for the
components of VSAM clusters. SMS considerations require DFSMSdss to ensure
that VSAM component names resolve to the same catalog as the cluster name.
DFSMSdss uses the cluster name as a guide to determine the component names.
This applies equally to SMS and non-SMS data sets.

Restoring data sets with the IMBED or REPLICATE attributes
During logical restore processing, DFSMSdss converts data sets with IMBED or
REPLICATE attributes to indexed key-sequenced data sets (KSDS) without the
IMBED and REPLICATE attributes. If the target data set already exists and has
these attributes, it is deleted and reallocated without the IMBED and REPLICATE
attributes.

Restoring data sets with the KEYRANGES attribute

During logical restore processing, DFSMSdss restores data sets with the
KEYRANGES attribute as they were dumped. DFSMSdss does not convert these
data sets, but issues message ADR508I to bring attention to their existence.

DFSMSdss handling of the expiration date during logical
restore

For preallocated targets, the expiration date of the preallocated target is preserved.
For non-preallocated targets, the expiration date depends on whether the data set
is VSAM or non-VSAM, whether the source data set is SMS-managed, and whether
the target data set is SMS-managed. SMS also ensures that the expiration date
conforms with the target’s management class retention period.

Allocating to SMS

For VSAM data sets, DFSMSdss uses the expiration date from the source catalog
entry to set the target’s expiration date in both the catalog and the VTOC. For an
indexed VSAM data set, the expiration date in the VTOC for the index component
is zero.

For non-VSAM data sets, DFSMSdss uses the expiration date from the source
VTOC to set the target expiration date in both the catalog and VTOC. If the
expiration date violates the target’'s management class retention period, SMS
modifies the date to conform with the management class.

Allocating to non-SMS

For VSAM data sets, DFSMSdss uses the expiration date from the source catalog
entry to set the target’s expiration date in the catalog. The target expiration date in
the VTOC is 99365. For an indexed VSAM data set, the expiration date in the
VTOC for the index component is 99365.

For non-VSAM data sets, DFSMSdss uses the expiration date from the source
VTOC to set the expiration date in the target VTOC. If the target is cataloged, the
expiration date in the catalog is set to the date from the source VTOC if the source

Chapter 6. Managing availability with DFSMSdss 75

76

data set is SMS-managed. If the target is cataloged, and the source data set is not
SMS-managed, the expiration date in the catalog is not set.

DFSMSdss handling of the data-set-changed indicator during
restore

When restoring a data set, understand that the value of the data-set-changed
indicator depends on several factors, such as whether you invoke DFSMSdss
directly or through its Application Programming Interface (API), and whether you
rename the data set during the restore operation.

shows how DFSMSdss handles the data-set-changed indicator in each of
these situations.

Table 9. DFSMSdss handling of the data-set-changed indicator during data set restore
operations.

How is DFSMSdss Is the data set

invoked? renamed? Result

Invoked directly to No DFSMSdss sets the data-set-changed

restore the data set. indicator in the VTOC to the value the data
set had when it was backed up.

Invoked directly to Yes DFSMSdss turns off the data-set-changed

restore the data set. indicator for the data set because it is newly
allocated.

Invoked by an No DFSMSdss leaves the data-set-changed

application through the indicator unmodified, so that other backup

DFSMSdss API. applications can continue to track the data
set.

Invoked by an Yes DFSMSdss leaves the data-set-changed

application through the indicator unmodified, so that other backup

DFSMSdss API. applications can continue to track the data
set.

Physical data set restore

A physical data set restore is done if you are restoring from a dump volume
created by physical dump processing and you specify the DATASET keyword. If
the dump volumes resulted from a physical data set dump operation, you must do
a physical data set restore or a tracks restore operation. A tracks restore operation
can consist of a subset of the dump data.

Note:

1. When you perform a physical restore of many data sets, there is an initial delay
while DFSMSdss allocates the target data sets.

2. To prevent index components from being restored inadvertently, you must
specify the fully qualified name of the cluster.

On a physical data set restore operation, data sets from one or more logical
volumes can be restored to a single DASD volume. If you want to restore data sets
from specific source DASD volumes, use the LOGICALVOLUME keyword to
specify the volume serial numbers of the source DASD volumes you want to
restore. For example:

z/0OS V2R1.0 DFSMSdss Storage Administration

RESTORE -
INDDNAME (TAPE) OUTDDNAME (DASD1) -
DATASET (INCLUDE(**)) LOGICALVOLUME(111111) -
REPLACE

The following data sets cannot be processed by physical data set DUMP or
RESTORE operations:

* VSAM data sets not cataloged in an integrated catalog facility catalog.
* Page, swap, and SYS1.STGINDEX data sets.

Note: Data from a specific volume can be restored only to a DASD volume of like
device type.

Output volume selection

For a physical data set RESTORE command, you must specify an output volume
with the OUTDDNAME or OUTDYNAM keyword. A physical data set restore
operation restores only to the first volume in a list passed in the OUTDDNAME or
OUTDYNAM parameter.

Cataloging data sets during physical restore processing

If you specify CATALOG on a physical data set restore operation, DFSMSdss
creates catalog entries for single-volume, non-VSAM data sets that were allocated
by DFSMSdss. The cataloging is done immediately after successful allocation of a
data set. Failure in cataloging does not prevent the data set from being restored. A
data set that was allocated and cataloged but encountered errors during the restore
operation is neither uncataloged nor scratched by DFSMSdss. You must not specify
the RECATALOG keyword for physical restore.

The catalog that DFSMSdss uses to catalog a data set is determined as follows:

e If the first qualifier of the data set name is an alias for a user catalog, the catalog
pointed to is used for that data set.

¢ Otherwise, the master catalog is used.

DFSMSdss does not catalog VSAM data sets during physical restore processing. If
the CATALOG keyword is specified, it is ignored when processing VSAM data
sets. You should use the IDCAMS DEFINE RECATALOG command to catalog
VSAM data sets that were allocated by DFSMSdss (not preallocated). To recatalog
and later access the VSAM data set, the volume serial numbers for the target and
source volumes must match and the data set must be cataloged in the same catalog
from which it was dumped. The volume serial number and the catalog name are
printed in message ADR4181 during restore.

Note: To catalog multivolume non-VSAM data sets, use the IDCAMS DEFINE
NONVSAM command.

Coexistence considerations

For information about restoring dumps created with previous releases, refer to
“Restoring backups using DFSMSdss” on page 649|in [Appendix A, “Coexistence|
Considerations,” on page 649 |

Chapter 6. Managing availability with DFSMSdss 77

Restoring data sets with special requirements

78

Some data sets have special requirements for being restored. The sections that
follow describe some of the special cases you might encounter when you restore
data sets.

Restoring multivolume data sets and restoring data sets using
multiple target volumes (spill volumes)

Multivolume data sets from a logical data set dump tape can be restored either to
a single volume or to multiple volumes. When multiple target volumes are
specified, DFSMSdss selects target volumes as follows:

* If a target volume that has the same volume serial as the source volume is
available and has adequate space, it is chosen.

* If a volume of the same device type is available, and if it has adequate space, it
is selected.

* A volume of a like device type is selected if it has adequate space.
* A volume of an unlike device type is selected if it has adequate space.

If you are restoring a multivolume data set from a physical dump, be sure the
segments from all volumes are restored with successive RESTORE commands.
Restoring a portion of a multivolume non-VSAM data set to a preallocated data set
is allowed only if the volume sequence numbers of the source and target data sets
are the same.

A VSAM data set that has its index component defined on more than one volume
(that is, a multivolume KSDS defined with the imbed attribute) should always be
processed logically. If it must be processed physically, it should be treated as an
absolute track allocation data set, and its extents restored to their original location.
This can be accomplished by performing either a full-volume restore, or a tracks
restore of the relevant tracks. If this procedure is not done, the index may become
unusable.

During logical restores of VSAM data sets whose data and index components are
on different source volumes, DFSMSdss preserves the volume spread if enough
target volumes of like device types are specified.

Note: DFSMSdss preserves the volume spread by placing the data and index
components on separate devices only if all of the following are true:

¢ The source data and index components reside on separate devices.

* The target data set is preallocated with the data and index components on
separate devices.

* DFSMSdss does not need to scratch and reallocate the preallocated target data
set.

For information about when DFSMSdss scratches and reallocates target data sets,
refer to [“Restoring to preallocated targets” on page 81|

Note: When you are copying or restoring multivolume data sets, be aware of the
following considerations:

* DFSMSdss does not preserve candidate volumes. However, for SMS-managed
data sets, if you copy and do not specify any output volumes, DFSMSdss

z/0OS V2R1.0 DFSMSdss Storage Administration

preserves the source volume count. If you copy and do specify the output
volumes, DFSMSdss sets the volume count to the number of output volumes
specified.

DFSMSdss does not ensure that the copied or restored data set is on the same
number of volumes as the original data set, nor does DFSMSdss ensure that the
copied or restored data set extents are the same as the original data set. Instead,
DFSMSdss tries to allocate the new data set on as few volumes as possible. This
may result in the copied or restored data set becoming a single-volume data set.
In addition, DFSMSdss tries to allocate each volume so that all data is contained

in a single primary allocation of contiguous space with few, if any, of the
secondary allocations being used.

Restoring integrated catalog facility catalogs

Integrated catalog facility user catalogs can be restored only to the same volumes
(the same volume serial and the same device type) from which they were dumped.
The component names of the source and target user catalog must be the same. In
addition, you must specify the fully qualified name to restore a catalog.

Restore from a logical dump is generally the best way to restore a catalog because
it restores user catalog aliases if they are present in the logical dump data set. For
logical restore operations, user catalog aliases are restored as follows:

If DFSMSdss allocated the user catalog, aliases are restored if the catalog is
successfully restored.

If the target catalog was preallocated and is not empty, aliases are not restored.
If the target catalog was preallocated and is empty, aliases are restored.

A physical restore operation does not restore aliases, and physically dumped
catalogs cannot be restored if they are open. In addition, if the entries in the
catalog during the dump operation do not match the entries during the physical
restore operation, some of the data sets may become inaccessible.

An integrated catalog facility user catalog can be restored dynamically. Catalog
recovery jobs must be modified to include any of the following options:

Add the IDCAMS ALTER LOCK ISUSPEND command to lock or suspend the
existing catalog before the DFSMSdss restore operation. After the recovery is
complete, unlock or resume the catalog by using IDCAMS ALTER

UNLOCK IRESUME. The LOCK or SUSPEND attribute on the dump tape is
used if the catalog does not exist.

Issue the F CATALOG,RECOVER,LOCK | SUSPEND(ucat) command before the
DFSMSdss restore operation. After the recover is completed, unlock or resume
the catalog by using IDCAMS ALTER UNLOCK |RESUME. The LOCK or
SUSPEND attribute on the dump tape is used if the catalog does not exist.

Specify the BCSRECOVER(LOCK | SUSPEND) keyword in the DFSMSdss
RESTORE command. DFSMSdss will perform the necessary unlock and resume
during internal processing. This option only applies to existing (pre-allocated)
catalogs. If the catalog does not exist, DFSMSdss will define the catalog as
locked to ensure the catalog is not accessible prior to DFSMSdss completing
restore processing.

For more information, see the following:

For more information about the BCSRECOVER parameter, see|"BCSRECOVER’]

Chapter 6. Managing availability with DFSMSdss 79

+ Por more information about using the MODIFY CATALOG command, see
[DFSMS Managing Catalogs}

The following example shows the JCL used to restore an integrated catalog facility
user catalog. If the master catalog is RACF-protected, RACF access to it is required,
unless you have DASDVOL update access or the installation authorization exit
routine bypasses authorization checking.

-

4 N
//STEPT007 EXEC PGM=ADRDSSU
//SYSPRINT DD SYSOUT=*
//TAPE DD DISP=0LD,LABEL=(1,SL)
VOL=SER=(A00760) ,DSN=PUBSEXMP.DUMP,
UNIT=3590
//SYSIN DD =
RESTORE DS (INCL(TEST.CAT.PUBSEXMP)) -
OUTDYNAM ((D9S660)) -
REPLACE -
INDDNAME (TAPE)
/*
AN /
shows the printed output produced by the RESTORE command.
e N
PAGE 0001 5695-DF175 DFSMSDSS V2R10.0 DATA SET SERVICES ~ 1999.211 14:54
RESTORE -
DS (INCL(TEST.CAT.PUBSEXMP)) -
OUTDYNAM (D9S060) -
REPLACE -
INDDNAME (TAPE)
ADR1O1I (R/I)-RIO1 (01), TASKID 001 HAS BEEN ASSIGNED TO COMMAND 'RESTORE '
ADR109T (R/1)-RIO1 (01), 1999.211 14:54:46 INITIAL SCAN OF USER CONTROL STATEMENTS
COMPLETED.
ADRO161 (001)-PRIME(01), RACF LOGGING OPTION IN EFFECT FOR THIS TASK
ADROO6I (001)-STEND(01), 1999.211 14:54:46 EXECUTION BEGINS
ADR7801 (001)-TDDS (01), THE INPUT DUMP DATA SET BEING PROCESSED IS IN LOGICAL
DATA SET FORMAT AND WAS CREATED BY DFSMSDSS VERSION 2
RELEASE 10 MODIFICATION LEVEL 0
ADR4421 (001)-FRLBO(01), DATA SET TEST.CAT.PUBSEXMP PREALLOCATED, IN CATALOG
SYS1.MVSRES.MASTCAT, ON VOLUME(S): D9S060
ADR489T (001)-TDLOG(02), CLUSTER TEST.CAT.PUBSEXMP WAS RESTORED
CATALOG SYS1.MVSRES . MASTCAT
COMPONENT TEST.CAT. PUBSEXMP
COMPONENT TEST.CAT.PUBSEXMP . CATINDEX
ADR4541 (001)-TDLOG(01), THE FOLLOWING DATA SETS WERE SUCCESSFULLY PROCESSED
TEST.CAT. PUBSEXMP
ADROO6I (001)-STEND(02), 1999.211 14:54:47 EXECUTION ENDS
ADRO131 (001)-CLTSK(01), 1999.211 14:54:47 TASK COMPLETED WITH RETURN CODE 0000
ADRO12I (SCH)-DSSU (01), 1999.211 14:54:47 DFSMSDSS PROCESSING COMPLETE. HIGHEST
RETURN CODE IS 0000)

Figure 2. Output from Restore of Integrated Catalog Facility User Catalog

For more information about the LOCK attribute and the access authority, refer to
2/0S DFSMS Managing Catalogs,

For more information about the installation authorization exit routine, refer to
IDESMS Installation Exits|

When you attempt to replace an existing integrated catalog facility (ICF) user
catalog, it must not violate any of the following restrictions:

* The number of extents for the target must not exceed the number of extents of
the data set being restored.

e If the ICF user catalog has been defined with the SHARE keyword, the target
high index used CI must not exceed the high index used CI of the data set being
restored.

80 z/0S V2R1.0 DFSMSdss Storage Administration

e If the ICF user catalog has been defined with the SHARE keyword, the target
high index allocated CI must not exceed the high index allocated CI of the data
set being restored.

* The target ICF user catalog's high used relative byte address must not exceed the
high used relative byte address of the data set being restored.

* The target ICF user catalog's high allocated relative byte address must not
exceed the high allocated relative byte address of the data set being restored. A
violation of these restrictions will result in a failure to restore the ICF user
catalog.

Restoring non-VSAM data sets that have aliases

DESMSdss does not support INCLUDE filtering of non-VSAM data sets using an
alias. To include a non-VSAM data set which has an alias for restore processing,
you must use the data set’s real name, as shown in the VTOC. DFSMSdss does not
detect nor preserve aliases of non-VSAM data sets. You will need to redefine the
aliases after the data set is restored.

Restoring indexed sequential, unmovable, direct, and absolute
track data sets

One important use of DFSMSdss is restoring data sets that contain
device-dependent information. In some cases, such data sets can be restored
without preallocating the target data sets. In other cases, however, you must
preallocate the target to restore the data set.

DFSMSdss does not support restoring Indexed Sequential data sets.

Restoring without preallocated targets

If an unmovable data set is not preallocated, DFSMSdss tries to allocate the data
set on the same 'relative tracks from which it was dumped. If this allocation fails,
the unmovable data sets are allocated to any available location if the FORCE
keyword is specified.

When you specify the FORCE keyword and some of the data sets have truly
location-dependent data, you should specify their names in the EXCLUDE
parameter to prevent DFSMSdss from restoring them. Subsequently, you must
either restore the data set onto a scratch volume or free up the area of the DASD
where these data sets were located on the source volume and rerun the restore
operation. When restoring a direct, undefined data set and the target data set is not
preallocated, DFSMSdss allocates the data set. The allocation may result in a new
data set with a different configuration from the data set that was dumped (for
example, fewer volumes). This situation may cause problems when processing the
restored data set.

Restoring to preallocated targets

If you are restoring any of these types (unmovable, direct, or absolute track) of
data sets by preallocating them, the size and location of the extents on the dump
volume and on the restore volume should match. Restoring a data set to a larger
preallocated data set can cause problems because of the extraneous data beyond
the end of the original dumped data. If the preallocated data set is too small,
DFSMSdss deletes it and reallocates a new data set. The allocation may fail, or it
may result in a new data set with a different configuration (for example, fewer
volumes). The latter situation can cause problems processing the data set.

Chapter 6. Managing availability with DFSMSdss 81

82

For unmovable data sets (those allocated as ABSTR, PSU, POU, or DAU), a
preallocated data set is restored if the extents match and the REPLACE or
REPLACEUNCONDITIONAL keyword is specified. Even if the extents do not
match, the data set is restored if you specify both the REPLACE and FORCE
keywords or the REPLACEUNCONDITIONAL and FORCE keywords. When an
unmovable data set cannot be restored, the extents of the data set on the source
volume are listed so that you can take action to restore it.

Note: Indexed sequential data sets cannot be restored to unlike devices.

Restoring direct access data sets
When DFSMSdss restores direct data sets, several processing options can be used.

Direct data sets can be organized by relative block address or by track-track record
(TTR).

Relative block addressable direct access data sets can be processed block by block
to like and unlike target devices if the block size fits on the target track. When the
data sets are processed block by block, DFSMSdss updates the block reference
count of dummy records contained in the relative block addressed direct access
data sets. To process block by block, the direct access data sets must have neither a
variable record format nor a standard user label.

TTR direct access data sets may become unusable if they are processed block by
block. TTR and relative block addressable data sets can be processed track by track
to like and unlike target devices whose track capacity is equal to or greater than
the source. Block by block processing is more efficient because track by track
processing to an unlike device of larger track capacity can leave some unused
space on each track of the target data set.

Several DFSMSdss keywords implement the BDAM processing options:

AUTORELBLOCKADDRESS
If the data set is accessed with Optional Services Code (OPTCD) indicating
relative block addressing, it is processed as if it were specified in the
RELBLOCKADDRESS subkeyword list, and processing is block by block. If
your installation has many relative block address direct access data sets,

you can use the DFSMSdss installation options exit to turn on the
AUTORELBLOCKADDRESS function.

RELBLOCKADDRESS
If the data set is specified in the subkeyword list, the data set is processed
block by block.

TTRADDRESS
If the data set is specified in the subkeyword list, the data set is processed
track by track.

FORCE
If the track capacity of the receiving volume is smaller than the source,
FORCE may be required for variable or undefined length TTR-organized
direct access data sets. These data sets may be unusable after restore and, if
possible, should be restored to a like device. Use RELBLOCKADDRESS to
restore relative block address direct access data sets to unlike devices.

Note: If you do not specify a keyword, data is moved to the target on a track by
track basis.

z/0OS V2R1.0 DFSMSdss Storage Administration

For more information about using BDAM processing options with DFSMSdss
keywords, refer to|"RESTORE command for DFSMSdss” on page 452)

For more information about the installation options exit, refer to |z/OS DFSM
[[nstallation Exits|

For information about using DESMS macros for non-VSAM data sets, refer to
IDFSMS Macro Instructions for Data Sets|

Restoring an undefined DSORG data set

The PROCESS(UNDEFINEDSORG) keyword permits logical data set restore of an
undefined DSORG data set to an unlike device of larger track capacity. The restore
yields a usable data set; however, some unused space might remain on each track
of the target data set. It may not always be possible to restore all undefined
DSORG data sets to an unlike device type, even when the unlike device type has a
track capacity greater than or equal to the source device. For example, if the source
device is a 3380, the output device is a 3390, and the data set’s block size is less
than 277 bytes, a track on the target cannot contain as much data as a track on the
source, and message ADR366W (invalid track format) is issued.

Note: A data set with an undefined DSORG or with a block size of 0 cannot be
restored to a device of smaller track capacity than the source.

Restoring an extended-format VSAM data set with stripe count
of one

When performing a logical restore operation of an extended-format VSAM data set
with a stripe count of one, the resulting target will remain a VSAM data set with a
stripe count of one, even if the target storage class is multi-striped.

Restoring a VSAM sphere

With DFSMSdss, you can restore an entire VSAM sphere (base cluster and all
associated alternate index clusters and paths). The SPHERE keyword causes
DFSMSdss to restore the entire VSAM sphere. If the dump was also taken with the
SPHERE keyword specified, you need to specify the SPHERE keyword and the
base cluster name to restore the base cluster and the other components.

When you restore a sphere to a preallocated target, all components (base clusters,
alternate indexes, and paths) of the sphere must be preallocated. DFSMSdss does

not restore a sphere if only some parts of the sphere are preallocated.

An example of the RESTORE command with the SPHERE keyword is:

RESTORE -
INDDNAME (TAPE) -
DATASET (INCLUDE (PARTS.VSAM1)) -
SPHERE -
REPLACE -
PSWD (PARTS.VSAM1/MASTUPW1)

Restrictions for restore processing

* You can restore a sphere only if all parts of the sphere resolve to the same
catalog.

Chapter 6. Managing availability with DFSMSdss 83

* You may not need to rename all the parts in the VSAM sphere as you would
with the copy function.

* Multiple path names to an alternate index are not supported. Only the last path
name listed in the catalog is preserved.

* When restoring a sphere with one or more alternate indexes missing from the
dump tape, DFSMSdss issues a message to indicate that the sphere was
incompletely restored.

