

 Note

 Before using this information and the product it supports, read
 the information in Notices.

 Edition
 notice

 This edition applies to version 4 release 1 modification 0.4 of
 the following products, and to all subsequent releases and modifications
 until otherwise indicated in new editions:

 	IBM General Parallel
 File System ordered through Passport Advantage (product number
 5725-Q01)

 	IBM General Parallel
 File System ordered through AAS/eConfig (product number 5641-GPF)

 	IBM General Parallel
 File System ordered through HVEC/Xcel (product number 5641-GP6,
 5641-GP7, or 5641-GP8)

 	IBM General Parallel
 File System for Linux on System z (product number 5725-S28)

 Significant changes or additions to the
 text and illustrations are surrounded with double angle brackets ([image: Start of change] [image: End of change]).

 IBM welcomes your comments;
 see the topic How to send your comments.
 When you send information to IBM,
 you grant IBM a nonexclusive
 right to use or distribute the information in any way it believes
 appropriate without incurring any obligation to you.

 Contents

 	 Note

 	 Edition notice

 	Figures

 	Tables

 	 About this information
 	 Prerequisite and related information

 	 Conventions used in this information

 	 How to send your comments

 	 Summary of changes

 	 GPFS Advanced Administration Information

 	 Accessing GPFS file systems from other GPFS clusters
 	 User access to a GPFS file system owned by another GPFS cluster

 	 Mounting a file system owned and served by another GPFS cluster

 	 Managing remote access to GPFS file systems

 	 Using remote access with public and private IP addresses

 	 Using multiple security levels

 	 Changing security keys

 	 NIST compliance

 	 Additional information about GPFS file systems accessed by nodes that belong to other GPFS clusters

 	 Information Lifecycle Management for GPFS
 	 Storage pools
 	 Internal GPFS storage pools
 	 The system storage pool

 	 The system.log storage pool

 	 User storage pools

 	 Managing storage pools
 	 Creating storage pools

 	 Changing the storage pool assignment for a disk

 	 Changing the storage pool assignment for a file

 	 Deleting storage pools

 	 Listing storage pools for a file system

 	 Listing the storage pool for a file

 	 Listing disks in a storage pool and associated statistics

 	 Rebalancing files in a storage pool

 	 Using replication with storage pools

 	 External storage pools

 	 Policies and rules
 	 Policies

 	 Policy rules
 	 Policy rule syntax diagrams

 	 Policy rule syntax definitions

 	 SQL expressions for policy rules
 	 Using file attributes

 	 Using built-in functions

 	 Semantics of the mmapplypolicy command and its policy rules
 	 Phase one - selecting candidate files

 	 Phase two - choosing and scheduling files

 	 Phase three - migrating and deleting files

 	 Policy rules - examples and tips
 	 Using macro processing utilities to simplify policy creation, comprehension, and maintenance

 	 Managing policies
 	 Creating a policy

 	 Installing a policy

 	 Changing the active policy

 	 Listing policies

 	 Validating policies

 	 Deleting policies

 	 Working with external storage pools
 	 Defining external pools

 	 User provided program for managing external pools

 	 File list format

 	 Record format

 	 Migrate and recall with external pools

 	 Pre-migrating files with external storage pools

 	 Purging files from external storage pools

 	 Using thresholds with external pools

 	 Backup and restore with storage pools
 	 Working with external lists

 	 Filesets
 	 Fileset namespace

 	 Filesets and quotas

 	 Filesets and storage pools

 	 Filesets and global snapshots

 	 Fileset-level snapshots

 	 Filesets and backup

 	 Managing filesets
 	 Creating a fileset

 	 Deleting a fileset

 	 Linking a fileset

 	 Unlinking a fileset

 	 Changing fileset attributes

 	 Displaying fileset information

 	 Immutability and appendOnly restrictions

 	 Creating and maintaining snapshots of GPFS file systems
 	 Creating your GPFS snapshot

 	 Listing GPFS snapshots

 	 Restoring a GPFS file system from a snapshot

 	 Using the policy engine to read a snapshot

 	 Linking to your GPFS snapshots

 	 Deleting your GPFS snapshot

 	 Creating and managing file clones
 	 Creating file clones

 	 Listing file clones

 	 Deleting file clones

 	 Splitting file clones from clone parents

 	 File clones and disk space management

 	 File clones and snapshots

 	 File clones and policy files

 	 Scale Out Backup and Restore (SOBAR)
 	 Backup procedure with SOBAR

 	 Restore procedure with SOBAR

 	 Establishing disaster recovery for your GPFS cluster
 	 Synchronous mirroring utilizing GPFS replication
 	 Setting up a GPFS cluster with synchronous mirroring utilizing GPFS replication

 	 Steps to take after a disaster when using GPFS replication
 	 Failover to the surviving site

 	 Failback procedures
 	 Failback with temporary loss and no configuration changes

 	 Failback with temporary loss and configuration changes

 	 Failback with permanent loss

 	 Synchronous mirroring utilizing IBM TotalStorage ESS PPRC
 	 An active/active GPFS cluster
 	 Setting up an active/active GPFS configuration

 	 Failover to the recovery site and subsequent failback for an active/active configuration

 	 An active/passive GPFS cluster
 	 Setting up an active/passive GPFS configuration

 	 Failover to the recovery site and subsequent failback for an active/passive configuration

 	 Data integrity and the use of PPRC consistency groups

 	 Asynchronous mirroring utilizing ESS FlashCopy
 	 Setting up FlashCopy using file-system-level suspension

 	 Implementing a clustered NFS using GPFS on Linux
 	 NFS monitoring

 	 NFS failover

 	 NFS locking and load balancing

 	 CNFS network setup

 	 CNFS setup

 	 CNFS administration

 	 Performance and health monitoring
 	 Network performance monitoring

 	 Monitoring GPFS I/O performance with the mmpmon command
 	 Overview of mmpmon

 	 Specifying input to the mmpmon command
 	 Running mmpmon on multiple nodes

 	 Running mmpmon concurrently from multiple users on the same node

 	 Display I/O statistics per mounted file system
 	 Example of mmpmon fs_io_s request

 	 Display I/O statistics for the entire node
 	 Example of mmpmon io_s request

 	 Understanding the node list facility
 	 Add node names to a list of nodes for mmpmon processing
 	 Example of mmpmon nlist add request

 	 Delete a node list
 	 Example of mmpmon nlist del request

 	 Create a new node list

 	 Show the contents of the current node list
 	 Example of mmpmon nlist s request

 	 Delete node names from a list of nodes for mmpmon processing

 	 Node list examples and error handling
 	 A successful fs_io_s request propagated to two nodes

 	 Failure on a node accessed by mmpmon

 	 Node shutdown and quorum loss

 	 Node list failure values

 	 Reset statistics to zero
 	 Example of mmpmon reset request

 	 Understanding the request histogram facility
 	 Specifying the size ranges for I/O histograms

 	 Specifying the latency ranges for I/O

 	 Changing the request histogram facility request size and latency ranges
 	 Processing of rhist nr

 	 Example of mmpmon rhist nr request

 	 Disabling the request histogram facility
 	 Example of mmpmon rhist off request

 	 Enabling the request histogram facility
 	 Example of mmpmon rhist on request

 	 Displaying the request histogram facility pattern
 	 Example of mmpmon rhist p request

 	 Resetting the request histogram facility data to zero
 	 Example of mmpmon rhist reset request

 	 Displaying the request histogram facility statistics values
 	 Example of mmpmon rhist s request

 	 Understanding the Remote Procedure Call (RPC) facility
 	 Displaying the aggregation of execution time for Remote Procedure Calls (RPCs)
 	 Example of mmpmon rpcs request

 	 Displaying the Remote Procedure Call (RPC) execution time according to the size of messages
 	 Example of mmpmon rpcs size request

 	 Displaying mmpmon version
 	 Example of mmpmon ver request

 	 Example mmpmon scenarios and how to analyze and interpret their results
 	 fs_io_s and io_s output - how to aggregate and analyze the results

 	 Request histogram (rhist) output - how to aggregate and analyze the results

 	 Using request source and prefix directive once
 	 An example of once and source usage

 	 Other information about mmpmon output
 	 Counter sizes and counter wrapping

 	 Return codes from mmpmon

 	 Displaying vdisk I/O statistics
 	 Example of mmpmon vio_s request

 	 Resetting vdisk I/O statistics
 	 Example of mmpmon vio_s_reset request

 	 GPFS SNMP support
 	 Installing Net-SNMP

 	 Configuring Net-SNMP

 	 Configuring management applications

 	 Installing MIB files on the collector node and management node

 	 Collector node administration

 	 Starting and stopping the SNMP subagent

 	 The management and monitoring subagent
 	 SNMP object IDs

 	 MIB objects

 	 Cluster status information

 	 Cluster configuration information

 	 Node status information

 	 Node configuration information

 	 File system status information

 	 File system performance information

 	 Storage pool information

 	 Disk status information

 	 Disk configuration information

 	 Disk performance information

 	 Net-SNMP traps

 	 Identity management on Windows
 	 Auto-generated ID mappings

 	 Installing Windows IMU

 	 Configuring ID mappings in IMU

 	 GPFS Native RAID (GNR)
 	 Overview

 	 GPFS Native RAID features
 	 RAID codes

 	 End-to-end checksum

 	 Declustered RAID

 	 Disk configurations
 	 Recovery groups

 	 Declustered arrays

 	 Virtual and physical disks
 	 Virtual disks

 	 Physical disks

 	 Solid-state disks

 	 GNR with pdisk-group fault tolerance
 	 Pdisk-group fault tolerance: an example

 	 Disk hospital
 	 Health metrics

 	 Pdisk discovery

 	 Disk replacement recording and reporting

 	 Managing GPFS Native RAID
 	 Recovery groups
 	 Recovery group server parameters

 	 Recovery group creation

 	 Recovery group server failover

 	 Pdisks
 	 Pdisk paths

 	 Pdisk stanza format

 	 Pdisk states

 	 Declustered arrays
 	 Declustered array parameters

 	 Declustered array size

 	 Data spare space and VCD spares

 	 Increasing VCD spares

 	 Declustered array free space

 	 Pdisk free space

 	 Vdisks
 	 RAID code

 	 Block size

 	 Vdisk size

 	 Log vdisks

 	 The relationship between vdisks and NSDs

 	 Vdisk states

 	 Upgrading to GNR with pdisk-group fault tolerance

 	 Determining pdisk-group fault-tolerance

 	 Maintenance
 	 Disk diagnosis

 	 Background tasks

 	 Server failover

 	 Data checksums

 	 Disk replacement

 	 Other hardware service

 	 Component configuration in the GPFS Storage Server
 	 Adding components to the cluster’s configuration

 	 Defining component locations

 	 Synchronizing display IDs

 	 Updating component attributes

 	 Overall management of GPFS Native RAID
 	 Planning considerations for GPFS Native RAID

 	 Monitoring GPFS Native RAID

 	 GPFS Native RAID callbacks

 	 GNR events in syslog

 	 GPFS Native RAID setup and disk replacement on the IBM Power 775 Disk Enclosure
 	 Example scenario: Configuring GPFS Native RAID recovery groups
 	 Preparing recovery group servers

 	 Creating recovery groups on a Power 775 Disk Enclosure

 	 Example scenario: Replacing failed disks in a Power 775 Disk Enclosure recovery group

 	 GPFS Native RAID setup and maintenance on the IBM System x GPFS Storage Server (GSS)
 	 Updating firmware on enclosures and drives

 	 Example scenario: Configuring GPFS Native RAID recovery groups on the GSS
 	 Preparing GSS recovery group servers

 	 Creating recovery groups on the IBM System x GPFS Storage Server (GSS)

 	 Differences in GSS 1.5 and 2.0 with LogTip NVRAM partitions

 	 Differences in GSS 2.0 with 24-disk enclosures

 	 Example scenario: Replacing failed disks in a GSS recovery group

 	 Example scenario: Replacing failed GSS storage enclosure components

 	 Example scenario: Replacing a failed GSS storage enclosure drawer

 	 Example scenario: Replacing a failed GSS storage enclosure

 	 Example scenario: Checking the health of a GSS configuration

 	 Active file management
 	 Active file management architecture

 	 Caching modes

 	 File system caching and synchronization
 	 Asynchronous operations

 	 Synchronous operations

 	 Update synchronization

 	 Components of a cluster that is running AFM

 	 Global namespace

 	 Cache eviction

 	 Disconnected operation

 	 Expiration

 	 Cache states

 	 Failure and recovery

 	 Steps to deal with an IW cache fileset disaster

 	 Prefetching

 	 Peer snapshots

 	 Viewing snapshots at home

 	 Failover of cache filesets

 	 Partial file caching

 	 AFM encryption support

 	 Parallel I/O

 	 Disabling AFM

 	 Hierarchical storage management and AFM

 	 mmbackup and AFM

 	 AFM-based NFS migration

 	 Restrictions in active file management

 	 Home cluster errors

 	 Administrative actions
 	 System setup and requirements
 	 Setting up home and cache clusters

 	 Dealing with requeued messages

 	 Tuning active file management home communications

 	 GPFS File Placement Optimizer
 	 Distributing data across a cluster

 	 FPO pool file placement and AFM

 	 Restrictions

 	 Encryption
 	 Encryption keys

 	 Encryption policies

 	 Encryption policy rules

 	 Encryption setup requirements

 	 Establishing an encryption-enabled environment

 	 Secure deletion

 	 Encryption and FIPS compliance

 	 Encryption and NIST compliance

 	 Encryption and backup/restore

 	 Encryption and snapshots

 	 Miscellaneous advanced administration topics
 	 Changing IP addresses and host names

 	 Enabling a cluster for IPv6

 	 Using multiple token servers

 	 Exporting file system definitions between clusters

 	 GPFS port usage

 	 Accessibility features for GPFS
 	 Accessibility features

 	 Keyboard navigation

 	 IBM and accessibility

 	 Notices
 	 Trademarks

 	 Glossary

 Figures

 	Figure 1.Remote mount of a file system using NSD
 server access

 	Figure 2.Remote mount of a file system using SAN-attached
 disks

 	Figure 3.Multi-cluster configuration with multiple
 NSD servers

 	Figure 4.Use of public and private IP addresses
 in three GPFS clusters

 	Figure 5.Synchronous mirroring utilizing GPFS replication

 	Figure 6.A synchronous active/active
 PPRC-based mirrored GPFS configuration
 with a tiebreaker site

 	Figure 7.A synchronous
 active/passive PPRC-based GPFS configuration
 without a tiebreaker site

 	Figure 8.Violation of write ordering without the use
 of a PPRC consistency group

 	Figure 9.High-level organization
 of a FlashCopy/PPRC recovery environment

 	Figure 10.Node running mmpmon

 	Figure 11.Properties window

 	Figure 12.Redundancy codes supported by GPFS Native
 RAID

 	Figure 13.Conventional RAID versus declustered
 RAID layouts

 	Figure 14.Lower rebuild overhead in conventional
 RAID versus declustered RAID

 	Figure 15.GPFS Native
 RAID server
 and recovery groups in a ring configuration

 	Figure 16.Minimal configuration of two GPFS Native
 RAID servers
 and one storage JBOD

 	Figure 17.Example of declustered arrays and
 recovery groups in storage JBOD

 	Figure 18.[image: Start of change]Strips across JBOD[image: End of change] enclosures

 	Figure 19.[image: Start of change]Strips across JBOD[image: End of change] enclosures after failure

 	Figure 20.Global namespace implemented using AFM

 Tables

 	Table 1. GPFS library
 information units

 	Table 2. Conventions

 	Table 3. Summary of commands to set up cross-cluster
 file system access.

 	Table 4. Input
 requests to the mmpmon command

 	Table 5. Keywords and values for
 the mmpmon fs_io_s response

 	Table 6. Keywords and values for the mmpmon
 io_s response

 	Table 7. nlist requests for the mmpmon command

 	Table 8. Keywords and values for the mmpmon
 nlist add response

 	Table 9. Keywords and values for the mmpmon
 nlist del response

 	Table 10. Keywords and values for the mmpmon
 nlist new response

 	Table 11. Keywords and values for the mmpmon
 nlist s response

 	Table 12. Keywords and values for the mmpmon nlist failures

 	Table 13. Keywords and values for the mmpmon reset response

 	Table 14. rhist requests for the mmpmon command

 	Table 15. Keywords and values for
 the mmpmon rhist nr response

 	Table 16. Keywords and values for
 the mmpmon rhist off response

 	Table 17. Keywords and values for the mmpmon
 rhist on response

 	Table 18. Keywords and values for the mmpmon
 rhist p response

 	Table 19. Keywords and values for the mmpmon rhist reset response

 	Table 20. Keywords and values for the mmpmon
 rhist s response

 	Table 21. rpcs requests for the mmpmon command

 	Table 22. Keywords and values for the mmpmon rpcs response

 	Table 23. Keywords
 and values for the mmpmon rpcs size response

 	Table 24. Keywords and values for the mmpmon ver response

 	Table 25. Keywords and descriptions
 of values provided in the mmpmon vio_s response

 	Table 26. Keywords
 and values for the mmpmon vio_s_reset response

 	Table 27. gpfsClusterStatusTable: Cluster status
 information

 	Table 28. gpfsClusterConfigTable: Cluster configuration
 information

 	Table 29. gpfsNodeStatusTable:
 Node status information

 	Table 30. gpfsNodeConfigTable:
 Node configuration information

 	Table 31. gpfsFileSystemStatusTable:
 File system status information

 	Table 32. gpfsFileSystemPerfTable:
 File system performance information

 	Table 33. gpfsStgPoolTable: Storage
 pool information

 	Table 34. gpfsDiskStatusTable:
 Disk status information

 	Table 35. gpfsDiskConfigTable: Disk configuration information

 	Table 36. gpfsDiskPerfTable:
 Disk performance information

 	Table 37. Net-SNMP
 traps

 	Table 38. Pdisk
 states

 	Table 39. Vdisk states

 	Table 40. Background tasks

 	Table 41. GPFS Native
 RAID callbacks
 and parameters

 	Table 42. AFM modes

 	Table 43. Valid EncParamString values

 	Table 44. Valid
 combine parameter string values

 	Table 45. Valid wrapping parameter
 string values

 	Table 46. GPFS port usage

 About this information

 This edition applies to GPFS version 4.1.0.4 for AIX, Linux,
 and Windows.

 To find out which version of GPFS is
 running on a particular AIX node,
 enter: lslpp -l gpfs*

 To find out which version of GPFS is
 running on a particular Linux node,
 enter: rpm -qa | grep gpfs

 To find out which version of GPFS is
 running on a particular Windows node,
 open the Programs and Features control panel. The IBM General Parallel File System installed
 program name includes the version number.

 Which GPFS information
 unit provides the information you need?

 The GPFS library consists
 of the information units listed in Table 1.

 To use these information units effectively, you must be familiar
 with the GPFS licensed product
 and the AIX, Linux, or Windows operating
 system, or all of them, depending on which operating systems are in
 use at your installation. Where necessary, these information units
 provide some background information relating to AIX, Linux,
 or Windows; however, more
 commonly they refer to the appropriate operating system documentation.
 Note: [image: Start of change]Throughout this documentation, the term "Linux" refers to all supported distributions
 of Linux, unless otherwise
 specified.[image: End of change]

 Table 1. GPFS library
 information units.

