
IBM Workload Automation
Developer's Guide: Driving IBM Workload Automation

Version 9.5 Fix Pack 7

ii

Note
Before using this information and the product it supports, read the information in Notices on page xl.

iii

This edition applies to version 9, release 5, modification level 0 of IBM Workload Scheduler (program number 5698-WSH) and

to all subsequent releases and modifications until otherwise indicated in new editions.

iv

Contents
About this guide...v

What is new in this release... v
Accessibility ...v
Technical training... v
Support information... v

Chapter 1. Introduction... 7
Chapter 2. Driving IBM Workload Scheduler with REST
APIs.. 8
Chapter 3. Java API..9

Naming conventions..9
API detailed specification..9
IBM Workload Scheduler API projects............................9

Java source tree (src)..10
Java libraries.. 11
Other project folders.. 11
build.xml..12
Creating a project from scratch............................ 12
Creating a project from an API example...............12
Example IBM Workload Scheduler API
project... 13

Connecting to the products.. 15
Examples for IBM Workload Scheduler........................16

Working with objects in the database...................16
Working with objects in the plan...........................19
Working with event rules in the database.............20

Examples for IBM Z Workload Scheduler.....................24
Adding a job stream to the plan after modifying its
contents.. 27
Using the API to work with z/OS JCL....................36

Reference material...38
Further information..39

Notices...xl
Index... 44

v

About this guide
Provides an overview of the guide, with information about changes made to it since the last release, and who should read it.

It also supplies information about obtaining resources and support from IBM.

Developer's Guide: Driving IBM Workload Automation introduces you to the application programming interfaces available to

drive IBM Workload Automation products from your own applications.

What is new in this release
Learn what is new in this release.

For information about the new or changed functions in this release, see IBM Workload Automation: Overview, section

Summary of enhancements.

For information about the APARs that this release addresses, see the IBM Workload Scheduler Release Notes at IBM

Workload Scheduler Release Notes and the Dynamic Workload Console Release Notes at Dynamic Workload Console

Release Notes. For information about the APARs addressed in a fix pack, refer to the readme file for the fix pack.

New or changed content is marked with revision bars.

Accessibility
Accessibility features help users with a physical disability, such as restricted mobility or limited vision, to use software

products successfully.

With this product, you can use assistive technologies to hear and navigate the interface. You can also use the keyboard

instead of the mouse to operate all features of the graphical user interface.

For full information, see the Accessibility Appendix in the IBM Workload Scheduler User's Guide and Reference.

Technical training
Cloud & Smarter Infrastructure provides technical training.

For Cloud & Smarter Infrastructure technical training information, see: http://www.ibm.com/software/tivoli/education

Support information
IBM provides several ways for you to obtain support when you encounter a problem.

If you have a problem with your IBM software, you want to resolve it quickly. IBM provides the following ways for you to

obtain the support you need:

http://www.ibm.com/support/docview.wss?uid=ibm10733052
http://www.ibm.com/support/docview.wss?uid=ibm10733052
http://www.ibm.com/support/docview.wss?uid=ibm10733054
http://www.ibm.com/support/docview.wss?uid=ibm10733054
http://www.ibm.com/software/tivoli/education

vi

• Searching knowledge bases: You can search across a large collection of known problems and workarounds,

Technotes, and other information.

• Obtaining fixes: You can locate the latest fixes that are already available for your product.

• Contacting IBM Software Support: If you still cannot solve your problem, and you need to work with someone from

IBM, you can use a variety of ways to contact IBM Software Support.

For more information about these three ways of resolving problems, see the appendix about support information in IBM

Workload Scheduler: Troubleshooting Guide.

Chapter 1. Introduction to driving IBM Workload Automation
Provides an overview of the entire publication.

Developer's Guide: Driving IBM Workload Automation describes the application programming interfaces which you can use

to drive IBM Workload Automation products from your own applications.

Use the REST API application programming interface to create your own GUI or command-line interface to perform all

the functions of the command-line programs composer, conman, and planman and the Dynamic Workload Console. This

includes performing the following tasks in IBM Workload Scheduler and IBM Z Workload Scheduler:

• Modifying objects in the database

• Submitting workload

• Monitoring the plan

• Performing actions on the plan, such as remedial actions in the event that a job fails

The information about the application programming interfaces is organized as follows:

• Driving IBM Workload Scheduler with REST API on page 8

7

8

Chapter 2. Driving IBM Workload Scheduler with REST API
IBM Workload Scheduler provides a set of fully functional APIs that are implemented based on Representational State

Transfer (REST) services. The REST API helps you easily integrate workload scheduling capabilities with external products

and solutions. The same product functionality covered by the existing J2EE API is available with the REST API. The REST

API is programming language independent and favors easier network configuration and firewall traversal. With the APIs, you

can exploit heterogeneous environments and provide new automation opportunities with direct impact on productivity. The

following are some examples or scenarios where the APIs can be implemented:

• Create your own graphical interface to create and modify scheduling definitions and update objects in the plan.

• Update definitions or plan objects within a script for integration or automation.

• When a specific event occurs within an external product, you can automatically submit a batch workload through IBM

Workload Scheduler.

• In a managed file transfer solution, when a specific file arrives, you can submit one or more job flows that elaborate

the file, closing the loop on your business process, whether it be bank transactions, a payroll process, or report

generation. Your external managed file transfer product starts the business process and IBM Workload Scheduler

takes care of the processing, assuring that it be monitored with the rest of the processes from a single point of

control and eventually linked with other processes.

The IBM Workload Scheduler REST API provides several services to administer engines, event rules, workload modelling,

plans, and security.

After installing your master domain manager or backup master domain manager, you can access the available REST API

services by connecting to the following URL:

https://hostname:port_number/twsd

where,

hostname

The hostname of the master domain manager or the backup master domain manager.

port_number

The HTTPS port number of the master domain manager or backup domain manager. The default is 31116.

You can also access some IBM Workload Scheduler REST API samples here: REST API samples.

https://github.com/WorkloadAutomation/TWS_REST_API_samples

Chapter 3. Driving IBM Workload Automation with the Java™
API
This chapter describes the J2EE Application Programming Interface (API), which uses Enterprise Java™ Beans to drive IBM

Workload Scheduler and IBM Z Workload Scheduler.

You can use the Java API to run all the tasks available in:

• the Dynamic Workload Console

• composer

• conman

• planman

Naming conventions
The naming conventions for the Java™ objects are quite straightforward. For example, to determine if a specific job definition

in the database uses a command or a script, you use a method called isCommand in a class called JobDefinition.

The most important convention to remember is that an object in the database is differentiated from an object in the plan by

the suffix "InPlan" to the object class name.

API detailed specification
Gives information on how the Javadoc API reference help can be accessed.

The full specification for the Java™ beans can be found in the Javadoc API reference online help. This is where all classes

and methods are specified in detail. The full specification for the Java beans can be consulted in one of these ways:

• From the help of the IBM Workload Scheduler Integration Workbench, expand Reference and select API reference

• Open the following HTML file: <TWA_home>/TWS/APIs/doc/Javadoc/index.html

To obtain a description of the use of the different panes of the Javadoc API panel, click Help.

Classes in the Deprecated category should not be used.

IBM Workload Scheduler API projects
Describes API projects.

API projects

The projects here described are intended to connect to an instance of the corresponding version of IBM Workload Scheduler

and interact with it using methods provided by Java™ API.

9

Developer's Guide: Driving IBM Workload Automation

10

Structure of an API project

API project Wizards provide a structure containing everything you must need to connect to the required IBM Workload

Scheduler instance:

Java source tree (src) on page 10

Separate directories for the source and class files.

Java libraries on page 11

A JRE System library and separate libraries are available for the IBM Workload Scheduler object and runtime

jars.

A keys directory on page 11

A directory containing *.jks file needed to access through the IBM Workload Scheduler secure login.

A config directory on page 11

A directory containing all the configuration files you need to specify to connect to IBM Workload Scheduler.

One or more Java™ compilation units on page 10

A compilation unit includes a class that implements the Java™ interface for the connection to IBM Workload

Scheduler. Another is an empty compilation unit with the classpath already configured and ready to be

completed with the program logics you need.

build.xml on page 12

A standard ANT build file that you modify to suit your requirements.

Creating API projects

You create API projects in one of two ways:

Creating a project from scratch on page 12

You run a wizard, supplying information about what sort of project you want to create.

Creating a project from an API example on page 12

From a list of examples you select an API project similar to the project you want to create.

You then edit the new project so that it carries out the required task.

Java™ source tree (src)
Describes the Java™ source tree.

When you create an API project, it is set up as a Java™ project with separate folders for source and class files. The source

folder is named src. It contains the Java™ code of the application.

A few Java™ classes are also created together with the new project.

Follow the IBM Workload Scheduler Java API reference to understand which method you need to implement. For logging and

tracing in your code, use standard JSR-047 Java™ Logging APIs.

Chapter 3. Driving IBM Workload Automation with the Java™ API

Java™ libraries
Describes the Java™ libraries.

IBM Workload Scheduler API projects are created with the following libraries:

Default JRE System library

Even if the default JRE is set by default, remember that the IBM Workload Scheduler event processor runs using

IBM JDK version 1.5.

Use of IBM JDK version 1.5 is recommended for IBM Workload Scheduler API projects.

IBM Workload Scheduler library

This library contains all the IBM Workload Scheduler jars needed to implement IBM Workload Scheduler plug-

ins or to use IBM Workload Scheduler APIs.

The library also defines the access rules for the classes in the jars: public APIs are defined as Accessible, while

internal classes are defined as Discouraged.