Restoring a preallocated VSAM cluster

Restoring a VSAM cluster that has been preallocated is allowed if the following are
the same on the source and the destination volumes:

* The number of components on the volume
* The beginning relative byte address (RBA)
* The component names

* Catalog names

The size of the cluster must be equal to or greater than that on the source volume.
(Only the tracks that were dumped are restored.)

You should ensure that the control interval size, allocation unit, and secondary
allocation quantity are the same as in the initial definition.

Restoring the VVDS and the VTOCIX

To restore a VVDS or VTOCIX data set, you must specify the fully qualified data
set name. The VVDS and the VTOCIX data set cannot be restored with other data
sets in the same RESTORE command. VVDS and VTOCIX data sets should not be
restored by data set as a normal recovery procedure. The VTOCIX data set is an
extension of the VTOC and can be rebuilt using the Device Support Facilities
program (ICKDSF) BUILDIX command.

The VVDS is an extension of the VIOC and of the catalogs for the VSAM data sets
on the volume. If it is restored by a data set restore operation, it is possible that
some of these data sets can become unusable because of a mismatch between the
catalog, the VVDS, and the VTOC. If this occurs, run the diagnose function of
access method services to determine the extent of the problem and to take
appropriate corrective action.

DESMSdss/VVDS Manager does not support dumping a multiple-extent VVDS
and restoring the VVDS to a nonpreallocated VVDS. DFSMSdss can restore to a
nonpreallocated VVDS only when the source VVDS resides on one extent.

The user can consolidate the VVDS extents by doing the following:

* DFSMSdss dump the multiple-extent VVDS

* IDCAMS delete the multiple-extent VVDS

* Preallocate a single-extent VVDS

* DFSMSdss restore the multiple-extent VVDS into the preallocated, single-extent
target VVDS.

Restoring a PDSE

DFSMSdss lets you restore a PDSE. The PDSE’s original version level is preserved
during restoration if restored on z/OS V2R1.0 or later. The version level that was

84 z/0S V2R1.0 DFSMSdss Storage Administration

dumped stays the same when the PDSE is restored, if restored on the same release
of z/OS that is was dumped from. PDSE member generations are also preserved if
restored on z/OS V2R1.0 or later.

Restoring a damaged PDS

During a logical restore, a PDS is monitored by DFSMSdss for conditions that are
not normal. The following conditions are detected and reported:

* Missing high-key entry in the PDS directory
* Missing directory EOF
* Invalid member start TTR:

— TTR points before directory EOF

— TTR points after end of data set

* Missing member EOF. Each member of a partitioned data set is normally
terminated by an EOF record.

¢ Invalid note or note list TTR:
— Note pointing before the start of member data
- Note pointing after the member EOF
— Note pointing past the last valid record on a track

— Note pointing to record 0 of a track
DFSMSdss notes all of these conditions with a message.

During compression, DESMSdss repairs all missing high-key directory entries,
missing directory EOFs, and missing member EOFs.

Invalid start TTRs prevent DFSMSdss from compressing data for that member.
DFSMSdss translates all valid note and note list TTRs during compression.

Use the NOPACKING keyword to restore damaged partitioned data sets to same
or like device target volumes. This results in an exact track-for-track image of the
source data set. Obviously, no compression is performed in this case. During
physical restore operations, DFSMSdss uses only track-level 1/O. Therefore, no
compression takes place against the PDS.

Restoring data sets in an SMS-managed environment

Use the RESTORE command to recover data sets in an SMS-managed environment.
If the data set was dumped logically, it is recovered logically. If it was dumped
physically, it is recovered physically.

As discussed earlier, an SMS-managed environment can contain both
SMS-managed and non-SMS-managed data. The following sections discuss how
you can use the RESTORE command to recover these data sets.

| Programming Interface Information

The following sections discuss variables available to automatic class selection
(ACS) routines during DFSMSdss processing. This information is provided for
guidance purposes only. It is not associated with any interface provided by
DFSMSdss.

| End Programming Interface Information

Chapter 6. Managing availability with DFSMSdss 85

For information about writing ACS routines, refer to[Chapter 17]
[‘Syntax—DFSMSdss function commands,” on page 269

Converting non-VSAM data sets to multivolume

| Programming Interface Information

The number of volumes allocated for certain VSAM and non-VSAM data sets can
be changed with VOLCOUNT keyword options. The output data set must be
SMS-managed. Single volume data sets can be converted to multivolume;
multivolume data sets can be converted to single-volume; or the number of
volumes allocated for multivolume data sets can be changed. Allocation depends
on which VOLCOUNT keyword is selected, and on whether output volumes are
specified.

Note: You cannot use the VOLCOUNT keyword to convert the following types of
data sets to multivolume:

¢ TTR-BDAM or unmovable data sets. If DFSMSdss encounters an existing
multivolume TTR-BDAM or unmovable data set, a DADSM error occurs.

* Partitioned data sets (PDS or PDSE). If an existing multivolume PDS or PDSE
data set is encountered, it is converted to single-volume.

* You cannot restore a non-SMS-managed non-VSAM single volume data set that
was dumped with DFSMSdss to multivolume.

| End Programming Interface Information

Restoring SMS-managed data sets

When you use the RESTORE command in an SMS-managed environment,
automatic class selection (ACS) routines are invoked. ACS routines are written for
each installation by the installation’s own storage administrator.

When you use the RESTORE command, you are in the ACS RECOVER
environment.

DFSMSdss passes a data set’s classes at the time of the dump to ACS as input, and
the ACS routines can assign or override these input classes.

VSAM alternate indexes do not have SMS constructs of their own; they use the
same constructs as the base cluster. When restoring alternate indexes as
independent clusters (because you did not specify the SPHERE keyword on the
DUMP and RESTORE commands), DFSMSdss passes null classes to ACS. If you
want DFSMSdss to pass the base cluster’s classes to ACS, you must invoke sphere
processing by specifying the SPHERE keyword on the DUMP and RESTORE
commands.

If the source data set is not SMS-managed and has no class names, DFSMSdss
passes null classes to ACS. If the source data set is SMS-managed and you do not
specify otherwise, DFSMSdss passes ACS the source data set’s classes. If you
specify what you want passed to ACS with the STORCLAS, MGMTCLAS,
NULLSTORCLAS, or NULLMGMTCLAS keywords, DFSMSdss passes ACS what
you specify. In all cases, the ACS routines ultimately decide the classes assigned to
the data set.

86 z/0S V2R1.0 DFSMSdss Storage Administration

You can, however, force the storage class and management class you specify to be
assigned to a data set by using the BYPASSACS keyword with the RESTORE
command.

The following RESTORE command results in ACS routines determining the target
classes, using the source classes as input:

RESTORE -
INDDNAME (TAPE) -
DATASET (INCLUDE (USER12.*))

If you preallocate a data set and specify the REPLACE or
REPLACEUNCONDITIONAL keyword, the preallocated data set’s classes are
used.

For more information about the variables available to ACS routines during restore
processing, refer to|“ACS variables available during RESTORE and CONVERTV]|
fprocessing” on page 181

For more information about using the RESTORE command to convert data to and
from SMS management, refer to [Chapter 8, “Converting data to and from SMS|
fmanagement,” on page 141

For more information about ACS routines, refer to|Chapter 11, “ACS routine|
finformation,” on page 179.|

Changing storage class with the RESTORE command

In some cases, you might want to pass ACS a storage class that is different from
that of the source data set. You can specify the RESTORE command with the
STORCLAS keyword to pass ACS a storage class name as follows:

RESTORE -
INDDNAME (TAPE) -
DATASET (INCLUDE (USER12.**)) -
STORCLAS (SCNAME1)

However, using STORCLAS does not guarantee that the data set is assigned the
storage class you specify. It means only that the storage class you specified is
passed to the ACS routines. Depending on how your installation’s ACS routines
are written, the storage class you specify can be ignored, assigned to the data set,
or used in combination with other input variables to determine a new storage class
for the data set.

RACEF checks if the RESOWNER field of a given data set is authorized to define
the data set with the given STORCLAS. Ensure that the RESOWNER field of the

data set has the proper authority to use the indicated storage class.

To make certain that the storage class you specify is assigned to the data set, you
can use the BYPASSACS keyword as follows:

Chapter 6. Managing availability with DFSMSdss 87

RESTORE -
INDDNAME (TAPE) -
DATASET (INCLUDE (USER12.**)) -
STORCLAS (SCNAME1) -
BYPASSACS (**)

In this case, ACS is not invoked, and therefore the data set is assigned whichever
storage class that you have specified with STORCLAS. If you do not use
STORCLAS, the data set is assigned the storage class of the source data set.

To limit the use of BYPASSACS, an installation can set up a RACF class profile.

You can use the NULLSTORCLAS keyword in conjunction with the BYPASSACS
keyword to make a data set non-SMS-managed. For example, the following
specification of the RESTORE command causes the specified data sets not to be
SMS-managed:

RESTORE -
INDDNAME (TAPE) -
DATASET (INCLUDE (USER12.**)) -
NULLSTORCLAS -
BYPASSACS (**)

Changing management class with restore processing

In addition to influencing a data set’s storage class when you restore it, you can
also give ACS input for assigning or overriding the data set’s management class.
By specifying MGMTCLAS, you can pass a management class name to ACS and,
as with STORCLAS, ACS can ignore it, assign it to the data set, or use it in
combination with other input variables to determine the data set’s management
class. By specifying NULLMGMTCLAS, you can pass a null management class to
ACS, which may or may not assign a management class.

An example of the RESTORE command with the MGMTCLAS keyword is:

RESTORE -
INDDNAME (TAPE) -
DATASET (INCLUDE (USER12.%*)) -
MGMTCLAS (MCNAME1)

As with STORCLAS, RACF checks if the RESOWNER field of a given data set is
authorized to define the data set with the given MGMTCLAS. Ensure that the
RESOWNER field of the data set has the correct authority to use the indicated
management class.

Just as you can with STORCLAS, you can use MGMTCLAS with BYPASSACS to
ensure that the data set is assigned the management class you specify. For instance:

RESTORE -
INDDNAME (TAPE) -
DATASET (INCLUDE (USER12.**)) -
MGMTCLAS (MCNAME1) -
BYPASSACS (*x)

88 z/0S V2R1.0 DFSMSdss Storage Administration

You should ensure that the management class you specify with MGMTCLAS is
valid, or you will get an error. Remember that BYPASSACS skips both the
STORCLAS and MGMTCLAS ACS routines.

To limit the use of BYPASSACS, an installation can set up a RACF class profile.

When you influence or assign the management class of a data set, you also need to
be careful that the data set resides in a storage group capable of providing for the
management class attributes associated with the management class you specify. For
instance, if a data set has a management class that makes it eligible for migration,
it needs to reside in a storage group on which DFSMShsm does migration.
Otherwise, the data set will never migrate. For this reason, you might have to
change the storage class along with the management class to ensure that the data
set resides on volumes that can accommodate its management class.

However, if you are having to continually override your installation’s ACS
routines, you should refer to your storage administrator about changes to the ACS
routines that would make it possible to let SMS do its job.

Restoring SMS-managed data sets physically

In general, it is recommended that you use logical data set restore processing in an
SMS-managed environment. If you use physical data set restore processing, you
should be aware of the special rules for volume and SMS construct selection.

When restoring a non-SMS-managed user catalog on an SMS-managed volume or
an SMS-managed user catalog on a non-SMS-managed volume, physical restore
does not convert the catalog. Instead, DFSMSdss physical restore ensures that the
user catalog looks exactly like the source catalog (SMS or non-SMS-managed) and
then places the output volume in INITIAL status.

DFSMSdss physical data set restore processing is sensitive to the number of logical
volumes in a dump data set. A DFSMSdss physical dump tape can contain
multiple logical volumes. Because a physical dump operates at the track-image
level, every volume from which data was dumped is on the tape in the form of a
logical volume.

The following example shows how a dump tape can contain more than one logical
volume:

DUMP -
DATASET (INCLUDE (%+)) -
INDYNAM((338001), (338002)) -
OUTDD(TAPE) -

COMPRESS

If data sets are dumped from both volumes, two logical volumes are on the dump
tape.

During physical data set restore processing, the SMS class selection is similar to
logical data set restore processing. The source data set’s SMS classes (if any) are
used as input to the ACS routines. You can influence the classes selected for the
target data set by using the STORCLAS, MGMTCLAS, NULLSTORCLAS,
NULLMGMTCLAS, and BYPASSACS keywords.

Chapter 6. Managing availability with DFSMSdss 89

The major difference in physical data set restore (as opposed to logical data set
restore processing) is that all the data will be restored to the first volume you
specify in the OUTDDNAME or OUTDYNAM keyword.

Note: If the specified target volume is SMS-managed, no non-SMS-managed data
sets are restored; conversely, if the specified target volume is not SMS-managed, no
SMS-managed data sets are restored.

Restoring GDG data sets

For generation data group (GDG) data sets, filtering on generations is supported.
Generation names in relative generation number, dsn(n), can be specified in the
INCLUDE and EXCLUDE parameters. The GDG base must be defined (cataloged)
before restoring GDG data sets. Otherwise, messages indicating that catalog errors
have occurred may be issued during the restore.

Restoring SMS-managed GDG data sets
SMS-managed GDG data sets can be in any one of the following states:

* ACTIVE
* DEFERRED
* ROLLED-OFF

When restoring a GDG data set to SMS-managed storage, DFSMSdss does one of
the following:

* Preallocated restore retains the status of the preallocated generation data set
(GDS).

* Restore function places the GDS in DEFERRED status, if the TGTGDS keyword
is not specified. DFSMSdss leaves the GDS in DEFERRED status to enable you
to (1) roll it back as an ACTIVE generation or (2) leave it as DEFERRED.

* If the TGTGDS keyword is specified, the appropriate status is assigned to the
data set as long as the requested target status does not violate rules of the
generation data group. The default status of logical and physical data set restore
operation is DEFERRED.

Restoring non-SMS-managed data sets

To restore a data set to a non-SMS-managed target volume, you can use the
NULLSTORCLAS and BYPASSACS keywords on the RESTORE command. If you
use these keywords, the data set is placed on a non-SMS-managed volume,
regardless of whether the source data set was SMS-managed.

Extended-format data sets cannot be restored to non-SMS-managed target volumes
during a physical or logical data set restore.

Data sets with DEM attributes (created by Distributed FileManager) can be restored
to non-SMS-managed target volumes but the DFM attributes will be lost and a
warning message will be issued.

For information about DFM, see [z/0S DFSMS DFM Guide and Referencd,

Logical restore of data sets with phantom catalog entries

During a disaster recovery, the logical restore of data sets may be unsuccessful
because of phantom catalog entries; that is, the target data set names are cataloged
but the target data sets do not exist. This condition can occur if you have:

90 z/0S V2R1.0 DFSMSdss Storage Administration

¢ Scratched the target volumes and have not deleted the catalog entries for the
corresponding data sets

* Restored the catalogs before restoring the data sets

* Restored the target data sets to different volumes from the offline source
volumes, and the target data sets have not been renamed

DFSMSdss provides two parameters to support disaster recovery operations:
DELETECATALOGENTRY and IMPORT.

Using the DELETECATALOGENTRY keyword

You can use the DELETECATALOGENTRY keyword to cause DFSMSdss to
perform a DELETE NOSCRATCH operation for any phantom catalog entry for a
target data set being restored.

Attention: DELETECATALOGENTRY should be used with extreme care. Do not

use it if:

* Any volumes on the restoring system are varied offline. If you do, DFSMSdss
does a DELETE NOSCRATCH for any data set being restored that exists on the
varied offline volume. Then, when the volume is varied online, you will have
two data sets: a cataloged, restored data set and an uncataloged original data set
on the volume that was varied offline.

Also note that if the volumes are varied offline, catalog messages will be issued
for each cataloged data set informing you that the volume is offline and
requesting that you reply with ‘CANCEL’ or a device name.

* The restoring system is sharing catalogs with another system but not sharing the
data set volumes. If you do, DFSMSdss does a DELETE NOSCRATCH for any
data set that is cataloged in the shared catalog on the other system but that is on
a volume not available to the restoring system. After the restore, you may have
two data sets: a cataloged, restored data set and an uncataloged original data set
on a volume in the other system.

IMPORT keyword

IMPORT specifies that you are restoring data sets that were dumped from a system
other than the one into which the restore is being done. Because the data sets to be
restored are new to the system, the usual source data set authorization checks are
not done. If you are authorized to read the input dump data set containing the
data sets being restored, you have the authority to read any data set being
restored. DFSMSdss continues to ensure that you are authorized to create a new
target data set or replace an existing one.

Logical restore of preformatted empty VSAM data sets

During a Logical Restore of preformatted empty VSAM data sets, DFSMSdss opens
the target data set to preformat it. Open processing requires the data set to be
cataloged in the standard catalog search order. Thus, to restore a preformatted
empty VSAM data set, the target data set must be cataloged in the standard
catalog search order.

Chapter 6. Managing availability with DFSMSdss 91

Restoring volumes

92

You can recover a volume or ranges of tracks from a full-volume dump operation.
If the dump volumes resulted from a full dump operation, you can do a full or a
tracks restore (that is, ranges of tracks) or a data set restore operation. If the dump
volumes resulted from a tracks dump operation (that is, ranges of tracks), you
must do a tracks RESTORE command, which can consist of a subset of the dump
data.

An example of a full-volume restore operation is:

RESTORE -
INDDNAME (TAPE) -
OUTDDNAME (DASD1) -
PURGE

With the restore operation, you can copy the volume serial number to the output
DASD with the COPYVOLID keyword. For example:

RESTORE -
INDDNAME (TAPE) -
OUTDDNAME (DASD1) -
COPYVOLID -
PURGE

Note:

1. COPYVOLID is required if you are restoring an SMS-managed volume, unless
the source and target volume serial numbers match.

2. Data set restore of VSAM extended-addressable data sets from a physical
volume dump is not supported.

For information about using DFSMSdss to restore Linux for System z partitions
and volumes, see [Chapter 12, “Dumping and restoring Linux for System 7|
[partitions and volumes,” on page 185]

You must consider several factors when restoring volumes in an SMS environment.
Before you start to restore a full volume, you must ensure that the status of the
target volume is synchronized with its environment. For example, if the target
volume is a non-SMS-managed volume, the volume must not be defined in a
storage group. Conversely, if the target volume is an SMS-managed volume, the
volume must be defined in a storage group. Finally, if the target volume is
SMS-managed, then SMS must be active for the full-volume restore operation.

If you are using Record Level Sharing (RLS), be careful when restoring volumes
with the FULL or TRACKS keywords. If the target volume has data sets associated
with retained locks or data in the coupling facility, a full-volume or tracks restore
can result in data integrity problems.

When restoring data in a full volume or tracks operation, DFSMSdss resets the
data-set-changed indicator in the VTOC for each restored data set. This action
indicates that the data set has not changed since the previous backup.

z/0OS V2R1.0 DFSMSdss Storage Administration

Specifying output volumes

For a full or tracks restore, you must specify an output volume by using the
OUTDDNAME or OUTDYNAM keywords.

The device type of the source volume used in the dump operation and the device
type of the target volume used in the restore operation must be the same.
However, the following exceptions are possible:

* Data from a smaller-capacity IBM 3380 model can be restored to a
larger-capacity IBM 3380 model.

¢ Data from a smaller-capacity IBM 3390 model can be restored to a
larger-capacity IBM 3390 model.

e Data from a minivolume or a virtual volume can be restored to a real volume of
like device type, and vice versa, device capacity permitting.

* Data can be restored from a from a larger-capacity IBM 3380, 3390, or 9345
model to a smaller-capacity IBM 3380, 3390, or 9345 model, if you are restoring
specific track ranges using the TRACKS keyword and if the range of data to be
processed falls within the capacity of the output device.

* Data from a smaller-capacity IBM 9345 can be restored to a larger-capacity IBM
9345.

Note: If you perform a full-volume restore to DASD that is shared between
multiple systems, you must ensure that the DASD is offline to all systems except
the system that is performing the restore.

When performing a full-volume restore operation to DASD, DFSMSdss
automatically corrects the free-space information on the volume and might invoke
ICKDSF to rebuild the VTOC index. DFSMSdss takes this action when it copies
data to a larger-capacity DASD from a tape dumped from a smaller-capacity DASD
or when both of the volumes, including volumes of equal capacity, contain a VTOC
index. DFSMSdss allocates a large (more than 65 535 tracks) dummy data set to
recalculate the free-space information. You can ignore any IEC6141 messages that
DFSMSdss generates during this process.

During a full-volume restore operation, other jobs may be enqueued on the output
volume. If so, DFSMSdss cannot enqueue on the output volume to perform the
full-volume restore operation. To determine if the output volume is allocated
before performing the full-volume restore operation, issue the following operator
command:

(D U,DASD,ALLOC, cuu,1)

This command displays the specified volume and the names of the jobs enqueued
on it.

If, for example, the catalog has enqueued on the output volume, you can take the
following steps:

1. Use the following catalog modify command to display a list of all open
catalogs:

@ODIFY CATALOG, LIST)

Chapter 6. Managing availability with DFSMSdss 93

94

2. Use the following catalog modify command to make CAS unallocate the
catalog:

CF CATALOG,UNALLOCATE (catname))

If no other allocated catalogs are on the volume and the volume is not allocated
by any other users, you can proceed with your full-volume restore.

For more information about CAS allocation, see [z/0S DFSMS Managing Catalogs

Processing RACF-protected data sets

On a physical restore operation, DFSMSdss does not delete the profiles of
RACF-protected data sets on the volume before a full restore operation. After a full
restore, RACF profiles are not built for RACF-indicated data sets on the restored
volume. If RACF data set profiles do not exist for these data sets, these data sets
are inaccessible until RACF profiles are built for them.

If you use the COPYVOLID keyword to change the volume serial number or if the
volume serial for the dump volume and the restored volume are different,
DFSMSdss does not build profiles for the RACF-protected data sets on the restored
volume or for the RACF DASDVOL for the RACF-protected DASD volume.

The protection status of data sets that are restored through a full restore is
unpredictable if:

* RACEF profiles (generic or discrete) of the data sets were changed between dump
and restore functions.

¢ The dump was produced on a system (that supports RACF generic profiles)
other than the one used for the restore.