 	Information unit

 	Type of information

 	Intended users

 	GPFS:
 Administration and Programming Reference

 	This information unit explains how to do the
 following:

 	Use the commands, programming interfaces, and user exits unique
 to GPFS

 	Manage clusters, file systems, disks, and quotas

 	Export a GPFS file system
 using the Network File System (NFS) protocol

 	System administrators or programmers of GPFS systems

 	GPFS:
 Advanced Administration Guide

 	This information unit explains how to use the
 following advanced features of GPFS:

 	Accessing GPFS file systems
 from other GPFS clusters

 	Policy-based data management for GPFS

 	Creating and maintaining snapshots of GPFS file systems

 	Establishing disaster recovery for your GPFS cluster

 	Monitoring GPFS I/O performance
 with the mmpmon command

 	Miscellaneous advanced administration topics

 	System administrators or programmers seeking
 to understand and use the advanced features of GPFS

 	GPFS:
 Concepts, Planning, and Installation Guide

 	This information unit provides information about
 the following topics:

 	Introducing GPFS

 	GPFS architecture

 	Planning concepts for GPFS

 	Installing GPFS

 	Migration, coexistence and compatibility

 	Applying maintenance

 	Configuration and tuning

 	Uninstalling GPFS

 	System administrators, analysts, installers,
 planners, and programmers of GPFS clusters
 who are very experienced with the operating systems on which each GPFS cluster is based

 	GPFS:
 Data Management API Guide

 	This information unit describes the Data Management
 Application Programming Interface (DMAPI) for GPFS.
 This implementation is based on The
 Open Group's System Management: Data Storage Management (XDSM) API
 Common Applications Environment (CAE) Specification C429, The Open
 Group, ISBN 1-85912-190-X specification. The implementation is compliant
 with the standard. Some optional features are not implemented.

 The
 XDSM DMAPI model is intended mainly for a single-node environment.
 Some of the key concepts, such as sessions, event delivery, and recovery,
 required enhancements for a multiple-node environment such as GPFS.

 Use this information
 if you intend to write application programs to do the following:

 	Monitor events associated with a GPFS file
 system or with an individual file

 	Manage and maintain GPFS file
 system data

 	Application programmers who are experienced
 with GPFS systems and familiar
 with the terminology and concepts in the XDSM standard

 	GPFS:
 Problem Determination Guide

 	
 This information unit contains explanations
 of GPFS error messages and explains
 how to handle problems you may encounter with GPFS.

 	System administrators of GPFS systems who are experienced with the subsystems
 used to manage disks and who are familiar with the concepts presented
 in the GPFS:
 Concepts, Planning, and Installation Guide

 	Prerequisite and related information

 	Conventions used in this information

 	How to send your comments

 Prerequisite and related information

 For updates to this information, see GPFS in IBM Knowledge Center.

 For
 the latest support information, see the GPFS FAQ
 in IBM Knowledge Center.

 Parent topic: About this information

 Conventions used in this information

 Table 1 describes
 the typographic conventions used in this information. UNIX file name conventions are used throughout
 this information.

 Note: Users of GPFS for Windows must be aware that
 on Windows, UNIX-style file names need to be converted appropriately.
 For example, the GPFS cluster
 configuration data is stored in the /var/mmfs/gen/mmsdrfs file.
 On Windows, the UNIX name space starts under the %SystemDrive%\cygwin
 directory, so the GPFS cluster
 configuration data is stored in the C:\cygwin\var\mmfs\gen\mmsdrfs file.

 Table 2. Conventions.

 	Convention

 	Usage

 	bold

 	Bold words
 or characters represent system elements that you must use literally,
 such as commands, flags, values, and selected menu options.
 Depending
 on the context, bold typeface sometimes represents path names,
 directories, or file names.

 	bold
 underlined

 	bold
 underlined keywords are defaults. These take effect
 if you do not specify a different keyword.

 	constant width

 	Examples and information that the
 system displays appear in constant-width typeface.
 Depending
 on the context, constant-width typeface sometimes
 represents path names, directories, or file names.

 	italic

 	Italic words or characters
 represent variable values that you must supply.
 Italics are
 also used for information unit titles, for the first use of a glossary
 term, and for general emphasis in text.

 	<key>

 	Angle brackets (less-than and greater-than)
 enclose the name of a key on the keyboard. For example, <Enter> refers
 to the key on your terminal or workstation that is labeled with the
 word Enter.

 	\

 	In command examples, a backslash
 indicates that the command or coding example continues on the next
 line. For example: mkcondition -r IBM.FileSystem -e "PercentTotUsed > 90" \
-E "PercentTotUsed < 85" -m p "FileSystem space used"

 	{item}

 	Braces enclose a list from which
 you must choose an item in format and syntax descriptions.

 	[item]

 	Brackets enclose optional items
 in format and syntax descriptions.

 	<Ctrl-x>

 	The notation <Ctrl-x>
 indicates a control character sequence. For example, <Ctrl-c>
 means that you hold down the control key while pressing <c>.

 	item...

 	Ellipses indicate that you can
 repeat the preceding item one or more times.

 	|

 	In synopsis statements,
 vertical lines separate a list of choices. In other words, a vertical
 line means Or.

 Parent topic: About this information

 How to send your comments

 Your feedback is important in helping us to produce accurate,
 high-quality information. If you have any comments about this information
 or any other GPFS documentation,
 send your comments to the following e-mail address:

 mhvrcfs@us.ibm.com

 Include
 the publication title and order number, and, if applicable, the specific
 location of the information about which you have comments (for example,
 a page number or a table number).

 To contact the GPFS development
 organization, send your comments to the following e-mail address:

 gpfs@us.ibm.com

 Parent topic: About this information

 Summary of changes

 This topic summarizes changes to the GPFS licensed program and the GPFS library. Within each topic, double angle brackets ([image: Start of change] [image: End of change]) surrounding text or illustrations indicate
 technical changes or additions made to the previous edition of the
 information.

 [image: Start of change]Summary of changes

 for GPFS version 4 release 1.0.4

 as updated, October 2014

 Changes to this release
 of the GPFS licensed program
 and the GPFS library include
 the following:

 	ACL and chmod operation control

 	Introduces the --allow-permission-change parameter
 of the mmchfileset and mmcrfileset commands.
 This parameter controls how chmod and ACL
 operations are handled on objects in a fileset.

 	AFM support for encryption

 	Supports the encryption of data in a file system that includes
 AFM filesets.

 	Batching snapshot commands

 	The performance of multiple concurrent snapshot create and delete
 operations was improved by combining the work into fewer larger steps.

 	Building the GPFS portability
 layer

 	The mmbuildgpl command can manage prerequisite
 packages for Linux and build
 the GPFS portability layer.

 	Changing the internal log file size

 	The size of the internal log file can now be changed with the -L LogFileSize parameter
 of the mmchfs command.

 	Compacting directory sizes

 	For a directory created before GPFS 4.1,
 the new --compact parameter of the mmchattr command
 converts the directory to GPFS 4.1
 format and then compacts the directory, potentially reducing its size.
 If many files were previously removed from the directory, --compact can
 improve the performance of directory operations.

 	Directories that are created with a GPFS 4.1
 or higher file system, or directories that were previously converted
 to GPFS 4.1 format with the
 use of --compact, are compacted automatically
 as files are removed.

 	Crypto acceleration for POWER8

 	GPFS encryption can take
 advantage of the POWER8 cryptographic
 enhancements.

 	File Placement Optimizer: Hadoop support

 	Provides FPO support of the following Hadoop features:

 	In-memory caching

 	ACL enhancement

 	GPFS for Linux on System
 z

 	Provides a high-performance cluster file system on the IBM System z platform. For information about
 availability, see IBM Software
 Announcement 214-367 dated October 6, 2014.

 	GPFS Storage Server (GSS)
 2.0

 	Provides several product enhancements. For more information, see
 the GPFS:
 Advanced Administration Guide.

 	Policy improvements

 	The following improvements were added for policies:

 	The ACTION clause was added to the MIGRATE, EXCLUDE, LIST, DELETE, SET
 POOL, and RESTORE TO POOL rules.

 	The DIRECTORIES_PLUS clause was added
 to the DELETE and EXCLUDE rules.

 	The GetXattrs() and REGEXREPLACE() functions
 were added.

 	The --split-filelists-by-weight option
 was added to the mmapplypolicy command.

 	RDMA over Converged Ethernet (RoCE)

 	Provides a link layer protocol with efficient low-latency RDMA
 services over Layer 2 Ethernet. It enables InfiniBand transport over
 Ethernet networks, and takes advantage of Priority Flow Control in
 Data Center Bridging Ethernet for lossless connectivity.

 	Re-establishing RDMA connections after network error

 	Enables the re-establishment of an RDMA connection for configurations
 where multiple RDMA connections are established between two nodes,
 and one or more of the RDMA connections break due to a network error.

 	Remote Procedure Call (RPC) statistics

 	RPC statistics can now be displayed using the mmpmon command.

 	Documented commands, structures, and subroutines

 	The following lists the modifications to the documented commands,
 structures, and subroutines:

 	New commands

 	The following command is new:

 	mmbuildgpl

 	New structures

 	There are no new structures.

 	New subroutines

 	There are no new subroutines.

 	Changed commands

 	The following commands were changed:

 	mmaddcallback

 	mmaddpdisk

 	mmafmlocal

 	mmapplypolicy

 	mmchattr

 	mmchcluster

 	mmchconfig

 	mmchfileset

 	mmchfirmware

 	mmchfs

 	mmchmgr

 	mmchpool

 	mmchrecoverygroup

 	mmcrcluster

 	mmcrfileset

 	mmcrfs

 	mmcrnsd

 	mmcrrecoverygroup

 	mmdelpdisk

 	mmfsck

 	mmfsctl

 	mmimgbackup

 	mmlsdisk

 	mmlsfileset

 	mmlsfs

 	mmlspdisk

 	mmlsrecoverygroup

 	mmpmon

 	Changed structures

 	The documentation for the following structures was changed although
 the structures themselves remained unchanged:

 	gpfsGetSetXAttr_t

 	gpfsRestripeData_t

 	Changed subroutines

 	The documentation for the following subroutines was changed although
 the subroutines themselves remained unchanged:

 	gpfs_clone_split()

 	gpfs_clone_unsnap()

 	gpfs_declone()

 	gpfs_fcntl()

 	gpfs_fgetattrs()

 	gpfs_fputattrs()

 	gpfs_fputattrswithpathname()

 	gpfs_getacl()

 	gpfs_iclose()

 	gpfs_igetattrsx()

 	gpfs_iopen64()

 	gpfs_iputattrsx()

 	gpfs_ireaddir64()

 	gpfs_ireadlink64()

 	gpfs_next_inode64()

 	gpfs_next_inode_with_xattrs()

 	gpfs_next_inode_with_xattrs64()

 	gpfs_next_xattr()

 	gpfs_open_inodescan64()

 	gpfs_open_inodescan_with_xattrs()

 	gpfs_open_inodescan_with_xattrs64()

 	gpfs_prealloc()

 	gpfs_putacl()

 	gpfs_quotactl()

 	gpfs_seek_inode64()

 	gpfs_stat()

 	gpfs_stat_inode()

 	gpfs_stat_inode64()

 	gpfs_stat_inode_with_xattrs()

 	gpfs_stat_inode_with_xattrs64()

 	Deleted commands

 	There are no deleted commands.

 	Deleted structures

 	There are no deleted structures.

 	Deleted subroutines

 	There are no deleted subroutines.

 	Messages

 	The following lists the new, changed, and deleted messages:

 	New messages

 	6027-1753, 6027-1754, 6027-2144, 6027-2236, 6027-2237, 6027-2239,
 6027-2275, 6027-2276, 6027-2277, 6027-2278, 6027-2279, 6027-2280,
 6027-2799, 6027-2959, 6027-3084, 6027-3085, 6027-3086, 6027-3087,
 6027-3088, 6027-3089, 6027-3101, 6027-3102, 6027-3103, 6027-3105,
 6027-3106, 6027-3556, 6027-3557, 6027-3558, 6027-3559, 6027-3560,
 6027-3561, 6027-3562, 6027-3563, 6027-3564, 6027-3565, 6027-3566,
 6027-3567, 6027-3568, 6027-3569, 6027-3570, 6027-3571, 6027-3572,
 6027-3573, 6027-3574, 6027-3575, 6027-3576, 6027-3577, 6027-3578,
 6027-3705, 6027-3706, 6027-3707

 	Changed messages

 	6027-474, 6027-494, 6027-633, 6027-1152, 6027-1864, 6027-2822

 	Deleted messages

 	There are no deleted messages.

 [image: End of change]

 Summary of changes

 for GPFS version 4 release 1

 as updated, May 2014

 Changes to this release of the GPFS licensed program and the GPFS library include the following:

 	GPFS product structure

 	GPFS now comes in three
 levels of function: GPFS Standard
 Edition, GPFS Express Edition, and GPFS Advanced
 Edition.

 	Active file management (AFM)

 	Enhancements to AFM include the following:

 	AFM environments can now support Parallel I/O. During reads, all
 mapped gateway nodes are used to fetch a single file from home. During
 writes, all mapped gateways are used to synchronize file changes to
 home.

 	In addition to the NFS protocol, AFM now supports the native GPFS protocol for the AFM communication
 channel providing improved integration of GPFS features and attributes.

 	GPFS 4.1 includes a number
 of features optimizing AFM operations and usability. These features
 include prefetch enhancements to handle gateway node failures during
 prefetch. AFM introduces new version of hashing (afmHashVersion=2),
 which minimizes the impact of gateway nodes joining or leaving the
 active cluster. Also, AFM cache states will now have different states
 based on fileset and queue states.

 	GPFS 4.1 supports the migration
 of data from any legacy NFS storage device or GPFS cluster to an AFM fileset. Data migration
 eases data transfer when upgrading hardware or buying a new system.
 The data source is an NFS v3 export and can be either a GPFS or a non-GPFS source as well. AFM based
 migration can minimize downtime for applications and consolidate data
 from multiple legacy systems into a more powerful cache.

 	Autonomic tuning for mmbackup

 	The mmbackup command can be tuned to
 control the numbers of threads used on each node to scan the file
 system, perform inactive object expiration, and carry out modified
 object backup. In addition, the sizes of lists of objects expired
 or backed up can be controlled or autonomically tuned to select these
 list sizes if they are not specified. List sizes are now independent
 for backup and expire tasks. For more information, see the GPFS:
 Administration and Programming Reference topic: "Tuning
 backups with the mmbackup command".

 	Backup 3.2 format discontinued

 	Starting with GPFS 4.1,
 the mmbackup command will no longer support
 incremental backup using the /Device/.snapshots/.mmbuSnapshot path
 name that was used with GPFS 3.2
 and earlier. For more information, see the GPFS:
 Administration and Programming Reference topic: "File
 systems backed up using GPFS 3.2
 or earlier versions of mmbackup".

 	Cluster Configuration Repository (CCR)

 	GPFS 4.1 introduces a new
 quorum-based repository for the configuration data. This replaces
 the current server-based repository, which required specific nodes
 to be designated as primary and backup configuration server nodes.

 	Cluster NFS improvements

 	Cluster NFS (CNFS) has been enhanced to support IPv6 and NFS V4.

 	Cygwin replaces SUA for Windows nodes

 	SUA is no longer supported for Windows nodes.
 Cygwin is now a required prerequisite before installing GPFS on Windows nodes.

 	Deadlock amelioration

 	Automated deadlock detection, automated deadlock data collection,
 and automated deadlock breakup can be used to help simplify deadlock
 troubleshooting.

 	Encryption

 	Support is provided for file encryption that ensures both secure
 storage and secure deletion of data. Encryption is only available
 with the GPFS Advanced
 Edition.
 For more information, see the GPFS:
 Advanced Administration Guide topic: "Encryption".

 	File Placement Optimizer (FPO)

 	Enhancements to FPO include the following:

 	To avoid performance impacts, data locality is now maintained
 when running the mmrestripefs -r command.

 	Asynchronous I/O performance was improved.

 	The performance of GPFS O_DIRECT vectored
 I/O was improved.

 	Data locality performance for AFM-FPO was improved.

 	The mmchpool command was provided to
 change GPFS-FPO relevant attributes (writeAffinityDepth and blockGroupFactor)
 for FPO storage pools.

 	Write affinity depth of 2 was improved to assign (write) all of
 the files in a fileset to the same second-replica node.

 	Fileset snapshot restore

 	Files can be restored from a fileset-level snapshot in a mounted
 file system.

 	Local read-only cache

 	Support is provided for large local read-only cache using solid-state
 disks. This makes data available with very low latency, and the cache
 serves to reduce the load on the shared network and on the backend
 disk storage, optimizing performance.

 	Message logging

 	Starting with GPFS 4.1,
 many GPFS log messages can be
 sent to syslog on Linux. Severity tags were added to numerous
 messages, and these tags can be used to filter the messages that are
 sent to syslog. The systemLogLevel attribute
 of the mmchconfig command controls which GPFS log messages are sent to syslog.

 	mmsetquota command

 	The new mmsetquota command enables you
 to set quota limits, default quota limits, or grace periods for users,
 groups, and filesets in the specified file system.

 	NFSv4 ACL formats

 	The ACL entry MKDIR was replaced by APPEND/MKDIR to
 allow WRITE and APPEND to
 be specified independently. A new NoPropagateInherit ACL
 flag was introduced; this flag indicates that the ACL entry should
 be included in the initial ACL for subdirectories created in this
 directory but not further propagated to subdirectories created below
 that level.

 	NIST SP800-131A compliance

 	GPFS can be configured to
 operate in conformance with the NIST SP800-131A recommendations for
 communication across nodes when the cipherList configuration
 variable is specified. The nistCompliance configuration
 variable controls whether conformance with NIST SP800-131A is enforced.
 The algorithms and key lengths used for file encryption all conform
 with NIST SP800-131A.

 	NSD formats

 	A new NSD format was introduced. The new format is referred to
 as NSD v2, and the old format is referred to as NSD v1. The NSD v1
 format is compatible with GPFS releases
 prior to 4.1. The latest GPFS release
 recognizes both NSD v1 and NSD v2 formatted disks.

 	Online migration of extended attributes

 	The mmmigratefs command can now be run
 with the file system mounted.

 	Quota management

 	Quota management improvements for file system format 4.1 and higher
 include:

 	Allowing quota management to be enabled and disabled without unmounting
 the file system.

 	The user.quota, group.quota,
 and fileset.quota files are no longer used.
 Quota files are now metadata files and do not appear in the file system
 name space.

 	Rapid repair

 	Performance of repairing large replicated files when restarting
 disks which were down has been improved. The repair will occur only
 on the blocks that changed while the disk was down, rather than on
 the entire file.

 	snapshotCreated callback

 	A new event called snapshotCreated was
 added to help correlate the timing of DMAPI events with the creation
 of a snapshot.

 	TSM version verification

 	The TSM Backup-Archive client must
 be installed and at the same version on all the nodes that will execute
 the mmbackup command or named in a node
 specification with -N. Starting with GPFS 4.1, the mmbackup command
 will verify that the TSM Backup-Archive client versions
 and configuration are correct before executing the backup.

 	User-defined node classes

 	Nodes can now be grouped into user-defined node classes that are
 created with the mmcrnodeclass command.
 After a node class is created, it can be specified as an argument
 on commands that accept the -N NodeClass option.
 User-defined node classes are managed with the mmchnodeclass, mmdelnodeclass,
 and mmlsnodeclass commands.

 	Documented commands, structures, and subroutines

 	The following lists the modifications to the documented commands,
 structures, and subroutines:

 	New commands

 	The following commands are new:

 	mmafmconfig

 	mmchnodeclass

 	mmchpool

 	mmcrnodeclass

 	mmdelnodeclass

 	mmlsnodeclass

 	mmsetquota

 	New structures

 	There are no new structures.

 	New subroutines

 	There are no new subroutines.