IBM Workload Scheduler Runtime library

This library contains all the IBM Workload Scheduler jars needed at runtime by API based applications

Use of discouraged classes will be marked with compiler warnings by default. In any case the use of these

classes is not supported.

Additional libraries needed for the plug-in Java™ code can be copied into the lib folder and added to the Java™ build path.

More details of these libraries are given in the Integration Workbench help.

Related links

Other project folders on page 11

Other project folders
Describes the other project folders.

config

Use this folder to store additional configuration files (such as property files) that the IBM Workload Scheduler

administrator will need to edit for operation.

keys

This folder is used to store the *.jks key files needed to connect using the IBM Workload Scheduler secure

login.

Java build path on page 11

11

Developer's Guide: Driving IBM Workload Automation

12

build.xml
Describes the build.xml file created for an API project.

This is a standard ANT build file. You can modify it according to your needs.

Collected links

Other project folders on page 11

Creating a project from scratch
Describes how to create an API project from scratch.

With the Integration Workbench follow these steps to create API projects from scratch:

1. From the Integration Workbench select Help →; Help Contents

2. Expand IBM Workload Scheduler Integration Workbench and then Integration workbench

3. Expand Driving IBM Workload Automation

4. Select Generating an API project

5. The steps required to create the project are listed. Read them to understand what to do.

6. Follow the instructions to create the project. Integration Workbench creates a library containing all the product jars.

Use your knowledge of Java™ products to create all the necessary coding and infrastructure to run the API.

Creating a project from an API example
Describes how to create an API project from an example.

Using the Integration Workbench you can create projects based on provided examples. Using this method you avoid the need

to create the full API project structure from scratch. You choose an example which most approximates your requirements

and then modify it accordingly.

To read how to use this facility, follow these steps:

1. From the Integration Workbench select Help →; Help Contents

2. Expand IBM Workload Scheduler Integration Workbench and then Integration workbench

3. Expand Driving IBM Workload Automation

4. Select Creating a API project by example

5. Create the project, following the instructions. Integration Workbench creates a project containing the full

infrastructure and code for the chosen API.

6. To understand more about the API, open the project, select Doc and double-click index.htm

The examples you can choose from
Details the API example projects you can use as a template.

The examples you can select from are as follows:

Chapter 3. Driving IBM Workload Automation with the Java™ API

AddEventRule

Work with event rules in the database.

MakeQueryJobsOnPlan

Work with dynamic scheduling job instances in the plan.

MakeQueryOnPlan

Work with objects in the plan.

MakeZOSQueryOnPlan

Work with objects in the plan for z/OS®.

RerunJobInPlan

Submit a job stream instance into the current plan rerun.

SubmitJobInPlan

Submit a job stream instance into the current plan.

Example IBM Workload Scheduler API project
Provides an example of an IBM Workload Scheduler API project.

The following figure shows the typical structure of a new IBM Workload Scheduler Java API project:

13

Developer's Guide: Driving IBM Workload Automation

14

The structure shown is for a Java API project named AddEventRule.

The Java™ classes contained in the src folder are described in Java™ source tree (src) on page 10.

The Java™ Build Path of the plug-in project is described in Java™ build path on page 11.

The role and contents of other project folders are described in Other project folders on page 11.

The ANT build.xml file is described in build.xml on page 12.

Java™ source tree (src) on page 10

Java™ build path on page 11

Chapter 3. Driving IBM Workload Automation with the Java™ API

Other project folders on page 11

build.xml on page 12

Connecting to the products
Describes how to implement a connection to the IBM Workload Automation products using the API.

To connect to the products, you need to set the Connection Parameters to connect either to the IBM Workload Scheduler

master domain manager (where there is a Connector installed) or to the IBM Z Workload Scheduler connector.

If you have created your project from an example, take the following steps, depending on which engine you are connecting to:

Connecting to the IBM Workload Scheduler master domain manager

1. From the Integration Workbench select your project

2. Expand Config

3. Edit the TWSConfig.properties file to obtain the correct parameters for your environment. The

parameters are as follows:

TWSConfig.serverName=
TWSConfig.serverPort=
TWSConfig.userID=
TWSConfig.password=
TWSConfig.useSecureConnection=
TWSConfig.serverSecurePort=

where the parameters are as follows:

TWSConfig.serverName

The network name of IP address of the system where the IBM Workload Scheduler

master domain manager is running (where there is a Connector installed). The default is

"localhost".

TWSConfig.serverPort

The port used by the Connector on the master domain manager. The default is 31115.

TWSConfig.userID

The user ID with which the plug-in must authenticate. The default is "twsuser".

TWSConfig.password

The password of that user ID.

TWSConfig.useSecureConnection

Enter "true" to use a secure connection.

TWSConfig.serverSecurePort

If TWSConfig.useSecureConnection is set to "true", the secure port used by the Connector on

the master domain manager.

15

Developer's Guide: Driving IBM Workload Automation

16

Connecting to the IBM Z Workload Scheduler connector

1. From the Integration Workbench select your project

2. Expand Config

3. Edit the TWSConn.properties file to obtain the correct parameters for your environment. The parameters

are as follows:

TWSConn.serverName=
TWSConn.serverPort=
TWSConn.userID=
TWSConn.password=
TWSConn.remoteServerName=

where the parameters are as follows:

TWSConn.serverName

The network name of IP address of the system where the z/OS® connector is installed.

The default is "localhost".

TWSConn.serverPort

The port used by the z/OS® connector. The default is 31115.

TWSConn.userID

The user ID with which the plug-in must authenticate. The default is "twsuser".

TWSConn.password

The password of that user ID.

TWSConn.remoteServerName

The name of the z/OS® engine that you want to connect to.

If you have created a project from scratch, create an analogous structure of connection parameters.

Examples for IBM Workload Scheduler
Provides an overview of the examples available of using the Java™ API for IBM Workload Scheduler.

The following examples help you understand how Java beans are used. The examples are annotated with explanatory

comments. In the javadoc reference (see API detailed specification on page 9), look up the objects used in the examples

to see full details.

The examples are available in these groupings:

Working with objects in the database
Provides examples of using the Java™ API to work with objects in the database.

The following examples indicate how you use the classes to work with objects in the database:

Chapter 3. Driving IBM Workload Automation with the Java™ API

Example 1: Adding a workstation to the database
//Object definition
String wksName = "MYWS";
Workstation wks = new Workstation();
wks.setName(wksName);
wks.setType(WorkstationType.FTA);
wks.setOs(OperatingSystem.UNIX);
wks.setAutoLink(true);
wks.setNodeName("node.abc.com");
wks.setSecurityLevel(SecurityLevel.NONE);

ConnModel myModel;
//Get an instance of ConnModel interface...
...

//Add the object
try
{
 myModel.addTWSObject(wks, null);
}
catch (ConnException e)
{
 //Do something to recover...
}

Example 2: Retrieving a workstation from the database

Workstation wksRead = new Workstation();
//Get the same workstation from the DB
try
{
wksRead = (Workstation) myModel.getTWSObject(Workstation.class,
 new FlowTargetKey(wksName), false, null);
}
catch (ConnException e)
{
 //Do something to recover...
 }

Example 3: Removing a workstation from the database

//Remove a workstation from the DB
 try
{
 myModel.removeTWSObject(Workstation.class, wksRead.getId(), null);
}
catch (ConnException exc)
{
 //Do something to recover...
}

Example 4: Defining a native job definition
//Job Definition creation

jobOk = new DistJobDefinition();

17

Developer's Guide: Driving IBM Workload Automation

18

jobOk.setDescription("All values provided");
jobOk.setFlowTargetKey(wks);
jobOk.setName("JOB1");
jobOk.setTaskType("UNIX");
jobOk.setTaskString("ls");
jobOk.setUserLogin("tws_user");
jobOk.setRecoveryOption(RecoveryOption.STOP);

Example 5: Defining a job definition by using Jsdl
//Job Definition creation with Jsdl

jobPred4 = new DistJobDefinition();
jobPred4.setDescription("All values provided");
jobPred4.setFlowTargetKey(wksAgt);
jobPred4.setName("JSDLJOB");
jobPred4.setDefinedByJsdl(true);
jobPred4.setTaskString("<?xml version=\"1.0\" encoding=\"UTF-8\"?>" + "
<jsdl:jobDefinition xmlns:jsdl=\"http://www.abc.com/xmlns/prod/scheduling
 /1.0/jsdl\" " + "xmlns:jsdle=\"http://www.abc.com/xmlns/prod/scheduling/1.0/
 jsdle\">" + "<jsdl:application name=\"executable\">" +
 "<jsdle:executable interactive=
 \"false\">" + "<jsdle:script>hostname</jsdle:script>" + "</jsdle:executable>"
 + "</jsdl:application>" + "</jsdl:jobDefinition>");
jobPred4.setRecoveryOption(RecoveryOption.STOP);

Example 6: Adding a job stream definition with dependencies, jobs, and runcycle:

//Job Stream creation

JobStream js = null;
String jsName = "SBSCDBF1_1S";
String alias = "SBSCDBF1_1S";
js = new JobStream();
js.setName(jsName);
js.setFlowTargetKey(wks);
List<Job> joblist = js.getJobs();

//Jobs creation

Job jobPredecessor = new Job();
jobPredecessor.setName(jobPredName);
jobPredecessor.setJobDefinition(jobPred4);
jobPredecessor.setJobStreamKey((JobStreamKey) js.getKey());
Job jobSuccessor1 = new Job();
jobSuccessor1.setName(jobSucc1Name);
jobSuccessor1.setJobDefinition(jobOk);
jobSuccessor1.setJobStreamKey((JobStreamKey) js.getKey());

//Add Jobs into Job Stream

joblist.add(jobPredecessor);
joblist.add(jobSuccessor1);

//Add Dependencies to jobSuccessor1 from jobPredecessor

InternalDependency depend = new InternalDependency();

Chapter 3. Driving IBM Workload Automation with the Java™ API

depend.setJobKey(new JobKey(jobOkName,(JobStreamKey) js.getKey()));
jobSuccessor1.getInternalDependencies().add(depend);

//Add a run cycle

RunCycle rcy = new RunCycle();
rcy.setCalendarKey(null);
rcy.setDescription("runCycleDescription");
rcy.setFreeDaysRule(FreeDaysRule.NEAREST_AFTER);
rcy.setICalendar("iCalendar");
rcy.setInclusive(false);
rcy.setName("runCycleName");
rcy.setOffsetType(null);
rcy.setOffsetValue(0);
rcy.getTimeRestrictions().setTimeDependent(true);
rcy.getTimeRestrictions().setStartOffset(43200000L);
rcy.getTimeRestrictions().setDeadlineOffset(14400000L);
rcy.getTimeRestrictions().setLatestStartOffset(3600000L);
rcy.getTimeRestrictions().setLatestStartAction(LateAction.CONTINUE);
rcy.setType(RunCycleType.SIMPLE);
rcy.setValidFrom(new Date(time - 86400000L));
rcy.setValidTo(new Date(time + 86400000L));
js.getRunCycles().add(rcy);

Working with objects in the plan
Provides examples of using the Java™ API to work with objects in the plan.