Recovering system volumes

You can use the DFSMSdss stand-alone restore program to perform either a full or
a tracks restore from the first data set of DFSMSdss-produced dump tapes, without
the use of a host system environment. The stand-alone restore program allows you
to recover system volumes so that you can start the host environment.

You can also use the DFSMSdss stand-alone restore program in a VM environment.
The stand-alone restore program operates in ESA /390 mode, ESA /370 mode, or
System/370 XA mode.

You cannot use the stand-alone restore program with an encrypted tape. If you
attempt to do so, DFSMSdss issues message ADRY0513I to indicate that the dump
data set resides on an encrypted tape and thus, cannot be read with the
stand-alone restore program. DFSMSdss also issues message ADRY509D to prompt
the operator to continue or end the function.

For more information about how to perform a restore using DFSMSdss stand-alone
services, see|Chapter 19, “DFSMSdss stand-alone services,” on page 511/

Recovering VM-format volumes

You can use DFSMSdss to recover VM-format volumes that are accessible to your
z/0OS system. The volumes must have OS-compatible VTOCs starting on track
zero, record five. DFSMSdss can only retrieve device information from the
OS-compatible VTOC, and cannot interpret any VM-specific information on the
volume.

z/0OS V2R1.0 DFSMSdss Storage Administration

Use the CPVOLUME keyword and specify the range of tracks to be restored with
the TRACKS keyword. Because DFSMSdss cannot check access authorization for
VM data, CPVOLUME is only allowed with the ADMINISTRATOR keyword.

Exercise caution when using DFSMSdss to recover VM-format volumes, because
DFSMSdss does not serialize any VM data in any way. If you restore OS-format
volumes to VM-format volumes or VM-format volumes to OS-format volumes, you
must restore all of the volume’s tracks. Failure to restore all of the tracks may
render the volume unusable.

Coexistence considerations

For information about restoring dumps created with previous releases, refer to
“Restoring backups using DFSMSdss” on page 649|in |[Appendix A, “Coexistence|
Considerations,” on page 649

Chapter 6. Managing availability with DFSMSdss 95

96 z/0S V2R1.0 DFSMSdss Storage Administration

Chapter 7. Managing data movement with DFSMSdss

Data movement is necessary when you are doing the following tasks:

Replacing devices
When you remove devices to be replaced with other ones, you must move
the data off the devices you are removing.

Adding devices
If you add new devices at your site, you must move data onto them to
take advantage of the added capacity.

Maintaining devices
When you are servicing a volume, you might need to move data off the
volume so users can continue to access the data.

Tuning performance
If a volume is performing poorly, it might be because data sets on the
volume are being frequently accessed and causing an I/O bottleneck. In
this case, you might move the data sets to another volume that is better
able to handle it (either because it is less full or because it is cached).

You can use the DFSMSdss COPY command to move data between volumes.

Preparing for data movement

Before moving your data, determine the amount of space the data requires. You
can determine this by building a data set or volume list with ISMF. A data set list
indicates how much space is allocated for each data set and how much space it
actually uses. A volume list indicates how much free space is on each volume in
the list. You can use this information to calculate how much space the data to be
moved requires and to ensure that enough free space exists on the target volumes.
This calculation is especially important when combining multiple devices onto one
larger-capacity device.

Note: In an SMS-managed environment, this calculation is unnecessary if enough
DASD space is provided because the system finds the necessary free space and
places the data for you.

Ensure that enough free space exists to contain the data, and back up the data
before moving it to guard against its loss during the movement. You can use the
DFSMSdss DUMP command to back up volumes or data sets.

For more information about using the DUMP command to back up data, see
(Chapter 6, “Managing availability with DFSMSdss,” on page 33.|

Evaluating the use of logical and physical copy

As previously stated, you can use the COPY command to perform the actual data
movement. However, you must determine whether to use logical or physical copy
function to move the data. The physical copy function gives you better
performance, but the logical copy function allows you to move data to unlike
devices.

© Copyright IBM Corp. 1984, 2015 97

98

Initiate a copy operation, logical or physical, at a time of low activity. Logical
processing involves copying data sets. Physical processing involves volumes, tracks
and the parts of data sets that reside on a particular volume. Logical processing
generally takes more time than physical processing.

Note: It is best not to specify the TOLERATE(ENQFAILURE) option when you
move data with the COPY command. If you move data while updating it, you may
lose the updates. Also, the TOLERATE(ENQFAILURE) option is not honored for a
source HFS data set or a source zFS data set.

After DFSMSdss has finished processing, you can verify that the data has moved
by looking at the ISMF data set or volume list.

Controlling what DFSMSdss copies

DFSMSdss copies only used space for sequential or partitioned data sets and data
sets with null DSORG fields (X'0000'), unless overridden by ALLDATA or
ALLEXCP. Use the ALLDATA(*) and ALLEXCP keywords to process allocated
space when the following conditions exist:

* You are not sure of the data set organization (DSORG) of a data set on a volume
when doing a full-volume copy operation.

* There are sequential, partitioned, or individual data sets with a null DSORG
field (X'0000") that is not accessed using SAM or PAM.

Note: The COPY command requires temporary work space. Ensure that public or
storage volumes are available. Some temporary data sets are allocated to
nonspecific devices by referring to SYSDA or SYSALLDA generic groups. If
DFSMSdss is to function, these allocations must be allowed by the installation.
Allocation validation exits must not restrict DFSMSdss allocations.

For temporary data sets allocated to nonspecific devices, DFSMSdss provides no
unit type. SYSDA, SYSALLDA, or whatever is specified in the default allocation
table is used. In an SMS-managed environment the default unit specified in the
SMS base configuration table is taken even for non-SMS-managed temporary data
sets.

See [Chapter 11, “ACS routine information,” on page 179|for information on
automatic class selection (ACS) routines during DFSMSdss copy operations.

Moving data sets

Using the COPY command with the DATASET keyword, you can copy one or
more data sets from one DASD volume to another of like or unlike device types. If
you specify the DELETE keyword with the COPY command, the data set on the
source volume is deleted after it has been successfully copied to the target volume.
In this way, you can perform a data set move.

Attention: You should restore a dumped data set that has extended attributes in an
F9 DSCB to a volume that supports F8/F9 DSCBs. Otherwise, these extended
attributes are lost. DFSMSdss propagates the vendor attributes if they exist in the
F9 DSCB of the primary volume when DFSMSdss performs catalog processing or if
they exist in the first volume that DFSMSdss processes when you specify input
volumes. To prevent losing extended attributes, all volumes that contain data sets
with vendor attributes in the F9 DSCB must be extended address volumes.

z/0OS V2R1.0 DFSMSdss Storage Administration

Note: Concurrent copy operation fails and a message is issued if the DELETE
keyword is specified.

Moving volumes
You can move volumes logically or physically with DFSMSdss.

As with moving data sets, if the output volume has unexpired data sets, you can
stop the copy operation or write over the unexpired data sets.

Logical data set copy

If you specify the DATASET keyword with the COPY command and do not specify
input volumes, DFSMSdss performs a logical data set copy using information in
the catalogs to select data sets. For example, the following COPY command results
in a logical data set copy.

COPY -
DATASET(INCLUDE(USER.*%)) -
RENAMEUNCONDITIONAL(USER2)

When you specify input volumes using the LOGINDDNAME or LOGINDYNAM
volume list, a data set is selected based on the following criteria:

* When you either specify SELECTMULTI(ALL) or specify input volumes without
specifying the SELECTMULTI keyword, all of the volumes that contain a part of
a non-VSAM or VSAM cluster must be in the volume list.

For VSAM data sets, the volume list is affected by the use of the SPHERE

keyword as follows:

— Specify SPHERE and you must list all parts of the base cluster in the volume
list.

— Do not specify SPHERE and you must list all parts of the base cluster and the
associated alternate indexes in the volume list.

* When you specify SELECTMULTI(ANY), any part of the non-VSAM data set or
VSAM base cluster can be on a volume in the volume list.

For VSAM data sets, the volume list is affected by the use of the SPHERE

keyword as follows:

— Specify SPHERE and you must list any part of the base cluster in the volume
list.

— Do not specify SPHERE and you must list any part of the base cluster and the
associated alternate indexes in the volume list.

¢ When you specify SELECTMULTI(FIRST), the volume list must include the
volume that contains the first part of either the non-VSAM data set or the
primary data component of the base cluster for a VSAM sphere.

For VSAM data sets, the volume list is affected by the use of the SPHERE
keyword as follows:

— Specify SPHERE and you must list the volume that contains the first extent of
the data component for the base cluster in the volume list.

— Do not specify SPHERE and you must specify the following information in
the volume list:
- The volume that contains the first extent of the data component for the
base cluster.
- The volume that contains the first extent of the data component for the
associated alternate indexes.

Chapter 7. Managing data movement with DFSMSdss 99

Note: When processing input volumes, DFSMSdss filters first based on the VTOC,
and second, based on catalog filters, if specified.

If a data set is found on more than one specified input volume and the volume
sequence numbers match, DESMSdss cannot determine which data set is to be
selected for processing. You do not need to specify a SELECTMULTI option when
you build a list of input volumes with STORGRP. The volume list will contain all
of the volumes in a storage group.

Physical data set copy

If you specify DATASET and the PHYSINDDNAME or PHYSINDYNAM
keywords, DFSMSdss performs a physical data set copy. This method of moving
data sets on a per volume basis only allows data movement between like devices.
Single volume data sets will be copied from the source volume to the target
volume. Single volume non-VSAM SMS managed data sets will be cataloged when
they are either renamed or the DELETE keyword was specified. Multivolume data
sets must be copied a volume at a time, and then recataloged by the user.

A conditioned volume created through the DFSMSdss COPY FULL
DUMPCONDITIONING command can be specified as a source volume. A
non-conditioned volume can also be specified as the source volume. However, the
target volume cannot be a conditioned volume.

The following is an example of the syntax to specify a COPY command that results
in a physical data set copy operation. You can specify only one volume on the
PHYSINDD or PHYSINDYNAM keyword.

COPY DATASET (INCLUDE(**)) -
PHYSINDDNAME (DASD1) OUTDYNAM(VOLS02) -
REPLACE

Specifying input volumes

100

The COPY DATASET command does not require that you specify input volumes. If
you do not specify input volumes, data sets are selected from all the data sets
cataloged in the standard order of search.

When you specify input volumes using the LOGINDDNAME or LOGINDYNAM
volume list, a data set is selected based on the following criteria:

* When you either specify SELECTMULTI(ALL) or specify input volumes without
specifying the SELECTMULTI keyword, all of the volumes that contain a part of
a non-VSAM or VSAM cluster must be in the volume list.
For VSAM data sets, the volume list is affected by the use of the SPHERE
keyword as follows:
— Specify SPHERE and you must list all parts of the base cluster in the volume
list.
— Do not specify SPHERE and you must list all parts of the base cluster and the
associated alternate indexes in the volume list.
* When you specify SELECTMULTI(ANY), any part of the non-VSAM data set or
VSAM base cluster can be on a volume in the volume list.
For VSAM data sets, the volume list is affected by the use of the SPHERE
keyword as follows:

z/0OS V2R1.0 DFSMSdss Storage Administration

— Specify SPHERE and you must list any part of the base cluster in the volume
list.

— Do not specify SPHERE and you must list any part of the base cluster and the
associated alternate indexes in the volume list.

* When you specify SELECTMULTI(FIRST), the volume list must include the
volume that contains the first part of either the non-VSAM data set or the
primary data component of the base cluster for a VSAM sphere.

For VSAM data sets, the volume list is affected by the use of the SPHERE
keyword as follows:

— Specify SPHERE and you must list the volume that contains the first extent of
the data component for the base cluster in the volume list.

— Do not specify SPHERE and you must specify the following information in
the volume list:
- The volume that contains the first extent of the data component for the
base cluster.
- The volume that contains the first extent of the data component for the
associated alternate indexes.

Note: DFSMSdss, when processing input volumes, filters first based on the VIOC,
and second, based on catalog filters, if specified.

If a data set is found on more than one specified input volume and the volume
sequence numbers match, DFSMSdss cannot determine which data set is to be
selected for processing. You do not need to specify a SELECTMULTI option when
you build a list of input volumes with STORGRP. The volume list will contain all
of the volumes in a storage group.

Selecting output volumes

Specifying output volumes is required for the COPY DATASET command in a
non-SMS-managed environment. (For a discussion of SMS considerations for
moving data, see["Moving SMS-managed data sets” on page 123)

You can specify multiple target volumes with the OUTDDNAME or OUTDYNAM
keywords. This allows you to specify spill volumes. These spill volumes are used if
the data sets you are moving require more space than is available on your first
choice of volume.

If the output volume has unexpired data sets, you can either not process the data
sets or write over them.

DFESMSdss now distinguishes between non-SMS and SMS volumes specified in the
OUTDDNAME or OUTDYNAM keywords. For non-SMS allocations, only the
volumes that are non-SMS are considered for allocation. Similarly, only SMS
volumes are considered for SMS allocations.

The distinction between SMS and non-SMS is also used when determining the
volume count for a multivolume allocation. Where volume count is determined
from the number of specified volumes, only those volumes eligible for the type of
allocation (SMS volume for SMS allocation or non-SMS volume for non-SMS
allocation), processing proceeds with a null volume list.

There are several reasons for distinguishing between SMS and non-SMS volumes:
* Non-SMS volumes cannot be used for SMS allocations

* Specifying non-SMS volumes interferes with SMS guaranteed-space allocation

Chapter 7. Managing data movement with DFSMSdss 101

* Reducing volume count problems
* Improving the ability of DFSMSdss to process both non-SMS and SMS
allocations in a single operation

For non-SMS output volume selection, DFSMSdss selects volumes based on size of
the allocation necessary. The first volume that has enough space will be used for
the allocation. When moving data sets with the extended attributes variable
DS1EATTR set in the VTOC, the system selects non-SMS output volumes as
follows:

1. EATTR=NO: All volumes will be considered for allocation.

2. EATTR = OPT: For both VSAM and non-VSAM data sets, DESMSdss prefers
EAVs when the data set organization and type is supported in the EAS and the
data set’s size is greater than the BPV. EATTR = OPT is the default. If EATTR is
not specified, it is the same as EATTR = OPT.

Preferring EAVs means that all volumes that are EAVs will be evaluated before any
non-EAVs are even considered. If the EAVs in the list of output volumes cannot
satisfy the allocation request, all of the output volumes will then be evaluated to
accommodate the allocation request.

Note: The BPV is derived, in the following order, from the Storage Group
attribute, the IGDSMSxx parmlib member, and the system default of 10 cylinders.
The BPV can be changed dynamically in the storage group definition or changed
with the SETSMS BPV operator command to override the IGDSMSxx parmlib
member. However, for non-SMS volume selection, there will be no Storage Group
attribute to evaluate.

Renaming data sets

102

You can rename data sets with the RENAMEUNCONDITIONAL (RENAMEU)
keyword for the COPY command. For VSAM data sets, you can only rename
clusters. DFSMSdss derives the new names for the components of VSAM clusters
as follows:

e If the data set is a linear data set and the new cluster name matches the
following convention:

HLQ1.DSNDBC.HLQ3.HLQ4.%nnnn.%nnn

and the old component matches the following convention:
HLQ1.DSNDBD.HLQ3.HLQ4.%nnnn.%nnn

where % is any single letter, nnnn is a 4-digit number, and nnn is a 3-digit
number, then DFSMSdss generates the target component as follows:

— If a qualifier from the source cluster name is identical to the corresponding
qualifier of the source component name, the corresponding qualifier from the
target cluster name is used in the target component name. Otherwise,
DFESMSdss uses the qualifier from the source component name in the target
component name.

— DFSMSdss sets the sixth qualifier of the new component name to AD for a
data component, or to AI for an index component whenever any of the
following conditions are true:

- The new target component name exceeds 44 characters.
- The new cluster name and new component name are identical.
- The old component name and new component name are identical.

z/0OS V2R1.0 DFSMSdss Storage Administration

— If the standard order of search directs the new target component name to a
different catalog with the new cluster name, the following occurs:

- DFSMSdss regenerates the target component name using the first five
qualifiers of the new cluster name.

- DFSMSdss appends a sixth qualifier of either AD for the data component or
Al for the index component.

If the following conditions are true:

— The data set is a linear data set

— DFSMSdss was invoked using the application interface

— The UIM set the EI22DB2 bit ON

— The new cluster matches the following convention:
HLQ1.DSNDBC.HLQ3.HLQ4.%nnnn.%nnn

where % is any single character, nnnn is a 4-digit number, and nnn is a
3-digit number.

then DFSMSdss generates the target component name by using all of the
qualifiers of the new cluster name as the corresponding qualifiers of the target
component name, with the exception of the second qualifier. The second
qualifier of the target component will be “DSNDBD.”

If the old component's name is equal to the old cluster name (plus any suffix),
then the new component name will equal the new cluster name, plus the same
suffix of the old component.

Example: When RENAMEU (NEW) is specified, the following configuration occurs:

Index Component
Instance Cluster Name Data Component Name | Name
Old IBM.DFSMS.DSS IBM.DFSMS.DSS.DAT1 IBM.DFSMS.DSS. INDX1
New NEW.DFSMS.DSS NEW.DFSMS.DSS.DAT1 NEW.DFSMS.DSS. INDX1

If the old and new cluster names have “cluster” as their last qualifier, and the
old component names match the cluster name up to the last qualifier, then the
new component names will adhere to the old component naming convention.

Example: When RENAMEU(SYS2) is specified, the following configuration occurs:

Instance Cluster Name Data Component Name
Oold SYS1.I0DFOO.CLUSTER SYS1.10DFOO
New SYS2.I10DFOO.CLUSTER SYS2.10DF0O

If the last qualifier of the new cluster name is “cluster,” and the old component
names do not match the cluster name up to the last qualifier, then new
component names will be generated using the new cluster name and replacing
the last “cluster” qualifier with “data” or “index.”

Example: When RENAMEU (SYS2) is specified, the following configuration occurs:

Instance Cluster Name Data Component Name
old SYS1.I0DFOO.CLUSTER SYS1.DFSMS
New SYS2.I0DFOO.CLUSTER SYS2.I0DFOO.DATA

Chapter 7. Managing data movement with DFSMSdss 103

* If the new cluster name is less than or equal to 42 characters and the last
qualifier is not “cluster”, DFSMSdss creates component names by adding a
single character to the new cluster name: “D” for the data component, “I” for
the index component.

Example: When RENAMEU (SYS2) is specified, the following configuration occurs:

Instance Cluster Name Data Component Name
old SYS1.I0DFOO.DATASET SYS1.DFSMS
New SYS2.I0DFOO.DATASET SYS2.I0DFOO.DATASET.D

* If renaming the data set results in a component name that exceeds 44 characters
in length, DSS replaces any DATA or INDEX specific qualifier with "D" or "I"
respectively.

Example: When RENAMEU (NEWNAM) is specified, the following configuration occurs:

Instance Cluster Name Data Component Name
Old IBM.DFSMS.DSS. LARGE.VSAM.DSNAME. TEST IBM.DFSMS.DSS.LARGE.VSAM.DSNAME.TEST.DATA
New NEWNAM.DFSMS.DSS.LARGE.VSAM.DSNAME.TEST | NEWNAM.DFSMS.DSS.LARGE.VSAM.DSNAME.TEST.DATA

* If the new cluster name is more than 42 characters and the last qualifier is not
“cluster,” DFSMSdss derives the component names by doing the following:
— Using up to the first four qualifiers of the new cluster name
- Appending eight-character qualifiers, generated by using the time clock and
system date, until the component names are five qualifiers

Using up to the first four qualifiers of the new cluster name ensures that the
component names will orient to the same catalog as the cluster.

Note: These examples represent common renaming scenarios. A combination of
renaming rules might apply, depending on the source and target names of any
given cluster or component.

Expiration date handling

When you copy a data set, the expiration date of the target data set is dependent
upon whether:

e The data set is VSAM or non-VSAM.

* The source data set is SMS or non-SMS-managed.

* The target data set is SMS or non-SMS-managed.

* The source data set is cataloged or not cataloged.

* The SMS target’s expiration date matches the target’s management class.

SMS to SMS

The catalog expiration date and the expiration date in the Volume Table of
Contents (VTOC) will have the same value as that of the source data set. For an
indexed VSAM data set, the expiration date in the VIOC for the index component
will be zero. If the expiration date is different than the target’s management class,
SMS will modify the expiration date to match the target’s management class.

SMS to non-SMS

The expiration date handling is dependent upon whether the data set is VSAM or
non-VSAM:

104 z/0S V2R1.0 DFSMSdss Storage Administration

* VSAM data set: The catalog expiration date will be the same as that of the
source data set. In the VTOC, the expiration date is set to 99365. For an indexed
VSAM data set, the expiration date in the VTOC for the index component will
also be 99365.

* Non-VSAM data set: The catalog expiration date and the expiration date in the
VTOC will have the same value as that of the source data set.

Non-SMS to SMS

The expiration date handling is dependent upon whether the data set is VSAM or
non-VSAM:

* VSAM data set: The catalog expiration date and the expiration date in the VTOC
will have the same value as the catalog expiration date of the source data set.
For an indexed VSAM data set, the expiration date in the VTOC for the index
component will be zero. If the expiration date violates the target’s management
class, SMS will change the date to conform with the management class.

* Non-VSAM data set: If there is a catalog expiration date for the source data set,
then the catalog expiration date is used for both the VTOC and the catalog
expiration date of the target data set. If the source data set does not have a
catalog expiration date or is uncataloged, then the VTOC expiration date for the
source data set is used for both the catalog and the VTOC of the target data set.
If the expiration date violates the target’s management class, SMS will modify
the date to conform with the management class.

Non-SMS to non-SMS

The expiration date handling is dependent upon whether the data set is VSAM or
non-VSAM and whether the source data set is cataloged or not cataloged:

* VSAM data set: The catalog expiration date is the same as that of the source
data set. In the VTOC, the expiration date is set to 99365. For an indexed VSAM
data set, the expiration date in the VIOC for the index component will also be
99365.

* Non-VSAM data set: The catalog expiration date of the source data set is used
for the catalog expiration date of the target data set. The expiration date in the
VTOC of the source data set is used for the VTOC expiration date of the target
data set.

Defining RACF profiles

For information about defining RACF profiles, see [Chapter 20, “Data security and|
lauthorization checking,” on page 531

Moving data sets with utilities

In some cases, DFSMSdss invokes a utility to move a data set. [Table 10 on page 106|
shows when DFSMSdss invokes a utility for a data set copy operation.