 	Changed commands

 	The following commands were changed:

 	mmaddcallback

 	mmafmctl

 	mmafmlocal

 	mmauth

 	mmbackup

 	mmchattr

 	mmchcluster

 	mmchconfig

 	mmchfileset

 	mmchfs

 	mmchpdisk

 	mmchrecoverygroup

 	mmcrcluster

 	mmcrfileset

 	mmcrfs

 	mmcrnsd

 	mmcrrecoverygroup

 	mmcrvdisk

 	mmdelvdisk

 	mmdiag

 	mmlscluster

 	mmlsfs

 	mmlsmount

 	mmlsrecoverygroup

 	mmmigratefs

 	mmmount

 	mmrestorefs

 	mmsnapdir

 	mmumount

 	Changed structures

 	The following structures were changed:

 	gpfs_acl_t

 	gpfs_direntx_t

 	gpfs_direntx64_t

 	gpfs_iattr_t

 	gpfs_iattr64_t

 	Changed subroutines

 	The following subroutines were changed:

 	gpfs_fgetattrs()

 	gpfs_fputattrs()

 	gpfs_fputattrswithpathname()

 	gpfs_fstat()

 	gpfs_stat()

 	Deleted commands

 	The following commands were deleted:

 	mmafmhomeconfig

 	Deleted structures

 	There are no deleted structures.

 	Deleted subroutines

 	There are no deleted subroutines.

 	Messages

 	The following lists the new, changed, and deleted messages:

 	New messages

 	6027-680, 6027-760, 6027-873, 6027-939, 6027-953, 6027-954, 6027-955,
 6027-956, 6027-957, 6027-959, 6027-960, 6027-1629, 6027-1743, 6027-1744,
 6027-1745, 6027-1746, 6027-1747, 6027-1748, 6027-1749, 6027-1750,
 6027-1751, 6027-1752, 6027-2229, 6027-2231, 6027-2232, 6027-2233,
 6027-2728, 6027-2767, 6027-2793, 6027-2794, 6027-2795, 6027-2796,
 6027-2797, 6027-2798, 6027-2822, 6027-2823, 6027-2824, 6027-2825,
 6027-2826, 6027-2827, 6027-2828, 6027-2956, 6027-2957, 6027-2958,
 6027-3066, 6027-3067, 6027-3068, 6027-3069, 6027-3070, 6027-3071,
 6027-3072, 6027-3073, 6027-3074, 6027-3075, 6027-3076, 6027-3077,
 6027-3078, 6027-3079, 6027-3080, 6027-3241, 6027-3242, 6027-3243,
 6027-3244, 6027-3245, 6027-3246, 6027-3247, 6027-3248, 6027-3249,
 6027-3250, 6027-3252, 6027-3253, 6027-3254, 6027-3304, 6027-3305,
 6027-3404, 6027-3450, 6027-3451, 6027-3452, 6027-3453, 6027-3457,
 6027-3458, 6027-3459, 6027-3460, 6027-3461, 6027-3462, 6027-3463,
 6027-3464, 6027-3465, 6027-3466, 6027-3468, 6027-3469, 6027-3470,
 6027-3471, 6027-3472, 6027-3473, 6027-3474, 6027-3475, 6027-3476,
 6027-3477, 6027-3478, 6027-3479, 6027-3480, 6027-3481, 6027-3482,
 6027-3483, 6027-3484, 6027-3485, 6027-3486, 6027-3487, 6027-3488,
 6027-3489, 6027-3490, 6027-3491, 6027-3493, 6027-3494, 6027-3495,
 6027-3496, 6027-3497, 6027-3498, 6027-3499, 6027-3500, 6027-3501,
 6027-3502, 6027-3503, 6027-3504, 6027-3505, 6027-3506, 6027-3509,
 6027-3510, 6027-3511, 6027-3512, 6027-3513, 6027-3514, 6027-3515,
 6027-3516, 6027-3517, 6027-3518, 6027-3519, 6027-3520, 6027-3521,
 6027-3522, 6027-3524, 6027-3527, 6027-3528, 6027-3529, 6027-3530,
 6027-3533, 6027-3534, 6027-3535, 6027-3536, 6027-3537, 6027-3540,
 6027-3541, 6027-3543, 6027-3544, 6027-3545, 6027-3546, 6027-3547,
 6027-3548, 6027-3549, 6027-3550, 6027-3555, 6027-3700, 6027-3701,
 6027-3702, 6027-3703, 6027-3704

 	Changed messages

 	6027-328, 6027-542, 6027-573, 6027-575, 6027-595, 6027-597, 6027-755,
 6027-882, 6027-884, 6027-885, 6027-886, 6027-906, 6027-907, 6027-910,
 6027-996, 6027-1227, 6027-1260, 6027-1261, 6027-1262, 6027-1263, 6027-1292,
 6027-1303, 6027-1305, 6027-1308, 6027-1309, 6027-1524, 6027-1717,
 6027-1718, 6027-1890, 6027-1891, 6027-1898, 6027-2150, 6027-2158,
 6027-2204, 6027-2205, 6027-2206, 6027-2741, 6027-2756, 6027-2758,
 6027-3026, 6027-3060, 6027-3215, 6027-3226, 6027-3227, 6027-3228,
 6027-3232, 6027-3236, 6027-3239, 6027-3240

 	Changed messages (only severity tags added)

 	6027-300, 6027-302, 6027-303, 6027-304, 6027-305, 6027-306, 6027-310,
 6027-311, 6027-312, 6027-313, 6027-314, 6027-315, 6027-316, 6027-317,
 6027-318, 6027-323, 6027-334, 6027-335, 6027-336, 6027-337, 6027-338,
 6027-339, 6027-341, 6027-342, 6027-343, 6027-344, 6027-346, 6027-347,
 6027-348, 6027-349, 6027-350, 6027-361, 6027-365, 6027-378, 6027-435,
 6027-472, 6027-473, 6027-474, 6027-479, 6027-481, 6027-482, 6027-483,
 6027-490, 6027-499, 6027-532, 6027-533, 6027-550, 6027-590, 6027-593,
 6027-596, 6027-598, 6027-599, 6027-604, 6027-605, 6027-606, 6027-608,
 6027-611, 6027-613, 6027-616, 6027-617, 6027-618, 6027-622, 6027-629,
 6027-630, 6027-635, 6027-636, 6027-637, 6027-638, 6027-639, 6027-640,
 6027-641, 6027-642, 6027-643, 6027-646, 6027-647, 6027-650, 6027-695,
 6027-696, 6027-697, 6027-698, 6027-699, 6027-700, 6027-701, 6027-702,
 6027-703, 6027-711, 6027-712, 6027-716, 6027-717, 6027-719, 6027-720,
 6027-721, 6027-724, 6027-726, 6027-734, 6027-747, 6027-750, 6027-751,
 6027-752, 6027-753, 6027-756, 6027-761, 6027-765, 6027-766, 6027-767,
 6027-777, 6027-778, 6027-784, 6027-785, 6027-786, 6027-787, 6027-788,
 6027-866, 6027-870, 6027-871, 6027-872, 6027-874, 6027-875, 6027-876,
 6027-877, 6027-878, 6027-879, 6027-881, 6027-883, 6027-887, 6027-888,
 6027-889, 6027-890, 6027-891, 6027-892, 6027-893, 6027-894, 6027-895,
 6027-896, 6027-897, 6027-898, 6027-899, 6027-900, 6027-901, 6027-902,
 6027-903, 6027-904, 6027-905, 6027-908, 6027-909, 6027-911, 6027-912,
 6027-920, 6027-921, 6027-922, 6027-923, 6027-924, 6027-928, 6027-929,
 6027-930, 6027-931, 6027-932, 6027-933, 6027-934, 6027-935, 6027-936,
 6027-937, 6027-938, 6027-948, 6027-949, 6027-950, 6027-951, 6027-997,
 6027-998, 6027-999, 6027-1500, 6027-1501, 6027-1502, 6027-1510, 6027-1511,
 6027-1512, 6027-1537, 6027-1538, 6027-1539, 6027-1540, 6027-1541,
 6027-1542, 6027-1544, 6027-1545, 6027-1546, 6027-1547, 6027-1548,
 6027-1549, 6027-1550, 6027-1666, 6027-1709, 6027-1710, 6027-1711,
 6027-1716, 6027-1724, 6027-1725, 6027-1726, 6027-1727, 6027-1728,
 6027-1729, 6027-1730, 6027-1731, 6027-1732, 6027-1734, 6027-1735,
 6027-1736, 6027-1737, 6027-1738, 6027-1739, 6027-1740, 6027-1741,
 6027-1742, 6027-1803, 6027-1804, 6027-1805, 6027-1806, 6027-1807,
 6027-1808, 6027-1809, 6027-1810, 6027-1811, 6027-1812, 6027-1813,
 6027-1814, 6027-1815, 6027-1816, 6027-1817, 6027-1818, 6027-1824,
 6027-1825, 6027-1851, 6027-1852, 6027-2049, 6027-2050, 6027-2576,
 6027-2618, 6027-2621, 6027-2623, 6027-2667, 6027-2673, 6027-2674,
 6027-2682, 6027-2694, 6027-2695, 6027-2696, 6027-2700, 6027-2706,
 6027-2707, 6027-2708, 6027-2710, 6027-2711, 6027-2716, 6027-2722,
 6027-2723, 6027-2724, 6027-2725, 6027-2726, 6027-2730, 6027-2734,
 6027-2735, 6027-2740, 6027-2742, 6027-2744, 6027-2745, 6027-2746,
 6027-2747, 6027-2750, 6027-2751, 6027-2752, 6027-2753, 6027-2754,
 6027-2755, 6027-2757, 6027-2759, 6027-2760, 6027-2766, 6027-2777,
 6027-2778, 6027-2779, 6027-2780, 6027-2781, 6027-2782, 6027-2783,
 6027-2784, 6027-2785, 6027-2786, 6027-2787, 6027-2788, 6027-2789,
 6027-2805, 6027-2806, 6027-2807, 6027-2810, 6027-2950, 6027-2952,
 6027-2953, 6027-2954, 6027-2955, 6027-3035, 6027-3045, 6027-3058,
 6027-3214, 6027-3224, 6027-3225, 6027-3229, 6027-3230, 6027-3233,
 6027-3234, 6027-3235, 6027-3402

 	Deleted messages

 	6027-1264, 6027-1265, 6027-1311, 6027-1312, 6027-1323, 6027-1324,
 6027-1325, 6027-1327, 6027-1328, 6027-1330, 6027-1336, 6027-1337,
 6027-1354, 6027-1355, 6027-1356, 6027-1369, 6027-1376, 6027-1397,
 6027-1558, 6027-1569, 6027-1580, 6027-1585, 6027-1586, 6027-1629,
 6027-1698, 6027-1868, 6027-1920, 6027-1944, 6027-1965, 6027-1971,
 6027-1972, 6027-1973, 6027-1991, 6027-3218, 6027-3219, 6027-3237,
 6027-3238

 GPFS Advanced Administration
 Information

 Advanced administration of GPFS includes
 these features:

 	Accessing a GPFS file system
 from another GPFS cluster

 	Policy-based data management

 	Managing snapshots of GPFS file
 systems

 	Establishing disaster recovery for a GPFS cluster

 	Monitoring GPFS I/O using
 the mmpmon command

 	Other topics

 Accessing GPFS file systems
 from other GPFS clusters

 GPFS allows users
 shared access to files in either the cluster where the file system
 was created, or other GPFS clusters.
 File system access by the cluster where the file system was created
 is implicit.

 The ability to access and mount GPFS file
 systems owned by other clusters in a network of sufficient bandwidth
 is accomplished using the mmauth, mmremotecluster and mmremotefs commands.
 Each site in the network is managed as a separate cluster, while allowing
 shared file system access.

 The cluster owning the file system is responsible for administering
 the file system and granting access to other clusters on a per cluster
 basis. After access to a particular file system has been granted to
 nodes in another GPFS cluster,
 they may mount the file system and perform data operations as if the
 file system were locally owned.

 Each node in the GPFS cluster
 requiring access to another cluster's file system must be able to
 open a TCP/IP connection to every node in the other cluster.

 Nodes in two separate remote clusters mounting the same
 file system are not required to be able to open a TCP/IP connection
 to each other. For example, if a node in clusterA mounts
 a file system from clusterB, and a node in clusterC desires
 to mount the same file system, nodes in clusterA and clusterC do
 not have to communicate with each other.

 Each node in the GPFS cluster
 requiring file system access must have one of the following:

 	A virtual connection to the file system data through
 an NSD server (refer to Figure 1).

 	A
 physical connection to the disks containing file system data (refer
 to Figure 2).

 [image: Start of change]In this example, network connectivity is required
 from the nodes in clusterB to all the nodes in clusterA even
 if the nodes in clusterB can access the disks
 in clusterA directly.[image: End of change]

 Note: Even when remote nodes have direct connectivity to the SAN,
 they will still use a connection through an NSD server for any NSDs
 that have been configured with Persistent Reserve (PR). If you want
 the remote nodes to access the disks through their direct connection
 to the SAN, you must ensure that PR is not enabled on the NSDs. See
 the topic about enabling and disabling Persistent Reserve in the GPFS:
 Administration and Programming Reference.

 [image: Remote mount of a file system using NSD server access. This graphic shows two GPFS clusters named cluster A and cluster B, and a wide area network connecting them. Cluster A consists of three nodes and one disk. One node runs AIX and the other two run Linux. All three nodes are connected to the disk. One of the Linux nodes is also the NSD server, and this node is connected to the wide area network. The other two nodes are not connected to the wide area network. Cluster B consists of three nodes, two of which run AIX and one of which runs Linux. All three nodes are connected to the wide area network. There are no disks in cluster B.]

Figure 1. Remote mount of a file system using NSD
 server access

 [image: Remote mount of a file system using SAN-attached disks. This graphic shows two GPFS clusters named cluster A and cluster B. Cluster A consists of three nodes and one disk. One node runs AIX and the other two run Linux. All three nodes are connected to the disk. Cluster B consists of three nodes, two of which run AIX and one runs Linux. All three nodes are connected to the disk associated with cluster A. Cluster B has no disks of its own.]

Figure 2. Remote mount of a file system using SAN-attached
 disks

 Figure 3 illustrates a multi-cluster
 configuration with multiple NSD servers. In this configuration:

 	The two nodes in Cluster 1 are defined as the NSD servers (you
 can have up to eight NSD server nodes).

 	All three clusters are connected with Gigabit Ethernet.

 	Cluster 1 shares an InfiniBand switch network with Cluster 2 and
 an InfiniBand switch network with Cluster 3.

 In order to take advantage of the fast networks and to use the
 nodes in Cluster 1 as NSD servers for Cluster 2 and Cluster 3, you
 must configure a subnet for each of the supported clusters. For example
 issuing the command:

 	mmchconfig subnets="<IB_Network_1>
 <IB_Network_1>/Cluster1" in
 Cluster 2 allows nodes N2 through Nx to use
 N1 as an NSD server with InfiniBand Network 1 providing
 the path to the data.

 	mmchconfig subnets="<IB_Network_2>
 <IB_Network_2>/Cluster1" in
 Cluster 3 allows nodes N2+x through Ny+x to
 use N1+x as an NSD server with InfiniBand Network 2 providing
 the path to the data.

 [image: Illustration shows three clusters with two of them being remote clusters. Cluster 1 contains the two NSD servers for this configuration. Cluster 2 and Cluster 3 use separate networks to access the NSD servers in Cluster 1. With this configuration, Cluster 2 and Cluster 3 can access the data stored on the NSDs without having a direct connection to those disks.]

Figure 3. Multi-cluster configuration with multiple
 NSD servers

 	User access to a GPFS file system owned by another GPFS cluster

 In a cluster environment that has a single user identity
 name space, all nodes have user accounts set up in a uniform manner.
 This is usually accomplished by having equivalent /etc/passwd and /etc/group files
 on all nodes in the cluster.

 	Mounting a file system owned and served by another GPFS cluster

 This is an example of how to mount a file system owned
 and served by another GPFS cluster.
 The gpfs.gskit package must be installed on all nodes in the involved
 clusters before using these instructions.

 	Managing remote access to GPFS file systems

 This is an example of how to manage remote access to GPFS file systems.

 	Using remote access with public and private IP addresses

 GPFS permits the
 use of both public and private IP address. Private IP addresses are
 typically used to communicate on private networks.

 	Using multiple security levels

 A cluster that owns a file system whose access is to be
 permitted from other clusters, can designate a different security
 level for each connecting cluster.

 	Changing security keys

 When working with GPFS file
 systems accessed by other GPFS clusters,
 it might be necessary to generate a new public/private access key.
 This can be done without disturbing existing connections, provided
 the following procedure is followed.

 	NIST compliance

 The nistCompliance configuration
 variable allows the system administrator to restrict the set of available
 algorithms and key lengths to a subset of those approved by NIST.

 	Additional information about GPFS file systems accessed by nodes that belong to other GPFS clusters

 There is some additional information about this topic that
 you should take into consideration.

 User access to a GPFS file
 system owned by another GPFS cluster

 In a cluster environment that has a single user identity
 name space, all nodes have user accounts set up in a uniform manner.
 This is usually accomplished by having equivalent /etc/passwd and /etc/group files
 on all nodes in the cluster.

 For consistency of ownership and access control, a uniform user
 identity name space is preferred. For example, if user Jane Doe has
 an account on nodeA with the user name janedoe and user ID 1001 and
 group ID 500, on all other nodes in the same cluster Jane Doe
 will have an account with the same user and group IDs. GPFS relies on this behavior to perform file
 ownership and access control tasks.

 If a GPFS file system is
 being accessed from a node belonging to another GPFS cluster, the assumption about the uniform
 user account infrastructure may no longer be valid. Since different
 clusters may be administered by different organizations, it is possible
 for each of the clusters to have a unique set of user accounts. This
 presents the problem of how to permit users to access files in a file
 system owned and served by another GPFS cluster.
 In order to have such access, the user must be somehow known to the
 other cluster. This is usually accomplished by creating a user account
 in the other cluster, and giving this account the same set of user
 and group IDs that the account has in the cluster where the file system
 was created.

 To continue with this example, Jane Doe would need an account with
 user ID 1001 and group ID 500 created in every other GPFS cluster from which remote GPFS file system access is desired.
 This approach is commonly used for access control in other network
 file systems, (for example, NFS or AFS),
 but might pose problems in some situations.

 For
 example, a problem arises if Jane Doe already has an account in some
 other cluster, but the user ID associated with this account is not 1001,
 and another user in the other cluster has user ID 1001. It
 would require a considerable effort on the part of system administrator
 to ensure that Jane Doe's account has the same set of IDs on all clusters.
 It is more desirable to be able to use the existing accounts without
 having to make changes. GPFS helps
 to solve this problem by optionally performing user ID and group ID
 remapping internally, using user-supplied helper applications. For
 a detailed description of the GPFS user
 ID remapping convention, see the IBM white
 paper entitled UID Mapping for GPFS in
 a Multi-cluster Environment in IBM Knowledge
 Center.

 Access from
 a remote cluster by a root user presents a special case. It is often
 desirable to disallow root access from a remote cluster while allowing
 regular user access. Such a restriction is commonly known as root
 squash. A root squash option is available when making a file system
 available for mounting by other clusters using the mmauth command.
 This option is similar to the NFS root squash option. When enabled,
 it causes GPFS to squash superuser
 authority on accesses to the affected file system on nodes in remote
 clusters.

 This is accomplished by remapping the credentials: user id (UID)
 and group id (GID) of the root user, to a UID and GID specified by
 the system administrator on the home cluster, for example, the UID
 and GID of the user nobody. In effect, root squashing makes the root
 user on remote nodes access the file system as a non-privileged user.

 Although enabling root squash is similar to setting up UID remapping,
 there are two important differences:

 	While enabling UID remapping on remote nodes is an option available
 to the remote system administrator, root squashing need only be enabled
 on the local cluster, and it will be enforced on remote nodes. Regular
 UID remapping is a user convenience feature, while root squashing
 is a security feature.

 	While UID remapping requires having an external infrastructure
 for mapping between local names and globally unique names, no such
 infrastructure is necessary for enabling root squashing.

 When both UID remapping and root squashing are enabled, root squashing
 overrides the normal UID remapping mechanism for the root user.