The following examples indicate how you use the classes to work with objects in the plan:

Example 4: Submitting a job stream instance into the current plan

This procedure requires the following main steps:

1. Obtain the required job stream definition from the database

ConnPlan myPlan;
//Get an instance of ConnPlan interface...
...

String alias = "SBJBF1_1";
JobStream js = null;
JobStreamInPlan jsip = null;
//If you already have a JobStream in the DB with Identifier jsDbID...
try
{
 //get it from the DB
 js = (JobStream)(myPlan.getTWSObject(JobStream.class,jsDbID,false,null));

2. Transform it into a JobStreamInPlan:

//Transform it in a JobStreamInPlan.
//TODAY is a variable representing the scheduled time
 jsip = myPlan.makeJobStreamInPlan(jsDbID, TODAY, alias, null);
}
catch (ConnException e)

19

Developer's Guide: Driving IBM Workload Automation

20

{
 //Something went wrong...
}
catch (ConnEngineNotMasterException e)
{
 //Since the makeJobStreamInPlan is available also on FTAs
 //(it's on the Plan interface), an exception must be thrown
 //if it is called on an engine that is not the master
}

3. Add the JobStreamInPlan to the plan:

List idList = new ArrayList();
try
{
 //Add the job stream to the plan.
 //This method returns a list of Identifiers because the job stream can be
 //defined on a Workstation class, so you have an ID for each workstation
 //of the class
 idList = (ArrayList)myPlan.addJobStreamInstance(jsip, null);
}
catch (ConnException e)
{
 //...
}
catch (ConnEngineNotMasterException e)
{
 //...
}

Example 5: Making a query on the plan

The following example lists the first five jobs that begin with the letter "A":

String nameFilter = "A*";
int howMany = 5;

QueryFilter qf = new QueryFilter();
qf.setFilter(JobInPlanFilters.JOB_NAME, nameFilter);

QueryResult qr = null;
 try
{
 qr = myPlan.queryPlanObject(JobInPlan.class, qf, howMany, null);
}
catch (ConnException e)
{
 //...
}

Working with event rules in the database
Provides examples of using the Java™ API to work with event rules in the database.

The following examples indicate how you use the classes to work with event rules in the database:

Chapter 3. Driving IBM Workload Automation with the Java™ API

Example 6: Adding an event rule to the database

Follow these steps:

1. Define the event rule:

String eventRuleName = "SampleEventRule";
String eventRuleDescription =
 "Define Event Rule; test MessageLoggerPlugIn and TWSObjectsMonitorPlugIn";
Date today = new Date(System.currentTimeMillis());
Date tomorrow = new Date(System.currentTimeMillis() + 86400000L);

//EventRule definition

EventRule er = new EventRule();
er.setName(eventRuleName);
er.setDescription(eventRuleDescription);
er.setRuleType(EventRuleType.FILTER);
er.setDraft(false);
er.setValidFrom(today);
er.setValidTo(tomorrow);

2. Define the event condition. In this case the condition is a job submission:

EventCondition evCond = new EventCondition();
evCond.setPluginName(TWSObjectsMonitorPlugIn.PLUGIN_NAME);
evCond.setEventType(JobUtil.EVENT_JOB_SUBMIT);

3. Define the conditions that the event condition has to satisfy to trigger the rule action (the filtering predicate):

String filterPred = "<attributeFilter name=\"JobStreamWorkstation\"
 operator=\"eq\">"
 + "<value>MYWS</value>"
 + "</attributeFilter>"

+ "<attributeFilter name=\"JobStreamName\" operator=\"eq\">"
+ "<value>JS1</value>"
 + "</attributeFilter>"

+ "<attributeFilter name=\"JobName\" operator=\"eq\">"
+ "<value>JOB1</value>"
+ "</attributeFilter>"

+ "<attributeFilter name=\"Workstation\" operator=\"eq\">"
+ "<value>MYHOST</value>"
+ "</attributeFilter>"

+ "<attributeFilter name=\"Priority\" operator=\"range\">"
+ "<value>10</value>"
+ "<value>30</value>"
+ "</attributeFilter>"

+ "<attributeFilter name=\"Monitored\" operator=\"eq\">"
+ "<value>TRUE</value>"
+ "</attributeFilter>"

+ "<attributeFilter name=\"EstimatedDuration\" operator=\"ge\">"
 + "<value>400</value>"

21

Developer's Guide: Driving IBM Workload Automation

22

 + "</attributeFilter>"

+ "<attributeFilter name=\"Login\" operator=\"eq\">"
+ "<value>TWSUser</value>"
+ "</attributeFilter>"

+ "<attributeFilter name=\"EveryFrequency\" operator=\"ge\">"
+ "<value>400</value>"
+ "</attributeFilter>";

4. Complete the event condition:

evCond.setFilteringPredicate(filterPred);

5. Add the event condition to the event rule:

er.getTriggerEvents().add(evCond);

6. Define the rule action. In this example, the rule action logs a message in the database:

RuleAction action = new RuleAction();
action.setPluginName(MessageLoggerPlugIn.PLUGIN_NAME);
action.setActionType(MessageLoggerPlugInConstants.ACTION_TYPE_MESSAGE_LOG);
action.setDescription("Adding the Message logger Plugin");
action.setResponseType(RuleResponseType.ON_DETECTION);

7. Define the value for the rule action parameter:

Map parameterMap = new HashMap();
parameterMap.put(MessageLoggerPlugInConstants.MESSAGE, "message");
parameterMap.put(MessageLoggerPlugInConstants.OBJECT_KEY, "object key");

8. Complete the rule action:

action.getParameterMap().putAll(parameterMap);

9. Add the rule action to the event rule:

er.getActions().add(action);

10. Add the event rule to the ConnModel interface:

ConnModel myModel = null;
//Get an instance of ConnModel interface...
//...

//Add the object

Identifier erId = null;
try
{
 erId = myModel.addTWSObject(er, null);
}
catch (ConnException e)
{
 //Do something to recover...
}

Example 7: Retrieve an event rule from the database by ID

Follow these steps:

Chapter 3. Driving IBM Workload Automation with the Java™ API

1. Obtain the event rule ID to be retrieved by any means appropriate to your interface

2. Retrieve the event rule:

EventRule eRuleRead = new EventRule();
try
{
 eRuleRead =
 (EventRule) myModel.getTWSObject(EventRule.class, erId, false, null);
}
catch (ConnException e)
{
 //Do something to recover...
}

Example 8: Retrieve an event rule from the database by key (name)

Follow these steps:

1. Obtain the event rule key (name) to be retrieved by any means appropriate to your interface

2. Retrieve the event rule:

EventRule eRuleRead = new EventRule();
try
{
 eRuleRead =
 (EventRule) myModel.getTWSObject(EventRule.class,
 new EventRuleKey(eventRuleName), false, null);
}
catch (ConnException e)
{
 //Do something to recover...
}

Example 9: Delete an event rule from the database by ID

Follow these steps:

1. Retrieve by ID the event rule to be deleted, as shown in example 7.1

2. If the event rule has been successfully retrieved, delete it:

{
 myModel.removeTWSObject(EventRule.class, eRuleRead.getId(), null);
}
catch (ConnException exc)
{
 //Do something to recover...
}

Example 10: Delete an event rule from the database by key (name)

Follow these steps:

1. Retrieve by key, the event rule to be deleted, as shown in example 7.2

2. If the event rule has been successfully retrieved, delete it:

23

Developer's Guide: Driving IBM Workload Automation

24

{
 myModel.removeTWSObject(EventRule.class,
 new EventRuleKey(eventRuleName), null);
}
catch (ConnException exc)
{
 //Do something to recover...
}

Examples for IBM Z Workload Scheduler
Provides an overview of the examples available of using the Java™ API for IBM Z Workload Scheduler.