When you move a data set and a utility is used, the data set must be cataloged in
the standard order of search.

DFSMSdss cannot use fast replication methods to move data if a utility must be
used. When FASTREPLICATION(REQUIRED) is specified in such a case,
DFSMSdss will not use traditional I/O movement methods and therefore will not
call the utility.

Chapter 7. Managing data movement with DFSMSdss 105

106

When DFSMSdss invokes IEBCOPY to copy a LOADMOD, message IEC507D is
issued requesting operator authorization to overwrite an unexpired area when the
source data set has an incorrect RLD count and an unexpired date.

When DFESMSdss invokes IEHMOVE to copy data sets, IEHMOVE has DD
statement requirements that DFSMSdss cannot always satisfy. To avoid potential
abnormal ends, do one or both of the following:

* Specify the source and target volumes as PRIVATE.

* Ensure that the source and target volumes are not in the list of default volumes

for dynamic allocation.

When DFSMSdss invokes IDCAMS to copy a KSDS, the data set is automatically
reorganized to optimize it for VSAM processing. A large KSDS may require
extensive reorganization that could result in greater processing time for the copy
operation. If IDCAMS was selected because multiple output volumes were
specified, performance may be improved by specifying a single output volume for

the data set.

Table 10. Data Mover Selection Matrix for Data Set Copy

Data Set Type

Like Devices

Unlike Devices

Sequential DFSMSdss DFSMSdss
Partitioned (not PDSE) DFSMSdss (1, 2) DFSMSdss (1, 2)
Partitioned (not PDSE) load modules DFSMSdss (3) IEBCOPY

Partitioned data set extended (PDSE)

DFSMSdss (4)

DFSMSdss (4)

Direct nonrelative block address mode

DFSMSdss

DFSMSdss (5)

Direct relative block address mode (6)

DFSMSdss

DFSMSdss

ESDS

DFSMSdss (7)

DFSMSdss (7, 8)

RRDS

DFSMSdss (7)

IDCAMS (REPRO)

LDS

DFSMSdss (7)

IDCAMS (REPRO)

KSDS or VRRDS

DFSMSdss (9)

IDCAMS (REPRO)

Key range data set

DFSMSdss (10)

IDCAMS (REPRO)

Extended-format VSAM

DFSMSdss (7)

IDCAMS (REPRO)

Integrated catalog facility user catalogs IDCAMS IDCAMS
(EXPORT /IMPORT) (EXPORT /IMPORT)
Undefined DSORG DFSMSdss DFSMSdss

z/0OS V2R1.0 DFSMSdss Storage Administration

Table 10. Data Mover Selection Matrix for Data Set Copy (continued)

Data Set Type Like Devices Unlike Devices

Note:

1. All partitioned data sets that are not load modules are compressed during a copy to a
like or unlike device.

2. DFSMSdss calls the IGWFAMS utility when you are converting a PDS to a PDSE.

3. If copying partitioned load modules with REBLOCK, DFSMSdss calls IEBCOPY to
copy the data set to a like device.

4. DFSMSdss calls the IGWFAMS utility when you are converting a PDSE to a PDS.
DFSMSdss also calls IGWFAMS when all of the following conditions are met:

* Fast replication methods cannot be used and FASTREPLICATION(REQUIRED) is
not specified.

* Concurrent copy cannot be used.

5. The source data set is not copied if the target data set is preallocated or if the target
device has a smaller track capacity than the source.

6. Specify the DFSMSdss RELBLOCKADDRESS parameter.

7. DFSMSdss calls IDCAMS if the target CISIZE, CASIZE, physical record size, or
physical block size of the target is different from that of the source.

8. DFSMSdss calls IDCAMS if the calculated number of blocks per control area is
different from the calculated number of usable blocks per control area.

9. DFSMSdss calls IDCAMS if any of the following is true:

* The CISIZE, CASIZE, physical record size, physical block size, imbed, or span
attributes of the target are different from that of the source.

* The target data set is SMS and has an imbedded index or has key ranges, and the
target volume count is greater than one. For help in determining the volume count,
[“VOLCOUNT” on page 359

* The target data set is non-SMS, the source component or components span multiple
volumes, and there is not enough space on one target volume to contain the entire
data set.

10. DFSMSdss calls IDCAMS if the source and target CASIZE, physical record size, or
physical block size are different; if the components span multiple volumes; for a KSDS
with IMBED and either the source HURBA=HARBA or it has extended indexes.

Moving data sets with concurrent copy

| Programming Interface Information |

The DFSMSdss concurrent copy function lets you move data but minimizes the
time that the data is unavailable. The user determines an appropriate time to move
the data (for example, when the data is in a known state and update activity is
stopped). DFSMSdss is invoked directly or via the DFSMSdss application program
interface (API) to do a concurrent copy of the data. After initialization is complete,
DFSMSdss releases any serialization it held on the data sets and prints a message
both to SYSPRINT and the console that the CC operation is logically complete. If
DFSMSdss was invoked via the API, DFSMSdss informs the caller through the
UIM exit option, Eioption 24 (for more information, see [“CONCURRENT” on page]
. The application can resume normal operation at this time.

| End Programming Interface Information |

Chapter 7. Managing data movement with DFSMSdss 107

108

If for any reason data cannot be processed with concurrent copy (for example, the
hardware being used does not support concurrent copy), DESMSdss optionally
uses another method of data movement and does not release the serialization until
the copy is completed.

If the source device supportsdata set FlashCopy or SnapShot, DFSMSdss can use
FlashCopy or SnapShot function to provide a concurrent copy-like function called
virtual concurrent copy.

Specifying concurrent copy for COPY requests

On the DFSMSdss COPY command, you can specify that DFSMSdss is to use the
concurrent copy function to process data. To do so, you specify the
CONCURRENT keyword, and, optionally, one of several available sub-keywords to
indicate the type of concurrent copy to be used and whether DFSMSdss can use
other methods of data movement. If you do not specify the CONCURRENT
keyword, your COPY request does not use concurrent copy.

The CONCURRENT keyword applies to all of the data being copied. You cannot
apply this function to a subset of the data being processed.

If you specify the CONCURRENT keyword, DFSMSdss might use a function
equivalent to cache-based concurrent copy, called virtual concurrent copy. During
virtual concurrent copy, data is "flashed" or "snapped" from the source location to
an intermediate location, and then copied to the target location through standard
I/0. The operation is logically complete after the source data is "flashed" or
"snapped” to the intermediate location and physically complete after the data is
moved to the target media.

If the source volume supports data set FlashCopy, DFSMSdss uses FlashCopy to
provide virtual concurrent copy. If the source volume is a RAMAC Virtual Array
(RVA), DFESMSdss uses SnapShot. For more information about virtual concurrent
copy, see [“Using concurrent copy” on page 7.

Attention: Use concurrent copy only during periods of light update activity for
the data sets or volumes involved. Performing cache-based concurrent copy
operations against many large data sets when there is also heavy update activity
(such as reorganizing data sets or initializing the volume the data sets reside on)
might result in a shortage of storage, because data is transferred to z/OS data
space storage faster than DFSMSdss can process it. When you use multiple
simultaneous concurrent copy tasks to process large, heavily updated data sets,
you might also experience long run times and contention for
SYS.DATA.SPACE.LATCH.SET. You must ensure that during the concurrent copy
operation another system does not reserve volumes that are to be processed. You
must also ensure that jobs and address spaces that are to use the concurrent copy
are assigned a WLM service class with a high execution velocity. Do not assign a
discretionary goal to concurrent copy work. You should spread multiple concurrent
copy jobs across as many LPARs as possible and avoid the use of PARALLEL
mode in DFSMSdss.

Note:
1. To help ensure data integrity, do not update the data during concurrent copy
initialization.

2. If a concurrent copy operation fails after signaling that concurrent copy
initialization is complete (and update activity on the data has resumed), you

z/0OS V2R1.0 DFSMSdss Storage Administration

cannot recover the data to the point-in-time at which the concurrent copy
operation was started. The data might have been updated while the copy
operation was progressing.

Performing cache-based concurrent copy operations against many large data
sets when there is also heavy update activity (such as reorganizing data sets or
initializing the volume the data sets reside on) might result in a shortage of
storage. The shortage occurs because data is transferred to z/OS data space
storage faster than DFSMSdss can process it.

If DFSMSdss invokes a utility such as IDCAMS REPRO or IEBCOPY for a data
set copy operation, DFSMSdss does not perform concurrent copy.

VM mini-volumes are supported if you are using RVA devices to the extent that
they are supported by IBM Extended Facilities Product (IXFP) device reporting.
The use of concurrent copy and virtual concurrent copy with the DFSMSdss
COPY command is controlled by the RACF FACILITY class profile,
STGADMIN.ADR.COPY.CNCURRNT.

For information about specifying CONCURRENT and the other COPY command
keywords, refer to [“COPY Command for DFSMSdss” on page 299

Moving data sets with FlashCopy

DFSMSdss can use FlashCopy to quickly move data from a source location to a
target location when the following requirements exist:

The source and target device types must be the same.

The source devices and the target devices must be in the same ESS.

The ESS must support data set FlashCopy (data set FlashCopy).

The FASTREPLICATION(NONE) keyword is not specified.

The data must not need manipulation. The following types of processing require

data manipulation:

— Reblocking — Reblocking occurs when you specify the REBLOCK keyword
or when the VTOC indicates that the data set can be reblocked.

— PDS compression — DFSMSdss compresses a PDS data set during copy
processing, by default. You can specify the NOPACKING keyword to prevent
DFESMSdss from compressing the PDS, thereby allowing the use of FlashCopy.

— Changing stripe counts — The source stripe count must be the same as the
target stripe count for a striped extended format data set.

— An individual stripe extending to more than one volume — A single-striped
sequential-extended format data set cannot use FlashCopy if either the source
data set or the target data set is multivolume.

— PDS or PDSE conversion — Conversion occurs when you specify the
CONVERT keyword with these data sets.

— Block-by-block processing of direct access data sets — Block-by-block
processing occurs when you specify the RELBLOCKADDRESS or the
AUTORELOCKADDRESS keyword.

— Utilities — FlashCopy cannot be used if your data must be moved with the
use of a utility.

DFSMSdss attempts to allocate the target data set on the same device type in the
same ESS if the source data is in an ESS. This increases the probability that
FlashCopy can be used to copy the data. However, FlashCopy cannot be used if
the source data set is multivolume and is not contained entirely in one ESS
subsystem. The reason that FlashCopy cannot be used is because all source and

Chapter 7. Managing data movement with DFSMSdss 109

110

target devices must be in one ESS subsystem in order to establish a FlashCopy
relationship. These data sets will not be processed with FlashCopy and will be
allocated to whatever volumes are available, irrespective of their FlashCopy
capability.

DEFSMSdss FlashCopy Batch Protection allows DFSMSdss to direct a fast replication
request to the storage group ACS routine. The ACS routine then assigns a storage
group to allocate the data set during a logical data set COPY to SMS operation.
This enables users, without modifying existing batch jobs, to have a set of volumes
dedicated for FlashCopy usage, limiting situations in which a volume is selected
that does not allow FlashCopy to be used (such as when a volume is a Global
Mirror volume or a z/OS Global Mirror (XRC) primary).

For FlashCopy Batch Protection, add the following statement to the storage group
ACS routines:

IF &ACSENVR2 = 'FLASHCPY' THEN SET &STORGRP = 'fcstrgrp'

where fcstrgrp is a new or existing storage group containing volume serials that
DFSMSdss is to select for allocation.

For more information, refer to|Chapter 11, “ACS routine information,” on page 179

Designating FlashCopy usage

The FASTREPLICATION(REQUIRED | PREFERRED | NONE) keyword tells
DESMSdss how you want FlashCopy to be used. The default is
FASTREPLICATION(PREFERRED).

FASTREPLICATION(REQUIRED) specifies that DEFSMSdss must use FlashCopy to
move data. If FlashCopy cannot be used, DFSMSdss issues error message ADR938E
which indicates the processing of the current data set or that the entire COPY task
failed. If the processing of the current data set failed, DFSMSdss does not try any
other methods of data movement for the current data set and attempts to use
FlashCopy for the subsequent data sets. If the entire copy task failed, DFSMSdss
terminates the copy operation.

Restriction: You cannot use the FASTREPLICATION(REQUIRED) and
CONCURRENT keywords together.

FASTREPLICATION(PREFERRED) specifies that you want DFSMSdss to use
FlashCopy before any other method to move data (even when you specify the
CONCURRENT keyword). If FlashCopy cannot be used and you have specified
the CONCURRENT keyword, DFSMSdss attempts to use concurrent copy. If you
have not specified the CONCURRENT keyword or if concurrent copy has failed,
DESMSdss uses traditional data movement methods to copy the data.

FASTREPLICATION(NONE) specifies that DFSMSdss not attempt to use
FlashCopy to copy data.

For more information about the FASTREPLICATION keyword, refer to
[“FASTREPLICATION” on page 327/

Preserve Mirror FlashCopy

You can choose to allow the target volume of a FlashCopy operation to be a
Peer-to-Peer Remote Copy (PPRC) primary device. When the tracks associated with
the FlashCopy relationship are copied to the PPRC secondary device, the PPRC

z/0OS V2R1.0 DFSMSdss Storage Administration

(Metro Mirror) pair goes into a duplex pending state, to ensure the integrity of the
mirror between the local site and the remote site. When the FlashCopy operation
completes, the PPRC_SYNC volume pair returns to full duplex state.

IBM Remote Pair FlashCopy (also known as Preserve Mirror) mirrors the
FlashCopy command that is issued at the local site, to the remote site. This allows
FlashCopy operations to occur to PPRC primary volumes without affecting the
PPRC duplex state.

When you specify the FCTOPPRCPrimary keyword on the COPY command, you
are requesting that DFSMSdss allows a PPPRC primary volume to become the
target volume of the FlashCopy operation. You can specify the following
sub-keywords to indicate whether the PPRCP mirror is allowed to go to duplex
pending state if the target volume of the FlashCopy operation is a metro mirror
primary device:

PRESMIRREQ
specifies that if the target volume is a Metro Mirror Primary device, the
pair must not go into a duplex pending state as the result of a FlashCopy
operations.

PRESMIRPREF
specifies that if the target volume is a Metro Mirror primary device, it
would be preferable that the pair does not go into a duplex pending state
as the result of a FlashCopy operation. However, if a Preserve Mirror
operation cannot be accomplished, the FlashCopy operation is still to be
performed.

PRESMIRNONE
specifies that Preserve Mirror operation is not to be done, even if all of the
configuration requirements for a Preserve Mirror operation are met. If the
target specified is a Metro Mirror primary device, the pair is to go into a
duplex pending state while the secondary device is updated with the
tracks to be copied. PRESMIRONONE is the default if you specify
FCTTOPPRCPrimary without a subkeyword.

Note: If the target volume of FlashCopy operation is not a metro mirror primary
volume, then the FCTOPPRCPrimary keyword has no effect on the FlashCopy
operation.

For more information about Peer-to-Peer Remote Copy (PPRC) and metro mirror
operation, refer to [z/OS DFSMS Advanced Copy Services|

For more information about the FCTOPPRCPrimary keyword on the COPY
command, refer to |”COPY Command for DFSMSdss” on page 299.|

Determining why FlashCopy cannot be used

There may be times when you expect DFSMSdss to use FlashCopy to move the
data but FlashCopy was not used. As far as you can tell, your data sets meet the
criteria for FlashCopy use. Use the DEBUG(FRMSG (MINIMAL | SUMMARIZED
| DETAILED)) keyword to help you resolve this situation. Include this keyword to
indicate the applicable fast replication message level (MIN, SUM, or DTL) in your
COPY command. The message level controls the type and amount of information
that DFSMSdss provides.

DEBUG(FRMSG(MIN | SUM | DTL)) dircts DFSMSdss to issue an informational
message that indicates why FlashCopy or Preserve Mirror was not used. When you
specify FASTREPLICATION(REQUIRED), DFSMSdss issues an informational

Chapter 7. Managing data movement with DFSMSdss 111

112

message in addition to the ADR938E message, whether you have specified the
DEBUG(FRMSG(MIN | SUM | DTL)) keyword or not.

Note:

1. The DEBUG(FRMSG) keyword might not have an effect if the target of the
FlashCopy operation is not a PPRC primary device

2. If you specify FASTREPLICATION(REQUIRED) without specifying the DEBUG
keyword, DFSMSdss still issues an informational message whenever a fast
replication method cannot be used.

3. The DEBUG(FRMSG) keyword overrides the DEBUG=FRMSG parameter
specified on the JCL EXEC statement.

For more information about the DEBUG keyword, refer to|z/OS DFSMSdfp Storagd|

Administration]

Freeing subsystem resources

Performing a physical copy of the data uses subsystem resources and can impact
the performance of other I/O operations that are issued to the ESS. Using the
FCNOCOPY keyword on a DFSMSdss COPY command prevents the ESS
subsystem from performing a physical copy of the data. However, when you
designate the FCNOCOPY keyword, you must either withdraw the FlashCopy
relationship when you no longer need the copy or convert the existing FlashCopy
relationship from FCNOCOPY to COPY mode. Withdrawing the FlashCopy
relationship frees the subsystem resources that are used to maintain the FlashCopy
relationship.

You can withdraw the FlashCopy relationship by doing one of the following:

* Performing a logical data set dump of the target data sets (of the data set copy)
and specify the FCWITHDRAW keyword on the DUMP command.

* Entering the TSO FCWITHDR command.

When an existing FlashCopy relationship is converted from no-background copy
(FCNOCOPY) to background copy mode, the relationship ends (unless the
relationship is persistent) when the background copy has completed. When the
relationship ends, it frees the subsystem resources that are used to maintain the
FlashCopy relationship. You can change the existing FlashCopy copy mode by
performing a logical data set copy specifying the FCNOCOPYTOCOPY keyword
along with the source data sets for which you want background copy to be started.
The FCNOCOPYTOCOPY function will initiate background copy of any NOCOPY
FlashCopy relationships in which the specified source data sets are participating.

In general, if you want a temporary copy of the data, specify FCNOCOPY, and
then withdraw the FlashCopy relationship when you no longer need the copy. If
you want a permanent copy, but want to delay background copy until a
convenient time, specify FCNOCOPY to get a point-in-time copy and then perform
FCNOCOPYTOCOPY later to start background copy. If you want a permanent
copy and do not want to delay background copy, do not specify FCNOCOPY.
Allow the ESS subsystem to perform the physical copy and release the subsystem
resources that are used to maintain the FlashCopy relationship.

Note: A Persistent FlashCopy relationship does not end when physical background
copy has completed. The relationship can be removed by performing a Withdraw
FlashCopy operation (e.g., TSO FCWITHDR command). An Incremental FlashCopy
relationship is an example of a Persistent FlashCopy relationship supported by

z/0OS V2R1.0 DFSMSdss Storage Administration

DFSMSdss. If you want to establish a Persistent FlashCopy relationship
independent of Incremental FlashCopy, you can use the ESS Copy Services Web
User Interface.

For an overview of FlashCopy and more information about the FCWITHDR
command, refer tdz/OS DFSMS Advanced Copy Services

For more information, refer to|[“FCNOCOPY” on page 333 J[“FCNOCOPYTOCOPY”]
lon page 333|and ["FCWITHDRAW” on page 406] keywords.

Moving data sets with SnapShot

When the source and target devices are in the same RAMAC Virtual Array (RVA)
and the data does not need to be manipulated (such as, reblocked, track packed to
unlike), DFSMSdss may be able to use SnapShot to quickly move the data from the
source location to the target location. SnapShot is much faster than traditional
methods, especially when large amounts of data are moved.

To use SnapShot, the following requirements must be met:

* The source and target device types must be the same.

* The source and target devices must be in the same RAMAC Virtual Array (RVA).
* The FASTREPLICATION(NONE) keyword must not be specified.

* There must not be any required data manipulation. The following types of
processing require data manipulation:

— Reblocking — Reblocking occurs when the REBLOCK keyword is specified
or when the VTOC indicates that the data set is capable of being reblocked.

— PDS compression — DFSMSdss compresses a PDS data set during copy, by
default. You can specify the NOPACKING keyword to prevent DFSMSdss
from compressing the PDS, thereby allowing the use of SnapShot.

— Changing stripe counts — The source stripe count must be the same as the
target stripe count for a striped sequential-extended format data set.

— An individual stripe extending to more than one volume — A single-striped
extended format data set cannot use SnapShot if either the source data set or
the target data set is multivolume.

— PDS or PDSE conversion — Conversion occurs when you specify the
CONVERT keyword with these data sets.

— Block-by-block processing of direct access data sets — Block-by-block
processing occurs when you specify the RELBLOCKADDRESS OR the
AUTORELOCKADDRESS keyword.

— Utilities — SnapShot cannot be used if your data must be moved with a
utility.

If the source data is in an RVA, DFSMSdss attempts to allocate the target data set
on the same device type in the same RVA, thus increasing the probability that
SnapShot can copy the data. If the source data set is multivolume and not
contained entirely in one partition of one RVA subsystem, it is not possible to
allocate the target so that SnapShot can be used. These data sets are allocated to
whatever volumes are available, irrespective of their SnapShot capability.

Designating SnapShot usage

The FASTREPLICATION(REQUIRED | PREFERRED | NONE) keyword tells
DFSMSdss how you want fast replication such as SnapShot to be used. The default
is FASTREPLICATION(PREFERRED).

Chapter 7. Managing data movement with DFSMSdss 113

FASTREPLICATION(REQUIRED) specifies that DFSMSdss must use fast replication
such as SnapShot to move data. If SnapShot cannot be used, DFSMSdss issues
error message ADR938E which indicates that the processing of the current data set
or the entire COPY task failed. If the processing of the current data set failed,
DFSMSdss does not try any other methods of data movement for the current data
set. However, DFSMSdss attempts to use fast replication such as SnapShot for the
subsequent data sets. If the entire copy task failed, DFSMSdss terminates the copy
operation.

Restriction: You cannot use the FASTREPLICATION(REQUIRED) and
CONCURRENT keywords together.