 Parent topic: Accessing GPFS file systems from other GPFS clusters

 Mounting a file system owned and served by another GPFS cluster

 This is an example of how to mount a file system owned
 and served by another GPFS cluster.
 The gpfs.gskit package must be installed on all nodes in the involved
 clusters before using these instructions.

 About this task

 The procedure to set up remote file system access involves
 the generation and exchange of authorization keys between the two
 clusters. In addition, the administrator of the GPFS cluster that owns the file system needs
 to authorize the remote clusters that are to access it, while the
 administrator of the GPFS cluster
 that seeks access to a remote file system needs to define to GPFS the remote cluster and file
 system whose access is desired.

 In this example, cluster1 is
 the name of the cluster that owns and serves the file system to be
 mounted, and cluster2 is the name of the
 cluster that desires to access the file system.
 Note: The following
 example uses AUTHONLY as the authorization setting. When you specify
 AUTHONLY for authentication, GPFS checks
 network connection authorization. However, data sent over the connection
 is not protected.

 	On cluster1,
 the system administrator issues the mmauth command
 to generate a public/private key pair. The key pair is placed in /var/mmfs/ssl: mmauth genkey new

 	On cluster1, the system administrator
 enables authorization by issuing: mmauth update . -l AUTHONLY

 	The
 system administrator of cluster1 now gives
 the file /var/mmfs/ssl/id_rsa.pub to the
 system administrator of cluster2, who desires
 to access the cluster1 file systems. This
 operation requires the two administrators to coordinate their activities,
 and must occur outside of the GPFS command
 environment.

 	On cluster2, the system administrator
 issues the mmauth command to generate a
 public/private key pair. The key pair is placed in /var/mmfs/ssl: mmauth genkey new

 	On cluster2, the system administrator
 enables authorization by issuing: mmauth update . -l AUTHONLY

 	The system administrator of cluster2 gives
 file /var/mmfs/ssl/id_rsa.pub to the system
 administrator of cluster1. This operation
 requires the two administrators to coordinate their activities, and
 must occur outside of the GPFS command
 environment.

 	On cluster1, the system administrator
 issues the mmauth add command to authorize cluster2 to
 mount file systems owned by cluster1 utilizing
 the key file received from the administrator of cluster2: mmauth add cluster2 -k cluster2_id_rsa.pub

 where:
 	cluster2

 	Is the real name of cluster2 as given
 by the mmlscluster command on a node in cluster2.

 	cluster2_id_rsa.pub

 	Is the name of the file obtained from the administrator of cluster2 in
 Step 6.

 	On cluster1, the system administrator
 issues the mmauth grant command to authorize cluster2 to
 mount specific file systems owned by cluster1: mmauth grant cluster2 -f /dev/gpfs

 	On cluster2,
 the system administrator now must define the cluster name, contact
 nodes and public key for cluster1: mmremotecluster add cluster1 -n node1,node2,node3 -k cluster1_id_rsa.pub

 where:
 	cluster1

 	Is the real name of cluster1 as given
 by the mmlscluster command on a node in cluster1.

 	node1, node2,
 and node3

 	Are nodes in cluster1. The hostname
 or IP address that you specify must refer to the communications adapter
 that is used by GPFS as given
 by the mmlscluster command on a node in cluster1.

 	cluster1_id_rsa.pub

 	Is the name of the file obtained from the administrator of cluster1 in
 Step 3.

 This permits the cluster desiring to mount the
 file system a means to locate the serving cluster and ultimately mount
 its file systems.

 	On cluster2, the system administrator
 issues one or more mmremotefs commands to
 identify the file systems in cluster1 that
 are to be accessed by nodes in cluster2: mmremotefs add /dev/mygpfs -f /dev/gpfs -C cluster1 -T /mygpfs

 where:
 	/dev/mygpfs

 	Is the device name under which the file system will be known in cluster2.

 	/dev/gpfs

 	Is the actual device name for the file system in cluster1.

 	cluster1

 	Is the real name of cluster1 as given
 by the mmlscluster command on a node in cluster1.

 	/mygpfs

 	Is the local mount point in cluster2.

 	On cluster2,
 the command: mmmount /dev/mygpfs

 then mounts
 the file system.

 Table 1 summarizes the
 commands that the administrators of the two clusters need to issue
 so that the nodes in cluster2 can mount
 the remote file system fs1, owned by cluster1,
 assigning rfs1 as the local name with a
 mount point of /rfs1.

 Table 3. Summary of commands to set up cross-cluster
 file system access..

 	cluster1

 	cluster2

 	mmauth genkey new
 mmauth
 update . -l AUTHONLY

 	mmauth genkey new
 mmauth
 update . -l AUTHONLY

 	Exchange public
 keys (file /var/mmfs/ssl/id_rsa.pub)

 	mmauth add cluster2
 ...
 mmauth grant cluster2 -f fs1
 ...

 	mmremotecluster add cluster1
 ...
 mmremotefs add rfs1 -f fs1 -C cluster1 -T /rfs1

 Parent topic: Accessing GPFS file systems from other GPFS clusters

 Managing remote access to GPFS file
 systems

 This is an example of how to manage remote access to GPFS file systems.

 To see a list of all clusters authorized to mount file systems
 owned by cluster1, the administrator of cluster1 issues
 this command: mmauth show

 To
 authorize a third cluster, say cluster3,
 to access file systems owned by cluster1,
 the administrator of cluster1 issues this
 command: mmauth add cluster3 -k cluster3_id_rsa.pub
mmauth grant cluster3 -f /dev/gpfs1

 To
 subsequently revoke cluster3 authorization
 to access a specific file system gpfs1 owned
 by cluster1, the administrator of cluster1 issues
 this command: mmauth deny cluster3 -f /dev/gpfs1

 To completely revoke cluster3 authorization
 to access file systems owned by cluster1,
 the administrator of cluster1 issues this
 command: mmauth delete cluster3

 Parent topic: Accessing GPFS file systems from other GPFS clusters

 Using remote access with public and private IP addresses

 GPFS permits the
 use of both public and private IP address. Private IP addresses are
 typically used to communicate on private networks.

 Private IP addresses are on one of these subnets:

 	10.0.0.0

 	172.16.0.0

 	192.168.0.0

 See RFC 1597 - Address Allocation for
 Private Internets for more
 information.

 Use the mmchconfig command, subnets attribute,
 to specify the private IP addresses to be accessed by GPFS.

 Figure 1 describes an AIX cluster named CL1 with
 nodes named CL1N1, CL1N2,
 and so forth, a Linux cluster
 named CL2 with nodes named CL2N1, CL2N2,
 and another Linux cluster named CL3 with
 a node named CL3N1. Both Linux clusters have public Ethernet connectivity,
 and a Gigabit Ethernet configured with private IP addresses (10.200.0.1
 through 10.200.0.24), not connected to the public Ethernet. The InfiniBand
 Switch on the AIX cluster CL1 is
 configured using public IP addresses on the 7.2.24/13 subnet and is
 accessible from the outside.

 With the use of both public and private IP addresses for some of
 the nodes, the setup works as follows:

 	All clusters must be created using host names or IP addresses
 that correspond to the public network.

 	Using the mmchconfig command for the CL1 cluster,
 add the attribute: subnets=7.2.24.0.
 This
 allows all CL1 nodes to communicate using
 the InfiniBand Switch. Remote mounts between CL2 and CL1 will
 use the public Ethernet for TCP/IP communication, since the CL2 nodes
 are not on the 7.2.24.0 subnet.

 GPFS assumes
 subnet specifications for private networks are independent between
 clusters (private networks are assumed not physically connected between
 clusters). The remaining steps show how to indicate that a private
 network is shared between clusters.

 	Using the mmchconfig command for the CL2 cluster,
 add the subnets='10.200.0.0/CL2.kgn.ibm.com 10.200.0.0/CL3.kgn.ibm.com' attribute.

 This attribute indicates that the private 10.200.0.0 network
 extends to all nodes in clusters CL2 or CL3.
 This way, any two nodes in the CL2 and CL3 clusters
 can communicate through the Gigabit Ethernet.

 The 10.200.0.0/CL2.kgn.ibm.com portion
 allows all CL2 nodes to communicate over
 their Gigabit Ethernet. The 10.200.0.0/CL3.kgn.ibm.com portion
 allows remote mounts between clusters CL2 and CL3 to
 communicate over their Gigabit Ethernet.

 	Using the mmchconfig command for the CL3 cluster,
 add the subnets='10.200.0.0/CL3.kgn.ibm.com 10.200.0.0/CL2.kgn.ibm.com' attribute.

 This attribute indicates that the private 10.200.0.0 network extends
 to all nodes in clusters CL2 or CL3.
 This way, any two nodes in the CL2 and CL3 clusters
 can communicate through the Gigabit Ethernet.

 The 10.200.0.0/CL3.kgn.ibm.com portion
 allows all CL3 nodes to communicate over
 their Gigabit Ethernet. The 10.200.0.0/CL2.kgn.ibm.com portion
 allows remote mounts between clusters CL3 and CL2 to
 communicate over their Gigabit Ethernet.

 Use the subnets attribute of the mmchconfig command
 when you wish the GPFS cluster
 to leverage additional, higher performance network connections that
 are available to the nodes in the cluster, or between clusters.

 Note: Use of the subnets attribute does
 not ensure a highly available system. If the GPFS daemon is using the IP address specified
 by the subnets attribute, and that interface
 goes down, GPFS does not switch
 to the other network. You can use [image: Start of change]mmdiag
 --network[image: End of change] to verify that the subnet is in fact being
 used.

 [image: This figure describes an AIX cluster named CL1 with nodes named CL1N1, CL1N2, and so forth, a Linux cluster named CL2 with nodes named CL2N1, CL2N2, and another Linux cluster named CL3 with a node named CL3N1. Both Linux clusters have public Ethernet connectivity to the outside, and a Gigabit Ethernet configured with private IP addresses (10.200.0.1 through 10.200.0.24), not connected to the public Ethernet. The InfiniBand Switch on the AIX cluster, CL1 is configured using public IP addresses on the 7.2.24/13 subnet, and is accessible from the outside.]

Figure 4. Use of public and private IP addresses
 in three GPFS clusters

 Parent topic: Accessing GPFS file systems from other GPFS clusters

 Using multiple security levels

 A cluster that owns a file system whose access is to be
 permitted from other clusters, can designate a different security
 level for each connecting cluster.

 When
 multiple security levels are specified, the following rule applies:
 each connection uses the security level of the connecting node, unless
 that security level is AUTHONLY. In this
 case, the security level of the node accepting the connection is used
 instead. This means that a connection will use AUTHONLY if
 and only if both nodes exist in clusters that are required to use
 security method AUTHONLY.

 To specify a different security level for different clusters requesting
 access to a given cluster, use the mmauth -l cipherList command.
 Several examples follow to illustrate:

 	In this example, cluster1 and cluster2 are
 located on the same trusted network, and cluster3 is
 connected to both of them with an untrusted network. The system administrator
 chooses these security levels:

 	A cipherList of AUTHONLY for
 connections between cluster1 and cluster2

 	A cipherList of AES128-SHA for
 connections between cluster1 and cluster3

 	A cipherList of AES128-SHA for
 connections between cluster2 and cluster3

 The administrator of cluster1 issues
 these commands: mmauth add cluster2 -k keyFile -l AUTHONLY
mmauth add cluster3 -k keyFile -l AES128-SHA

 	In this example, cluster2 is accessing
 file systems owned by cluster1 using a cipherList of AUTHONLY,
 but the administrator of cluster1 has decided
 to require a more secure cipherList. The
 administrator of cluster1 issues this command:
 mmauth update cluster2 -l AES128-SHA

 Existing connections will be upgraded from AUTHONLY to
 AES128-SHA.

 Parent topic: Accessing GPFS file systems from other GPFS clusters

 Changing security keys

 When working with GPFS file
 systems accessed by other GPFS clusters,
 it might be necessary to generate a new public/private access key.
 This can be done without disturbing existing connections, provided
 the following procedure is followed.

 About this task

 To accomplish this,
 the cluster that owns and serves the file system is made to temporarily
 have two access keys (referred to as the 'old key' and the 'new key'),
 which are both valid at the same time. The clusters currently accessing
 the file system can then change from the old key to the new key without
 interruption of file system access.

 In this example, cluster1 is
 the name of the cluster that owns and serves a file system, and cluster2 is
 the name of the cluster that has already obtained access to this file
 system, and is currently using it. Here, the system administrator
 of cluster1 changes the access key without
 severing the connection obtained by cluster2.

 	On cluster1,
 the system administrator issues the mmauth genkey new command
 to generate a new public/private access key pair. The key pair is
 placed in /var/mmfs/ssl: mmauth genkey new

 After
 this command is issued, cluster1 will have
 two keys (referred to as the 'old key' and the 'new key') that both
 may be used to access cluster1 file systems.

 	The
 system administrator of cluster1 now gives
 the file /var/mmfs/ssl/id_rsa.pub (that
 contains the new key) to the system administrator of cluster2,
 who desires to continue to access the cluster1 file
 systems. This operation requires the two administrators to coordinate
 their activities, and must occur outside of the GPFS command environment.

 	On cluster2,
 the system administrator issues the mmremotecluster update command
 to make the new key known to his system: mmremotecluster update cluster1 -k cluster1_id_rsa.pub

 where:
 	cluster1

 	Is the real name of cluster1 as given
 by the mmlscluster command on a node in cluster1.

 	cluster1_id_rsa.pub

 	Is the name of the file obtained from the administrator of cluster1 in
 Step 2.

 This permits the cluster desiring to mount the
 file system to continue mounting file systems owned by cluster1.

 	On cluster1,
 the system administrator verifies that all clusters desiring to access cluster1 file
 systems have received the new key and activated it using the mmremotecluster
 update command.

 	On cluster1,
 the system administrator issues the mmauth genkey commit command
 to commit the new key as the only valid access key. The old key will
 no longer be accepted once this command completes successfully: mmauth genkey commit

 Once
 the new public key has been committed, the old public key will no
 longer be accepted. As a result, any remote cluster administrator
 who has not been given the new key (Step 2 above) and run mmremotecluster
 update (Step 3 above)
 will no longer be able to mount file systems owned by cluster1.

 Similarly, the administrator of cluster2 may
 decide to change the access key for cluster2:

 	On cluster2,
 the system administrator issues the mmauth genkey new command
 to generate a new public/private access key pair. The key pair is
 placed in /var/mmfs/ssl: mmauth genkey new

 After this command is issued, cluster2 will
 have two keys (referred to as the 'old key' and the 'new key') that
 both may be used when a connection is established to any of the nodes
 in cluster2.

 	The system administrator of cluster2 now
 gives the file /var/mmfs/ssl/id_rsa.pub (that
 contains the new key) to the system administrator of cluster1,
 the owner of the file systems. This operation requires the two administrators
 to coordinate their activities, and must occur outside of the GPFS command environment.

 	On cluster1, the system administrator
 issues the mmauth update command to make
 the new key known to his system: mmauth update cluster2 -k cluster2_id_rsa.pub

 where:
 	cluster2

 	Is the real name of cluster2 as given
 by the mmlscluster command on a node in cluster2.

 	cluster2_id_rsa.pub

 	Is the name of the file obtained from the administrator of cluster2 in
 Step 2.

 This permits the cluster desiring to mount the
 file system to continue mounting file systems owned by cluster1.

 	The system administrator of cluster2 verifies
 that the administrator of cluster1 has received
 the new key and activated it using the mmauth update command.

 	On cluster2, the system administrator
 issues the mmauth genkey commit command
 to commit the new key as the only valid access key. The old key will
 no longer be accepted once this command completes successfully: mmauth genkey commit

 Parent topic: Accessing GPFS file systems from other GPFS clusters

 NIST compliance

 The nistCompliance configuration
 variable allows the system administrator to restrict the set of available
 algorithms and key lengths to a subset of those approved by NIST.

 About this task

 The nistCompliance variable
 applies to security transport (tscomm security, key retrieval) only,
 not to encryption, which always uses NIST-compliant mechanisms.

 The
 valid values for nistCompliance are documented
 in the GPFS:
 Administration and Programming Reference.

 Parent topic: Accessing GPFS file systems from other GPFS clusters

 Additional information about GPFS file
 systems accessed by nodes that belong to other GPFS clusters

 There is some additional information about this topic that
 you should take into consideration.

 When working with GPFS file
 systems accessed by nodes that belong to other GPFS clusters, consider the following points:

 	A file system
 is administered only by the cluster where the file system was created.
 Other clusters may be allowed to mount the file system, but their
 administrators cannot add or delete disks, change characteristics
 of the file system, enable or disable quotas, run the mmfsck command,
 and so forth. The only commands that other clusters can issue are
 list type commands, such as: mmlsfs, mmlsdisk, mmlsmount,
 and mmdf.

 	Since
 each cluster is managed independently, there is no automatic coordination
 and propagation of changes between clusters, like there is between
 the nodes within a cluster.
 This means that if the administrator
 of cluster1 (the owner of file system gpfs1)
 decides to delete it or rename it, the information for gpfs1 in cluster2 becomes
 obsolete, and an attempt to mount gpfs1 from cluster2 will
 fail. It is assumed that when such changes take place, the two administrators
 will inform each other. The administrator of cluster2 can
 then use the update or delete options
 of the mmremotefs command to make the appropriate
 changes.

 	If the names of the contact nodes change, the name of the cluster
 changes, or the public key file changes, use the update option
 of the mmremotecluster command to reflect
 the changes.

 	Use
 the show option of the mmremotecluster and mmremotefs commands
 to display the current information about remote clusters and file
 systems.

 	If
 the cluster that owns a file system has a maxblocksize configuration
 parameter that is different from the maxblocksize configuration
 parameter of the cluster that desires to mount a file system, a mismatch
 may occur and file system mount requests may fail with messages to
 this effect. Check your maxblocksize configuration
 parameters on both clusters using the mmlsconfig command.
 Correct any discrepancies with the mmchconfig command.

 Parent topic: Accessing GPFS file systems from other GPFS clusters

 Information Lifecycle Management for GPFS

 GPFS can help you
 achieve Information Lifecycle Management (ILM) efficiencies through
 powerful policy-driven automated tiered storage management. The GPFS ILM toolkit helps you manage
 sets of files and pools of storage, and also enables you to automate
 the management of file data.

 Using
 these tools, GPFS can automatically
 determine where to physically store your data regardless of its placement
 in the logical directory structure. Storage pools, filesets and user-defined
 policies provide the ability to match the cost of your storage resources
 to the value of your data.

 Note: This feature is available
 with GPFS Standard
 Edition or
 higher.

 GPFS policy-based ILM tools
 allow you to:

 	Create storage pools to provide a way
 to partition a file system's storage into collections of disks or
 a redundant array of independent disks (RAIDs) with similar properties
 that are managed together as a group. GPFS has
 three types of storage pools:

 	A required system storage pool that
 you create and manage through GPFS

 	Optional user storage pools that you create and manage through GPFS

 	Optional external storage pools that you define with GPFS policy rules and manage through an external
 application such as Tivoli Storage
 Manager

 	Create filesets to provide a way to
 partition the file system namespace to allow administrative operations
 at a finer granularity than that of the entire file system. See Filesets.

 	Create policy rules based on data attributes
 to determine initial file data placement and manage file data placement
 throughout the life of the file. See Policies and rules.

 	Storage pools

 Physically, a storage pool is a collection of disks
 or RAID arrays. Storage pools also allow you to group multiple storage
 systems within a file system.

 	Policies and rules

 GPFS provides a means
 to automate the management of files using policies and rules. Properly
 managing your files allows you to efficiently use and balance your
 premium and less expensive storage resources.

 	Filesets

 In most file systems, a file hierarchy is represented as
 a series of directories that form a tree-like structure. Each directory
 contains other directories, files, or other file-system objects such
 as symbolic links and hard links. Every file system object has a name
 associated with it, and is represented in the namespace as a node
 of the tree.