The following examples help you to understand how the beans are used in the IBM Z Workload Scheduler environment:

Example 1: Adding a workstation to the database
// Create the connection to the server
TWSZConn connection = new TWSZConn();
// Get an instance of the interface ZConnModel
final ZConnModel model = connection.getModelBean();

// Define the workstation properties
String wksName = "CPU1";
String wksDescription = "Added by API";
String wksPrintoutRouting = "SYSOUT";
Workstation wks = new Workstation();
wks.setName(wksName);
wks.setDescription(wksDescription);
wks.setType(WorkstationType.COMPUTER);
wks.setReportingAttribute(WorkstationReportingAttribute.AUTOMATIC);
WorkstationZOSAttributes wksAttr = new WorkstationZOSAttributes();
wksAttr.setDefaultTransportTime(3600);
wksAttr.setDefaultJobDuration(60);
wksAttr.setPrintoutRouting(wksPrintoutRouting);
wksAttr.setStartedTaskSupported(true);
wks.setZosAttributes(wksAttr);

try {
 Context context = new Context();
 // Add the workstation to the database
 model.addTWSObject(wks, context);
}
catch (ConnException e) {
 // Do something to recover
}

Example 2: Adding a job stream (application) to the database

// Create the connection to the server
TWSZConn connection = new TWSZConn();
// Get an instance of the interface ZConnModel
final ZConnModel model = connection.getModelBean();

final static Date TODAY =
new Date((System.currentTimeMillis()/86400000L) * 86400000L);

Chapter 3. Driving IBM Workload Automation with the Java™ API

// Define the job stream properties
String jsName = "APPL";
String jsOwnerName = "API";
JobStream js = new JobStream();
js.setName(jsName);
js.setOwnerName(jsOwnerName);
js.setValidFrom(TODAY);
js.setPriority(5);
// Define a JCL job to add to the job stream
String jobName = "1";
String wksName = "CPU1";
String jclName = "MYJCL";
Job jclJob = new Job();
jclJob.setName(jobName);
jclJob.setEstimatedDuration(1000);
jclJob.setPriority(-1);
ZOSJobDefinition jobDef = new ZOSJobDefinition();
jobDef.setFlowTargetKey(new FlowTargetKey(wksName));
jobDef.setTaskType(TaskTypes.ZOS_JOB_TASK);
jobDef.setJclName(jclName);
jclJob.setJobDefinition(jobDef);
// Add the JCL job to the job stream
js.getJobs().add(jclJob);
// Define a Printer job to add to the job stream
jobName = "2";
wksName = "PRNT";
Job printerJob = new Job();
printerJob.setName(jobName);
printerJob.setEstimatedDuration(1000);
printerJob.setPriority(-1);
jobDef = new ZOSJobDefinition();
jobDef.setFlowTargetKey(new FlowTargetKey(wksName));
jobDef.setTaskType(TaskTypes.ZOS_ PRINTER_TASK);
jobDef.setJclName(jclName);
jobDef.setLimitForFeedback(102);
printerJob.setJobDefinition(jobDef);
// Add to the Printer job the dependency from the JCL job
List printerJobDeps = printerJob.getInternalDependencies();
InternalDependency depFromJclJob =
new InternalDependency(null, (JobKey)jclJob.getKey());
printerJobDeps.add(depFromJclJob);
// Add the Printer job to the job stream
js.getJobs().add(printerJob);

try {
 Context context = new Context();
 // Add the job stream to the database

Example 3: Modifying a job stream (application) in the database

// Create the connection to the server
TWSZConn connection = new TWSZConn();
// Get an instance of the interface ZConnModel
final ZConnModel model = connection.getModelBean();

final static Date TODAY =
new Date((System.currentTimeMillis()/86400000L) * 86400000L);

25

Developer's Guide: Driving IBM Workload Automation

26

final static Date TOMORROW =
new Date(((System.currentTimeMillis()/86400000L) * 86400000L) + 86400000L);

final static long HOUR = 3600000;

// Make the job stream key
String jsName = "APPL";
JobStreamKey jsKey = new JobStreamKey(jsName, TODAY, false, false);

try {
 Context context = new Context();
 // Get the job stream by its key
 JobStream js =
 (JobStream)model.getTWSObject(JobStream.class, jsKey, false, context);

 // Define a run cycle to add to the job stream
 String rcName = "RCRULE";
 String rcDescription = "Added by API";
 RunCycle rcRule = new RunCycle();
 rcRule.setName(rcName);
 rcRule.setDescription(rcDescription);
 rcRule.setType(RunCycleType.RULE);
 rcRule.setValidFrom(TODAY);
 rcRule.setValidTo(TOMORROW);
 rcRule.getTimeRestrictions().setStartOffset(10*HOUR);
 rcRule.getTimeRestrictions().setDeadlineOffset(12*HOUR + 24* HOUR);
 rcRule.setFreeDaysRule(FreeDaysRule.DO_NOT_SELECT);
 rcRule.setICalendar("ADRULE ONLY(001 003) LAST(001 002) DAY(DAY
MONDAY THURSDAY) MONTH(FEBRUARY APRIL JUNE SEPTEMBER NOVEMBER) YEAR ");

 // Add the run cycle to the job stream
 js.getRunCycles().add(rcRule);
 // Modify the job stream in the database
 Identifier jsId = model.setTWSObject(js, true, true, context);
}
catch (ConnException e) {
 // Do something to recover
}

Example 4: Adding a special resource in the database

// Create the connection to the server
TWSZConn connection = new TWSZConn();
// Get an instance of the interface ZConnModel
final ZConnModel model = connection.getModelBean();

final static long HOUR = 3600000;

// Define the resource properties
String resName = "RES";
String resDescription = "Added by API";
String wksName1 = "CPU1";
String wksName2 = "CPU2";
Resource res = new Resource();
res.setName(resName);
res.setDescription(resDescription);

Chapter 3. Driving IBM Workload Automation with the Java™ API

FlowTargetKey wksKey1 = new FlowTargetKey(wksName1);
FlowTargetKey wksKey2 = new FlowTargetKey(wksName2);
res.getConnectedWorkstationLinks().add(new WorkstationLink(wksKey1));
res.getConnectedWorkstationLinks().add(new WorkstationLink(wksKey2));
ResourceBaseConstraints resCon = new ResourceBaseConstraints();
resCon.setQuantity(30);
resCon.setUsedFor(ResourceUsage.CONTROL);
resCon.setActionOnError(ResourceActionOnError.KEEP);
resCon.setAvailable(YesNoDefaultOption.NO);
res.setDefaultConstraints(resCon);
ResourceAvailabilityInterval resInt =
new ResourceAvailabilityInterval();
resInt.setIntervalValidityDayOfWeek(Calendar.MONDAY);
resInt.setIntervalStartTime(10*HOUR);
resInt.setIntervalEndTime(21*HOUR);
resInt.setQuantity(20);
resInt.setAvailable(YesNoDefaultOption.YES);
res.getResourceAvailabilityIntervals().add(resInt);

try {
 Context context = new Context();
 // Add the resource to the database
 model.addTWSObject(res, context);
}
catch (ConnException e) {
 // Do something to recover
}

Example 5: Adding a job stream to the plan after modifying its contents
The program uses Java APIs to modify an existing job stream and to apply variable substitution before submitting it to the

plan.

The following program adds job stream STREAM1 to the plan. Before doing this, the program also:

1. Adds two jobs to STREAM1 after getting their attributes from two jobs extracted from job streams STREAM2 and STREAM3.

2. Sets up a number of JCL promptable variables before submitting job stream STREAM1.

3. Further adds/modifies specific job attributes before releasing the jobs in the plan.

After importing all the necessary classes and objects, connecting to the scheduler, and declaring the required variables, the

program:

• Fetches a job from job stream STREAM2 in the data base, gets its properties and stores them in a ZosJobInfo

container called jZos1, and sets other information such as the input arrival time and the associated workstation and

resources.

• Repeats these actions for job with job number 10 of job stream STREAM3, storing the job properties in a ZosJobInfo

container called jZos2.

• Adds the two jobs to job stream STREAM1, and modifies their properties to define their numbers (which constitute

their IDs within the job stream) and names.

27

Developer's Guide: Driving IBM Workload Automation

28

• Defines first general JCL variables for all four jobs in job stream STREAM1 (using the variablesToBeSubstituted API)

and then particular variables for each job (using the jobVariablesToBeSubstituted API).

• Adds job stream STREAM1 to the plan.

• Makes final changes in the job stream to add more properties, such as the extended job name and a special resource,

to one of the jobs and then releases the job.

package com.ibm;

import java.rmi.RemoteException;
import java.util.ArrayList;
import java.util.Calendar;
import java.util.Date;
import java.util.HashMap;
import java.util.List;

import com.ibm.tws.conn.exception.ConnEngineNotMasterException;
import com.ibm.tws.conn.exception.ConnException;
import com.ibm.tws.conn.exception.ConnLockingException;
import com.ibm.tws.conn.exception.ConnNotFoundException;
import com.ibm.tws.conn.exception.ConnSecurityException;
import com.ibm.tws.conn.exception.ConnTransportException;
import com.ibm.tws.conn.exception.ConnValidationException;
import com.ibm.tws.conn.util.Context;
import com.ibm.tws.conn.util.QueryResult;
import com.ibm.tws.objects.filter.JobStreamFilters;
import com.ibm.tws.objects.filter.QueryFilter;
import com.ibm.tws.objects.filter.WorkstationFilters;
import com.ibm.tws.objects.model.Job;
import com.ibm.tws.objects.model.JobStream;
import com.ibm.tws.objects.model.JobStreamHeader;
import com.ibm.tws.objects.model.ResourceDependency;
import com.ibm.tws.objects.model.Workstation;
import com.ibm.tws.objects.model.WorkstationHeader;
import com.ibm.tws.objects.model.ZOSJobDefinition;
import com.ibm.tws.objects.plan.JobInPlan;
import com.ibm.tws.objects.plan.JobStreamInPlan;
import com.ibm.tws.objects.plan.ResourceDependencyInPlan;
import com.ibm.tws.objects.plan.ResourceInPlanKey;
import com.ibm.tws.objects.plan.WorkstationInPlanKey;
import com.ibm.tws.objects.plan.ZOSJobDefinitionInPlan;
import com.ibm.tws.objects.plan.types.DependenciesResolutionOption;
import com.ibm.tws.objects.plan.types.JobInPlanZOSAttributes;
import com.ibm.tws.objects.plan.utils.ZosJobInfo;
import com.ibm.tws.objects.types.Identifier;
import com.ibm.tws.zconn.model.ZConnModel;
import com.ibm.tws.zconn.plan.ZConnPlan;
import com.ibm.tws.zconn.plan.dao.impl.util.ResourceInPlanHelper;
import com.ibm.tws.zconn.plan.dao.impl.util.WorkstationInPlanHelper;