FASTREPLICATION(PREFERRED) specifies that DFSMSdss attempt to use
SnapShot before any other method to move data (even when you specify the
CONCURRENT keyword). If SnapShot cannot be used and you have specified the
CONCURRENT keyword, DFSMSdss attempts to use virtual concurrent copy. If
you do not specify the CONCURRENT keyword or if virtual concurrent copy fails,
DFSMSdss uses traditional data movement methods to copy the data.

FASTREPLICATION(NONE) specifies that you do not want DFSMSdss to use
SnapShot to copy data. Instead, DFSMSdss attempts to use virtual concurrent copy
if the CONCURRENT keyword is specified. If virtual concurrent copy cannot be
used, DFSMSdss uses traditional data movement methods to move the data.

For more information about the FASTREPLICATION keyword, see
[“FASTREPLICATION” on page 327)

Determining why SnapShot cannot be used

There may be times when you expect DFSMSdss to use SnapShot to move the data
but SnapShot was not used. As far as you can tell, your data sets meet all the
criteria for SnapShot use. Use the DEBUG(FRMSG (MINIMAL | SUMMARIZED |
DETAILED)) keyword to help you resolve this situation. Include this keyword to
indicate the applicable fast replication message level (MIN, SUM, or DTL) in your
COPY command. The message level controls the type and amount of information
that DFSMSdss provides.

DEBUG(FRMSG(MIN | SUM | DTL)) directs DFSMSdss to issue an informational
message that indicates why SnapShot was not used. When you specify
FASTREPLICATION(REQUIRED), the informational message is issued in addition
to the ADRI38E message whether you have specified the DEBUG(FRMSG(MIN |
SUM | DTL)) keyword or not.

For more information about the DEBUG keyword, see ['DEBUG” on page 320/

Moving data sets with special requirements

114

Some data sets require special treatment when they are moved. The following
sections discuss some considerations for moving these special data sets.

Moving undefined DSORG and empty non-VSAM data sets

To copy a data set with an undefined DSORG, ensure that the following conditions
are met:

e The PROCESS(UNDEFINEDSORG) keyword is specified.

* The selected target volume is either of the same device type as the source
volume, or a device type with equal or greater track capacity.

z/0OS V2R1.0 DFSMSdss Storage Administration

To copy an empty non-VSAM data set, ensure that the following conditions are
met:

e An EOF record exists in the first track of the source data set.

e If the target data set is to be SMS-managed, the selected target SMS volume
must either be of the same device type as the source data set, or a device type
with equal or greater track capacity.

Note: It may not be possible to move all undefined DSORG data sets to an unlike
device type, even when the unlike device type has a track capacity greater than or
equal to the source device. For example, if the source device is a 3380, the output
device is a 3390, and the data set’s block size is less than 277 bytes, a track on the
target cannot contain as much data as a track on the source, and message
ADR366W (invalid track format) is issued.

Moving system data sets

Some system data sets do not require movement, either because they are allocated
during system generation or because they are built at IPL time. Other system data
sets, however, can be moved by DFSMSdss for various reasons.

Unless excluded, system data sets are copied. However, they generally remain
open while the system is running and cannot be scratched or uncataloged because
the DELETE and UNCATALOG options apply only to data sets not in use.

Frequently, system data sets are prefixed with a high-level qualifier of SYS1. The
PROCESS(SYS1) keyword can be used for a data set copy operation of a SYS1 data
set to move it to a preallocated target or to copy it with the DELETE option.
PROCESS(SYS1) does not apply to VTOCIX or VVDS.

To limit the use of the PROCESS keyword, you need to set up a RACF FACILITY
class profile. For more information about RACF FACILITY class profiles, see
[Security Server RACF Security Administrator’s Guidd

Note: The PROCESS(SYS1) option does not lift the restrictions on the processing of
volume VVDSs or VTOC indexes.

When the PROCESS(SYS1) keyword is not specified, you cannot move system data
sets the way you normally move data sets with DFSMSdss. In order for DFSMSdss
to move system data sets, you must do one of the following;:

¢ Dump the data sets, and then restore them to a different volume.

* Copy the data sets to a different volume and then catalog them in a different
catalog.

When a data set copy operation is used to copy the following data sets, space is
defined for the target data set but no data is copied:

* Model DSCBs
* Page and swap data sets
* SYS1.STGINDEX.

Moving catalogs

When you copy an integrated catalog facility user catalog, the DELETE keyword
must be specified, but an input volume and the RENAMEUNCONDITIONAL
keyword must not be specified. You must specify the fully qualified name of the
user catalog in the INCLUDE parameter. In any processor in the complex, there

Chapter 7. Managing data movement with DFSMSdss 115

116

should be no other jobs executing that access the user catalog being moved;
otherwise, the copy operation might fail or the copied catalog might contain errors.

You need RACEF access if the catalog is RACF-protected.

User catalog aliases are automatically redefined after the copy. The LOCK attribute
of an integrated catalog facility user catalog is preserved during the copy
operation. For a description of the LOCK attribute and the correct access authority,
see [z/0S DFSMS Managing Catalogs,

Note: DFSMSdss cannot be used to move an active VSAM master catalog,
integrated catalog facility tape volume catalogs (VOLCATALOG), the VVDS, or the
VTOCIX.

Moving non-VSAM data sets that have aliases

DFSMSdss does not support INCLUDE filtering of non-VSAM data sets using an
alias. To include a non-VSAM data set which has an alias for copy processing, you
must use the data set’s real name, as shown in the VTOC. In most cases DFSMSdss
does not detect or preserve aliases of non-VSAM data sets. However, during
logical data set copy with the DELETE keyword specified and the
RENAMEUNCONDITIONAL keyword not specified, if the data set is
SMS-managed and remains SMS-managed during the copy, any aliases associated
with the data set are preserved. In all other cases, you must redefine the aliases
after the data set is moved.

Moving multivolume data sets

If you are specifying input volumes with the LOGINDDNAME or LOGINDYNAM
keywords and you are moving multivolume data sets, use the SELECTMULTI
keyword on the COPY command. SELECTMULTI allows you to move
multivolume data sets in their entirety, even if you do not specify all the volumes
on which the data set resides.

When you specify input volumes using the LOGINDDNAME or LOGINDYNAM
volume list, a data set is selected based on the following criteria:

* When you either specify SELECTMULTI(ALL) or specify input volumes without
specifying the SELECTMULTI keyword, all of the volumes that contain a part of
a non-VSAM or VSAM cluster must be in the volume list.

For VSAM data sets, the volume list is affected by the use of the SPHERE

keyword as follows:

— Specify SPHERE and you must list all parts of the base cluster in the volume
list.

— Do not specify SPHERE and you must list all parts of the base cluster and the
associated alternate indexes in the volume list.

* When you specify SELECTMULTI(ANY), any part of the non-VSAM data set or

VSAM base cluster can be on a volume in the volume list.

For VSAM data sets, the volume list is affected by the use of the SPHERE

keyword as follows:

— Specify SPHERE and you must list any part of the base cluster in the volume
list.

— Do not specify SPHERE and you must list any part of the base cluster and the
associated alternate indexes in the volume list.

z/0OS V2R1.0 DFSMSdss Storage Administration

* When you specify SELECTMULTI(FIRST), the volume list must include the
volume that contains the first part of either the non-VSAM data set or the
primary data component of the base cluster for a VSAM sphere.

For VSAM data sets, the volume list is affected by the use of the SPHERE
keyword as follows:

— Specify SPHERE and you must list the volume that contains the first extent of
the data component for the base cluster in the volume list.

— Do not specify SPHERE and you must specify the following information in
the volume list:

- The volume that contains the first extent of the data component for the
base cluster.

- The volume that contains the first extent of the data component for the
associated alternate indexes.

If a data set is found on more than one specified input volume and the volume
sequence numbers match, DFSMSdss cannot determine which data set to select for
processing.

You do not need to specify a SELECTMULTI option when you build a list of input
volumes with STORGRP. The volume list contains all of the volumes in a storage

group.

A multivolume data set can be copied to a single volume or to multiple volumes.
For a multivolume data set with a standard user label, only the standard user label
on the first volume is copied to the target volumes.

If you do not specify any input volumes, you can move multivolume data sets
without any special keywords.

A DFSMSdss logical data set copy operation attempts to ensure that all parts of a
multivolume non-VSAM data set exist. In cases where a part of the data set is
missing, such as an inadvertent scratching of the VTOC entry on a volume,
DFSMSdss issues an error message and discontinues processing the data set.

DEFSMSdss cannot process the following non-VSAM data sets because they are
missing one or more parts:

* Multivolume data sets whose catalog volume order differs from the VTOC
volume order

* Single-volume data sets with the same name that are cataloged as one
multivolume data set

e Multivolume data sets whose last volume indicator in the VTOC is not set

Note: When you are copying or restoring multivolume data sets, be aware of the
following considerations:

* DFSMSdss does not preserve candidate volumes. However, for SMS-managed
data sets, if you copy and do not specify any output volumes, DEFSMSdss
preserves the source volume count. If you copy and do specify the output
volumes, DFSMSdss sets the volume count to the number of output volumes
specified.

* DFSMSdss does not ensure that the copied or restored data set is on the same
number of volumes as the original data set, nor does DFSMSdss ensure that the
copied or restored data set extents are the same as the original data set. Instead,

Chapter 7. Managing data movement with DFSMSdss 117

118

DFSMSdss tries to allocate the new data set on as few volumes as possible. This
may result in the copied or restored data set becoming a single-volume data set.

e In addition, DFSMSdss tries to allocate each volume so that all data is contained
in a single primary allocation of contiguous space with few, if any, of the
secondary allocations being used.

Converting VSAM and non-VSAM data sets to multivolume

The number of volumes allocated for certain VSAM and non-VSAM data sets can
be changed with VOLCOUNT keyword options. The output data set must be
SMS-managed. Single-volume data sets can be converted to multivolume,
multivolume data sets can be converted to single-volume, or the number of
volumes allocated for multivolume data sets can be changed. Allocation depends
on which VOLCOUNT keyword is selected, and on whether output volumes are
specified.

Note: TTR-BDAM and unmovable data sets cannot be converted to multivolume
with the VOLCOUNT keyword. If an existing multivolume TTR-BDAM or
unmovable data set is encountered, a DADSM error occurs. Partitioned data sets
(PDS and PDSE) cannot be made multivolume with the VOLCOUNT keyword. If
DFSMSdss encounters an existing multivolume PDS or PDSE data set, it converts
the data set to single-volume.

Moving VSAM data sets

When you move a VSAM data set and the REPLACE or
REPLACEUNCONDITIONAL keywords are not specified, you must specify
DELETE, RENAMEUNCONDITIONAL, or RECATALOG (to a catalog different
from the source catalog). If the REPLACE or REPLACEUNCONDITIONAL
keyword is specified and a preallocated target is not found, DELETE,
RENAMEUNCONDITIONAL, or RECATALOG must be specified for the data set
to be processed.

For VSAM data sets cataloged in an integrated catalog facility catalog that will be
copied using the IDCAMS utility, a preallocated target data set will be renamed
using a DFSMSdss-generated temporary name. This allows dynamic allocation and
IDCAMS REPRO to work, because both are currently undirected in catalog usage.

VSAM data sets cataloged in an integrated catalog facility catalog with alternate
index and path associations do not use a preallocated target if the DELETE
keyword is specified. No search is made for existing data sets in this case. An
integrated catalog facility alternate index cannot use a preallocated target. No
search is made for existing data sets when copying an alternate index.

For VSAM components that are larger than one cylinder, DFSMSdss will recognize
only an integral number of cylinders of free space on a target volume. Also, the
required space for a VSAM data set must be contiguous.

You can move the base cluster, all associated alternate index clusters, and paths by
using the SPHERE keyword with the COPY command.

Restrictions for the COPY command
The following information covers restrictions when using the COPY command:

* DFSMSdss must be able to invoke IDCAMS to copy an extended-format VSAM
data set.

z/0OS V2R1.0 DFSMSdss Storage Administration

* When performing a logical copy operation of an extended-format data set, the
target data set allocation must be consistent with the source data set allocation
as follows:

— If the source is extended-format VSAM, then the target must be
extended-format VSAM.

— If the source is extended-addressable VSAM, then the target must be
extended-addressable VSAM.

— If the source is a compressed-format VSAM KSDS, then the target must be a
compressed-format VSAM KSDS.

— If the source is an alternate index for an extended-format KSDS, then the
target must be an alternate index for an extended-format KSDS.

— If the source is an alternate index for a compressed-format KSDS, then the
target must be an alternate index for a compressed-format KSDS.

— The target control interval size must be equal to the source.

* When performing a logical copy operation of an extended-format VSAM data set
with a stripe count of one, the resulting target will remain a VSAM data set with
a stripe count of one, even if the target storage class is multi-striped.

* You can copy a sphere only if all the parts of the sphere resolve to the same
catalog.

* Multiple path names to an alternate index are not supported. Only the last path
name listed in the catalog is preserved.

* To copy a sphere logically without the DELETE or RECAT keywords, you must
rename every data set in the sphere. This includes all paths, all alternate indexes,
and the base cluster. If the target sphere is to be SMS-managed, the data sets
must be renamed even if the RECATALOG keyword is specified because the
RECATALOG keyword is ignored for SMS-managed data sets.

If you do not use the SPHERE keyword and the base cluster has associated
alternate index clusters, only the base cluster is moved as follows:

* If you specify DELETE, only the base cluster is moved, but the alternate index
cluster continues to be related to the base cluster.

* If you do not specify DELETE, a second copy of the base cluster is created, and
the alternate index cluster continues to be related to the original base cluster.

To move an alternate index cluster, specify DELETE on the COPY command. Only
the alternate index cluster is moved, and it continues to relate to its base cluster.
An alternate index cannot be moved by itself outside the environment of the base
cluster. If the base cluster is not SMS-managed, the alternate index cannot be
moved to an SMS-managed volume. If the base cluster is SMS-managed, the
alternate index cannot be moved to a volume residing in another storage group.

For an empty VSAM data set (zero data relative block address or zero record
count), the data set is defined on the target volume but is not copied. Message
ADR474W is issued for the data set.

Note: DFSMSdss does not preserve candidate volumes during copy processing.

Moving a PDSE

The COPY command can be used to move a PDSE. The CONVERT keyword, along
with the PDSE and PDS subkeywords, can be used with the COPY command to
convert a PDS to a PDSE and vice versa.

Chapter 7. Managing data movement with DFSMSdss 119

120

The version level of a PDSE remains the same after a move if restored on z/0S
V2R1.0 or later — the resulting data set keeps the same version level of the original
data set if copied on z/OS V2R1.0. PDSE member generations are also preserved if
copied on z/OS V2R1.0 or later.

Moving a damaged PDS

DFSMSdss monitors PDSs during compression for conditions that are not normal.
The following conditions are detected and reported:

* Missing high key entry in the PDS directory
* Missing directory EOF
* Invalid member start TTR

— TTR points before directory EOF

— TTR points after end of data set

* Missing member EOF (each member of a partitioned data set is normally ended
by an EOF record)

* Invalid note or note list TTR
— Note pointing before the start of member data
- Note pointing after the member EOF
— Note pointing past the last valid record on a track
— Note pointing to record 0 of a track

DFSMSdss notes all these conditions with a message.

During compression, DFSMSdss repairs:
* Missing high key directory entry

* Missing directory EOF

* Missing member EOFs

Invalid start TTRs prevent DFSMSdss from compressing data for that member.
DFSMSdss translates all valid note and note list TTRs during compression.

You can move damaged partitioned data sets to same or like device target volumes
by using the NOPACKING keyword. This results in an exact track-for-track image
of the source data set. Obviously, no compression is performed in this case.

Moving unmovable data sets

When copying unmovable data sets to like devices, DFSMSdss places them at the
same track locations on the target volume under the following conditions:

* The target volume has an indexed VTOC.
* The space where the unmovable data would be placed is available.

If any of these conditions do not exist, you must specify the FORCE keyword to
move the data set. FORCE enables DFSMSdss to treat the unmovable data set as
movable and to move it to an unlike device. Because DFSMSdss places the data set
in any available location when FORCE is specified, use FORCE with caution.

If some data sets have CCHHR (cylinder, cylinder, head, head, record)
location-dependent data and you are using FORCE, exclude these data sets with
the EXCLUDE keyword to prevent DFSMSdss from moving location-dependent
data sets.

z/0OS V2R1.0 DFSMSdss Storage Administration

Another way to position data sets in a specific location on a volume is to allocate
all space on the target volume except where you plan to place the unmovable data
sets. Then move the unmovable data sets with FORCE and afterwards scratch the
dummy space allocation.

Moving data sets to unlike devices

DFSMSdss sets the secondary space to zero when processing data sets defined with
the contiguous space attribute and zero secondary allocation. This action, which
prevents DFSMSdss from creating an unusable data set, may result in ABEND
D37-04 due to underallocation of the data set. Should this occur, the user must
preallocate the target with adequate space to allow successful copy processing.

Moving indexed sequential data sets
DFSMSdss does not support the copy of Indexed Sequential data sets.

Moving direct access data sets

When DFSMSdss restores direct data sets, several processing options can be used.
Direct data sets can be organized by relative block address or by track-track record
(TTR).

Relative block addressable direct access data sets can be processed block by block
to like and unlike target devices if the block size fits on the target track. When the
data sets are processed block by block, DFSMSdss updates the block reference
count of dummy records contained in the relative block addressed direct access
data sets. To process block by block, the direct access data sets must have neither a
variable record format nor a standard user label.

TTR direct access data sets may become unusable if they are processed block by
block. TTR and relative block addressable data sets can be processed track by track
to like and unlike target devices whose track capacity is equal to or greater than
the source. Block by block processing is more efficient because track by track
processing to an unlike device of larger track capacity can leave some unused
space on each track of the target data set.

The following DFSMSdss keywords implement the processing options (for details
on their use, see|[“Explanation of RESTORE command keywords” on page 459):

AUTORELBLOCKADDRESS
If the data set is accessed with OPTCD indicating relative block addressing,
it is processed as if it were specified in the RELBLOCKADDRESS
subkeyword list, and processing is block by block. For more information,
see £/OS DFSMS Macro Instructions for Data Setd for macro instructions on
non-VSAM data sets. If your installation has many relative block address
direct access data sets, you may wish to consider the DFSMSdss
installation options exit to turn on AUTORELBLOCKADDRESS (see
[“AUTORELBLOCKADDRESS” on page 460).

RELBLOCKADDRESS
If the data set is specified in the subkeyword list, the data set is processed
block by block.

TTRADDRESS
If the data set is specified in the subkeyword list, the data set is processed
track by track.

Chapter 7. Managing data movement with DFSMSdss 121

122

FORCE
If the track capacity of the receiving volume is smaller than the source,
FORCE may be required for variable or undefined length TTR-organized
direct access data sets. These data sets may be unusable after restore and, if
possible, should be restored to a like device. Use RELBLOCKADDRESS to
restore relative block address direct access data sets to unlike devices.

Note: If you do not specify a keyword, data is moved to the target track by track.

Moving GDG data sets

For generation data group (GDG) data sets, filtering on generations is supported.
You can specify generation names in relative generation number, dsn(n), with the
INCLUDE and EXCLUDE keywords. During a copy operation, if you catalog the
GDGs in a different catalog or you rename them, you must predefine the target
GDG base name because the source GDG base name is unusable.

Moving generation data sets to SMS-managed volumes
An SMS-managed generation data set (GDS) can be in one of three states:
* ACTIVE

* DEFERRED

* ROLLED-OFF

When copying a GDS to an SMS-managed volume and the data set is not
preallocated, DFSMSdss allocates the target GDS as follows:

» If DELETE is specified and RENAMEUNCONDITIONAL is not specified, the
target GDS is allocated with the same state as the source GDS.

* If the TGTGDS keyword is specified, the appropriate status is assigned to the
data set. The requested target status must not violate rules of the generation
data group.

* When the source is an SMS-managed GDS and the target has the same name
(that is, DELETE without RENAME), the target status is the same as the source
status.

* When the source is a non-SMS-managed GDS and the target has the same name
(that is, DELETE without RENAMEUNCONDITIONAL), the default target
status is ACTIVE when the source is cataloged. When the source is not
cataloged, the default target status is DEFERRED.

* In all other cases, the default target status is DEFERRED.

* You can use the TGTGDS keyword to alter the target status except when the
source is an SMS-managed GDS and the target has the same name.

[Table 11 on page 123 describes the default situation for DESMSdss to allocate the
SMS-managed GDG data set (MOVE refers to COPY command with the DELETE
keyword specified):

z/0OS V2R1.0 DFSMSdss Storage Administration

Table 11. Default Situation for DFSMSdss to Allocate the SMS-Managed GDG Data Set

Target Source Source DFSMSdss TGTGDS
Environment Environment Status Function Default
COPY DEFERRED
Cataloged
MOVE ACTIVE
Non-SMS
COPY DEFERRED
Not Cataloged
MOVE DEFERRED
COPY DEFERRED
SMS ACTIVE
MOVE ACTIVE
COPY DEFERRED
SMS DEFERRED
MOVE DEFERRED
COPY DEFERRED
ROLLED-OFF
MOVE ROLLED-OFF

If the data set is preallocated, the state of the target GDS is not altered.

Moving generation data sets to non-SMS-managed volumes
A non-SMS-managed generation data set (GDS) can be in one of two states:

* Cataloged
* Not cataloged

When you copy a GDS to a non-SMS-managed volume, the state of the GDS is
determined only by the CATALOG or RECATALOG keywords.

Moving SMS-managed data sets

| Programming Interface Information

As with the RESTORE command, COPY invokes the Automatic Class Selection
(ACS) routines, which in turn assign or override a data set’s classes.

When you use the COPY command, you are in the ACS ALLOC environment. The
storage class ACS routine is executed first. If the storage class assigned is not null,
the management class ACS routine and then the storage group ACS routine are
executed. (See[“ACS variables available during Copy function” on page 179 for a
list of variables available to ACS routines during copy processing.)

If you do not specify otherwise, DFSMSdss passes the source data set’s class names
as input to ACS. If you want to specify storage and management class names to be
passed to ACS, you can use the STORCLAS and MGMTCLAS keywords. You can
use the NULLSTORCLAS and NULLMGMTCLAS keywords to pass null storage
and management classes to the ACS routines.