 	Immutability and appendOnly restrictions

 To prevent files from being changed or deleted unexpectedly, GPFS provides immutability and appendOnly
 restrictions.

 Storage pools

 Physically, a storage pool is a collection of disks
 or RAID arrays. Storage pools also allow you to group multiple storage
 systems within a file system.

 Using storage pools, you can create tiers of storage by grouping
 storage devices based on performance, locality, or reliability characteristics.
 For example, one pool could be an enterprise class storage system
 that hosts high-performance Fibre Channel disks and another pool might
 consist of numerous disk controllers that host a large set of economical
 SATA disks.

 There are two types of storage pools in GPFS, internal storage pools and external storage
 pools. Internal storage pools are managed within GPFS. External storage pools are managed by
 an external application such as Tivoli Storage
 Manager. For external storage pools, GPFS provides
 tools that allow you to define an interface that your external storage
 manager uses to access your data. GPFS does
 not manage the data placed in external storage pools. Instead, GPFS manages the movement of data
 to and from external storage pools. Storage pools allow you to perform
 complex operations such as moving, mirroring, or deleting files across
 multiple storage devices, providing storage virtualization and a single
 management context.

 Internal GPFS storage pools
 are meant for managing online storage resources. External storage
 pools are intended for use as near-line storage and for archival and
 backup operations. However, both types of storage pools provide you
 with a method to partition file system storage for considerations
 such as:

 	Improved price-performance by matching the cost of storage to
 the value of the data

 	Improved performance by:

 	Reducing the contention for premium storage

 	Reducing the impact of slower devices

 	Allowing you to retrieve archived data when needed

 	Improved reliability by providing for:

 	Replication based on need

 	Better failure containment

 	Creation of new storage pools as needed

 	Internal GPFS storage pools

 	External storage pools

 Parent topic: Information Lifecycle Management for GPFS

 Internal GPFS storage
 pools

 The internal GPFS storage
 pool to which a disk belongs is specified as an attribute of the disk
 in the GPFS cluster. You specify
 the disk attributes as a field in each disk descriptor when you create
 the file system or when adding disks to an existing file system. GPFS allows a maximum of eight internal
 storage pools per file system. One of these storage pools is the required system storage
 pool. The other seven internal storage pools are optional user storage
 pools.

 GPFS assigns file data to
 internal storage pools under these circumstances:

 	When they are initially created; the storage pool is determined
 by the file placement policy that is in effect when the file is created.

 	When the attributes of the file, such as file size or access time,
 match the rules of a policy that directs GPFS to
 migrate the data to a different storage pool.

 	The system storage pool

 	The system.log storage pool

 	User storage pools

 	Managing storage pools

 Parent topic: Storage pools

 Related concepts:

 External storage pools

 The system storage pool

 The system storage
 pool contains file system control structures, reserved files, directories,
 symbolic links, special devices, as well as the metadata associated
 with regular files, including indirect blocks, extended attributes,
 and so forth. The system storage pool can
 also contain user data. There is only one system storage
 pool per file system, and it is automatically created when the file
 system is created.

 Important: It is recommended that you
 use highly-reliable disks and replication for the system storage
 pool because it contains system metadata.

 The amount of metadata grows as you add files
 to the system. Therefore, it is recommended that you monitor the system storage
 pool to ensure that there is always enough space to accommodate growth.
 The system storage pool typically requires
 a small percentage of the total storage capacity that GPFS manages. However, the percentage required
 by the system storage pool varies depending
 on your environment. You can monitor the amount of space available
 in the system storage pool with the mmdf command.
 If the available space in the system storage pool begins to run low,
 you can increase the available space by purging files or adding disks
 to the system storage pool.

 Parent topic: Internal GPFS storage pools

 The system.log storage pool

 By default the file system recovery log is stored in the system
 storage pool with file system metadata. The file system recovery log
 can also be placed in a dedicated pool that is called the system.log pool.
 This storage pool must be created explicitly. It is highly recommended
 to only use storage that is as fast or even faster than what is used
 for the system storage pool. This recommendation is because of the
 high number of small synchronous data updates made to the recovery
 log. The block size for the system.log pool
 must be the same as the block size of the system pool.

 [image: Start of change]The file system recovery log will only be stored in
 one pool.[image: End of change]

 Parent topic: Internal GPFS storage pools

 User storage pools

 All user data for a file is stored in
 the assigned storage pool as determined by your file placement rules.
 In addition, file data can be migrated to a different storage pool
 according to your file management policies. For more information on
 policies, see Policies and rules.

 A user storage pool only contains the blocks of data (user
 data, for example) that make up a user file. GPFS stores the data that describes the files,
 called file metadata, separately from the actual file data
 in the system storage pool. You can create
 one or more user storage pools, and then create policy rules to indicate
 where the data blocks for a file should be stored.

 Tracking file access temperature within
 a storage pool

 A file's access temperature is an attribute
 for policy that provides a means of optimizing tiered storage. File
 temperatures are a relative attribute, indicating whether a file is "hotter" or "colder" than
 the others in its pool. The policy can be used to migrate hotter files
 to higher tiers and colder files to lower. The access temperature
 is an exponential moving average of the accesses to the file. As files
 are accessed the temperature increases; likewise when the access stops
 the file cools. File temperature is intended to optimize nonvolatile
 storage, not memory usage; therefore, cache hits are not counted.
 In a similar manner, only user accesses are counted.

 The access
 counts to a file are tracked as an exponential moving average. An
 unaccessed file loses a percentage of its accesses each period. The
 loss percentage and period are set via the configuration variables fileHeatLossPercent and fileHeatPeriodMinutes.
 By default, the file access temperature is not tracked. To use access
 temperature in policy, the tracking must first be enabled. To do this,
 set the two configuration variables as follows:

 	fileHeatLossPercent

 	The percentage (between 0 and 100) of file access temperature
 dissipated over the fileHeatPeriodMinutes time.
 The default value is 10.

 	fileHeatPeriodMinutes

 	The number of minutes defined for the recalculation of file access
 temperature. To turn on tracking, fileHeatPeriodMinutes must
 be set to a nonzero value. The default value is 0.

 The following example sets fileHeatPeriodMinutes to
 1440 (24 hours) and fileHeatLossPercent to
 10, meaning that unaccessed files will lose 10% of their heat value
 every 24 hours, or approximately 0.4% every hour (because the loss
 is continuous and "compounded" geometrically):mmchconfig fileheatperiodminutes=1440,fileheatlosspercent=10

 Note: If
 the updating of the file access time (atime) is suppressed or if relative
 atime semantics are in effect, proper calculation of the file access
 temperature may be adversely affected.

 File access temperature
 is tracked on a per-cluster basis, not on a per–file system
 basis.

 Use WEIGHT(FILE_HEAT) with
 a policy MIGRATE rule to prioritize migration
 by file temperature. (You can use the GROUP POOL rule
 to define a group pool to be specified as the TO POOL target.)
 See Policies and rules.

 Parent topic: Internal GPFS storage pools

 Managing storage pools

 To manage your storage pools, you must create
 them and assign disks and files to a given storage pool. You should
 also use the various list commands to manage the contents of your
 storage pools, and rebalance them if necessary.

 	Creating storage pools

 	Changing the storage pool assignment for a disk

 	Changing the storage pool assignment for a file

 	Deleting storage pools

 	Listing storage pools for a file system

 	Listing the storage pool for a file

 	Listing disks in a storage pool and associated statistics

 	Rebalancing files in a storage pool

 	Using replication with storage pools

 Parent topic: Internal GPFS storage pools

 Creating storage pools

 About this task

 The storage pool to which a disk belongs is an attribute
 of each disk and is specified as a field in each disk descriptor when
 the file system is created using the mmcrfs command
 or when disks are added to an existing file system with the mmadddisk command.
 Adding a disk with a new storage pool name in the disk descriptor
 automatically creates the storage pool.

 Storage pool names:

 	Must be unique within a file system, but not across file systems.

 	[image: Start of change]Cannot be longer than 255 alphanumeric characters.[image: End of change]

 	Are case sensitive. MYpool and myPool are
 distinct storage pools.

 A storage pool
 is defined by the stanza keyword pool; for
 example:pool=dataPoolA

 If
 a storage pool is not specified, the disk is by default assigned to
 the system storage pool.

 The --metadata-block-size flag
 on the mmcrfs command can be used to create
 a system pool with a different block size from the user pools. This
 can be especially beneficial if the default block size is larger than
 1 MB. If data and metadata block sizes differ, the system pool must
 contain only metadataOnly disks.

 Parent topic: Managing storage pools

 Changing the storage pool assignment for a disk

 About this task

 Once a disk is assigned to a storage pool, the pool assignment cannot be
 changed using either the mmchdisk command or the mmrpldisk command. To
 move a disk to another pool:

 	Delete the disk from its current pool by issuing the mmdeldisk command.
 This will move the data to the remaining disks in the storage pool.

 	Add the disk to the new pool by issuing the mmadddisk command.

 	Rebalance the data across all disks in the new storage pool by issuing
 the mmrestripefs -P command.

 Parent topic: Managing storage pools

 Changing the storage pool assignment for a file

 About this task

 A root user can change the storage pool that a file is assigned to by either:

 	Running mmapplypolicy with an appropriate set
 of policy rules.

 	Issuing the mmchattr -P command.

 By default, both of these commands migrate data immediately (this
 is the same as using the -I yes option for these
 commands). If desired, you can delay migrating the data by specifying the -I
 defer option for either command. Using the defer option, the
 existing data does not get moved to the new storage pool until either the mmrestripefs command
 or the mmrestripefile command are executed. For
 additional information, refer to:

 	Policies

 	Rebalancing files in a storage pool

 Parent topic: Managing storage pools

 Deleting storage pools

 About this task

 Deleting the system storage
 pool is not allowed. In order to delete the system storage
 pool, you must delete the file system.

 In order to delete a
 user storage pool, you must delete all its disks using the mmdeldisk command.
 When GPFS deletes the last remaining
 disk from a user storage pool, the storage pool is also deleted. To
 delete a storage pool, it must be completely empty. A migration policy
 along with the mmapplypolicy command could
 be used to do this.

 Parent topic: Managing storage pools

 Listing storage pools for a file system

 About this task

 To list the storage pools available for a specific file
 system, issue the mmlsfs -P command.

 For
 example, this command:mmlsfs fs1 -P

 produces
 output similar to this: flag value description
------------------- ------------------------ -----------------------------------
 -P system;sp1;sp2 Disk storage pools in file system

 For file system fs1,
 there are three storage pools: the system storage
 pool and user storage pools named sp1 and sp2.

 Parent topic: Managing storage pools

 Listing the storage pool for a file

 About this task

 To display the assigned storage pool and the name of the
 fileset that includes the file, issue the mmlsattr -L command.

 For
 example, this command: mmlsattr -L myfile

 produces
 output similar to this: file name: myfile
metadata replication: 2 max 2
data replication: 1 max 2
immutable: no
appendOnly: no
flags:
storage pool name: sp1
fileset name: root
snapshot name:
creation Time: Wed Feb 22 15:16:29 2012
Windows attributes: ARCHIVE

 File myfile is
 assigned to the storage pool named sp1 and
 is part of the root fileset.

 Parent topic: Managing storage pools

 Listing disks in a storage pool and associated statistics

 About this task

 To list the disks belonging to a storage pool, issue the mmdf
 -P command.

 For example, this command: mmdf fs1 -P sp1

 produces
 output similar to this: disk disk size failure holds holds free KB free KB
name in KB group metadata data in full blocks in fragments
--------------- ------------- -------- -------- ----- -------------------- -------------------
Disks in storage pool: sp1 (Maximum disk size allowed is 1.2 TB)
vp4vsdn05 17760256 6 no yes 11310080 (64%) 205200 (1%)
vp5vsdn05 17760256 6 no yes 11311104 (64%) 205136 (1%)
vp6vsdn05 17760256 6 no yes 11300352 (64%) 206816 (1%)
vp7vsdn05 17760256 6 no yes 11296256 (64%) 209872 (1%)
vp0vsdn05 17760256 6 no yes 11293696 (64%) 207968 (1%)
vp1vsdn05 17760256 6 no yes 11293184 (64%) 206464 (1%)
vp2vsdn05 17760256 6 no yes 11309056 (64%) 203248 (1%)
vp3vsdn05 17760256 6 no yes 11269120 (63%) 211456 (1%)
 ------------- -------------------- -------------------
(pool total) 142082048 90382848 (64%) 1656160 (1%)

 This example shows that storage pool sp1 in
 file system fs1 consists of eight disks
 and identifies details for each disk including:

 	Name

 	Size

 	Failure group

 	Data type

 	Free space

 Parent topic: Managing storage pools

 Rebalancing files in a storage pool

 About this task

 A root user can rebalance file data across all disks in
 a file system by issuing the mmrestripefs command.
 Optionally:

 	Specifying the -P option rebalances
 only those files assigned to the specified storage pool.

 	Specifying the -p option rebalances
 the file placement within the storage pool. For
 files that are assigned to one storage pool, but that have data in
 a different pool, (referred to as ill-placed files), using this option
 migrates their data to the correct pool. (A file becomes
 "ill-placed" when the -I defer option
 is used during migration of the file between pools.)

 Parent topic: Managing storage pools

 Using replication with storage pools

 To enable data replication in a storage pool, you must make certain
 that there are at least two failure groups within the storage pool.
 This is necessary because GPFS maintains
 separation between storage pools and performs file replication within
 each storage pool. In other words, a file and its replica must be
 in the same storage pool. This also means that if you are going to
 replicate the entire file system, every storage pool in the file system
 must have at least two failure groups.
 Note: Depending on the configuration
 of your file system, if you try to enable file replication in a storage
 pool having only one failure group, GPFS will
 either give you a warning or an error message.

 Parent topic: Managing storage pools

 External storage pools

 When you initially create a file, GPFS assigns
 that file to an internal storage pool. Internal storage pools support
 various types of online storage. To move data from online storage
 to offline or near-line storage, you can use external storage pools.
 External storage pools use a flexible interface driven by GPFS policy rules that simplify data migration
 to and from other types of storage such as tape storage. For additional
 information, refer to Policies and rules.

 You can define multiple external storage pools at any time using GPFS policy rules. To move data
 to an external storage pool, the GPFS policy
 engine evaluates the rules that determine which files qualify for
 transfer to the external pool. From that information, GPFS provides a list of candidate files and
 executes the script specified in the rule that defines the external
 pool. That executable script is the interface to the external application,
 such as Tivoli Storage Manager
 (TSM), that does the actual migration of data into an external pool.
 Using the external pool interface, GPFS gives
 you the ability to manage information by allowing you to:

 	Move files and their extended attributes onto low-cost near-line
 or offline storage when demand for the files diminishes.

 	Recall the files, with all of their previous access information,
 onto online storage whenever the files are needed.

 External pool requirements

 With external
 pools, GPFS provides metadata
 processing and the flexibility of using extended file attributes.
 The external storage manager is responsible for moving files from GPFS and returning them upon the
 request of an application accessing the file system. Therefore, when
 you are using external storage pools, you must use an external file
 management application such as TSM. The external application is responsible
 for maintaining the file once it has left the GPFS file system. For example, GPFS policy rules create a list of files that
 are eligible for migration. GPFS hands
 that list to TSM which migrates the files to tape and creates a reference
 file in the file system that has pointers to the tape image. When
 a file is requested, it is automatically retrieved from the external
 storage pool and placed back in an internal storage pool. As an alternative,
 you can use a GPFS policy rule
 to retrieve the data in advance of a user request.

 The number
 of external storage pools is only limited by the capabilities of your
 external application. GPFS allows
 you to define external storage pools at any time by writing a policy
 that defines the pool and makes that location known to GPFS. External storage pools are defined by
 policy rules and initiated by either storage thresholds or use of
 the mmapplypolicy command.

 For additional
 information, refer to Working with external storage pools.

 Parent topic: Storage pools

 Related concepts:

 Internal GPFS storage pools

 Policies and rules

 GPFS provides a means
 to automate the management of files using policies and rules. Properly
 managing your files allows you to efficiently use and balance your
 premium and less expensive storage resources.

 GPFS supports these policies:

 	File placement policies are used to
 automatically place newly created files in a specific storage pool.

 	File management policies are used to
 manage files during their lifecycle by moving them to another storage
 pool, moving them to near-line storage, copying them to archival storage,
 changing their replication status, or deleting them.

 	Policies

 	Policy rules

 	Semantics of the mmapplypolicy command and its policy rules

 	Policy rules - examples and tips

 	Managing policies

 	Working with external storage pools

 	Backup and restore with storage pools

 Parent topic: Information Lifecycle Management for GPFS

 Policies

 A policy is a set of rules that describes the life cycle
 of user data based on the file's attributes. Each rule defines an
 operation or definition, such as "migrate to a pool and replicate
 the file." There are several uses for rules:

 	Initial file placement

 	File management

 	Restoring file data

 	Encryption-specific uses; see Encryption.

 When a file is created or restored, the placement policy determines
 the location of the file's data and assigns the file to a storage
 pool. All data written to that file will be placed in the assigned
 storage pool.

 The placement
 policy defining the initial placement of newly created files and the
 rules for placement of restored data must be installed into GPFS with the mmchpolicy command.
 If a GPFS file system does not
 have a placement policy installed, all the data will be stored in
 the system storage pool. Only one placement
 policy can be installed at a time. If you switch from one placement
 policy to another, or make changes to a placement policy, that action
 has no effect on existing files. However, newly created files are
 always placed according to the currently installed placement policy.

 The management policy determines file management operations such
 as migration and deletion.

 In order to migrate or delete data, you must use the mmapplypolicy command.
 You can define the file management rules and install them in the file
 system together with the placement rules. As an alternative, you may
 define these rules in a separate file and explicitly provide them
 to mmapplypolicy using the -P option.
 In either case, policy rules for placement or migration may be intermixed.
 Over the life of the file, data can be migrated to a different storage
 pool any number of times, and files can be deleted or restored.
 Note: In
 a multicluster environment, the scope of the mmapplypolicy command
 is limited to the nodes in the cluster that owns the file system.

 File management rules can also be used to control the space utilization
 of GPFS online storage pools.
 When the utilization for an online pool exceeds the specified high
 threshold value, GPFS can be
 configured (through user exits) to trigger an event that can automatically
 start mmapplypolicy and reduce the utilization
 of the pool. Using the mmaddcallback command,
 you can specify a script that will run when such an event occurs.
 For more information about the mmaddcallback
 command, see the GPFS:
 Administration and Programming Reference.

 GPFS performs error checking
 for file-placement policies in the following phases:

 	When you install a new policy, GPFS checks
 the basic syntax of all the rules in the policy.

 	GPFS also checks all references
 to storage pools. If a rule in the policy refers to a storage pool
 that does not exist, the policy is not installed and an error is returned.

 	When a new file is created, the rules
 in the active policy are evaluated in order. If an error is detected, GPFS logs an error, skips all subsequent
 rules, and returns an EINVAL error code
 to the application.

 	Otherwise, the first applicable rule is used to store the file
 data.

 	Default file placement policy:

 	When a GPFS file system is first created, the default
 file placement policy is to assign all files to the system storage
 pool. You can go back to the default policy by running the command:mmchpolicy Device DEFAULT

 For more information on using GPFS commands
 to manage policies, see Managing policies.

 Parent topic: Policies and rules

 Related concepts:

 Policy rules

 Semantics of the mmapplypolicy command and its policy rules

 Working with external storage pools

 Backup and restore with storage pools

 Related tasks:

 Managing policies

 Related reference:

 Policy rules - examples and tips

 Policy rules

 A policy rule is an SQL-like statement that tells GPFS what to do with the data for
 a file in a specific storage pool if the file meets specific criteria.
 A rule can apply to any file being created or only to files being
 created within a specific fileset or group of filesets.