@SuppressWarnings("restriction")
public class MainWitRes {

 public static void main(String[] args) {
 //Create a connection to the server
 TWSZConn connection=new TWSZConn();

 //Get Model or Plan Bean
 final ZConnModel model=connection.getModelBean();
 final ZConnPlan plan=connection.getPlanBean();
 final Context context=new Context();

Chapter 3. Driving IBM Workload Automation with the Java™ API

 com.ibm.websphere.security.auth.WSSubject.doAs
 (connection.getSubject(), new java.security.PrivilegedAction<Object>() {
 /* (non-Javadoc)
 * @see java.security.PrivilegedAction#run()
 */
 @SuppressWarnings("unchecked")
 public Object run() {
 //Variable Declaration
 HashMap<String, List<Integer>> dependencyToDelete=new HashMap<String, List<Integer>>();
 HashMap<String, List<Integer>> dependencyToAdd=new HashMap<String, List<Integer>>();
 HashMap<Integer, String[][]> jobVariablesToBeSubstituted=new HashMap<Integer, String[][]>();
 List<ZosJobInfo> jobsToDelete=new ArrayList<ZosJobInfo>();
 List<ZosJobInfo> jobsToAdd=new ArrayList<ZosJobInfo>();
 List<Identifier> identifierList=null;
 List<Integer> successorList=new ArrayList<>();
 List<JobStreamHeader> jobStreamHeaderList;
 List<WorkstationHeader> workstationHeaderList;
 List<ZosJobInfo> jobsToModify=new ArrayList<ZosJobInfo>();
 List<ResourceDependencyInPlan> resourceDependencyInPlanList;
 Date startTime=new Date();
 Date deadlineTime=new Date();
 Long time1,time2;
 int seconds,minutes,hours;
 int priority=5;
 int jobNum=0;
 Integer succ;
 String [][] variablesMap1=new String [3][2];
 String[][] variablesToBeSubstituted=new String [1][2];
 String [][] variablesMap2=new String [2][2];
 String resourceName;
 String authorityGroup=null;
 String JSName="STREAM1";
 String description="";
 String group=null;
 String owner=null;
 String ownerDescription=null;
 String variableTable="STREAM1";
 String jobStreamName1="STREAM2";
 String jobStreamName2="STREAM3";
 boolean holdAll=true;
 JobStream jobStream1=null;
 JobStream jobStream2=null;
 Job jobFM1=null;
 Job jobFM2=null;
 JobStreamInPlan jobStreamInPlan=null;
 ZOSJobDefinition zosJobDefinition1=null;
 ZOSJobDefinition zosJobDefinition2=null;
 ZosJobInfo zosJobInfo1=new ZosJobInfo();
 ZosJobInfo zosJobInfo2=new ZosJobInfo();
 ZosJobInfo zosJobInfo3=new ZosJobInfo();
 ZosJobInfo zosJobInfo4=new ZosJobInfo();
 QueryFilter queryFilter;
 QueryResult queryResult;
 Calendar calendar1,calendar2;
 Workstation workstation = null;
 ZOSJobDefinitionInPlan jobDefinitionInPlan;
 ResourceDependencyInPlan resourceDependencyInPlan;
 ResourceInPlanKey resourceInPlanKey;
 WorkstationInPlanKey workstationInPlanKey;
 JobInPlanZOSAttributes jobInPlanZosAtt;
 //Getting jobStream="Stream2" from the DB, first the header then the full jobStream
 queryFilter=new QueryFilter();
 queryFilter.setFilter(JobStreamFilters.JOB_STREAM_NAME, jobStreamName1);
 try {
 queryResult=model.queryTWSObject(JobStream.class, queryFilter, 1, context);
 jobStreamHeaderList=(List<JobStreamHeader>) queryResult.getList();

29

Developer's Guide: Driving IBM Workload Automation

30

 if(jobStreamHeaderList.size()>0){
 jobStream1=(JobStream) model.getTWSObject(JobStream.class,jobStreamHeaderList.get(0).getKey() , false, context);
 }
 } catch (ConnTransportException e) {
 //TODO Auto-generated catch block
 e.printStackTrace();
 } catch (ConnValidationException e) {
 //TODO Auto-generated catch block
 e.printStackTrace();
 } catch (ConnSecurityException e) {
 //TODO Auto-generated catch block
 e.printStackTrace();
 } catch (ConnException e) {
 //TODO Auto-generated catch block
 e.printStackTrace();
 } catch (RemoteException e) {
 //TODO Auto-generated catch block
 e.printStackTrace();
 }

 //Getting the first job from Stream2 to add to STREAM1
 if(jobStream1.getJobs().size()>0){
 jobFM1=(Job) jobStream1.getJobs().get(0);
 zosJobDefinition1=(ZOSJobDefinition) jobFM1.getJobDefinition();
 }
 //Creation of ZosJobInfo for the first job
 ZosJobInfo jZos1=new ZosJobInfo();

 //Setting the inputArrivalTime
 calendar1=Calendar.getInstance();
 time1=jobFM1.getTimeRestrictions().getStartOffset();
 if(time1!=null && time1>0){
 seconds=(int) (time1 / 1000) % 60 ;
 minutes=(int) ((time1 / (1000*60)) % 60);
 hours=(int) ((time1 / (1000*60*60)) % 24);
 calendar1.set(Calendar.HOUR,hours);
 calendar1.set(Calendar.MINUTE, minutes);
 calendar1.set(Calendar.SECOND, seconds);
 jZos1.setInputArrivalTime(calendar1);
 }
 //Setting the zosJobInfo with data in zosJobDefinition and job (&timeRestriction)
 String workstationN=zosJobDefinition1.getFlowTargetKey().getName();
 jZos1.setJobName(zosJobDefinition1.getJclName());
 jZos1.setTextDescription(jobFM1.getDescription());
 jZos1.setWorkstationName(workstationN);
 jZos1.setDuration(jobFM1.getEstimatedDuration());
 jZos1.setJobNumber(44);
 jZos1.setAutoSubmit(zosJobDefinition1.getAutoSubmit());
 jZos1.setTaskType(zosJobDefinition1.getTaskType());
 jZos1.setTimeDependent(jobFM1.getTimeRestrictions().isTimeDependent());
 jZos1.setCentralizedScript(zosJobDefinition1.getHasCentralizedScript());

 //Getting the workstation from the DB -> to get the type associated, first get the header and then the full
workstation.
 queryFilter.setFilter(WorkstationFilters.WORKSTATION_NAME, workstationN);
 try {
 queryResult=model.queryTWSObject(Workstation.class, queryFilter, 1, context);
 workstationHeaderList=(List<WorkstationHeader>) queryResult.getList();
 if(workstationHeaderList.size()>0){
 workstation=(Workstation) model.getTWSObject(Workstation.class,workstationHeaderList.get(0).getKey() ,
 false, context);
 }
 } catch (ConnTransportException e) {
 //TODO Auto-generated catch block
 e.printStackTrace();

Chapter 3. Driving IBM Workload Automation with the Java™ API

 } catch (ConnValidationException e) {
 //TODO Auto-generated catch block
 e.printStackTrace();
 } catch (ConnSecurityException e) {
 //TODO Auto-generated catch block
 e.printStackTrace();
 } catch (ConnException e) {
 //TODO Auto-generated catch block
 e.printStackTrace();
 } catch (RemoteException e) {
 //TODO Auto-generated catch block
 e.printStackTrace();
 }

 jZos1.setWorkstationType(workstation.getType());

 //Setting the Resource value
 for(ResourceDependency resourceD:(List<ResourceDependency>) jobFM1.getResourceDependencies()){
 String rName=resourceD.getResourceKey().getName();
 if(rName!=null && rName.compareToIgnoreCase("Resource1")==0){
 jZos1.setR1(resourceD.getQuantity());
 }
 if(rName!=null && rName.compareToIgnoreCase("Resource2")==0){
 jZos1.setR2(resourceD.getQuantity());
 }
 if(rName!=null && rName.compareToIgnoreCase("ParallelServers")==0){
 jZos1.setParallelServer(resourceD.getQuantity());
 }
 }

 //Getting jobStream="STREAM3" from the Db, first the header then the full jobStream
 queryFilter.setFilter(JobStreamFilters.JOB_STREAM_NAME, jobStreamName2);
 try {
 queryResult=model.queryTWSObject(JobStream.class, queryFilter, 1, context);
 jobStreamHeaderList=(List<JobStreamHeader>) queryResult.getList();
 if(jobStreamHeaderList.size()>0){
 jobStream2=(JobStream) model.getTWSObject(JobStream.class,jobStreamHeaderList.get(0).getKey() ,
 false, context);
 }
 } catch (ConnTransportException e) {
 //TODO Auto-generated catch block
 e.printStackTrace();
 } catch (ConnValidationException e) {
 //TODO Auto-generated catch block
 e.printStackTrace();
 } catch (ConnSecurityException e) {
 //TODO Auto-generated catch block
 e.printStackTrace();
 } catch (ConnException e) {
 //TODO Auto-generated catch block
 e.printStackTrace();
 } catch (RemoteException e) {
 //TODO Auto-generated catch block
 e.printStackTrace();
 }