VSAM alternate indexes do not have SMS constructs of their own; they use the
same constructs as the base cluster. When copying or moving alternate indexes as
independent clusters (because you did not specify the SPHERE keyword on the
COPY command), DFSMSdss passes null classes to ACS. If you want DFSMSdss to
pass the base cluster’s classes to ACS, you must invoke sphere processing by
specifying the SPHERE keyword on the COPY command.

Chapter 7. Managing data movement with DFSMSdss 123

124

If you do not want a data set to be SMS-managed, specify the BYPASSACS and
NULLSTORCLAS keywords.

All of these keywords work the same for the COPY command as they do for the
RESTORE command (see [‘Changing storage class with the RESTORE command”]
lon page 87|and [“Changing management class with restore processing” on page 88).

| End Programming Interface Information |

Selecting target volumes

| Programming Interface Information |

In an SMS-managed environment, you generally allow the system to place data
sets for you. If for some reason you want to control the placement of the data sets
(for example, because of performance problems or because you want to put data
sets on some new, empty volumes you have just added to a storage group), you
must take special steps.

If you use OUTDDNAME or OUTDYNAM to specify a volume list, the volume
serial numbers are passed as input to the ACS routines. Depending on how your
ACS routines are written, this input might or might not be used in determining
where to place the data set.

One way to guarantee that data sets go to particular volumes is to write your
storage group ACS routine such that data sets are moved to the volumes you
select.

Alternatively, if a data set’s storage class has the guaranteed-space attribute, the
data set is placed on the user-specified volumes if the volumes reside in the same
storage group and ACS selects that storage group for the data set. By using
BYPASSACS and STORCLAS keywords, you can ensure that the storage group
selected contains the volumes you specify with OUTDDNAME or OUTDYNAM.
However, for this procedure to work, your storage group ACS routine must use
storage class to determine the storage group for a data set. This allows you to
determine which storage class to specify with the STORCLAS keyword to ensure
that the storage group containing the volumes specified with OUTDDNAME or
OUTDYNAM is selected.

| End Programming Interface Information |

Changing storage class with Copy

| Programming Interface Information |

You can use the STORCLAS keyword to specify a storage class name for
DFSMSdss to pass to ACS. You can specify the NULLSTORCLAS keyword if you
want DFSMSdss to pass a null storage class to ACS.

Note: RACF checks if the RESOWNER of a given data set is authorized to define
the data set with the specified STORCLAS. Ensure that the RESOWNER of the data
set has the correct authority to use the indicated storage class.

Using STORCLAS does not guarantee that the data set is assigned the storage class
you specify. To ensure that the storage class you specify is assigned to the data set,
you must specify BYPASSACS. In this case, using BYPASSACS causes the storage

z/0OS V2R1.0 DFSMSdss Storage Administration

class and management class ACS routines to be bypassed, so the data set is
assigned whatever you have specified with STORCLAS or, if you do not use
STORCLAS, whatever the source data set’s storage class is. Ensure that the storage
class you specify with STORCLAS is valid, or you will get an error.

You can also use STORCLAS and BYPASSACS to move data sets into a newly
defined storage class. For example, suppose you want to combine all your storage
classes except two into one new, large storage class. You can code the following;:

copy -
DATASET (INCLUDE (**) -
BY (STORCLAS,NE, (SCNAMEL,SCNAME2))) -
STORCLAS (SCNAME3) -
BYPASSACS (**) -
DELETE

If you specify NULLSTORCLAS and BYPASSACS together, the target data set
becomes non-SMS-managed.

| End Programming Interface Information

Changing management class with Copy

| Programming Interface Information |

In addition to influencing a data set’s storage class with the copy command, you
can also give ACS input for assigning or overriding the data set’'s management
class. By specifying MGMTCLAS, you can pass a management class name to ACS
and, as with STORCLAS, ACS ignores it, assigns it to the data set, or uses it in
combination with other things to determine the data set’s management class. By
specifying NULLMGMTCLAS, you can pass null management class to ACS, which
might or might not assign a management class to the data set.

Note: RACF checks if the RESOWNER of a given data set is authorized to define
the data set with the specified MGMTCLAS. Ensure that the RESOWNER of the
data set has the correct authority to use the indicated management class.

Also, just as with STORCLAS, you can use MGMTCLAS with BYPASSACS to
ensure that the data set is assigned the management class you specify. Ensure that
the management class you specify with MGMTCLAS is valid, or you will get an
error. You must be authorized to use BYPASSACS and the management class you
specify with MGMTCLAS.

| End Programming Interface Information |

Moving non-SMS-managed data sets

If the data set being moved is to be non-SMS-managed, use the NULLSTORCLAS
and BYPASSACS keywords on the COPY command. By using these keywords, you
can copy an SMS-managed data set into a non-SMS-managed data set. Using
NULLSTORCLAS and BYPASSACS also prevents a non-SMS-managed data set
from becoming SMS-managed. When copying a VSAM data set to a
non-SMS-managed volume, ensure that a VVDS exists on the volume prior to
running the job, to prevent potential allocation errors because of insufficient space.
DFSMSdss assumes a VVDS exists on the volume when doing size calculations on
non-SMS-managed volumes.

Chapter 7. Managing data movement with DFSMSdss 125

126

Moving to preallocated data sets

In some cases, you might want to copy data sets to preallocated targets. However,
integrated catalog facility catalogs, and system data sets that are named SYS1.*
cannot be copied to preallocated data sets unless the PROCESS(SYS1) keyword is
specified.

If a user wishes to upgrade or downgrade an extended format nonVSAM
sequential data set you must preallocate the target data set to the extended format
version number.

Rules for moving to preallocated target data sets

To use a preallocated data set, you must specify the REPLACE or
REPLACEUNCONDITIONAL keyword. If the REPLACE keyword is specified, the
preallocated data set name must be identical to the source data set name. If the
RENAMEUNCONDITIONAL(newname) and REPLACEUNCONDITIONAL
keywords are specified, the preallocated data set name must match the new name
filter criteria. You cannot, however, copy a data set to a preallocated target data set
with the same name within an SMS environment because SMS does not support
duplicate data set names.

The rules for moving VSAM and non-VSAM data sets to preallocated data sets
follow.

VSAM preallocation: An existing data set qualifies as a preallocated target for a
data set copy operation if the cluster name matches and the complete cluster is
available on target volumes.

The preallocated data set is usable if all of the following conditions that apply to
the data set being processed are met:

* The user is authorized to update the target data set.

* The cluster types match.

e The number of components match.

* The key length and offset match.

* The KEYRANGES match.

* None of the components are multivolume.

* Sufficient space is available for each component.

* Key sequential data sets (KSDS) are reusable or empty.
* Key range data sets are empty.

¢ The data set is cataloged in the standard order of search, if required for the copy
operation.

* The data set has no alternate indexes or paths defined over it (except for a single
path defined directly over the base cluster).

If a target data set is preallocated, it is scratched and reallocated when it is being
renamed and:

* Any of the following source and target data set attributes do not match:
- CIsize
— Record length
— IMBED (only KSDS and key range data sets)
— Key length (only KSDS and key range data sets)
— REPLICATE (only KSDS and key range data sets)
- SPANNED

z/0OS V2R1.0 DFSMSdss Storage Administration

¢ The data set was not defined as reusable and the high-used relative byte address
(RBA) of a target VSAM KSDS is not 0.

* The target data set is not large enough to contain the source data set.

Non-VSAM preallocation: An existing data set qualifies as a preallocated target
for a data set copy operation if the data set names match, the complete data set is
available on target volumes, and:

* For single-volume target qualification, the data set organization is partitioned or
the data set’s volume sequence number in the VTOC is 1 and the last volume
flag is on.

* For multivolume target or single-volume target with the last volume flag off, the
data set is cataloged in the standard order of search. All volume serial numbers
returned by a locate operation on the data set are in the output volume list.
(Candidate volumes are acceptable.)

Note: If a target data set is preallocated, but is not large enough to contain the
source data set, it will be scratched and reallocated if it is being renamed.

You may use data set COPY to upgrade your standard format sequential data sets
to large format data sets. When copying a data set and a usable preallocated target
is found, it will be used as the target of the copy operation. When copying a
standard format sequential data set and a preallocated large format data set is
found, it will be used. If the preallocated large format data set does not have
enough space for the source data, it will be scratched and reallocated as a large
format data set. When copying a large format data set and a standard format
sequential data set is found, it will be used and upgraded to a large format data
set. If the preallocated standard format sequential data set does not have a large
enough allocation to hold the source data, it will be scratched and reallocated as a
large format data set.

If a user wishes to downgrade a large format data set to a standard format
sequential data set, allocate a standard format sequential data set and use a utility
such as IEBCOPY to copy the data from the large format data set to the standard
format sequential data set.

You may also use data set COPY to upgrade your data sets that are not enabled for
CA reclaim to data sets that are enabled for CA reclaim. To do this, simply
preallocate a data set that is enabled for CA reclaim to use as a target of the copy.
In copying a data set that is not enabled for CA reclaim, if a preallocated data set
that is enabled for CA reclaim is found, the preallocated data set that is enabled for
CA reclaim is used for the target of the copy. If the preallocated data set that is
enabled for CA reclaim is not large enough to hold the data being copied, it is
scratched and reallocated as a data set that is enabled for CA reclaim. In copying a
data set that is enabled for CA reclaim, if a preallocated data set that is not enabled
for CA reclaim is found, the data set that is not enabled for CA reclaim is used for
the target of the copy. If the preallocated data set that is not enabled for CA
reclaim is not large enough to hold the data being copied, it is scratched and
reallocated as a data set that is not enabled for CA reclaim.

For PDSEs, the source data set’s original version level is preserved after the copy
or move, regardless of the version level of the pre-allocated target data set. For
example, if the pre-allocated target data set is a PDSE with version level 2, and the
source data set is a PDSE with version level 1, after a copy or move the target
would be a PDSE with level 1.

Chapter 7. Managing data movement with DFSMSdss 127

128

The preallocated data set is usable if all of the following conditions that apply to
the data set being processed are met:

* The user is authorized to update the target data set.

* The DSORG matches.

* For direct access data sets, the target does not exist if the copy operation is done
using the IEHMOVE utility. If the RELBLOCKADDRESS keyword is specified
for the data set, preallocated targets are allowed.

* For unmovable data sets, extents match exactly when you copy to a like device
without specifying the FORCE keyword.

* For movable data sets or unmovable data sets with the FORCE keyword, the
amount of allocated space in the target data set is greater than or equal to the
amount of allocated space in the source data set.

* For partitioned data sets, the target directory can contain all source members
and aliases.

* For preallocated standard user label data sets, the target has more than one
extent when the source data set has more than one extent.

If a VSAM or non-VSAM preallocated data set is determined to be unusable,
message ADR439E is issued, and the copy operation is stopped only for that data
set. No attempt is made to clear or alter the target data set if:

* The source data set is empty.

¢ The DSORG is not supported.

* The target is preallocated but not empty.
Message ADR363E is issued to inform the user.

Specifying multiple target volumes

When multiple target volumes and the REPLACE or REPLACEUNCONDITIONAL
keyword are specified, more than one existing data set may qualify as a
preallocated target. The first existing data set that qualifies as a preallocated target
when you use the OUTDDNAME/OUTDYNAM list order is used as the target
data set. For non-VSAM data sets that require catalog verification, the catalog
standard order of search determines the data set used as the preallocated target.

The device-selection criteria used for the data set copy operation (same, like, then
unlike device preference) is not observed if a preallocated data set target is used.

How keywords work with preallocated targets
When you use preallocated data sets with the COPY command, some keywords
have a different effect and others have no effect at all.

ALLEXCP and ALLDATA: If ALLEXCP or ALLDATA is specified and the target
is a like device, the data in the source data set is moved to the target. When
ALLDATA or ALLEXCP is specified for an extended-format sequential data set,
data beyond the last-used-block pointer is not retained.

CATALOG and RECATALOG: Data set copy operation cannot change the catalog
or the catalog status (cataloged or uncataloged) of the preallocated target data set.
As a result, the CATALOG and RECATALOG keywords have no effect on
preallocated target data sets. (Similarly, passwords and expiration dates of
preallocated data sets cannot be changed.)

NOPACKING: The NOPACKING keyword is effective only for partitioned data
sets. If NOPACKING is specified for preallocated partitioned data sets, the

z/0OS V2R1.0 DFSMSdss Storage Administration

preallocated target must reside on the same or a like device. Processing is stopped
for the data set if the target resides on an unlike device. The target is not deleted
and reallocated.

PERCENTUTILIZED: The PERCENTUTILIZED keyword has no effect when the
target data set is preallocated.

PROCESS(SYS1): Data set copy operation permits moving SYS1 data sets to a
preallocated target.

REBLOCK: If a data set qualifies for reblocking when REBLOCK is specified
(sequential and partitioned only) and a preallocated target is used, the target block
size is overwritten with one of the following values:

¢ The source data set block size
A DFSMSdss-selected block size
* A user-selected block size passed by the installation reblock exit

* A system-determined block size

The block size used is determined by the installation reblock exit return code and
the reblockable indicator for the data set VTOC entry.

If REBLOCK is not specified, the target BLKSIZE of a non-VSAM data set is
overwritten with the source BLKSIZE.

If a partitioned data set is specified with both NOPACKING and REBLOCK
keywords, the data set is not reblocked.

RENAMEUNCONDITIONAL: RENAMEUNCONDITIONAL has no effect on
preallocated target data sets unless you have specified
REPLACEUNCONDITIONAL.

Moving data sets being accessed with record level sharing

During logical data set copy operations of SMS-managed VSAM data sets,
DEFSMSdss communicates with VSAM RLS to perform quiesce processing of data
sets that are being accessed by another job using Record Level Sharing (RLS).

By default, DFSMSdss does not use timeout protection during RLS quiesce
processing. You can control whether or not DFSMSdss uses timeout protection
during RLS quiesce processing and what the timeout value should be using the
DSSTIMEOUT parameter of the IGDSMSxx PARMLIB member.

You can also change the timeout value without IPLing the system using the
SETSMS DSSTIMEOUT (nnnnn) command.

For more information about using IGDSMSxx to control the RLS timeout value
used during DFSMSdss operations, refer tqz/OS DFSMSdfp Storage Administration]

For more information about using the SETSMS command, refer tqz/OS MVS System]
[Commands

Moving preformatted empty VSAM data sets

When moving a preformatted empty VSAM data set, DFSMSdss opens the target
data set in order to preformat it. Open processing requires the data set to be

Chapter 7. Managing data movement with DFSMSdss 129

cataloged in the standard order of search. Therefore, to copy a preformatted empty
VSAM data set, the target data set must be cataloged in the standard order of
search.

VTOC considerations for moving volumes

When moving volumes, ensure that the VTOC on the target device is large enough
to hold entries for all the data sets to be placed on the target device. If you do not
expand the VIOC when moving to a larger volume, DFSMSdss logical data set
processing might fail. The following two sections describe how the size of the
target VTOC is affected by DFSMSdss processing.

You can also use the REFORMAT EXTVTOC or REFORMAT NEWVTOC functions
of ICKDSF to extend or reallocate the VTOC on a volume if it is not large enough.

When performing a full-volume restore operation to DASD, DFSMSdss
automatically corrects the free-space information on the volume and can invoke
ICKDSF to rebuild the VTOC index. DFSMSdss takes this action when it copies
data to a larger-capacity DASD from a smaller-capacity DASD or when both of the
volumes, including volumes of equal capacity, contain a VTOC index. DFSMSdss
allocates a large (more than 65 535 tracks) dummy data set to recalculate the
free-space information. You can ignore any IEC6141 messages that DFSMSdss
generates during this process.

Following a COPY or RESTORE operation, the VTOC location or the volume serial
on the target volume may change. Before this volume can be accessed on any
remote system, the UCBs on the remote systems must be refreshed. The refresh
occurs automatically if the volume is online and the device manager REFUCB
function is enabled. You enable the REFUCB function through PARMLIB member
DEVSUPxx or the MODIFY DEVMAN command. For more information, refer to
the description of the REFUCB keyword in /OS MVS Initialization and Tuning|
[Reference| or [z/0S MVS System Commands)

Logical volume copy operation

130

To move a volume logically, use the DATASET keyword, specify input volumes
with LOGINDDNAME, LOGINDYNAM, INDDNAME, INDYNAM, or STORGRP,
and use INCLUDE(**). This method of moving volumes allows you to move data
between unlike devices.

Some data sets require special processing when you move them (see

lsets with special requirements” on page 114). For example:

¢ Unmovable data sets

* Multivolume data sets

* Integrated catalog facility catalogs

* Data sets beginning with SYS1

* Data sets used by device-dependent application programs

If you use the COPY DATASET command to move a volume and the volume
contains such data sets, you must move them in the correct sequence to achieve
the expected results.

You may want to process unmovable data sets first, so you can place them at the
same track location on the target device. Move user catalogs only when acquiesced.
In addition, do not move catalogs together with the data sets cataloged in them.

z/0OS V2R1.0 DFSMSdss Storage Administration

See [Chapter 11, “ACS routine information,” on page 179|for information on
automatic class selection (ACS) routines during DFSMSdss copy operations.

Note: Some data sets are not eligible for movement by DFESMSdss (for example,
VSAM data sets not cataloged in integrated catalog facility catalogs). Others might
require special parameters (for example, unmovable data sets).

Physical volume copy operation

If you do not specify DATASET or TRACKS on the COPY command, the COPY
command defaults to FULL and moves the volume physically. You must also
specify INDDNAME or INDYNAM to indicate the source volume and
OUTDDNAME or OUTDYNAM to indicate the target volume. Full-volume copy
can move data only between like devices of equal or greater capacity (for example,
from a double capacity 3380 model to a double or triple capacity 3380 model).

With full-volume copy, you can physically move volumes only between like

devices. However, you can move data:

¢ From a smaller-capacity IBM 3380 to a larger-capacity IBM 3380

* From a smaller-capacity IBM 3390 to a larger-capacity IBM 3390

¢ From a smaller-capacity IBM 9345 to a larger-capacity IBM 9345

¢ From a minivolume or virtual volume to a real volume of like device type, and
vice versa, device capacity permitting

With tracks copy, you can move data:

* From a larger-capacity IBM 3380 to a smaller-capacity IBM 3380, if the range of
data to be processed falls within the capacity of the output device

* From a larger-capacity IBM 3390 to a smaller-capacity IBM 3390, if the range of
data to be processed falls within the capacity of the output device

* From a larger-capacity IBM 9345 to a smaller-capacity IBM 9345, if the range of
data to be processed falls within the capacity of the output device

Note: If you perform a full-volume copy operation to a DASD that is shared
between multiple systems, ensure that the DASD is offline to all systems except the
one performing the copy.

When you use the physical volume COPY command, you can specify the
COPYVOLID keyword. If you specify the COPYVOLID keyword, the volume serial
number of the source volume is copied to the target volume. This ensures that
RACEF profiles and catalog entries for the data sets on the volume have the correct
volume serial number.

Note: Changing the volume serial number of a volume causes the operating
system to demount the target volume at the end of the copy operation. To use the
target volume, you must demount the source volume and mount the target
volume.

If you are using record level sharing (RLS), be careful when copying volumes with
the FULL or TRACKS keywords. If the target volume has data sets on it that have
retained locks or data in the coupling facility associated with them, a full-volume
or tracks copy can result in data integrity problems.

For information about automatic class selection (ACS) routines during DFSMSdss
copy operations, see [Chapter 11, “ACS routine information,” on page 179

Chapter 7. Managing data movement with DFSMSdss 131

Moving volumes with FlashCopy

132

FlashCopy is much faster than traditional data movement methods, especially
when large amounts of data are moved. DFSMSdss can use FlashCopy during a
full volume copy if the following requirements are met:

* The source devices and the target devices both support compatible levels of
FlashCopy.

* The volumes must be in the same logical subsystem (LSS) of an ESS if the ESS
supports only FlashCopy Version 1.

* The volumes must be in the same ESS.
e The FASTREPLICATION(NONE) keyword must not be specified.

For the best performance during full volume copy operations, specify the following
keywords:

* ADMINISTRATOR

* ALLDATA(*)

* ALLEXCP

* PURGE

The performance improvement that is provided by these keywords is most
significant when DFSMSdss uses FlashCopy or SnapShot to perform the copy.

For more information about using the ADMINISTRATOR, ALLDATA, ALLEXCP,
and PURGE keywords, see [“Explanation of COPY Command Keywords” on page|

Designating FlashCopy usage

The FASTREPLICATION(REQUIRED | PREFERRED | NONE) keyword tells
DFSMSdss how you want FlashCopy to be used. The default is
FASTREPLICATION(PREFERRED).

FASTREPLICATION(REQUIRED) specifies that DFSMSdss must use fast replication
such as FlashCopy to move data. If FlashCopy cannot be used, DFSMSdss issues
error message ADRI38E and the copy operation fails. DFSMSdss does not try any
other methods of data movement.

Restriction: You cannot use the FASTREPLICATION(REQUIRED) and
CONCURRENT keywords together.

FASTREPLICATION(PREFERRED) specifies that DFSMSdss attempt to use
FlashCopy before any other method to move data (even when you specify the
CONCURRENT keyword). If FlashCopy cannot be used and you have specified
the CONCURRENT keyword, DFSMSdss attempts to use concurrent copy. If you
have not specified the CONCURRENT keyword or if concurrent copy has failed,
DFSMSdss uses traditional data movement methods to copy the data.

FASTREPLICATION(NONE) specifies that DFSMSdss not attempt to use
FlashCopy to copy data.

For more information about the FASTREPLICATION keyword, see
|”FASTREPLICATION” on page 327]

z/0OS V2R1.0 DFSMSdss Storage Administration

Determining why FlashCopy cannot be used

There might be times whey you expect DFSMSdss to use FlashCopy to move the
data but FlashCopy was not used. As far as you can tell, your volumes meet all the
criteria for FlashCopy use. Use the DEBUG(FRMSG(MINIMAL | SUMMARIZED |
DETAILED)) keyword to help you resolve this situation. Include this keyword to
indicate the applicable fast replication message level (MIN, SUM, or DTL) in your
COPY command. The message level controls the type and amount of information
DFSMSdss provides.