 Rules specify conditions that, when true, cause the rule to be
 applied. Conditions that cause GPFS to
 apply a rule include:

 	Date and time when the rule is evaluated, that is, the current
 date and time

 	Date and time when the file was last accessed

 	Date and time when the file was last modified

 	Fileset name

 	File name or extension

 	File size

 	User ID and group ID

 GPFS evaluates policy rules
 in order, from first to last, as they appear in the policy. The first
 rule that matches determines what is to be done with that file. For
 example, when a client creates a file, GPFS scans
 the list of rules in the active file placement policy to determine
 which rule applies to the file. When a rule applies to the file, GPFS stops processing the rules
 and assigns the file to the appropriate storage pool. If no rule applies,
 an EINVAL error code is returned to the application.

 There are eight types of policy rules that allow you to define
 specific actions that GPFS will
 implement on the file data. Each rule has clauses that control candidate
 selection, namely when the rule is allowed to match a file, what files
 it will match, the order to operate on the matching files and additional
 attributes to show for each candidate file. Different clauses are
 permitted on different rules based upon the semantics of the rule.

 	Policy rule syntax diagrams

 	Policy rule syntax definitions

 	SQL expressions for policy rules

 Parent topic: Policies and rules

 Related concepts:

 Policies

 Semantics of the mmapplypolicy command and its policy rules

 Working with external storage pools

 Backup and restore with storage pools

 Related tasks:

 Managing policies

 Related reference:

 Policy rules - examples and tips

 Policy rule syntax diagrams

 The policy rules and their respective syntax diagrams
 are:
 	File placement rulesRULE ['RuleName']
 SET POOL 'PoolName'
 [LIMIT (OccupancyPercentage)]
 [REPLICATE (DataReplication)]
 [FOR FILESET ('FilesetName'[,'FilesetName']...)]
 [image: Start of change][ACTION (SqlExpression)][image: End of change]
 [WHERE SqlExpression]

 	Group pool rule; used to define a list of pools that may be
 used as a pseudo-pool source or destination in either a FROM
 POOL or TO POOL clause within
 another rule RULE ['RuleName'] GROUP POOL ['groupPoolName']
IS 'poolName' [LIMIT(OccupancyPercentage)]
THEN 'poolName2' [LIMIT(n2)]
THEN 'pool-C' [LIMIT(n3)]
THEN ...

 	File migration ruleRULE ['RuleName'] [WHEN TimeBooleanExpression]
 MIGRATE
 [FROM POOL 'FromPoolName']
 [THRESHOLD (HighPercentage[,LowPercentage[,PremigratePercentage]])]
 [WEIGHT (WeightExpression)]
 TO POOL 'ToPoolName'
 [LIMIT (OccupancyPercentage)]
 [REPLICATE (DataReplication)]
 [FOR FILESET ('FilesetName'[,'FilesetName']...)]
 [SHOW (['String'] SqlExpression)]
 [SIZE (numeric-sql-expression)]
 [image: Start of change][ACTION (SqlExpression)][image: End of change]
 [WHERE SqlExpression]

 	File deletion ruleRULE ['RuleName'] [WHEN TimeBooleanExpression]
 DELETE
 [image: Start of change][DIRECTORIES_PLUS][image: End of change]
 [FROM POOL 'FromPoolName']
 [THRESHOLD (HighPercentage[,LowPercentage])]
 [WEIGHT (WeightExpression)]
 [FOR FILESET ('FilesetName'[,'FilesetName']...)]
 [SHOW (['String'] SqlExpression)]
 [SIZE (numeric-sql-expression)]
 [image: Start of change][ACTION (SqlExpression)][image: End of change]
 [WHERE SqlExpression]

 	File exclusion ruleRULE ['RuleName'] [WHEN TimeBooleanExpression]
 EXCLUDE
 [image: Start of change][DIRECTORIES_PLUS][image: End of change]
 [FROM POOL 'FromPoolName']
 [FOR FILESET ('FilesetName'[,'FilesetName']...)]
 [image: Start of change][ACTION (SqlExpression)][image: End of change]
 [WHERE SqlExpression]

 	File list ruleRULE ['RuleName'] [WHEN TimeBooleanExpression]
 LIST 'ListName'
 [EXCLUDE]
 [DIRECTORIES_PLUS]
 [FROM POOL 'FromPoolName']
 [THRESHOLD (HighPercentage[,LowPercentage])]
 [WEIGHT (WeightExpression)]
 [FOR FILESET ('FilesetName'[,'FilesetName']...)]
 [SHOW (['String'] SqlExpression)]
 [SIZE (numeric-sql-expression)]
 [image: Start of change][ACTION (SqlExpression)][image: End of change]
 [WHERE SqlExpression]

 	File restore ruleRULE ['RuleName']
 RESTORE TO POOL 'PoolName'
 [LIMIT (OccupancyPercentage)]
 [REPLICATE (DataReplication)]
 [FOR FILESET ('FilesetName'[,'FilesetName']...)]
 [image: Start of change][ACTION (SqlExpression)][image: End of change]
 [WHERE SqlExpression]

 	External storage pool definition ruleRULE ['RuleName']
 EXTERNAL POOL 'PoolName'
 EXEC 'InterfaceScript'
 [OPTS 'OptionsString ...']
 [ESCAPE '%SpecialCharacters']
 [SIZE sum-number]

 	External list definition ruleRULE ['RuleName']
 EXTERNAL LIST 'ListName'
 EXEC 'InterfaceScript'
 [OPTS 'OptionsString ...']
 [ESCAPE '%SpecialCharacters']
 [THRESHOLD 'ResourceClass']
 [SIZE sum-number]

 Parent topic: Policy rules

 Policy rule syntax definitions

 The GPFS policy
 rules follow these syntax definitions:

 	[image: Start of change]ACTION (SqlExpression)[image: End of change]

 	[image: Start of change]Specifies
 an SQL expression that is only evaluated if the other clauses of the
 rule are satisfied. The action of the SqlExpression is
 completed, and the resulting value of the SqlExpression is
 discarded. For example:rule 's6' set pool 'system' action(setxattr('user.action','set pool s6')) where name like 'sp%'

 [image: Start of change]sets the extended attribute "user.action" to the
 value "set pool s6"for files that begin with the characters "sp".
 These files are assigned to the system pool. [image: End of change]Note: [image: Start of change]Encryption
 policies do not support the ACTION clause.[image: End of change]

 [image: End of change]

 	DIRECTORIES_PLUS

 	Indicates
 that non-regular file objects (directories, symbolic links, and so
 on) should be included in the list. If not specified, only ordinary
 data files are included in the candidate lists.

 	DELETE

 	Identifies a file deletion rule. A file that matches this rule
 becomes a candidate for deletion.

 	ESCAPE '%SpecialCharacters'

 	Specifies that path names and the SHOW('string') expressions
 within the associated file lists are encoded using an encoding based
 on the RFC3986 URI-percent-encoding scheme.
 For example: RULE 'xp' EXTERNAL POOL 'pool-name' EXEC 'script-name' ESCAPE '%'
RULE 'xl' EXTERNAL LIST 'list-name' EXEC 'script-name' ESCAPE '%/+@#'

 specifies
 that all characters except the "unreserved" characters in the
 set a-zA-Z0-9-_.~ are encoded as %XX,
 where XX comprises two hexadecimal digits.

 The GPFS ESCAPE clause
 allows you to add to the set of "unreserved" characters.

 For
 example: ESCAPE '%/+@#'

 specifies that none
 of the characters in /+@# are escaped, so that a
 path name like /root/directory/@abc+def#ghi.jkl will
 appear in a file list with no escape sequences; whereas under ESCAPE
 '%', specifying a rigorous RFC3986 encoding yields %2Froot%2Fdirectory%2F%40abc%2Bdef%23ghi.jkl.

 If
 you omit the ESCAPE clause, the newline
 character is escaped as '\n', and the backslash character
 is escaped as '\\'; all other characters are presented
 as is, without further encoding.

 	EXCLUDE

 	Identifies
 a file exclusion rule.

 	RULE ’x’ EXCLUDE

 	A file that matches this form of the rule is excluded from further
 consideration with respect to any MIGRATE or DELETE rules
 that follow.

 	RULE 'rule-name' LIST ’listname-y’
 EXCLUDE

 	A file that matches this form of the rule is excluded from further
 consideration with respect to any LIST rules
 that name the same listname-y.

 	EXEC 'InterfaceScript'

 	Specifies an external program to be invoked to pass requests to
 an external storage management application. InterfaceScript should
 be a fully-qualified pathname to a user-provided script or program
 that supports the commands described in User provided program for managing external pools.

 	EXTERNAL LIST ListName

 	Defines an external list. This rule does not match files. It provides
 the binding between the lists generated with regular LIST rules
 with a matching ListName and the external
 program that you want to run with these lists as input.

 	EXTERNAL POOL PoolName

 	Defines an external storage pool. This rule does not match files
 but serves to define the binding between the policy language and the
 external storage manager that implements the external storage.

 	FOR FILESET ('FilesetName'[,'FilesetName']...)

 	Specifies
 that the rule should apply only to files within the specified filesets.

 	FROM POOL FromPoolName

 	Specifies
 the name of the source pool from which files are candidates for migration.

 	GROUP POOL PoolName

 	Defines
 a group pool. This rule supports the concept of distributing data
 files over several GPFS disk
 pools.
 Optionally, a LIMIT, specified
 as an occupancy percentage, may be specified for each disk pool; if
 not specified, the limit defaults to 99%. The THEN keyword
 signifies that the disk pools specified before a THEN keyword
 are preferred over those specified after. When a pool defined by a GROUP
 POOL rule is the TO POOL target
 of a MIGRATE rule, the selected files will
 be distributed among the disk pools comprising the group pool, with
 files of highest weight going to the most preferred disk pool up to
 the occupancy limit for that pool. If there are still more files to
 be migrated, those will go to the second most preferred pool up to
 the occupancy limit for that pool (again choosing the highest-weight
 files from among the remaining selected files).

 A pool defined
 by a GROUP POOL rule may be specified in
 a FROM POOL clause, in which case the FROM
 POOL clause matches any file in any of the disk pools
 listed in the GROUP POOL.

 You may “re-pack”
 a group pool by WEIGHT, migrating files
 of higher weight to preferred disk pools by specifying a group pool
 as both the source and the target of a MIGRATE rule.
 For example: rule 'grpdef' GROUP POOL 'gpool' IS 'ssd' LIMIT(90) THEN 'fast' LIMIT(85) THEN 'sata'
rule 'repack' MIGRATE FROM POOL 'gpool' TO POOL 'gpool' WEIGHT(FILE_HEAT)

 See Tracking file access temperature within a storage pool.

 	LIMIT (OccupancyPercentage)

 	Used
 to limit the creation of data in a storage pool. If it is determined
 that transferring the file to the specified pool would exceed the
 specified occupancy percentage for that pool, GPFS skips the rule and the policy engine looks
 for the next rule that seems to match. See Phase two - choosing and scheduling files.
 OccupancyPercentage can
 be specified as a floating point number. For example:RULE 'r' RESTORE to pool 'x' limit(8.9e1)

 For
 testing or planning purposes, and when using the mmapplypolicy command
 with the -I defer or -I test options,
 it is acceptable to specify a LIMIT larger
 than 100%.

 The limit clause does not apply when the target TO
 POOL is a GROUP POOL. The
 limits specified in the rule defining the target GROUP
 POOL govern the action of the MIGRATE rule.

 	LIST ListName

 	Identifies a file list generation rule. A given file may match
 more than one list rule but will be included in a given list only
 once. ListName provides the binding to an EXTERNAL
 LIST rule that specifies the executable program to use
 when processing the generated list.

 	MIGRATE

 	Identifies a file migration rule. A file that matches this rule
 becomes a candidate for migration to the pool specified by the TO
 POOL clause.

 	OPTS 'OptionsString ...'

 	Specifies optional parameters to be passed to the external program
 defined with the EXEC clause. OptionsString is
 not interpreted by the GPFS policy
 engine.

 	REPLICATE (DataReplication)

 	Overrides the default data replication factor. This
 value should be specified as 1, 2, or 3.

 	RESTORE TO POOL PoolName

 	[image: Start of change]Identifies a file restore rule. When a file is restored
 using the gpfs_fputattrswithpathname() subroutine
 (or a command that uses that subroutine, such as the TSM command dsmc
 restore), this rule allows you to match files against
 their saved attributes rather than the current file attributes.[image: End of change]

 	RULE ['RuleName']

 	Initiates the rule statement. RuleName identifies
 the rule and is used in diagnostic messages.

 	SET POOL PoolName

 	Identifies
 an initial file placement rule. PoolName specifies
 the name of the storage pool where all files that match the rule criteria
 will be placed.

 	SHOW (['String'] SqlExpression)

 	Inserts
 the requested information (the character representation of the evaluated
 SQL expression SqlExpression) into the candidate
 list created by the rule when it deals with external storage pools. String is
 a literal value that gets echoed back.
 This clause has no effect
 in matching files but can be used to define additional attributes
 to be exported with the candidate file lists.

 	SIZE (numeric-sql-expression)

 	Is an optional clause of any MIGRATE, DELETE,
 or LIST rules that are used for choosing
 candidate files. numeric-sql-expression specifies
 what is to be considered as the size of the file when calculating
 the total amount of data to be passed to a user script. The default
 is KB_ALLOCATED.

 	SIZE sum-number

 	Is an optional clause of the EXTERNAL POOL and EXTERNAL
 LIST rules. sum-number limits
 the total number of bytes in all of the files named in each list of
 files passed to your EXEC 'script'. If any one file is itself larger
 than sum-number, that file is passed to
 your EXEC 'script' as the only entry in a "singleton" file list.
 Specify sum-number as
 a numeric constant or a floating-point value.

 Note: The value of sum-number is
 in kilobytes.

 	THRESHOLD (HighPercentage[,LowPercentage[,PremigratePercentage]])

 	Used
 to control migration and deletion based on the pool storage utilization
 (percent of assigned storage occupied).

 	HighPercentage

 	Indicates that the rule is
 to be applied only if the occupancy percentage of the current pool
 of the file is greater than or equal to the HighPercentage value.
 Specify a nonnegative integer in the range 0 to 100.

 	LowPercentage

 	Indicates that MIGRATE and DELETE rules
 are to be applied until the occupancy percentage of the current pool
 of the file is reduced to less than or equal to the LowPercentage value.
 Specify a nonnegative integer in the range 0 to 100. The default is
 0%.

 	PremigratePercentage

 	Defines an occupancy percentage of a storage pool that is below
 the lower limit. Files that lie between the lower limit LowPercentage and
 the pre-migrate limit PremigratePercentage will
 be copied and become dual-resident in both the internal GPFS storage pool and the designated external
 storage pool. This option allows the system to free up space quickly
 by simply deleting pre-migrated files if the pool becomes full. Specify
 a nonnegative integer in the range 0 to LowPercentage.
 The default is the same value as LowPercentage.
 Notes:

 	Percentage values can be specified as
 numeric constants or floating-point values.

 	This option only applies when migrating to the external storage
 pool.

 	This option does not apply when the current rule operates on one
 group pool.

 	THRESHOLD (ResourceClass)

 	Specifies which kind of capacity-managed resources are associated
 with ListName. Supported values are:

 	FILESET_QUOTAS

 	[image: Start of change]Indicates that the LIST rule
 will use the occupancy percentage of the "hard limit" fileset
 quota per the mmlsquota and mmedquota commands.[image: End of change]

 	[image: Start of change]FILESET_QUOTA_SOFT[image: End of change]

 	[image: Start of change][image: Start of change]Indicates that the LIST rule
 will use the occupancy percentage of the "soft limit" fileset
 quota per the mmlsquota and mmedquota commands.[image: End of change][image: End of change]

 	GROUP_QUOTAS

 	[image: Start of change]Indicates that the LIST rule
 will use the occupancy percentage of the "hard limit" group quota
 per the mmlsquota and mmedquota commands.[image: End of change]

 	[image: Start of change]GROUP_QUOTA_SOFT[image: End of change]

 	[image: Start of change][image: Start of change]Indicates that the LIST rule
 will use the occupancy percentage of the "soft limit" group quota
 per the mmlsquota and mmedquota commands.[image: End of change][image: End of change]

 	POOL_CAPACITIES

 	If threshold is not specified in the EXTERNAL LIST rule
 but used LIST rule, the resource class will
 be POOL_CAPACITIES, by default. This indicates
 that the LIST rule will use the occupancy
 percentage of pool when using the threshold rule. This is the default.

 	USER_QUOTAS

 	[image: Start of change]Indicates that the LIST rule
 will use the occupancy percentage of the "hard limit" user quota
 per the mmlsquota and mmedquota commands.[image: End of change]

 	[image: Start of change]USER_QUOTA_SOFT[image: End of change]

 	[image: Start of change][image: Start of change]Indicates that the LIST rule
 will use the occupancy percentage of the "soft limit" user quota
 per the mmlsquota and mmedquota commands.[image: End of change][image: End of change]

 Note: This option does not apply when the current
 rule operates on one group pool.

 For more detail on how THRESHOLD can
 be used to control file migration and deletion, see Phase one - selecting candidate files and Pre-migrating files with external storage pools.

 	TO POOL ToPoolName

 	Specifies
 the name of the storage pool where all files that match the rule criteria
 will be migrated.

 	WEIGHT (WeightExpression)

 	Establishes
 an order on the matching files. Specifies an SQL expression with a
 numeric value that can be converted to a double precision floating
 point number. The expression may refer to any of the file attributes
 and may include any constants and any of the available SQL operators
 or built-in functions.

 	WHEN (TimeBooleanExpression)

 	Specifies
 an SQL expression that evaluates to TRUE or FALSE,
 depending only on the SQL built-in variable CURRENT_TIMESTAMP.
 If the WHEN clause is present and TimeBooleanExpression evaluates
 to FALSE, the rule is skipped.
 The mmapplypolicy command
 assigns the CURRENT_TIMESTAMP once when
 it begins processing, using either the actual UTC date and time or
 the date specified with the -D option.

 	WHERE SqlExpression

 	Specifies
 an SQL expression which may reference file attributes as SQL variables,
 functions, and operators. Some attributes are not available to all
 rules. Compares the file attributes specified in the rule with the
 attributes of the file being created.
 SqlExpression must
 be an expression that will evaluate to TRUE or FALSE,
 but can be any combination of standard SQL syntax expressions, including
 built-in functions.

 You can omit the WHERE clause
 entirely. This is equivalent to writing WHERE TRUE.
 When used, the WHERE clause must be the
 last clause of the rule.

 Parent topic: Policy rules

 SQL expressions for policy rules

 A number of the available clauses in the GPFS policy rules utilize SQL expressions. You
 can reference different file attributes as SQL variables and combine
 them with SQL functions an operators. Depending on the clause, the
 SQL expression must evaluate to either TRUE or FALSE,
 a numeric value, or a character string. Not all file attributes are
 available to all rules.

 	Using file attributes

 	Using built-in functions

 Parent topic: Policy rules

 Using file attributes

 The following file attributes can be used in SQL expressions
 specified with the WHERE, WEIGHT and SHOW clauses:

 	ACCESS_TIME

 	Specifies an SQL timestamp value for the date and time that the
 file was last accessed (POSIX atime).

 	BLOCKSIZE

 	Specifies the size, in bytes, of each block of the file.

 	CHANGE_TIME

 	Specifies an SQL timestamp value for the date and time that the
 file metadata was last changed (POSIX ctime).

 	CLONE_DEPTH

 	Specifies the depth of the clone tree for the file.

 	CLONE_IS_PARENT

 	Specifies if the file is a clone parent.

 	CLONE_PARENT_FILESET_ID

 	Specifies the fileset ID of the clone parent. The fileset ID is
 only available if CLONE_PARENT_IS_SNAP is
 a non-zero value.