 //Starting with second job to add to STREAM1
 //Getting the job with number=10 from STREAM3
 for(Job job:(List<Job>)jobStream2.getJobs()){
 if(job.getName().compareTo("10")==0){
 jobFM2=job;
 zosJobDefinition2=(ZOSJobDefinition) jobFM2.getJobDefinition();
 }
 }
 //Creation of ZosJobInfo for the second job

31

Developer's Guide: Driving IBM Workload Automation

32

 ZosJobInfo jZos2=new ZosJobInfo();

 //Setting the inputArrivalTime
 calendar2=Calendar.getInstance();
 time2=jobFM2.getTimeRestrictions().getStartOffset();
 if(time2!=null && time2>0){
 seconds=(int) (time2 / 1000) % 60 ;
 minutes=(int) ((time2 / (1000*60)) % 60);
 hours=(int) ((time2 / (1000*60*60)) % 24);
 calendar2.set(Calendar.HOUR,hours);
 calendar2.set(Calendar.MINUTE, minutes);
 calendar2.set(Calendar.SECOND, seconds);
 jZos2.setInputArrivalTime(calendar2);
 }

 //Setting the zosJobInfo for the second job
 //with data in zosJobDefinition and job (@timeRestriction)
 workstationN=zosJobDefinition2.getFlowTargetKey().getName();
 jZos2.setJobName(zosJobDefinition2.getJclName());
 jZos2.setTextDescription(jobFM2.getDescription());
 jZos2.setWorkstationName(workstationN);
 jZos2.setDuration(jobFM2.getEstimatedDuration());
 jZos2.setJobNumber(45);
 jZos2.setAutoSubmit(zosJobDefinition2.getAutoSubmit());
 jZos2.setTaskType(zosJobDefinition2.getTaskType());
 jZos2.setTimeDependent(jobFM2.getTimeRestrictions().isTimeDependent());
 jZos2.setCentralizedScript(zosJobDefinition2.getHasCentralizedScript());

 //Getting the workstation -> for the type associated. Header then full workstation.
 queryFilter.setFilter(WorkstationFilters.WORKSTATION_NAME, workstationN);
 try {
 queryResult=model.queryTWSObject(Workstation.class, queryFilter, 1, context);
 workstationHeaderList=(List<WorkstationHeader>) queryResult.getList();
 if(workstationHeaderList.size()>0){
 workstation=(Workstation) model.getTWSObject(Workstation.class,workstationHeaderList.get(0).getKey() ,
 false, context);
 }
 } catch (ConnTransportException e) {
 //TODO Auto-generated catch block
 e.printStackTrace();
 } catch (ConnValidationException e) {
 //TODO Auto-generated catch block
 e.printStackTrace();
 } catch (ConnSecurityException e) {
 //TODO Auto-generated catch block
 e.printStackTrace();
 } catch (ConnException e) {
 //TODO Auto-generated catch block
 e.printStackTrace();
 } catch (RemoteException e) {
 //TODO Auto-generated catch block
 e.printStackTrace();
 }

 jZos2.setWorkstationType(workstation.getType());

 //Setting the Resource value
 for(ResourceDependency resourceD:(List<ResourceDependency>) jobFM2.getResourceDependencies()){
 String rName=resourceD.getResourceKey().getName();
 if(rName!=null && rName.compareToIgnoreCase("Resource1")==0){
 jZos2.setR1(resourceD.getQuantity());
 }
 if(rName!=null && rName.compareToIgnoreCase("Resource2")==0){
 jZos2.setR2(resourceD.getQuantity());
 }

Chapter 3. Driving IBM Workload Automation with the Java™ API

 if(rName!=null && rName.compareToIgnoreCase("ParallelServers")==0){
 jZos2.setParallelServer(resourceD.getQuantity());
 }
 }

 //Setting predecessor and successor for the jobs.
 //Otherwise we cannot add them to STREAM1

 succ= new Integer(jZos1.getJobNumber());
 successorList.add(succ);
 succ=new Integer(jZos2.getJobNumber());
 successorList.add(succ);
 dependencyToAdd.put(String.valueOf(1),successorList);

 //Adding the zosJobInfo to STREAM1
 jobsToAdd.add(jZos1);
 jobsToAdd.add(jZos2);

 //Example of how to modify a job in STREAM1

 zosJobInfo1.setJobNumber(5);
 zosJobInfo1.setJobName("EXEC1");
 jobsToModify.add(zosJobInfo1);

 zosJobInfo2.setJobNumber(10);
 zosJobInfo2.setJobName("EXEC2");
 jobsToModify.add(zosJobInfo2);

 zosJobInfo4.setJobNumber(15);
 zosJobInfo4.setJobName("EXEC3");
 jobsToModify.add(zosJobInfo4);

 zosJobInfo3.setJobNumber(20);
 zosJobInfo3.setJobName("EXEC4");
 jobsToModify.add(zosJobInfo3);

 //Default JCL variables values (for all jobs)

 variablesToBeSubstituted [0][0] = "VAR1";
 variablesToBeSubstituted [0][1] = "ValVar1ForExec2And3";

 DependenciesResolutionOption resolutionOption = DependenciesResolutionOption.RESOLUTION_ALL;

 //Job level JCL variables values

 variablesMap1 [0][0] = "VAR1";
 variablesMap1 [0][1] = "ValVar1ForExec1";
 variablesMap1 [1][0] = "VAR2";
 variablesMap1 [1][1] = "ValVar2ForExec1";
 variablesMap1 [2][0] = "VAR3";
 variablesMap1 [2][1] = "ValVar3ForExec1";
 jobNum = 5;

 jobVariablesToBeSubstituted.put(jobNum, variablesMap1);

 variablesMap2 [0][0] = "VAR2";
 variablesMap2 [0][1] = "ValVar2ForExec2";
 variablesMap2 [1][0] = "VAR4";
 variablesMap2 [1][1] = "ValVar4ForExec2";
 jobNum = 10;

33

Developer's Guide: Driving IBM Workload Automation

34

 jobVariablesToBeSubstituted.put(jobNum, variablesMap2);

 String [][] variablesMap3 = new String [2][2];
 variablesMap3 [0][0] = "VAR2";
 variablesMap3 [0][1] = "ValVar2ForExec3";
 variablesMap3 [1][0] = "VAR4";
 variablesMap3 [1][1] = "ValVar4ForExec3";
 jobNum = 15;

 jobVariablesToBeSubstituted.put(jobNum, variablesMap3);

 String [][] variablesMap4 = new String [4][2];
 variablesMap4 [0][0] = "VAR3";
 variablesMap4 [0][1] = "ValVar3ForExec4";
 variablesMap4 [1][0] = "VAR4";
 variablesMap4 [1][1] = "ValVar4ForExec4";
 variablesMap4 [2][0] = "VAR5";
 variablesMap4 [2][1] = "ValVar5ForExec4";
 variablesMap4 [3][0] = "VAR6";
 variablesMap4 [3][1] = "ValVar6ForExec4";
 jobNum = 20;

 jobVariablesToBeSubstituted.put(jobNum, variablesMap4);

 //Add STREAM1 in the plan with all the modified and new jobs (zosJobInfo)

 try {
 identifierList = plan.editAddJobStreamInstanceWithVariableSubstitution(
 JSName, startTime, deadlineTime, priority, description, group, owner,
 ownerDescription, variableTable, jobsToDelete, jobsToAdd, jobsToModify,
 dependencyToDelete, dependencyToAdd, variablesToBeSubstituted, authorityGroup,
 holdAll, resolutionOption, jobVariablesToBeSubstituted, context);
 Identifier jsid = identifierList.get(0);

 // get the jobStream (STREAM1) from the plan
 jobStreamInPlan = (JobStreamInPlan) plan.getPlanObject(JobStreamInPlan.class, jsid, context);
 } catch (ConnLockingException e) {
 //TODO Auto-generated catch block
 e.printStackTrace();
 } catch (ConnNotFoundException e) {
 //TODO Auto-generated catch block
 e.printStackTrace();
 } catch (ConnSecurityException e) {
 //TODO Auto-generated catch block
 e.printStackTrace();
 } catch (ConnTransportException e) {
 //TODO Auto-generated catch block
 e.printStackTrace();
 } catch (ConnValidationException e) {
 //TODO Auto-generated catch block
 e.printStackTrace();
 } catch (ConnEngineNotMasterException e) {
 //TODO Auto-generated catch block
 e.printStackTrace();
 } catch (ConnException e) {
 //TODO Auto-generated catch block
 e.printStackTrace();
 } catch (RemoteException e) {
 //TODO Auto-generated catch block
 e.printStackTrace();
 }

 //Modify the job in JobStreamInPlan to add data missing in ZosJobInfo
 //Like extendedName(job 44) and specialResource(job=45)
 for(JobInPlan jobInPlan:(List<JobInPlan>) jobStreamInPlan.getJobs()){