DEBUG(FRMSG(MIN | SUM | DTL)) directs DFSMSdss to issue an informational
message that indicates why FlashCopy was not used. When you specify
FASTREPLICATION(REQUIRED), the informational message is issued in addition
to the ADR938E message whether you have specified the DEBUG(FRMSG(MIN |
SUM | DTL)) keyword or not.

For more information about the DEBUG keyword, see ['DEBUG” on page 320

Freeing subsystem resources

Performing a physical copy of the data uses subsystem resources and can impact
the performance of other I/O operations that are issued to the ESS. Using the
FCNOCOPY keyword on a DFSMSdss copy command prevents the ESS subsystem
from performing a physical copy of the data. However, when you designate the
FCNOCOPY keyword, you must either withdraw the FlashCopy relationship when
you no longer need the copy or convert the existing FlashCopy relationship from
FCNOCOPY to COPY mode.

Withdrawing the FlashCopy relationship frees the subsystem resources that are

used to maintain the FlashCopy relationship. You can withdraw the FlashCopy

relationship by:

* Performing a full volume dump of the target volume, specifying the
FCWITHDRAW keyword on the DUMP command.

* Entering the TSO FCWITHDR command.

DFSMSdss also issues an FCWITHDRAW with the Delete Data Space Withdraw
(DDSW) option to the target volume during COPY and RESTORE commands using
FULL and TRACKS operations.

When an existing FlashCopy relationship is converted from no-background copy
(FCNOCOPY) to background copy mode, the relationship ends (unless the
relationship is persistent) when the background copy has completed. When the
relationship ends, it frees the subsystem resources that are used to maintain the
FlashCopy relationship. You can change the existing FlashCopy copy mode by
performing a physical full volume or tracks copy specifying the
FCNOCOPYTOCOPY keyword along with the source volume or extents for which
you want background copy to be started. The FCNOCOPYTOCOPY function will
initiate background copy of any NOCOPY FlashCopy relationships in which the
specified source volume or extents are participating.

In general, if you want a temporary copy of the data, specify FCNOCOPY and
then withdraw the FlashCopy relationship when you no longer need the copy. If
you want a permanent copy, but want to delay background copy until a
convenient time, specify FCNOCOPY to get a point-in-time copy and then perform
FCNOCOPYTOCOPY later to start background copy. If you want a permanent
copy and do not want to delay background copy, do not specify FCNOCOPY.

Chapter 7. Managing data movement with DFSMSdss 133

134

Allow the ESS subsystem to perform the physical copy and release the subsystem
resources that are used to maintain the FlashCopy relationship.

Note: A Persistent FlashCopy relationship does not end when physical background
copy has completed. The relationship can be removed by performing a Withdraw
FlashCopy operation (e.g., TSO FCWITHDR command). An Incremental FlashCopy
relationship is an example of a Persistent FlashCopy relationship supported by
DFSMSdss. If you want to establish a Persistent FlashCopy relationship
independent of Incremental FlashCopy, you can use the ESS Copy Services Web
User Interface.

For more information about using the SETSMS command, refer tqz/OS MVS System]

ommands

For more information about using the SETSMS command, refer tqz/OS MVS System|

ommands

For more information, refer to|“FCNOCOPY” on page 333|["FECNOCOPYTOCOPY”|
fon page 333) and ['FCWITHDRAW” on page 406.|

Choosing space efficient FlashCopy with the FCSETGTOK
keyword

A space efficient volume does not have all of its physical space allocated when it is
created. Instead, its physical space is allocated on a track basis. When data is
written to a space efficient volume, a track of physical space is taken from the
segments assigned to a repository volume, and is used to hold the data for the space
efficient volume. A repository volume can provide the physical space for multiple
space efficient volumes.

During full volume copy operations, DFSMSdss can use a space efficient volume as
the target of a FlashCopy relationship, when you specify the FCSETGTOK
keyword on your COPY command. This type of FlashCopy relationship is called a
space efficient FlashCopy.

You can use space efficient FlashCopy for a full-volume copy operation only; that
is, a COPY FULL operation or a COPY TRACKS command that specifies a full
volume. Observe the following considerations:

* If you specify FCSETGTOK with COPY FULL, and the target is a space efficient
volume, DFSMSdss attempts to establish a full-volume FlashCopy relationship
without excluding free space, which results in one FlashCopy relationship for
the entire volume. If FlashCopy cannot be used, DFSMSdss issues an error
message and the copy operation fails. DFSMSdss does not try any other methods
of data movement.

* To use FCSETGTOK with COPY TRACKS, your command must specify one
track range (an extent) that includes the entire volume (tracks 0 through n).
Otherwise, the FCSETGTOK keyword has no effect on the copy operation.

DFSMSdss ignores the FCSETGTOK keyword for COPY operations in which:

* FlashCopy is not used to perform the copy operation

* The target volume is not a space efficient volume

* Less than a full volume is to be copied, for example, a COPY DATASET
operation.

z/0OS V2R1.0 DFSMSdss Storage Administration

Along with the FCSETGTOK keyword, you must also specify the FAILRELATION
sub-keyword to indicate the action that the storage facility is to take if the space on
the repository volume is exhausted while the space efficient FlashCopy relationship
still exists.

Using FCSETGTOK might require RACF authorization. If your installation has
defined the RACF FACILITY class profile, STGADMIN.ADR.COPY.FCSETGT, your
user ID requires READ access to the profile. For more information, seel“Protectingl
IDFSMSdss functions with RACF FACILITY class profiles” on page 29|

Attention: Space efficient FlashCopy is intended for full volume copies that are
short term in nature, such as those that are to be backed up to tape. Space efficient
FlashCopy might also be appropriate for longer term copies, if the source and
target volumes are not frequently updated. The physical background copy option
is not permitted for space efficient FlashCopy. That is, you must also specify
FCNOCOPY with the FCSETGTOK keyword.

For an overview of FlashCopy, refer tolz/OS DESMS Advanced Copy Serviced.

For more information about the FCSETGTOK keyword and the FAILRELATION
sub-keyword, refer tof'FCSETGTOK” on page 334

Initializing the volume with the FCWITHDRAW keyword

During DUMP FULL and DUMP TRACKS operations, DFSMSdss invokes ICKDSF

to initialize the source volume of the DUMP operation at the end of the dump

processing, when all of the following conditions are true:

* FCWITHDRAW is specified

¢ The VTOC tracks on the source volume of the DUMP operation are the target of
a FlashCopy relationship

* TRACKS, if specified, designates one extent range that represents the entire
volume

* The volume is not a VM-format volume (CP volume)

* The volume supports data set FlashCopy or space efficient FlashCopy.

If these conditions are not met, DFSMSdss performs a FlashCopy withdraw
operation only.

For information about how to disable the volume initialization function, refer to
“Changing the default initialization processing during DUMP with FCWITHDRAW|
(OA18929)” on page 236,

For information about the FCWITHDRAW keyword, refer to ["FCWITHDRAW” on|

Backing up volumes with FlashCopy consistency group

The sections that follow describe the use of a FlashCopy consistency group.

Creating consistent copies with FlashCopy consistency group
You can use the FlashCopy Consistency Group function to minimize application
impact when making consistent copies of data spanning multiple volumes. The
procedure consists of freezing the source volume during each volume copy
operation, and thawing all the frozen volumes using the CGCREATED command
after a FlashCopy Consistency Group has been formed. During the time period

Chapter 7. Managing data movement with DFSMSdss 135

136

between the first and the last volumes are frozen, no dependent write updates will
occur which allows a consistent copy of logically related data that spans multiple
volumes.

Note: Because I/0O activity is held on source volumes that are frozen, it is
recommended ot to include system volumes that are required to run the current
COPY command (or subsequent COPY commands) needed to form a FlashCopy
Consistency Group. Examples of such system volumes include spool, page, and
volumes containing checkpoint data sets, catalogs, and RACF databases.

Freezing the source volumes in copy operations

You can use the FCCGFREEZE keyword on the COPY FULL or COPY TRACKS
CPVOLUME command to specify that the FlashCopy source volume is to be part
of a FlashCopy Consistency Group. Subsequent I/O activity to the source volumes
will be held (frozen) as each volume is copied. A frozen volume remains in long
busy state until the "Consistency Group Created" (thaw) command is processed on
the logical subsystem (LSS) where the volume resides or when the FlashCopy
Consistency Group timer expires.

Thawing the frozen volumes in CGCREATED operation

When all volume copy operations have completed, you can use the DFSMSdss
CGCREATED command to allow I/O activity to resume on the frozen volumes
(thaw the volumes) residing in the logical subsystems. The required ACCESSVOL
keyword specifies one or more volumes residing in the LSS to which the "thaw"
command will be directed. Only one volume needs to be specified for each LSS
containing frozen volumes in the FlashCopy Consistency Group.

Verifying the consistency group

You can use the FCCGVERIFY keyword on the CGCREATED command to validate
the state of the FlashCopy Consistency Group before thawing all the volumes. This
will help you determine if the copies of the group of volumes are consistent. An
error message is issued if the frozen state cannot be verified. Regardless of the
verification result, DFSMSdss will proceed to thaw all the volumes in the
designated logical subsystems.

For the verification volume, IBM recommends that you select the first source
volume that was copied with FCCGFREEZE in the group. When the logical
subsystems have different Consistency Group timer values, select the volume
residing in the LSS with the smallest Consistency Group timer value, or select one
volume from each LSS.

Example

Example In the following example, volume SRC101 and SRC102 reside on LSS 01.
Volume SRC203 resides on LSS 02. LSS01 and LSS02 can be in the same or different
storage control units. SRC101 is selected as the verification volume.

* The first COPY command -- by default, in SERIAL mode -- will copy the
verification volume, SRC101.

* When the first COPY command completes, the PARALLEL command instructs
DFSMSdss to switch to parallel mode. DFSMSdss will execute all subsequent
commands in parallel until it reaches the SERIAL command which tells
DFSMSdss to wait for all previous commands to finish before proceeding.

* The user instructs DFSMSdss to verify the state of the FlashCopy Consistency
Group using the specified verification volume during the "thaw" operation. The
CGCREATED command should always be issued to thaw the volumes whether

z/0OS V2R1.0 DFSMSdss Storage Administration

the copy commands completed successfully or not. In other words, the control
statements do not need to check condition code prior to the CGCREATED
command.

//SYSIN
COPY FULL INDYNAM(SRC101) OUTDYNAM(TGT161) ADMIN DUMPCOND FCFREEZE
PARALLEL
COPY FULL INDYNAM(SRC162) OUTDYNAM(TGT162) ADMIN DUMPCOND FCFREEZE
COPY FULL INDYNAM(SRC203) OUTDYNAM(TGT203) ADMIN DUMPCOND FCFREEZE
SERIAL
CGCREATED FCCGVFY(SRC101) ACCVOL(SRC101,SRC203)

/*

Note:

1. The freeze and thaw operations require the specified devices support the
FlashCopy Consistency Group function.

2. There is one Consistency Group timer per logical subsystem (LSS) for
FlashCopy.

3. The Consistency Group timer has a default of 120 seconds. The timer value can
be set via the ESS Web User Interface.

4. The CGCREATED operation is processed at LSS level. It thaws all the volumes
currently in "frozen for consistency grouping" state in the LSS that received the
command. When a "thaw" command is received by an LSS that does not have
any frozen volumes in a FlashCopy Consistency Group, the command is
accepted, but no actual processing takes place.

5. Multiple FlashCopy Consistency Groups with volumes in the same LSS must
not be formed at the same time.

6. When a FlashCopy Consistency Group timer expires before the "thaw"
command is received on the LSS, I/O activity will be allowed to resume on all
currently frozen volumes in the LSS. As a result, the copies of the volumes are
likely inconsistent.

7. When FCCGFREEZE is specified, if the FlashCopy pair failed to be established,
DFSMSdss will withdraw all FlashCopy relations previously established with
FCNOCOPY FCCGFREEZE option by the same DFSMSdss invocation.
DFSMSdss will also stop processing the rest of the COPY FCCGFREEZE
commands issued by the same invocation (e.g., in the same job step).

8. During a CGCREATED operation, or a FCFREEZE operation that ends in error,
DFSMSdss might issue a FlashCopy withdraw request for the source and target
volume. If either volume is attached at device address X'0000', the system fails
the FlashCopy withdraw operation with warning message ADR815W.
Processing continues.

For more information, about using the FCCGFREEZE keyword on the COPY
command, refer td“FCCGFREEZE” on page 328 |

For more information about the ACCESSVOLUME and FCCGVERIFY keywords on
the CGCREATED command, refer to [“ACCESSVOLUME” on page 277|and
[“FCCGVERIFY” on page 278)

For more information about FlashCopy Consistency Groups, refer tog/OS DFSMS
lAdvanced Copy Services|

Chapter 7. Managing data movement with DFSMSdss 137

Moving volumes with SnapShot

DFSMSdss can use SnapShot during a physical full volume copy operation when
the source and the target devices are in the same RAMAC Virtual Array (RVA).
SnapShot is much faster than traditional methods of data movement, especially
when you are moving large amounts of data.

For the best performance during full volume copy operations, specify the following
keywords:

* ADMINISTRATOR

* ALLDATA(¥)

* ALLEXCP

* PURGE

The performance improvement that is provided by these keywords is most
significant when DFSMSdss uses FlashCopy or SnapShot to perform the copy.

For more information about how to use the ADMINISTRATOR, ALLDATA,
ALLEXCP, and PURGE keywords, see [“Explanation of COPY Command|
[Keywords” on page 310

Designating SnapShot usage

The FASTREPLICATION(REQUIRED | PREFERRED | NONE) keyword tells
DESMSdss how you want SnapShot to be used. The default is
FASTREPLICATION(PREFERRED).

FASTREPLICATION(REQUIRED) specifies that DFSMSdss use fast replication such
as SnapShot to move data. If SnapShot cannot be used, DFSMSdss issues error
message ADRI38E and the copy operation fails. DFSMSdss does not try any other
methods of data movement.

Restriction: You cannot use the FASTREPLICATION(REQUIRED) and
CONCURRENT keywords together.

FASTREPLICATION(PREFERRED) specifies that DFSMSdss attempt to use
SnapShot before any other method to move data (even when you specify the
CONCURRENT keyword). If SnapShot cannot be used and you have specified the
CONCURRENT keyword, DFSMSdss attempts to use virtual concurrent copy. If
you have not specified the CONCURRENT keyword or if virtual concurrent copy
has failed, DFSMSdss uses traditional data movement methods to copy the data.

FASTREPLICATION(NONE) specifies that DFSMSdss not attempt to use SnapShot
to copy data. Instead, DFSMSdss attempts to use virtual concurrent copy if the
CONCURRENT keyword is specified. If virtual concurrent copy cannot be used,
DFSMSdss uses traditional data movement methods to move the volume.

For more information about the FASTREPLICATION keyword, see
[“FASTREPLICATION” on page 327/

Determining why SnapShot cannot be used

There may be times when you expect DFSMSdss to use native SnapShot to move
the data but SnapShot was not used. As far as you can tell, your volume meets all
the criteria for SnapShot use. Use the DEBUG(FRMSG(MINIMAL |
SUMMARIZED | DETAILED)) keyword to help you resolve this situation. Include

138 2/0S V2R1.0 DFSMSdss Storage Administration

this keyword to indicate the applicable fast replication message level (MIN, SUM,
or DTL) in your COPY command. The message level controls the type and amount
of information that DFSMSdss provides.

DEBUG(FRMSG(MIN | SUM | DTL)) directs DFSMSdss to issue an informational
message that indicates why SnapShot was not used. When
FASTREPLICATION(REQUIRED) is specified, the informational message is issued
in addition to the ADR938E message whether you have specified the
DEBUG(FRMSG(MIN | SUM | DTL)) keyword or not.

For more information about using the DEBUG keyword, see|'DEBUG” on page|
-20.

Moving volumes to like devices of equal capacity

When the source and target devices are of equal capacity, you can use logical or
physical copy processing. If you use logical processing, the source VIOC is not
copied to the target device. In this case, use ICKDSF to initialize the target device
with an appropriately sized VTOC, then perform the logical data set copy
operation.

If you use physical processing, the source VIOC is copied to the target device and
DFSMSdss might invoke ICKDSF to rebuild the VTOC index (if present on the
source and target devices). If you determine that the source VTOC is not large
enough for the target device, use ICKDSF to initialize the target device with an
appropriately sized VIOC, use logical data set copy to move the volume.

Moving volumes to like devices of greater capacity

When the target device is of greater capacity than the source (for example, if you
are moving from a 3390 Model 2 to a 3390 Model 3), you can use logical or
physical copy processing. If you use logical processing, the source VTOC is not
copied to the target device. In this case, use ICKDSF to initialize the target device
with an appropriately sized VTOC, then perform the logical data set copy
operation. If you do not expand the VTOC when moving to a larger volume,
DFSMSdss logical data set processing might fail.

If you use physical processing, the source VTOC is copied to the target device if
the target VTOC is within the range of the source device (for example, if you are
copying a 3390 Model 2 to a 3390 Model 3 and the VTOC on the 3390 Model 3
starts at or before cylinder 2226). In this case, DFSMSdss automatically rebuilds the
free-space information in the target VIOC or the indexed VTOC (if present) on the
target device to account for the larger size. If you determine that the source VTOC
is not large enough, do one of the following two things:

¢ Use ICKDSF to initialize the target device with an appropriately sized VTOC,
then use logical data set copy to move the volume.

* Use ICKDSF to initialize the target device with an appropriately sized VTOC
that is outside the range of the source device (for example, if you are copying a
3390 Model 2 to a 3390 Model 3, put the VTOC on the 3390 Model 3 at or after
cylinder 2227), and then use full volume copy to move the volume. In this case,
the size and location of the target VTOC are preserved and DFSMSdss
automatically rebuilds the free-space information in the target VIOC or the
indexed VTOC (if present).

Chapter 7. Managing data movement with DFSMSdss 139

Moving volumes to unlike devices

When moving data between unlike devices, you must use logical processing. If you
specify DATASET with the COPY command, DFSMSdss does a logical copy
operation. To copy all the data on a volume logically, you also need to specify
input volumes with LOGINDDNAME, LOGINDYNAM, INDDNAME, or
INDYNAM. LOGINDDNAME or LOGINDYNAM is required if you specify
SELECTMULTI.

Moving VM-format volumes

You can use DFSMSdss to move VM-format volumes that are accessible to your
z/0OS system. The volumes must have OS-compatible VTOCs starting on track
zero, record five. DFSMSdss can only retrieve device information from the
OS-compatible VTOC, and cannot interpret any VM-specific information on the
volume.

Use the CPVOLUME keyword and specify the range of tracks to be copied with
the TRACKS keyword. You can use concurrent copy to move the volume by
specifying the CONCURRENT keyword. Because DFSMSdss cannot check access
authorization for VM data, CP°VOLUME is only allowed with the
ADMINISTRATOR keyword.

Exercise caution when using DFSMSdss to copy VM-format volumes because
DFSMSdss does not serialize any VM data in any way. You cannot copy
VM-format volumes to OS-format volumes, nor can you copy OS-format volumes
to OS-format volumes.

140 z/0S V2R1.0 DFSMSdss Storage Administration

Chapter 8. Converting data to and from SMS management

DFSMSdss is the primary tool for converting data to and from SMS management.
Conversion can be done with or without data movement.

This topic is organized as follows:

“Evaluating conversion to SMS management”|discusses the advantages and
disadvantages of the two types of conversion.

“Conversion by data movement” on page 142 describes how to use the COPY
and DUMP/RESTORE commands to convert data sets fo SMS management.

“Conversion without data movement” on page 143| describes how to use the
CONVERTV command to convert volumes to SMS management.

+ [“Special data set requirements for conversion to SMS” on page 146 describes
some of the data sets that have special requirements for conversion to SMS
management.

* [“Converting from SMS management without data movement” on page 148]
describes how to use the CONVERTV command to convert volumes from SMS
management.

* [“Special data set requirements for conversion from SMS” on page 148|
describes some of the data sets that have special requirements for conversion
from SMS management.

Evaluating conversion to SMS management

When you convert data to SMS management, the first thing to consider is whether
to convert data sets with or without data movement. If you have SMS-managed
volumes with sufficient free space, you can convert data sets by simply moving
them from non-SMS-managed volumes to SMS-managed volumes. The same is also
true if you are converting data from SMS-management. Converting data sets to
SMS management by data movement is often preferable because it allows the
system to place the data sets for you. This ensures that the data sets are placed on
volumes in storage groups that can meet the availability and performance
requirements of the data set.

If, however, you do not have sufficient free space on your SMS-managed volumes
to convert by data movement, you might have to convert data sets without data
movement. The drawback to this method of conversion is that it does not allow the
system to place data sets for you. You must ensure that the storage group in which
you place the volume can meet the availability and performance requirements of
the data sets.

Regardless of how you convert to SMS management, you must determine the
eligibility for conversion of your data sets and volumes prior to conversion.

Data sets ineligible for conversion to SMS
The following data sets cannot be converted to SMS management:
* Absolute track allocation data sets
* Direct with OPTCD=A
¢ GDS with candidate volumes
* Indexed sequential data sets

© Copyright IBM Corp. 1984, 2015 141

Model DSCBs

SYSI storage index data sets (SYS1.STGINDEX)

Indirectly cataloged data sets

Uncataloged, multivolume data sets

VSAM data sets not cataloged in an integrated catalog facility catalog
VVDS/VTOCIX

Unmovable data sets

Note:

1.

Using the CONVERTV command with the SMS and TEST keywords identifies
ineligible data sets without actually converting any data.

VVDS/VTOCIX data sets can be SMS-managed, but DFSMSdss cannot be used
to convert them, except when using the CONVERTV command to convert the
volume that they are on.

Data sets ineligible for conversion from SMS

The following data sets cannot be converted from SMS management:

Extended-format sequential data sets
Extended-format VSAM data sets
Indirectly cataloged data sets

VSAM data sets that have record level sharing (RLS) information associated with
them

VSAM base cluster or alternate index with a component with greater than 255
extents.

Note:

1.

Using the CONVERTV command with the NONSMS and TEST keywords
identifies ineligible data sets without actually converting them.

VVDS/VTOCIX data sets can be non-SMS-managed, but DFSMSdss cannot be
used to convert them, except when using the CONVERTV command to convert
the volume that they are on.