 	CLONE_PARENT_INODE

 	Specifies the inode number of the clone parent, or NULL if
 it is not a file clone.

 	CLONE_PARENT_IS_SNAP

 	Specifies if the clone parent is in a snapshot.

 	CLONE_PARENT_SNAP_ID

 	Specifies the snapshot ID of the clone parent. The snapshot ID
 is only available if CLONE_PARENT_IS_SNAP is
 a non-zero value.

 	CREATION_TIME

 	Specifies an SQL timestamp value that is assigned when a file
 is created.

 	DEVICE_ID

 	Specifies the ID of the device that contains the directory entry.

 	DIRECTORY_HASH

 	May be used to group together files within the same directory.
 DIRECTORY_HASH is
 a function that maps every PATH_NAME to
 a number, such that all files within the same directory are mapped
 to the same number and deeper/longer paths are assigned to larger
 numbers.

 DIRECTORY_HASH uses the
 following functions:

 	CountSubstr(BigString,LittleString)

 	Counts and returns the number of occurrences of LittleString in BigString.

 	HashToFloat(StringValue)

 	Is a hash function that returns a quasi-random floating point
 number >=0 and <1, whose value depends on string-value. Although
 the result may appear random, for any given string value HashToFloat(StringValue) always
 returns the same floating point value.

 This rule:RULE 'y' LIST 'xl' SHOW(DIRECTORY_HASH)

 results in: LIST 'xl' /abc/tdir/randy1 SHOW(+3.49449638091027E+000)
LIST 'xl' /abc/tdir/ax SHOW(+3.49449638091027E+000)
LIST 'xl' /abc/tdir/mmPolicy.8368.765871DF/mm_tmp/PWL.12 SHOW(+5.21282524359412E+000)
LIST 'xl' /abc/tdir/mmPolicy.31559.1E018912/mm_tmp/PWL.3 SHOW(+5.10672733094543E+000)
LIST 'xl' /abc/tdir/mmPolicy.31559.1E018912/mm_tmp/PWL.2 SHOW(+5.10672733094543E+000)

 This
 rule:

 RULE 'purge' DELETE WEIGHT(DIRECTORY_HASH) WHERE (deletion-criteria)

 causes
 files within the same directory to be grouped and processed together
 during deletion, which may improve the performance of GPFS directory locking and caching.

 	FILE_HEAT

 	Specifies the heat of the file based on the file access time and
 access size. For more information, see /usr/lpp/mmfs/samples/ilm/README.

 	FILE_SIZE

 	Specifies the current size or length of the file, in bytes.

 	FILESET_NAME

 	Specifies the fileset where the path name for the files is located,
 or is to be created.
 Note: Using the FOR
 FILESET clause has the same effect and is more efficient
 to evaluate.

 	GENERATION

 	Specifies a number that is incremented whenever an INODE number
 is reused.

 	GROUP_ID

 	Specifies the numeric group ID of the file's group.

 	INODE

 	Specifies the file's inode number.

 	KB_ALLOCATED

 	Specifies the number of kilobytes of disk space allocated for
 the file data.

 	MODE

 	Represents the file type and permission bits as a string in a
 format that mimics the first 10 characters of the output of each file
 descriptive line of the Unix command ls -l.
 For
 example, -rwxr-xr-x is the MODE string
 of a file that may be read or executed by its owner, group, or any
 user, but only written by its owner. The first character of MODE represents
 the file type; GPFS supports
 the following:

 	-

 	data

 	d

 	directory

 	l

 	link

 	c

 	character device

 	b

 	block device

 	p

 	pipe

 	s

 	socket

 	?

 	unknown or something else

 	MISC_ATTRIBUTES

 	Specifies a variety of miscellaneous file attributes. The value
 is a concatenated string of attributes that are defined as:

 	a

 	appendOnly

 	A

 	archive

 	c

 	compressed

 	D

 	directory (to match all directories, you can use %D% as a wildcard)

 	e

 	encrypted
 Note: This does not refer to GPFS encryption.

 	F

 	regular data file

 	H

 	hidden

 	i

 	not indexed by content

 	L

 	symbolic link

 	o

 	offline

 	O

 	other (not F, D, nor L) for example, maybe a device or named pipe

 	M

 	co-managed

 	2

 	data blocks are replicated

 	I

 	some data blocks may be ill-placed

 	J

 	some data blocks may be ill-replicated

 	p

 	reparse point

 	P

 	AFM

 	r

 	has streams

 	R

 	read-only

 	s

 	sparse file

 	S

 	system

 	t

 	temporary

 	u

 	cached complete

 	U

 	trunc-managed

 	V

 	read-managed

 	W

 	write-managed

 	X

 	immutability

 	MODIFICATION_SNAPID

 	Specifies the integer id of the snapshot after which the file
 was last changed. The value is normally derived with the SNAP_ID() built-in
 function which assigns integer values to GPFS snapshot
 names. This attribute allows policy rules to select files that have
 been modified since a given snapshot image was taken.

 	MODIFICATION_TIME

 	Specifies an SQL timestamp value for the date and time that the
 file data was last modified (POSIX mtime).

 	NAME

 	Specifies the name of a file.

 	NLINK

 	Specifies the number of hard links to the file.

 	PATH_NAME

 	Specifies a path for the file; the path includes the name of the
 file.

 	POOL_NAME

 	Specifies the storage pool where the file data resides.
 Note: Using the FROM POOL clause has
 the same effect and is generally preferable.

 	RDEVICE_ID

 	Specifies the device type for a device.

 	USER_ID

 	Specifies the numeric user ID of the owner of the file.

 Notes:

 	When file attributes are referenced in initial placement rules,
 only the following attributes are valid: NAME, USER_ID, GROUP_ID,
 and FILESET_NAME. The placement rules, like
 all rules with a clause, may also reference
 the current date and current time and use them to control matching.

 	When file attributes are used for restoring files, the attributes
 that are used for a file correspond to the file's attributes at the
 time of its backup, not to the current restored file.

 	For SQL expressions, if you wish to show any of these attribute
 fields as strings (for example, FILE_HEAT),
 use SHOW('[FILE_HEAT]') rather than SHOW('FILE_HEAT'),
 as the latter will be expanded.

 Parent topic: SQL expressions for policy rules

 Using built-in functions

 With GPFS, you can
 use built-in functions in comparison predicates, between predicates,
 in predicates, like predicates, mathematical value expressions, and
 boolean, string and numeric literals. These functions are organized
 into the following categories:

 	Extended attribute functions

 	String functions

 	Numerical functions

 	Date and time functions

 	Miscellaneous SQL functions

 Parent topic: SQL expressions for policy rules

 Extended attribute functions

 You can use these functions to support access to the extended attributes
 of a file, and to support conversion of values to the supported SQL
 data types:

 	[image: Start of change]GetXattrs(pattern,prototype)[image: End of change]

 	[image: Start of change]Returns extended attribute key=value pairs
 of a file for all extended attributes whose keys that match pattern.
 The key=value pairs are returned in the
 format specified by prototype.[image: End of change]

 	[image: Start of change]If the value specified for pattern is '*' or
 empty then all keys are matched.[image: End of change]

 	[image: Start of change]The prototype is a character string
 representing the format of a typical key=value pair.
 The prototype allows the user to specify
 which characters will be used to quote values, escape special code
 points, separate the key and value, and separate each key=value pair.[image: End of change]

 	[image: Start of change]Some examples of the prototype argument
 include:key~n=value^n, # specify the escape characters
hexkey=hexvalue, # specify either or both as hexadecimal values
"key\n"="value\n", # specify quotes on either or both
key:"value^n"; # specify alternatives to = and ,
k:"v^n"; # allow key and value to be abbreviated
key, # specify keys only
"value~n"; # specify values only
key='value~n'& # alternative quoting character
key=value # do not use a ',' separator; use space instead

 [image: End of change]

 	[image: Start of change]You may omit the last or both arguments. The defaults are effectively GetXattrs('*','key^n=hexvalue,').[image: End of change]

 	[image: Start of change]The GetXattrs function returns an empty
 string for files that have no extended attributes with keys that match pattern.[image: End of change]

 	[image: Start of change]The GetXattrs function is supported
 by the mmapplypolicy command, but it might
 return NULL in other contexts.[image: End of change]

 	SetBGF(BlockGroupFactor)

 	Specifies how many file system blocks are laid out
 sequentially on disk to behave like a single large block. This option
 only works if --allow-write-affinity is
 set for the data pool. [image: Start of change]This applies only to a new
 data block layout; it does not migrate previously existing data blocks.[image: End of change]

 	SetWAD(WriteAffinityDepth)

 	Specifies the allocation policy to be used.
 This option only works if --allow-write-affinity is
 set for the data pool. [image: Start of change]This applies only to a new
 data block layout; it does not migrate previously existing data blocks.[image: End of change]

 	SetWADFG("WadfgValueString")

 	Indicates the range of nodes (in a shared nothing
 architecture) where replicas of blocks in the file are to be written.
 You use this parameter to determine the layout of a file in the cluster
 so as to optimize the typical access patterns of your applications. [image: Start of change]This applies only to a new data block layout; it does
 not migrate previously existing data blocks.[image: End of change]"WadfgValueString" is
 a semicolon-separated string identifying one or more failure groups
 in the following format:FailureGroup1[;FailureGroup2[;FailureGroup3]]

 where
 each FailureGroupx is a comma-separated
 string identifying the rack (or range of racks), location (or range
 of locations), and node (or range of nodes) of the failure group in
 the following format:Rack1{:Rack2{:...{:Rackx}}},Location1{:Location2{:...{:Locationx}}},ExtLg1{:ExtLg2{:...{:ExtLgx}}}

 For
 example, the following value 1,1,1:2;2,1,1:2;2,0,3:4

 means
 that the first failure group is on rack 1, location 1, extLg 1 or
 2; the second failure group is on rack 2, location 1, extLg 1 or 2;
 and the third failure group is on rack 2, location 0, extLg 3 or 4.

 If
 the end part of a failure group string is missing, it is interpreted
 as 0. For example, the following are interpreted the same way:2
2,0
2,0,0

 Notes:

 	Only the end part of a failure group string can be left off. The
 missing end part may be the third field only, or it may be both the
 second and third fields; however, if the third field is provided,
 the second field must also be provided. The first field must always be
 provided. In other words, every comma must both follow and precede
 a number; therefore, none of the following are valid: 2,0,
2,
,0,0
0,,0
,,0

 	Wildcard characters (*) are supported
 in these fields.

 	Here is an example of using setBGF, setWAD, and setWADFG: RULE 'bgf' SET POOL 'pool1' WHERE NAME LIKE '%' AND setBGF(128) AND setWAD(1) AND setWADFG(1,0,1;2,0,1;3,0,1)

 This
 rule has the same effect as the following command:mmchattr --block-group-factor 128 --write-affinity-depth 128 --write-affinity-failuregroup "1,0,1;2,0,1;3,0,1" test

 After
 installing this policy, a newly created file will have the same values
 for these three extended attributes as it would if mmchattr were
 used to set them:(06:29:11) hs22n42:/sncfs # mmlsattr -L test
file name: test
metadata replication: 3 max 3
data replication: 3 max 3
immutable: no
appendOnly: no
flags:
storage pool name: system
fileset name: root
snapshot name:
Block group factor: 128 -----------------gpfs.BGF
Write affinity depth: 1 -----------------gpfs.WAD
Write Affinity Depth Failure Group(FG) Map for copy:1 1,0,1 -----------------gpfs.WADFG
Write Affinity Depth Failure Group(FG) Map for copy:2 2,0,1
Write Affinity Depth Failure Group(FG) Map for copy:3 3,0,1
creation time: Sat Jun 8 06:28:50 2013
Windows attributes: ARCHIVE

 	SetXattr('ExtendedAttributeName', 'ExtendedAttributeValue')

 	This function sets the value of the specified extended attribute
 of a file.
 Successful evaluation of SetXattr in
 a policy rule returns the value TRUE and
 sets the named extended attribute to the specified value for the file
 that is the subject or object of the rule. This function is effective
 for policy rules (like MIGRATE and LIST)
 that are evaluated by mmapplypolicy and
 for the policy placement rule, SET POOL,
 when a data file is about to be created.

 	XATTR(extended-attribute-name [, start [, length]])

 	Returns the value of a substring of the extended attribute that
 is named by its argument as an SQL VARCHAR value, where:

 	extended-attribute-name

 	Specifies any SQL expression that evaluates to a character string
 value. If the named extended attribute does not exist, XATTR returns
 the special SQL value NULL.
 Note: In SQL,
 the expression NULL || AnyValue yields NULL.
 In fact, with a few exceptions, the special SQL value of NULL "propagates" throughout
 an SQL expression, to yield NULL. A notable
 exception is that (expression) IS NULL always
 yields either TRUE or FALSE,
 never NULL.
 For example, if you wish
 to display a string like _NULL_ when the
 value of the extended attribute of a file is NULL you
 will need to code your policy rules file like this:define(DISPLAY_NULL,[CASE WHEN ($1) IS NULL THEN '_NULL_' ELSE ($1) END])
rule external list 'a' exec ''
rule list 'a' SHOW(DISPLAY_NULL(xattr('user.marc')) || ' and ' || DISPLAY_NULL(xattr('user.eric')))

 Here
 is an example execution, where either or both of the values of the
 two named extended attributes may be NULL:mmapplypolicy /gig/sill -P /ghome/makaplan/policies/display-null.policy -I test -L 2
 ...
WEIGHT(inf) LIST 'a' /gg/sll/cc SHOW(_NULL_ and _NULL_)
WEIGHT(inf) LIST 'a' /gg/sll/mm SHOW(yes-marc and _NULL_)
WEIGHT(inf) LIST 'a' /gg/sll/bb SHOW(_NULL_ and yes-eric)
WEIGHT(inf) LIST 'a' /gg/sll/tt SHOW(yes-marc and yes-eric)

 GPFS/Policy/SQL
 is a subset of standard ISO/ANSI SQL, with additional extensions and
 modifications to facilitate GPFS/ILM. Regarding the NULL value,
 GPFS/Policy/SQL supports the "unknown value" meaning of NULL.

 	start

 	Is the optional starting position within the extended attribute
 value. The default is 1.

 	length

 	Is the optional length, in bytes, of the extended attribute value
 to return. The default is the number of bytes from the start to the
 end of the extended attribute string.
 Note: XATTR (name,i,k)
 == SUBSTR(XATTR(name),i,k).

 Some extended attribute values represent numbers or timestamps
 as decimal or binary strings. Use the TIMESTAMP, XATTR_FLOAT,
 or XATTR_INTEGER function to convert extended
 attributes to SQL numeric or timestamp values:

 	XATTR_FLOAT(extended-attribute-name [, start [, length,
 [, conversion_option]]])

 	Returns the value of a substring of the extended attribute that
 is named by its argument, converted to an SQL double floating-point
 value, where:

 	extended-attribute-name

 	Specifies any SQL expression that evaluates to a character string
 value. If the named extended attribute does not exist, XATTR returns
 the special SQL value NULL.

 	start

 	Is the optional starting position within the extended attribute
 value. The default is 1.

 	length

 	Is the optional length, in bytes, of the extended attribute value
 to return. The default is the number of bytes from the start to the
 end of the extended attribute string. You can specify length as -1
 to reach from the start to the end of the extended attribute string.

 	conversion_option

 	Specifies how the bytes are to be converted to a floating-point
 value. Supported options include:

 	BIG_ENDIAN_DOUBLE or BD - a signed binary representation, IEEE
 floating, sign + 11 bit exponent + fraction. This is the default when
 executing on a "big endian" host OS, such as AIX on PowerPC.

 	BIG_ENDIAN_SINGLE or BS - IEEE floating, sign + 8-bit exponent
 + fraction.

 	LITTLE_ENDIAN_DOUBLE or LD - bytewise reversed binary representation. This
 is the default when executing on a "little endian" host OS, such as Linux on Intel x86.

 	LITTLE_ENDIAN_SINGLE or LS - bytewise-reversed binary representation.

 	DECIMAL - the conventional SQL character string representation
 of a floating-point value.

 Notes:

 	Any prefix of a conversion name can be specified instead of spelling
 out the whole name. The first match against the list of supported
 options is used; for example, L matches LITTLE_ENDIAN_DOUBLE.

 	If the extended attribute does not exist, the selected substring
 has a length of 0, or the selected bytes cannot be converted to a
 floating-point value, the function returns the special SQL value NULL.

 	XATTR_INTEGER(extended-attribute-name [, start [, length,
 [, conversion_option]]])

 	Returns the value of (a substring of) the extended attribute named
 by its argument, converted to a SQL LARGEINT value, where.

 	extended-attribute-name

 	Specifies any SQL expression that evaluates to a character string
 value. If the named extended attribute does not exist, XATTR returns
 the special SQL value NULL.

 	start

 	Is the optional starting position within the extended attribute
 value. The default is 1.

 	length

 	Is the optional length, in bytes, of the extended attribute value
 to return. The default is the number of bytes from the start to the
 end of the extended attribute string. You can specify length as -1
 to reach from the start to the end of the extended attribute string.

 	conversion_option

 	Specifies how the bytes are to be converted to a LARGEINT value.
 Supported options include:

 	BIG_ENDIAN - a signed binary representation, most significant
 byte first. This is the default when executing on a "big endian" host OS,
 such as AIX on PowerPC.

 	LITTLE_ENDIAN - bytewise reversed binary representation. This
 is the default when executing on a "little endian" host OS, such as Linux on Intel x86.

 	DECIMAL - the conventional SQL character string representation
 of an integer value.

 Notes:

 	Any prefix of a conversion name can be specified instead of spelling
 out the whole name (B, L, or D, for example).

 	If the extended attribute does not exist, the selected substring
 has a length of 0, or the selected bytes cannot be converted to a
 LARGEINT value, the function returns the special SQL value NULL.
 For example: XATTR_INTEGER('xyz.jim',5,-1,'DECIMAL')

 Parent topic: Using built-in functions

 String functions

 You can use these string-manipulation functions on file names and
 literal values:

 Important tips:

 	You must enclose strings in single-quotation marks.

 	You can include a single-quotation mark in a string by using two
 single-quotation marks. For example, 'a''b' represents the
 string a'b.

 	CHAR(expr[, length])

 	Returns
 a fixed-length character string representation of its expr argument,
 where:

 	expr

 	Can be any data type.

 	length

 	If present, must be a literal, integer value.

 The resulting type is CHAR or VARCHAR,
 depending upon the particular function called.

 	The string that CHAR returns is padded
 with blanks to fill the length of the string.
 If length is not specified, it defaults
 to a value that depends on the type of the argument (expr).
 Note: The
 maximum length of a CHAR (fixed length string)
 value is 255 bytes. The result of evaluating an SQL expression whose
 result is type CHAR may be truncated to
 this maximum length.

 	CONCAT(x,y)

 	Concatenates
 strings x and y.

 	HEX(x)

 	Converts
 an integer x into hexadecimal format.

 	LENGTH(x)

 	Determines
 the length of the data type of string x.

 	LOWER(x)

 	Converts
 string x into lowercase.

 	REGEX(String,'Pattern')

 	Returns TRUE if
 the pattern matches, FALSE if it does not. Pattern is
 a Posix extended regular expression.
 Note: The policy SQL parser normally
 performs M4 macro preprocessing with square brackets set as the quote
 characters. Therefore, it is recommended that you add an extra set
 of square brackets around your REGEX pattern
 string; for example:...WHERE REGEX(name,['^[a-z]*$']) /* only accept lowercase alphabetic file names */

 The
 following SQL expression:NOT REGEX(STRING_VALUE,['^[^z]*$|^[^y]*$|^[^x]*$|[abc]'])

 can
 be used to test if STRING_VALUE contains all of the characters
 x, y, and z, in any order, and none of the characters a, b,
 or c.