Chapter 3. Driving IBM Workload Automation with the Java™ API

 jobDefinitionInPlan=(ZOSJobDefinitionInPlan) jobInPlan.getJobDefinition();

 if(jobInPlan.getName().compareTo("44")==0){
 //Setting of some extended name and HORC
 jobDefinitionInPlan.setHighestOkReturnCode(0);
 jobDefinitionInPlan.setExtendedName(zosJobDefinition1.getExtendedName());
 try {
 plan.setJobInstance(jobInPlan, context);
 } catch (ConnLockingException e) {
 //TODO Auto-generated catch block
 e.printStackTrace();
 } catch (ConnNotFoundException e) {
 //TODO Auto-generated catch block
 e.printStackTrace();
 } catch (ConnSecurityException e) {
 //TODO Auto-generated catch block
 e.printStackTrace();
 } catch (ConnTransportException e) {
 //TODO Auto-generated catch block
 e.printStackTrace();
 } catch (ConnValidationException e) {
 //TODO Auto-generated catch block
 e.printStackTrace();
 } catch (ConnException e) {
 //TODO Auto-generated catch block
 e.printStackTrace();
 } catch (RemoteException e) {
 //TODO Auto-generated catch block
 e.printStackTrace();
 }
 }

 if(jobInPlan.getName().compareTo("45")==0){
 jobDefinitionInPlan.setHighestOkReturnCode(0);

 jobInPlanZosAtt=jobInPlan.getZosSpecificAttributes();
 resourceDependencyInPlanList=jobInPlan.getResourceDependencies();
 //Adding a special Resource to the job in a jobStreamInPlan
 for(ResourceDependency rD:(List<ResourceDependency>)jobFM2.getResourceDependencies()){
 resourceName=rD.getResourceKey().getName();
 if(resourceName!=null && !resourceName.isEmpty() && resourceName.compareToIgnoreCase("Resource1")!=0 &&
 resourceName.compareToIgnoreCase("Resource2")!=0 && resourceName.compareToIgnoreCase("ParallelServers")!=0){
 //Creation and setting of a ResourceDepInPlan
 resourceDependencyInPlan=new ResourceDependencyInPlan();
 resourceDependencyInPlan.setActionOnComplete(rD.getActionOnComplete());
 resourceDependencyInPlan.setAllocationType(rD.getAllocationType());
 resourceDependencyInPlan.setQuantity(rD.getQuantity());
 workstationInPlanKey=new WorkstationInPlanKey();
 workstationInPlanKey.setName(zosJobDefinition2.getFlowTargetKey().getName());
 resourceInPlanKey=new ResourceInPlanKey(resourceName,workstationInPlanKey);
 resourceDependencyInPlan.setId(ResourceInPlanHelper.keyToId(resourceInPlanKey));
 resourceDependencyInPlan.setWorkstationId(WorkstationInPlanHelper.keyToId(workstationInPlanKey));
 resourceDependencyInPlan.setKey(resourceInPlanKey);
 resourceDependencyInPlanList.add(resourceDependencyInPlan);
 jobInPlanZosAtt.setNumberOfSpecialResources(1);
 break;
 }

 }

 try {
 plan.setWholeJobInstance(jobInPlan, false, null, null, null, null, null, jobInPlan.getResourceDependencies(),
 null, null, null, null, context);
 } catch (ConnLockingException e) {
 //TODO Auto-generated catch block

35

Developer's Guide: Driving IBM Workload Automation

36

 e.printStackTrace();
 } catch (ConnNotFoundException e) {
 //TODO Auto-generated catch block
 e.printStackTrace();
 } catch (ConnSecurityException e) {
 //TODO Auto-generated catch block
 e.printStackTrace();
 } catch (ConnTransportException e) {
 //TODO Auto-generated catch block
 e.printStackTrace();
 } catch (ConnValidationException e) {
 //TODO Auto-generated catch block
 e.printStackTrace();
 } catch (ConnException e) {
 //TODO Auto-generated catch block
 e.printStackTrace();
 } catch (RemoteException e) {
 //TODO Auto-generated catch block
 e.printStackTrace();
 }

 }
 }

 try {
 plan.holdJobStreamInstanceJobs((Identifier)identifierList.get(0), false, context);
 } catch (ConnLockingException e) {
 //TODO Auto-generated catch block
 e.printStackTrace();
 } catch (ConnNotFoundException e) {
 //TODO Auto-generated catch block
 e.printStackTrace();
 } catch (ConnSecurityException e) {
 //TODO Auto-generated catch block
 e.printStackTrace();
 } catch (ConnTransportException e) {
 //TODO Auto-generated catch block
 e.printStackTrace();
 } catch (ConnValidationException e) {
 //TODO Auto-generated catch block
 e.printStackTrace();
 } catch (ConnException e) {
 //TODO Auto-generated catch block
 e.printStackTrace();
 } catch (RemoteException e) {
 //TODO Auto-generated catch block
 e.printStackTrace();
 }

 return null;
 }
 }); // end doAs
 ;
 }

}

Using the API to work with z/OS® JCL
Describes how to use the API to work with z/OS® JCL.

Chapter 3. Driving IBM Workload Automation with the Java™ API

You normally define JCL jobs in IBM Z Workload Scheduler using the z/OS® Program Interface panels. This section tells you

how to create a Java™ interface to maintain the JCL in the appropriate library. You can add, read, modify, and remove a JCL

job, and for each such activity you need to be able to connect to the IBM Z Workload Scheduler connector which implements

the API.

Defining the connection with the IBM Z Workload Scheduler connector
Describes how to define a connection with the IBM Z Workload Scheduler connector to work with z/OS® JCL.

To define the connection with the IBM Z Workload Scheduler connector use a syntax similar to the following:

final ZConnModel model = connection.getModelBean();

Add JCL Job
Describes how to add a JCL job using the API.

The parameters to add a JCL job are:

• The job itself

• The job key, which consists of the library name and the JCL job name.

The command returns the ID of the created job.

The following example code creates a JCL job and adds it to a specific job library:

JCL jcl = new JCL();
JCLKey jobk1 = new JCLKey("TWSSD.CWSD64.JOBLIB","MYJCL");
jcl.setKey(jobk1);
jcl.getTextLines().add("//"+name+" JOB (876903,D07),'AAAAAAA',MSGLEVEL=(1,1), 00010000");
jcl.getTextLines().add("// MSGCLASS=A,CLASS=A,NOTIFY=CARDELL 00020000");
jcl.getTextLines().add("//STEP1 EXEC PGM=IEFBR14 00030001");
jcl.getTextLines().add("//SYSPRINT DD SYSOUT=* 00060000");

id = model.addTWSObject(jcl,null);

Read JCL Job
Describes how to read a JCL job with the API.

The parameters to read a JCL job are:

• The job key, which consists of the library name and the JCL job name

• A boolean value to determine whether to lock the job after reading it

The command returns the JCL job identified by the job key.

The following example code reads a specific JCL job in a specific job library:

JCLKey jobk1 = new JCLKey("TWSSD.CWSD64.JOBLIB","MYJCL1");

JCL jobJCL = (JCL)model.getTWSObject(JCL.class, jobk1, false, null);

37

Developer's Guide: Driving IBM Workload Automation

38

Modify JCL Job
Describes how to modify a JCL job using the API.

First read the JCL job and lock it:

JCLKey jobk1 = new JCLKey("TWSSD.CWSD64.JOBLIB","MYJCL1");

JCL jobJCL = (JCL)model.getTWSObject(JCL.class, jobk1, true, null);

The parameters to modify a JCL job are:

• The job key, which consists of the library name and the JCL job name

• The modified JCL.

The command returns the ID of the modified job.

The following example code modifies a JCL job that has already been read and locked:

jcl.getTextLines().add("//"+name+" JOB (876903,D07),'AAAAAAA',MSGLEVEL=(1,1), 00010000");
jcl.getTextLines().add("// MSGCLASS=A,CLASS=A,NOTIFY=PIPPO 00020000");

id = model.setTWSObject(jcl, true, true, null);

Remove JCL Job
Describes how to remove a JCL job with the API.

First read the JCL job and lock it:

JCLKey jobk1 = new JCLKey("TWSSD.CWSD64.JOBLIB","MYJCL1");

JCL jobJCL = (JCL)model.getTWSObject(JCL.class, jobk1, true, null);

The parameters to remove a JCL job are:

• The job key, which consists of the library name and the JCL job name

The following example code removes a JCL job that has already been read and locked:

model.removeTWSObject(JCL.class, jobk1, null);

Reference material
Describes how to access the reference material on the API.

The Integration Workbench help contains all the reference material you require.

To access this material, take the following steps:

1. From the Integration Workbench select Help > Help Contents

2. Expand IBM Workload Scheduler Integration Workbench and then Reference

Chapter 3. Driving IBM Workload Automation with the Java™ API

3. Obtain reference material for any of the following:

◦ What information is needed to run the wizards that create API projects, either from scratch or from an

example

◦ Information about the libraries of object and runtime jars

◦ Description of the XML schemas

◦ A link to information about the IBM Event Integration Facility

◦ Full reference for every Java™ class and method

Further information
Gives links to further information about using Java™ APIs.

Redbooks®

To find out more about how to program this type of API, see the following IBM® Redbooks®:

IBM® Redbooks®: EJB 2.0 Development with WebSphere® Studio Application Developer, SG24-6819

This IBM® Redbook provides detailed information on how to effectively use WebSphere® Studio Application

Developer for the development of applications based on the Enterprise JavaBeans™ (EJB) architecture, and

deployment of such applications to a WebSphere® Application Server.

To access this publication, follow this link: http://www.redbooks.ibm.com/abstracts/sg246819.html.

IBM® Redbooks®: Programming J2EE APIs with WebSphere® Advanced, SG24-6124

This IBM® Redbook has examples of programming the new J2EE APIs using VisualAge® for Java™ and

deployment on WebSphere® Advanced.

To access this publication, follow this link: http://www.redbooks.ibm.com/abstracts/sg246819.html.

39

common/src_dgd/httpwww.redbooks.ibm.com/abstracts/sg246819.html
common/src_dgd/httpwww.redbooks.ibm.com/abstracts/sg246124.html

xl

Notices
This document provides information about copyright, trademarks, terms and conditions for product documentation.