Volumes eligible for conversion to SMS

A volume is eligible for conversion if it:

Is a DASD volume

Is permanently mounted and accessible online

Has an indexed VITOC

Is defined in an SMS storage group in an active configuration

Conversion by data movement

By using the logical data set COPY or DUMP/RESTORE command, you can move
data sets between non-SMS-managed and SMS-managed volumes. When moving
data sets to SMS-managed volumes, COPY and RESTORE commands invoke ACS
to assign classes to the data sets. This type of conversion to SMS allows the data
sets to be placed on the most appropriate SMS-managed volume.

Converting to SMS management by data movement

When moving data sets to SMS-managed volumes, you can use the COPY or
RESTORE command. You can specify storage and management class names with

142 z/0S V2R1.0 DFSMSdss Storage Administration

the STORCLAS and MGMTCLAS keywords. You can also specify output volumes
with OUTDDNAME and OUTDYNAM. DFSMSdss passes the class names and
volume serial numbers to ACS, which might use them in determining the classes
and placement of the data set.

This method of converting data sets to SMS management is similar to moving data
sets in an SMS-managed environment as described in [“Moving SMS-managed datal
lsets” on page 123

If you use the COPY or RESTORE command on a data set that is ineligible for
SMS management and if a non-SMS-managed volume has been specified in the
output volume list, DEFSMSdss puts it on a non-SMS-managed volume. However, if
you specify STORCLAS and BYPASSACS with the COPY or RESTORE command
for a data set that is ineligible for SMS management, the copy or restore operation
fails.

For data sets cataloged outside the standard order of search, use the INCAT
keyword on the COPY or DUMP command to identify what catalog to search. Use
the SELECTMULTI keyword on the COPY or DUMP command to convert
multivolume data sets. This allows you to specify only the volume with the
primary component on the LOGINDD or LOGINDY parameter. You can use the
SPHERE keyword on the COPY DUMP/RESTORE command to convert entire
VSAM spheres (if you use SPHERE on the RESTORE command, you must specify
it on the corresponding dump as well).

Note that neither the COPY nor the RESTORE command invokes the data class
ACS routine, so no data class is assigned. To cause the data class ACS routine to be
invoked, create a new dataset either with the IDCAMS DEFINE command or a JCL
DD statement with DISP=(NEW,CATLG).

Conversion from SMS management by data movement

To take a data set out of SMS management with the COPY or DUMP/RESTORE
command, you should specify the BYPASSACS and NULLSTORCLAS keywords.
This forces DFSMSdss to make the data set non-SMS-managed.

Conversion without data movement

Conversion without data movement is divided into two phases: conversion of data
sets and conversion of volumes. Convert data sets and the volumes they reside on
without moving data by using the DFSMSdss CONVERTV command. You should
set up RACF FACILITY class authorization to limit the people who can use the
CONVERTV command. When you use the CONVERTV command to perform
conversion, it attempts to convert all the data sets on the volume. After all the data
sets are processed, the volume is placed in one of the following three states:

* CONVERTED—the volume and its data sets are converted to SMS management.
A volume can be placed in this state with the CONVERTV command and the
SMS keyword.

* INITIAL—new allocations cannot be made to the volume and, although users
can access their data sets, the data sets cannot be extended to other volumes. A
volume may be placed in this state because you have used the CONVERTV
command with the PREPARE keyword to reduce activity to the volume prior to
conversion. A volume may also be placed in this state if you are attempting to
convert it but it contains data sets that are not eligible for conversion.

Chapter 8. Converting data to and from SMS management 143

144

* NONSMS—the volume and its data sets were taken out of the CONVERTED or
the INITIAL state and are non-SMS-managed. A volume can be placed in this
state with the CONVERTV command and the NONSMS keyword.

Simulating conversion

Before you convert a volume to SMS management, you should simulate the
conversion to ensure that all the data sets on the volume are eligible for conversion
to SMS. In addition, simulating conversion shows you the classes ACS would
assign to the data sets eligible for conversion.

You can simulate conversion by using the CONVERTV command with the SMS
and TEST keywords. If the volume is ineligible for conversion, the data sets on the
volume are still examined to determine their eligibility for conversion (provided
the volume is permanently mounted and online).

When you use CONVERTV SMS TEST, you are in the ACS CONVERT
environment. Only the storage class and management class ACS routines are
executed. For a list of variables available to ACS routines during CONVERTV
processing, see [“ACS variables available during RESTORE and CONVERTV]
[processing” on page 181/

Simulated conversion creates a report that identifies data sets ineligible for
conversion. For a sample of this report, see [“SMS report” on page 146.|Note that
this report indicates the management class and storage class that would be
assigned to each data set. Careful analysis of this report allows you to determine if
your ACS routines will assign appropriate classes to the data sets before doing the
actual conversion.

Move data sets unsupported by SMS off the volume prior to actual conversion.
Other data sets (for example, uncataloged data sets) can be made eligible for
conversion by taking some action (for example, using the CATALOG keyword to
catalog uncataloged data sets).

If you have ineligible data sets on a volume and you run the CONVERTV function
with SMS, DFSMSdss still converts the eligible data sets on the volume. It then
puts the volume in the INITIAL state. You must then take action to make the
ineligible data sets eligible for conversion or move them off the volume. Once all
the ineligible data sets are dealt with, you can run CONVERTV processing again to
complete the conversion.

Preparing a volume for conversion

Before you convert a volume to SMS management, you should reduce the amount
of activity to the volume being converted. The CONVERTV command with the
SMS keyword automatically places the volume in a state of reduced activity before
doing the actual conversion. You might, however, want to reduce activity without
doing the actual conversion (for example, if you want to simulate conversion). Do
this by specifying the PREPARE keyword on the CONVERTV command.

Specifying PREPARE prevents data sets from extending and new allocations from
being made on the volume. However, users can still access the data on the volume
from either the SMS system or a system sharing the volume.

When you use PREPARE, a report is generated that tells you the volumes that
have been placed in the INITIAL state. If any of the volumes are ineligible to be

z/0OS V2R1.0 DFSMSdss Storage Administration

placed in the INITIAL state, the report also lists them and the reason they were
ineligible (for example, they did not have an indexed VTOC or were offline).

If you use the TEST keyword with PREPARE, you still get the report indicating
which volumes would and would not be placed in the INITIAL state, but the
PREPARE is not actually performed. You can then take some action to make those
volumes eligible or simply not run PREPARE against those volumes.

The CONVERTV command with the NONSMS keyword reverses the effect of
PREPARE and takes a volume out of the INITIAL state.

Converting to SMS management without data movement

To convert data to SMS management, use the CONVERTV command with the SMS
keyword. (Because SMS is the default for the CONVERTV command, you can
simply specify CONVERTV.) Of course, the volume and all its data sets must be
eligible for conversion to successfully run CONVERTV with SMS.

If the volume is eligible for conversion, the INITIAL indicator on the volume is set.
This means the volume is in the same state as when you specify the CONVERTV
command with the PREPARE keyword. When a volume has its INITIAL indicator
set on, DFSMSdss begins processing the data sets on the volume.

If a data set is eligible for conversion, ACS is called to assign SMS classes to the
data set. When you use the CONVERTV command with SMS, you are in the ACS
CONVERT environment. The storage class ACS routine is executed first. If the
storage class assigned is not null, the management class ACS routine is executed.
For a list of variables available to ACS routines during CONVERTV processing, see
“ACS variables available during RESTORE and CONVERTYV processing” on page|

5]

RACEF checks if the RESOWNER of a given data set is authorized to define the
data set with the given STORCLAS, MGMTCLAS, or both. Ensure that the
RESOWNER has the correct authority.

If no errors occur, the catalog entry for the data set is updated to include the
classes. For VSAM data sets, the catalog entry is updated to indicate that it is
SMS-managed. For non-VSAM data sets, a catalog entry is added that indicates the
data set is SMS-managed. After the catalog updates and additions are successfully
made, the data set’s VTOC entry is updated to indicate it is SMS-managed.

If a VSAM data set has the guaranteed-space attribute, a check is done to verify
the eligibility of its candidate volumes. If this check fails, the data set is not
converted to SMS management. Non-VSAM data sets have candidate volumes in
their catalog entries made nonspecific.

When DFSMSdss encounters a data set that is not eligible for conversion, it does
not process the data set, but it continues to process other data sets on the volume.
The only time conversion of data sets stops is when an error prevents ACS from
returning class information for any data set.

DFSMSdss does not mark a volume as SMS-managed until all the data sets on the
volume are SMS-managed. If a volume contains data sets that are ineligible for
conversion, you must take some action to make them eligible or move them off the
volume. You can then resubmit the CONVERTV command to convert any data sets
not already converted and mark the volume as an SMS-managed volume.

Chapter 8. Converting data to and from SMS management 145

On subsequent invocations of CONVERTV processing, DFSMSdss processes only
those data sets not yet converted unless you specify the REDETERMINE keyword.
If REDETERMINE is specified, DFSMSdss processes data sets already converted if
their SMS management class or SMS storage class do not match those returned by
the current ACS routines and data sets not yet converted. You may want to do this
if your ACS routines changed since the last time you ran the CONVERTV
operation on the volume.

SMS report

shows a sample report generated by DFSMSdss during CONVERTV SMS

PAGE 0001 5695-DF175
CONVERTV -

SMS -
DYNAM(D9S060)
ADR101I (R/I)-RIO1 (1),
ADR109I (R/I)-RIO1 (01),
ADRO16I (001)-PRIME(01),
ADROO6I (001)-STEND(01),
ADR860I (001)-KVSMS(01),
ADR873I (001)-KVSMS(01),
ADR8771 (001)-KVSMS(01),

ADR885I (001)-KVSMS(01),

PAGE 0002 5695-DF175
ADR892I (001)-KVRPT(01),

ADROO6I (001)-STEND(02),
ADRO13I (001)-CLTSK(01),
ADRO12I (SCH)-DSSU (1),

processing.
~
DFSMSDSS V2R10.0 DATA SET SERVICES 1999.211 14:55
TASKID 001 HAS BEEN ASSIGNED TO COMMAND 'CONVERTV'
1999.211 14:55:22 INITIAL SCAN OF USER CONTROL STATEMENTS COMPLETED.
RACF LOGGING OPTION IN EFFECT FOR THIS TASK
1999.211 14:55:22 EXECUTION BEGINS
PROCESSING BEGINS ON VOLUME D9S060
VOLUME D9S060 IN STORAGE GROUP XFMT9SSG IS ELIGIBLE FOR CONVERSION TO SMS MANAGEMENT
THE FOLLOWING DATA SETS ON VOLUME D9S060 WERE SUCCESSFULLY PROCESSED
PUBSEXMP.ESDS.SO1 CATALOG: TEST.CAT.PUBSEXMP
STORCLAS: XFMT9SSC MGMTCLAS: NONE
PUBSEXMP.KSDS.SO1 CATALOG: TEST.CAT.PUBSEXMP
STORCLAS: XFMT9SSC MGMTCLAS: NONE
TEST.CAT.PUBSEXMP CATALOG: TEST.CAT.PUBSEXMP
STORCLAS: XFMT9SSC MGMTCLAS: NONE
PUBSEXMP.SAM.S01 CATALOG: TEST.CAT.PUBSEXMP
STORCLAS: XFMT9SSC MGMTCLAS: NONE
PUBSEXMP.PDS.S01 CATALOG: TEST.CAT.PUBSEXMP
STORCLAS: XFMT9SSC MGMTCLAS: NONE
VOLUME D9S060 HAS BEEN SUCCESSFULLY CONVERTED TO SMS MANAGEMENT
DFSMSDSS V2R10.0 DATA SET SERVICES 1999.211 14:55
THE STATUS OF EACH VOLUME IS AS FOLLOWS
VOLUME FINAL STATUS REASON FOR FAILURE
D9S060 - CONVERTED SMS
1999.211 14:55:23 EXECUTION ENDS
1999.211 14:55:23 TASK COMPLETED WITH RETURN CODE 0000
1999.211 14:55:23 DFSMSDSS PROCESSING COMPLETE. HIGHEST RETURN CODE IS 0000)

Figure 3. SMS Report

For details on the messages, refer to[z/OS MVS System Messages, Vol 1 (ABA-AOM))

Special data set requirements for conversion to SMS

Some data sets have special requirements for conversion to SMS management. The
sections below describe the special considerations for converting these data sets to
SMS management.

VSAM sphere eligibility

A VSAM sphere is considered to be a single data set by the CONVERTV
command. As a result, either all the data sets of the sphere are converted or none
of them are.

If any of the following parts are ineligible for conversion, then all the clusters that
compose the sphere are ineligible for conversion:

e Components of a base cluster
* Alternate indexes related to the base cluster
* Alternate index components

* Paths relating alternate indexes to the base cluster

146 z/0S V2R1.0 DFSMSdss Storage Administration

You must direct all parts of a VSAM sphere (the base cluster, base cluster
components, alternate indexes, alternate index components, and paths) to the same
catalog by using an alias. If they are not directed to the same catalog, the sphere
cannot be converted to SMS management. To correct this problem you can either
rename the data sets in the sphere, or add or delete catalog aliases, and rerun the
CONVERTV command.

Multivolume data sets

If you do not specify SELECTMULT]I, all volumes must be included in DDNAME
or DYNAM volume lists.

If you specify input volumes (with either the DDNAME or DYNAM volume list), a
data set is selected based on the following criteria:

* When you either specify SELECTMULTI(ALL) or specify input volumes without
specifying the SELECTMULTI keyword, all of the volumes that contain a part of
the non-VSAM data set or VSAM base cluster must be in the volume list.

* When you specify SELECTMULTI(ANY), any part of the non-VSAM data set or
VSAM base cluster can be on a volume in the volume list.

* When you specify SELECTMULTI(FIRST), the volume list must include the
volume that contains either the first part of the non-VSAM data set or the
primary data component of the base cluster for a VSAM sphere.

Multivolume data sets are not eligible for conversion if any part of the data set
resides on volumes that:

* Do not have indexed VTOCs

* Are not defined in an SMS storage group
 Are defined to a different storage group

* Are not permanently mounted and online

If the previous requirements are satisfied, DFSMSdss verifies that all the volumes
on which the data set resides:

* Are permanently mounted and online
* Have indexed VTOCs

* Are defined to the same storage group

If all these criteria are met, the data set is converted to SMS management.

Note:

1. If SELECTMULTI(FIRST) or SELECTMULTI(ANY) is specified, volumes not
specified in the DDNAME or DYNAM volume lists are put in the INITIAL
state following a successful conversion of the data set to SMS (unless the
volume is already in the INITIAL or SMS state.)

2. If SELECTMULTI is not specified or if SELECTMULTI(ALL) is specified,
volumes not specified in the DDNAME or DYNAM volume lists are not put in
the INITIAL state.

DFSMSdss cannot determine whether or not a volume being converted is a
candidate volume for one or more data sets in the system. If such a volume is
converted, DFSMSdss cannot ensure consistent conversion for all of the volumes of
the data set (or sets) for which the volume is a candidate. This can result in a data
set having both SMS-managed and non-SMS-managed volumes in its volume list,
which can cause the data set to become unusable.

Chapter 8. Converting data to and from SMS management 147

To avoid this situation when performing CONVERTV operations, if you specify
any volume of a multivolume data set in the list of volumes to be converted,
ensure that you also include at least one of the primary volumes of the data set.
This allows DFSMSdss to ensure that all of the volumes of the data set are
converted consistently.

GDG data sets

Generation data groups (GDGs) require special consideration while being cataloged
or uncataloged during SMS conversion. Uncataloged GDGs are converted to SMS
management, but are left uncataloged. Messages ADR8771 and ADRS879I indicate
NOT CATALOGED for the catalog name in the data set name lists for SMS
processing.

Temporary data sets

Data set VIOC entries of temporary data sets are updated to indicate uncataloged
SMS status.

VTOC and VVDS

Data set VTOC entries for the VTOC, VTOC index, and VVDS are updated to SMS
management.

Converting from SMS management without data movement

If you want to take volumes out of SMS management, you can use the
CONVERTV command with the NONSMS keyword. All volumes and most data
sets are eligible for NONSMS processing. After you execute this command, the
volume indicators that designate the volume as an SMS-managed volume are
turned off. The active SMS configuration should be updated to remove the volume
from its storage group, otherwise data set allocations to the volume will fail.
Thereafter, only non-SMS-managed data sets can be allocated to the volume.

As with the SMS keyword, you can specify the TEST keyword with NONSMS. No
conversion is actually done, but a report is generated that identifies the data sets
that are and are not eligible for conversion from SMS management. The report also
indicates whether the volume as a whole is eligible for conversion from SMS
management.

To convert a data set from SMS management, the data set’s classes are deleted
from its catalog entry. Nonspecific volumes also are deleted from the catalog entry.
For a VSAM data set, the SMS-related items are deleted from the catalog entry. For
a non-VSAM data set, the catalog entries are updated to remove the SMS
information. After the catalog and VVDS updates and deletions are made, the
VTOC entry is updated to be non-SMS-managed.

Note: You cannot specify the CATALOG and REDETERMINE keywords with
NONSMS.

Special data set requirements for conversion from SMS

When being converted from SMS management, some data sets require special
consideration. The following sections discuss some of the special requirements for
converting data sets from SMS management.

148 z/0S V2R1.0 DFSMSdss Storage Administration

Multivolume data sets

All pieces of a multivolume data set must be converted from SMS management at
the same time. You can do this by using the SELECTMULTI keyword.

If you do not specify SELECTMULTI then you must specify all the volumes in the
DDNAME or DYNAM volume list on which the data set resides.

If you specify input volumes (with either the DDNAME or DYNAM volume list)
for NONSMS processing, a data set is selected based on the following criteria:

* When you either specify SELECTMULTI(ALL) or specify input volumes without
specifying the SELECTMULTI keyword, all of the volumes that contain a part of
the non-VSAM data set or VSAM base cluster must be in the volume list.

* When you specify SELECTMULTI(ANY), any part of the non-VSAM data set or
VSAM base cluster can be on a volume in the volume list.

* When you specify SELECTMULTI(FIRST), the volume list must include the
volume that contains the first part of either the non-VSAM data set or the
primary data component of the base cluster for a VSAM sphere.

Those volumes not included in the volume list will be placed in the INITIAL state.
Being in the INITIAL state locks all allocations to the volume until all data sets
residing on it are converted.

DFSMSdss cannot determine whether or not a volume being converted is a
candidate volume for one or more data sets in the system. If such a volume is
converted, DFSMSdss cannot ensure that all of the volumes of the data set (or sets)
for which the volume is a candidate, are converted consistently. This can result in a
data set having both SMS-managed and non-SMS-managed volumes in its volume
list, which can cause the data set to become unusable.

To avoid this situation when performing CONVERTYV operations, if you specify
any volume of a multivolume data set in the list of volumes to be converted,
ensure that you also include at least one of the primary volumes of the data set.
This allows DFSMSdss to ensure that all of the volumes of the data set are
converted consistently.

GDG data sets

When you convert from SMS management, generation data group (GDG) data sets
require special consideration with regard to cataloging. Data sets marked as
“deferred roll in and rolled out” are uncataloged.

Temporary data sets
Data set VTOC entries for temporary data sets are updated to non-SMS status.

VTOC and VVDS

Data set VIOC entries for the VTOC, VTOC index, and VVDS are updated to
non-SMS status.

Special considerations for using non-SMS-managed targets

When moving to non-SMS-managed targets, there are some special considerations
for certain data sets:

* Extended-format data sets cannot be moved to a non-SMS-managed target.

Chapter 8. Converting data to and from SMS management 149

* COPY with DELETE and without RENAMEUNCONDITIONAL is not supported
for data sets with DFM attributes. DFM attributes are not maintained for
non-SMS data sets.

150 z/0S V2R1.0 DFSMSdss Storage Administration

Chapter 9. Managing space with DFSMSdss

You can use DFSMSdss to help manage your DASD space. This topic discusses
how to reclaim DASD space, and how to reduce fragmentation on volumes.

Reclaiming DASD space

You can use DFSMSdss to reclaim DASD space in the following ways:

* Releasing unused space in data sets

* Compressing partitioned data sets to consolidate unused space at the end of the
data sets and then releasing the unused space

* Deleting unwanted data sets

¢ Combining data set extents.

Releasing unused space in data sets

The RELEASE command releases allocated but unused space from all sequential,
partitioned, and extended-format data sets that you select with INCLUDE,
EXCLUDE, or BY criteria. For an explanation of these criteria, see thapter 16]
[“DFSMSdss filterine—choosing the data sets you want processed,” on page 259
DFSMSdss selects only data sets that have space that can be released. You can also
use ISMF to build a list of data sets based on the amount of unused space and to
invoke DFSMSdss to release the unused space in them.

Exclude data sets whose last block pointer in the data set VTOC entry is not
maintained in the VTOC by using the EXCLUDE keyword. This can occur if you
use an access method other than BSAM, QSAM, BPAM, or VSAM. DFSMSdss does
not release space for data sets whose last block pointer in the data set entry is 0.

The following options can help you use the release function more effectively:

MINSECQTY(n)
Allows you to specify that space not be released unless the user’s
secondary allocation is greater than or equal to n. In this way, you ensure
that the user can still add to the data set after the release. The default
value for n is 1.

MINTRACKSUNUSED(n)
Allows you to specify that space not be released unless the number of
unused tracks is greater than or equal to n. Without
MINTRACKSUNUSED, space is released if the data set has one or more
unused tracks.

Note: When space in a data set is released, all unused space is released, not just
the amount beyond the minimum unused (as specified by MINTRACKSUNUSED).

To protect the user, DFSMSdss does not release any space in a data set if:

e The data set has the maximum number of used extents. A data set with the
maximum number of allocated extents but fewer than the maximum number of
used extents will have the unused space released.

* The cylinder-allocated data set has unused tracks but not an entire unused
cylinder.

© Copyright IBM Corp. 1984, 2015 151

152

* The data set’s name begins with SYS1, unless the PROCESS(SYS1) keyword is
specified. To limit the use of PROCESS, you need to set up a RACF FACILITY
class profile.

Compressing a PDS

The COMPRESS command compresses a PDS on a specified volume. Compression
removes unused space between members in a partitioned data set. This recovered
space is then available for reuse at the end of the data set. Depending on the
filtering criteria you specify, you can compress all the partitioned data sets or only
some of the data sets. This command is useful for compressing system partitioned
data s