© Copyright IBM Corporation 1993, 2016 / © Copyright HCL Technologies Limited 2016, 2024

This information was developed for products and services offered in the US. This material might be available from IBM in

other languages. However, you may be required to own a copy of the product or product version in that language in order to

access it.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult your local

IBM representative for information on the products and services currently available in your area. Any reference to an IBM

product, program, or service is not intended to state or imply that only that IBM product, program, or service may be used.

Any functionally equivalent product, program, or service that does not infringe any IBM intellectual property right may be

used instead. However, it is the user's responsibility to evaluate and verify the operation of any non-IBM product, program, or

service.

IBM may have patents or pending patent applications covering subject matter described in this document. The furnishing of

this document does not grant you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing

IBM Corporation

North Castle Drive, MD-NC119

Armonk, NY 10504-1785

US

For license inquiries regarding double-byte character set (DBCS) information, contact the IBM Intellectual Property

Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing

Legal and Intellectual Property Law

IBM Japan Ltd.

19-21, Nihonbashi-Hakozakicho, Chuo-ku

Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY

OF ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-

INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer

of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made to the

information herein; these changes will be incorporated in new editions of the publication. IBM may make improvements and/

or changes in the product(s) and/or the program(s) described in this publication at any time without notice.

xli

Any references in this information to non-IBM websites are provided for convenience only and do not in any manner serve as

an endorsement of those websites. The materials at those websites are not part of the materials for this IBM product and

use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it believes appropriate without incurring any

obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the exchange of information

between independently created programs and other programs (including this one) and (ii) the mutual use of the information

which has been exchanged, should contact:

IBM Director of Licensing

IBM Corporation

North Castle Drive, MD-NC119

Armonk, NY 10504-1785

US

Such information may be available, subject to appropriate terms and conditions, including in some cases, payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by IBM under terms of

the IBM Customer Agreement, IBM International Program License Agreement or any equivalent agreement between us.

The performance data discussed herein is presented as derived under specific operating conditions. Actual results may vary.

Information concerning non-IBM products was obtained from the suppliers of those products, their published

announcements or other publicly available sources. IBM has not tested those products and cannot confirm the accuracy

of performance, compatibility or any other claims related to non-IBM products. Questions on the capabilities of non-IBM

products should be addressed to the suppliers of those products.

This information is for planning purposes only. The information herein is subject to change before the products described

become available.

This information contains examples of data and reports used in daily business operations. To illustrate them as completely

as possible, the examples include the names of individuals, companies, brands, and products. All of these names are

fictitious and any similarity to actual people or business enterprises is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming techniques on

various operating platforms. You may copy, modify, and distribute these sample programs in any form without payment to

IBM, for the purposes of developing, using, marketing or distributing application programs conforming to the application

programming interface for the operating platform for which the sample programs are written. These examples have not been

thoroughly tested under all conditions. IBM, therefore, cannot guarantee or imply reliability, serviceability, or function of these

programs. The sample programs are provided "AS IS", without warranty of any kind. IBM shall not be liable for any damages

arising out of your use of the sample programs.

xlii

Portions of this code are derived from IBM Corp. Sample Programs.

© Copyright IBM Corp. 2016

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines Corp.,

registered in many jurisdictions worldwide. Other product and service names might be trademarks of IBM® or other

companies. A current list of IBM® trademarks is available on the web at "Copyright and trademark information" at

www.ibm.com/legal/copytrade.shtml.

Adobe™, the Adobe™ logo, PostScript™, and the PostScript™ logo are either registered trademarks or trademarks of Adobe™

Systems Incorporated in the United States, and/or other countries.

IT Infrastructure Library™ is a Registered Trade Mark of AXELOS Limited.

Linear Tape-Open™, LTO™, the LTO™ Logo, Ultrium™, and the Ultrium™ logo are trademarks of HP, IBM® Corp. and Quantum in

the U.S. and other countries.

Intel™, Intel™ logo, Intel Inside™, Intel Inside™ logo, Intel Centrino™, Intel Centrino™ logo, Celeron™, Intel Xeon™, Intel

SpeedStep™, Itanium™, and Pentium™ are trademarks or registered trademarks of Intel™ Corporation or its subsidiaries in the

United States and other countries.

Linux™ is a registered trademark of Linus Torvalds in the United States, other countries, or both.

Microsoft™, Windows™, Windows NT™, and the Windows™ logo are trademarks of Microsoft™ Corporation in the United

States, other countries, or both.

 Java™ and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or its

affiliates.

Cell Broadband Engine™ is a trademark of Sony Computer Entertainment, Inc. in the United States, other countries, or both

and is used under license therefrom.

ITIL™ is a Registered Trade Mark of AXELOS Limited.

UNIX™ is a registered trademark of The Open Group in the United States and other countries.

Terms and conditions for product documentation
Permissions for the use of these publications are granted subject to the following terms and conditions.

http://www.ibm.com/legal/us/en/copytrade.shtml

xliii

Applicability

These terms and conditions are in addition to any terms of use for the IBM website.

Personal use

You may reproduce these publications for your personal, noncommercial use provided that all proprietary notices are

preserved. You may not distribute, display or make derivative work of these publications, or any portion thereof, without the

express consent of IBM.

Commercial use

You may reproduce, distribute and display these publications solely within your enterprise provided that all proprietary

notices are preserved. You may not make derivative works of these publications, or reproduce, distribute or display these

publications or any portion thereof outside your enterprise, without the express consent of IBM.

Rights

Except as expressly granted in this permission, no other permissions, licenses or rights are granted, either express or implied,

to the publications or any information, data, software or other intellectual property contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its discretion, the use of the publications is

detrimental to its interest or, as determined by IBM, the above instructions are not being properly followed.

You may not download, export or re-export this information except in full compliance with all applicable laws and regulations,

including all United States export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE PUBLICATIONS. THE PUBLICATIONS ARE PROVIDED "AS-

IS" AND WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO IMPLIED

WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

Index
A

accessibility v
AddEventRule

API project example 12
application program interface

accessing reference material 38
build.xml file 12
connecting to products 15
create project

from example 12
from scratch 12

examples for TWS 16
examples for TWS for z/OS 24
further information 39
information, further 39
Java 9, 9, 9, 9, 10, 11, 11, 12, 12, 12, 13, 15,
16, 16, 19, 20, 24, 36, 38, 39
libraries 11
naming convention 9
overview 8, 9
project example 13
project folders 11
projects 9
redbooks 39
reference 9
reference material, accessing 38
REST 8
source tree 10
specification 9
using to work with z/OS JCL 36
working with event rules in database 20
working with objects in database 16
working with objects in plan 19

B
build.xml file

Java project file 12

C
Cloud & Smarter Infrastructure technical
training v
config

Java project folder 11

D
database objects

working with using the Java API 16
Dynamic Workload Console

accessibility v

E
education v
event rules in database

working with using the Java API 20

J
Java API

accessing reference material 38
build.xml file 12
connecting to products 15
create project

from example 12
from scratch 12

examples for TWS 16
examples for TWS for z/OS 24
further information 39
information, further 39
libraries 11
naming convention 9

overview 9
project example 13
project folders 11
projects 9
redbooks 39
reference 9
reference material, accessing 38
source tree 10
specification 9
using to work with z/OS JCL 36
working with event rules in database 20
working with objects in database 16
working with objects in plan 19

Java API examples
IBM
Z Workload Scheduler

defining a job stream with existing
data 27

K
keys

Java project folder 11

M
MakeQueryJobsOnPlan

API project example 12
MakeQueryOnPlan

API project example 12
MakeZOSQueryOnPlan

API project example 12

P
plan objects

working with using the Java API 19

R
redbooks 39
RerunJobInPlan

API project example 12
REST API

overview 8

S
SubmitJobInPlan

API project example 12

T
technical training v
training

technical v

44

	Developer's Guide: Driving IBM Workload Automation
	Contents
	About this guide
	What is new in this release
	Accessibility
	Technical training
	Support information

	Chapter 1. Introduction
	Chapter 2. Driving IBM Workload Scheduler with REST APIs
	Chapter 3. Java API
	Naming conventions
	API detailed specification
	IBM Workload Scheduler API projects
	API projects
	Structure of an API project
	Creating API projects
	Java source tree (src)
	Java libraries
	Other project folders
	build.xml
	Creating a project from scratch
	Creating a project from an API example
	The examples you can choose from

	Example IBM Workload Scheduler API project

	Connecting to the products
	Examples for IBM Workload Scheduler
	Working with objects in the database
	Example 1: Adding a workstation to the database
	Example 2: Retrieving a workstation from the database
	Example 3: Removing a workstation from the database
	Example 4: Defining a native job definition
	Example 5: Defining a job definition by using Jsdl
	Example 6: Adding a job stream definition with dependencies, jobs, and runcycle:

	Working with objects in the plan
	Example 4: Submitting a job stream instance into the current plan
	Example 5: Making a query on the plan

	Working with event rules in the database
	Example 6: Adding an event rule to the database
	Example 7: Retrieve an event rule from the database by ID
	Example 8: Retrieve an event rule from the database by key (name)
	Example 9: Delete an event rule from the database by ID
	Example 10: Delete an event rule from the database by key (name)

	Examples for IBM Z Workload Scheduler
	Example 1: Adding a workstation to the database
	Example 2: Adding a job stream (application) to the database
	Example 3: Modifying a job stream (application) in the database
	Example 4: Adding a special resource in the database
	Adding a job stream to the plan after modifying its contents
	Using the API to work with z/OS JCL
	Defining the connection with the IBM Z Workload Scheduler connector
	Add JCL Job
	Read JCL Job
	Modify JCL Job
	Remove JCL Job

	Reference material
	Further information
	Redbooks®

	Notices
	Trademarks
	Terms and conditions for product documentation
	Applicability
	Personal use
	Commercial use
	Rights

	Index