 	[image: Start of change]REGEXREPLACE(string,pattern,result-prototype-string)[image: End of change]

 	[image: Start of change]Returns
 a character string as result-prototype-string with
 occurrences of \i (where i is
 0 through 9) replaced by the substrings of the original string that
 match the ith parenthesis delimited parts
 of the pattern string. For example:REGEXREPLACE('speechless',['([^aeiou]*)([aeiou]*)(.*)'],['last=\3. middle=\2. first=\1.'])

 returns
 the following:'last=chless. middle=ee. first=sp.'

 [image: End of change]

 	[image: Start of change]When pattern does not match string, REGEXREPLACE returns
 the value NULL.[image: End of change]

 	[image: Start of change]When a \0 is specified in the result-prototype-string,
 it is replaced by the substring of string that
 matches the entire pattern.[image: End of change]

 	SUBSTR(x,y,z)

 	Extracts
 a portion of string x, starting at position y,
 optionally for z characters (otherwise to
 the end of the string). This is the short form of SUBSTRING.
 If y is a negative number, the starting
 position is counted from the end of the string; for example, SUBSTR('ABCDEFGH',-3,2) ==
 'FG'.
 Note: [image: Start of change]Do not confuse SUBSTR with substr. substr is
 an m4 built-in macro function.[image: End of change]

 	SUBSTRING(x FROM y FOR z)

 	Extracts
 a portion of string x, starting at position y,
 optionally for z characters (otherwise to
 the end of the string).

 	UPPER(x)

 	Converts
 the string x into uppercase.

 	VARCHAR(expr [, length])

 	Returns
 a varying-length character string representation of a character string,
 date/time value, or numeric value, where:

 	expr

 	Can be any data type.

 	length

 	If present, must be a literal, integer value.

 The resulting type is CHAR or VARCHAR,
 depending upon the particular function called. Unlike CHAR,
 the string that the VARCHAR function returns
 is not padded with blanks.
 Note: The maximum length of a VARCHAR(variable
 length string) value is 8192 bytes. The result of evaluating an SQL
 expression whose result is type VARCHAR may
 be truncated to this maximum length.

 Parent topic: Using built-in functions

 Numerical functions

 You can use these numeric-calculation functions to place files
 based on either numeric parts of the file name, numeric parts of the
 current date, UNIX-client user IDs or group IDs. These can be used
 in combination with comparison predicates and mathematical infix operators
 (such as addition, subtraction, multiplication, division, modulo division,
 and exponentiation).

 	INT(x)

 	Converts
 number x to a whole number, rounding up
 fractions of .5 or greater.

 	INTEGER(x)

 	Converts
 number x to a whole number, rounding up
 fractions of .5 or greater.

 	MOD(x,y)

 	Determines
 the value of x taken modulo y (x % y).

 Parent topic: Using built-in functions

 Date and time functions

 You can use these date-manipulation and time-manipulation functions
 to place files based on when the files are created and the local time
 of the GPFS node serving the
 directory where the file is being created.

 	CURRENT_DATE

 	Determines
 the current date on the GPFS server.

 	CURRENT_TIMESTAMP

 	Determines
 the current date and time on the GPFS server.

 	DAYOFWEEK(x)

 	Determines
 the day of the week from date or timestamp x.
 The day of a week is from 1 to 7 (Sunday is 1).

 	DAYOFYEAR(x)

 	Determines
 the day of the year from date x. The day
 of a year is a number from 1 to 366.

 	DAY(x)

 	Determines
 the day of the month from date or timestamp x.

 	DAYS(x)

 	Determines
 the number of days between date or timestamp x and
 0001-01-01.

 	DAYSINMONTH(x)

 	Determines
 the number of days in the month of date x.

 	DAYSINYEAR(x)

 	Determines
 the day of the year of date x.

 	HOUR(x)

 	Determines
 the hour of the day (a value from 0 to 23) of timestamp x.

 	MINUTE(x)

 	Determines
 the minute from timestamp x.

 	MONTH(x)

 	Determines
 the month of the year from date or timestamp x.

 	QUARTER(x)

 	Determines
 the quarter of year from date x. Quarter
 values are the numbers 1 through 4. For example, January, February,
 and March are in quarter 1.

 	SECOND(x)

 	Returns
 the seconds portion of timestamp x.

 	TIMESTAMP(sql-numeric-value) or TIMESTAMP(sql-character-string-value)

 	Accepts
 any numeric value. The numeric value is interpreted as the number
 of seconds since January 1, 1970 (the standard UNIX epoch) and is converted to an SQL TIMESTAMP
 value.
 Signed 64-bit LARGEINT argument values are supported. Negative
 argument values cause TIMESTAMP to convert
 these values to timestamps that represent years before the UNIX epoch.

 This function
 also accepts character strings of the form YYYY-MM-DD HH:MM:SS.
 A hyphen (-) or an at sign (@) might appear instead of the blank between
 the date and the time. The time can be omitted. An omitted time defaults
 to 00:00:00. The :SS field can be omitted,
 which defaults to 00.

 	WEEK(x)

 	Determines
 the week of the year from date x.

 	YEAR(x)

 	Determines
 the year from date or timestamp x.

 All date and time functions use Universal Time (UT).

 Example of a policy rules file
/*
Sample GPFS policy rules file
*/

rule 'vip' set pool 'pool0' where USER_ID <= 100
RULE 'm1' SET POOL 'pool1' WHERE LOWER(NAME) LIKE '%marc%'
RULE SET POOL 'pool1' REPLICATE (2) WHERE UPPER(NAME) = '%IBM%'
RULE 'r2' SET POOL 'pool2' WHERE UPPER(SUBSTRING(NAME FROM 1 FOR 4)) = 'GPFS'
[image: Start of change]RULE 'r3' SET POOL 'pool3' WHERE LOWER(SUBSTR(NAME,1,5)) = 'roger'
RULE SET POOL 'pool4' WHERE LENGTH(NAME) = 7[image: End of change]
RULE SET POOL 'pool5' WHERE name like 'xyz%' AND name like '%qed' OR name like '%.tmp%'
RULE SET POOL 'pool6' WHERE name like 'abc%' OR name like '%xyz' AND name like 'x%'

RULE 'restore' RESTORE TO POOL 'pool0' where USER_ID <= 100

/* If none of the rules matches put those files in system pool */
rule 'default' SET POOL 'system'

 Parent topic: Using built-in functions

 Miscellaneous SQL functions

 The following miscellaneous SQL functions are available:

 	SNAP_ID(['FilesetName',] 'SnapshotName')

 	Given
 an (optional) fileset/inode-space name and a snapshot name, this function
 returns the numeric snapshot ID of the given snapshot within the given
 inode-space.

 	GetEnv('EnvironmentVariableName')

 	This function gets the value of the specified environment variable.

 	GetMMconfig('GPFSConfigurationParameter')

 	This function gets the value of the specified GPFS configuration parameter.

 Parent topic: Using built-in functions

 Semantics of the mmapplypolicy command and its policy rules

 Any given file is a potential candidate for at most one MIGRATE or DELETE operation
 during each invocation of the mmapplypolicy command.
 A single invocation of the mmapplypolicy command
 is called the job.

 The mmapplypolicy command sets the SQL
 built-in variable CURRENT_TIMESTAMP, and
 collects pool occupancy statistics at the beginning of the job.

 The mmapplypolicy job consists of three
 major phases:

 	Phase one - selecting candidate files

 	Phase two - choosing and scheduling files

 	Phase three - migrating and deleting files

 Parent topic: Policies and rules

 Related concepts:

 Policies

 Policy rules

 Working with external storage pools

 Backup and restore with storage pools

 Related tasks:

 Managing policies

 Related reference:

 Policy rules - examples and tips

 Phase one - selecting candidate files

 In the first phase of the mmapplypolicy job,
 all the files within the specified GPFS file
 system device, or below the input path name, are scanned. The attributes
 of each file are read from the file's GPFS inode structure.

 Note: mmapplypolicy reads directly from
 the metadata disk blocks and can therefore lag behind the posix state
 of the file system. To be sure that MODIFICATION_TIME and
 the other timestamps are completely up to date, you can use the following
 suspend-and-resume sequence to force recent changes to disk:mmfsctl fs-name suspend; mmfsctl fs-name resume;

 For each file, the policy rules are considered, in order, from
 first rule to last:

 	If the rule has a WHEN clause that evaluates
 to FALSE, the rule is skipped.

 	If the rule has a FROM POOL clause,
 and the named pool does not match the POOL_NAME attribute
 of the file, the rule is skipped. A FROM POOL clause
 that specifies a group pool name matches a file if any pool name within
 the group pool matches the POOL_NAME attribute
 of the file.

 	If there is a THRESHOLD clause and the
 current pool of the file has an occupancy percentage that is less
 than the HighPercentage parameter of the THRESHOLD clause,
 the rule is skipped.

 	If the rule has a FOR FILESET clause,
 but none of the named filesets match the FILESET_NAME attribute
 of the file, the rule is skipped.

 	If the rule has a WHERE clause that
 evaluates to FALSE, the rule is skipped.
 Otherwise, the rule applies.

 	If the applicable rule is a LIST ’listname-y’ rule,
 the file becomes a candidate for inclusion in the named list unless
 the EXCLUDE keyword is present, in which
 case the file will not be a candidate; nor will any following LIST ’listname-y’ rules
 be considered for the subject file. However, the file is subject
 to LIST rules naming other list names.

 	If the applicable rule is an EXCLUDE rule,
 the file will be neither migrated nor deleted. Files matching the EXCLUDE rule
 are not candidates for any MIGRATE or DELETE rule.
 Note: Specify
 the EXCLUDE rule before any other rules
 that might match the files that are being excluded. For example:[image: Start of change]RULE 'Exclude root's file' EXCLUDE where USER_ID = 0
RULE 'Migrate all but root's files' MIGRATE TO POOL 'pool1'
[image: End of change]

 will
 migrate all the files that are not owned by root.
 If the MIGRATE rule was placed in the policy
 file before the EXCLUDE rule, all files
 would be migrated because the policy engine would evaluate the rules
 from first to last, and root's files would
 have to match the MIGRATE rule.

 To
 exclude files from matching a LIST rule,
 you must create a separate LIST rule with
 the EXCLUDE clause and place it before the LIST rule.

 	If the applicable rule is a MIGRATE rule,
 the file becomes a candidate for migration
 to the pool specified by the TO POOL clause.
 When
 a group pool is the TO POOL target of a MIGRATE rule,
 the selected files are distributed among the disk pools comprising
 the group pool, with files of highest weight going to the most preferred
 disk pool up to the occupancy limit for that pool. If there are still
 more files to be migrated, those go to the second most-preferred pool
 up to the occupancy limit for that pool (again choosing the highest-weight
 files from among the remaining selected files); and so on for the
 subsequent most-preferred pools, until either all selected files have
 been migrated or until all the disk pools of the group pool have been
 filled to their respective limits.

 	If the applicable rule is a DELETE rule,
 the file becomes a candidate for deletion.

 	If there is no applicable rule, the file is not a candidate for
 migration or deletion.

 	Each candidate file (for migration or deletion) is also associated
 with a LowPercentage occupancy percentage
 value, which is taken from the THRESHOLD clause
 of the applicable rule. If not specified, the LowPercentage value
 defaults to 0%.

 	Each candidate file is also associated with a numeric weight,
 either computed from the WeightExpression of
 the applicable rule, or assigned a default using these rules:

 	If a LowPercentage is specified within
 a THRESHOLD clause of the applicable rule,
 the weight of the candidate is taken as the KB_ALLOCATED attribute
 of the candidate file.

 	If a LowPercentage is not specified
 within a THRESHOLD clause of the applicable
 rule, the weight of the candidate is taken as +infinity.

 Parent topic: Semantics of the mmapplypolicy command and its policy rules

 Related concepts:

 Phase two - choosing and scheduling files

 Phase three - migrating and deleting files

 Phase two - choosing and scheduling files

 In the second phase of the mmapplypolicy job,
 some or all of the candidate files are chosen. Chosen files are scheduled
 for migration or deletion, taking into account the weights and thresholds
 determined in Phase one - selecting candidate files,
 as well as the actual pool occupancy percentages. Generally, candidates
 with higher weights are chosen ahead of those with lower weights.

 File migrations to and from external pools are done before migrations
 and deletions that involve only GPFS disk
 pools.

 File migrations that do not target group pools are done before
 file migrations to group pools.

 File migrations that target a group pool are done so that candidate
 files with higher weights are migrated to the more preferred GPFS disk pools within the group
 pool, but respecting the LIMITs specified
 in the group pool definition.

 The following two options can be used to adjust the method by which
 candidates are chosen:

 	--choice-algorithm {best | exact |
 fast}

 	Specifies one of the following types of algorithms that the policy
 engine is to use when selecting candidate files:

 	best

 	Chooses the optimal method based on the rest of the input parameters.

 	exact

 	Completely sorts all of the candidate files by weight, then serially
 considers each file from highest weight to lowest weight, choosing
 feasible candidates for migration, deletion, or listing according
 to any applicable rule LIMITs and current
 storage-pool occupancy. This is the default.

 	fast

 	Works together with the parallelized -g /shared-tmp
 -N node-list selection method. The fast choice
 method does not completely sort the candidates by weight. It uses
 a combination of statistical, heuristic, and parallel computing methods
 to favor higher weight candidate files over those of lower weight,
 but the set of chosen candidates may be somewhat different than those
 of the exact method, and the order in which
 the candidates are migrated, deleted, or listed is somewhat more random.
 The fast method uses statistics gathered
 during the policy evaluation phase. The fast choice
 method is especially fast when the collected statistics indicate that
 either all or none of the candidates are feasible.

 	--split-margin n.n

 	A floating-point number that specifies the percentage within which
 the fast-choice algorithm is allowed to
 deviate from the LIMIT and THRESHOLD targets
 specified by the policy rules. For example if you specified a THRESHOLD number
 of 80% and a split-margin value of 0.2, the fast-choice
 algorithm could finish choosing files when it reached 80.2%, or it
 might choose files that bring the occupancy down to 79.8%. A nonzero
 value for split-margin can greatly accelerate the execution of the fast-choice
 algorithm when there are many small files. The default is 0.2.

 File grouping and the SIZE clause

 When scheduling
 files, mmapplypolicy simply groups together
 either the next 100 files by default, or the number of files explicitly
 set using the -B option.

 However,
 you can set up mmapplypolicy to schedule
 files so that each invocation of the InterfaceScript gets approximately
 the same amount of file data to process. To do so, use the SIZE clause
 of certain policy rules to specify that scheduling be based on the
 sum of the sizes of the files. The SIZE clause
 can be applied to the following rules (for details, see Policy rules):

 	DELETE

 	EXTERNAL LIST

 	EXTERNAL POOL

 	LIST

 	MIGRATE

 Administrator-specified
 customized file grouping or aggregation

 In addition to using
 the SIZE clause to control the amount of
 work passed to each invocation of a InterfaceScript, you can also
 specify that files with similar attributes be grouped or aggregated
 together during the scheduling phase. To do so, use an aggregator
 program to take a list of chosen candidate files, sort them according
 to certain attributes, and produce a reordered file list that can
 be passed as input to the user script.

 You can accomplish this
 by following these steps:

 	Run mmapplypolicy with the -I
 prepare option to produce a list of chosen candidate
 files, but not pass the list to a InterfaceScript.

 	Use your aggregator program to sort the list of chosen candidate
 files into groups with similar attributes and write each group to
 a new, separate file list.

 	Run mmapplypolicy with the -r option,
 specifying a set of file list files to be read. When invoked with
 the -r option, mmapplypolicy does
 not choose candidate files; rather, it passes the specified file lists
 as input to the InterfaceScript.
 Note: You can also use the -q option
 to specify that small groups of files are to be taken in round-robin
 fashion from the input file lists (for example, take a small group
 of files from x.list.A, then from x.list.B, then from x.list.C, then
 back to x.list.A, and so on, until all of the files have been processed).
 To
 prevent mmapplypolicy from redistributing
 the grouped files according to size, omit the SIZE clause
 from the appropriate policy rules and set the bunching parameter of
 the -B option to a very large value.

 Reasons for candidates not to be chosen for deletion
 or migration

 Generally, a candidate is not chosen for deletion
 from a pool, nor migration out of a pool, when the pool occupancy
 percentage falls below the LowPercentage value.
 Also, candidate files will not be chosen for migration into a target TO
 POOL when the target pool reaches the occupancy percentage
 specified by the LIMIT clause (or 99% if
 no LIMIT was explicitly specified by the
 applicable rule).

 The limit clause does not apply when the target TO
 POOL is a group pool; the limits specified in the rule
 defining the target group pool govern the action of the MIGRATE rule.
 The policy-interpreting program (for example, mmapplypolicy)
 may issue a warning if a LIMIT clause appears
 in a rule whose target pool is a group pool.

 Parent topic: Semantics of the mmapplypolicy command and its policy rules

 Related concepts:

 Phase one - selecting candidate files

 Phase three - migrating and deleting files

 Phase three - migrating and deleting files

 In the third phase of the mmapplypolicy job,
 the candidate files that were chosen and scheduled by the second phase
 are migrated or deleted, each according to its applicable rule. For
 migrations, if the applicable rule had a REPLICATE clause,
 the replication factors are also adjusted accordingly. It is acceptable
 for the effective FROM POOL and TO
 POOL to be the same because the mmapplypolicy command
 can be used to adjust the replication factors of files without necessarily
 moving them from one pool to another.

 The migration performed in the third phase can involve large amounts
 of data movement. Therefore, you may want to consider using the –I
 defer option of the mmapplypolicy command,
 and then perform the data movements with the mmrestripefs
 -p command.

 Parent topic: Semantics of the mmapplypolicy command and its policy rules

 Related concepts:

 Phase one - selecting candidate files

 Phase two - choosing and scheduling files

 Policy rules - examples and tips

 Before you write and apply policies, consider this advice:

 You
 are advised to test your rules using the mmapplypolicy command
 with the -I test option and the -L
 3 (or higher) option. This will help you understand
 which files are selected as candidates, and which candidates are chosen.

 Do
 not apply a policy to an entire file system of vital files until you
 are confident that the rules correctly express your intentions. To
 test your rules, find or create a subdirectory with a modest number
 of files, some that you expect to be selected by your SQL policy rules
 and some that you expect will be skipped.

 Then run the following
 command:mmapplypolicy /TestSubdirectory -L 6 -I test

 The
 output will show you exactly which files are scanned, and which match
 rules or no rules. If a problem is not apparent, you can add a SHOW()
 clause to your rule or rules to examine the values of the file attributes
 of interest or the value of any SQL expression. To examine several,
 use the following:SHOW('x1=' || varchar(Expression1) || ' x2=' || varchar(Expression2) || ...)

 where ExpressionX is
 the SQL variable or expression of function that you suspect or do
 not understand. Beware that if any expression evaluates to SQL NULL,
 the entire show clause will be NULL, by the rules of SQL. One way
 to show null vs. non-null values is to define a macro and use it as
 in the following example: define(DISPLAY_NULL,[CASE WHEN ($1) IS NULL THEN '_NULL_' ELSE varchar($1) END])

rule list a SHOW('x1=' || DISPLAY_NULL(xattr('user.marc')) || ' and x2=' || DISPLAY_NULL(xattr('user.eric')))

 Note: For
 examples and more information on the -L flag,
 see the section: "The mmapplypolicy -L command" in
 the GPFS:
 Problem Determination Guide.

 The
 following examples and tips are provided to illustrate how to perform
 simple tasks using policy rules with files controlled by GPFS file systems:

 	Each rule begins with the keyword RULE and is followed
 by the name of the rule. Although the rule name is optional, it should
 be provided and should be unique. Providing a rule name and keeping
 it unique will help you match error messages with faulty rules.

 	If the storage pool named pool_1 has
 an occupancy percentage above 90% now, bring the occupancy percentage
 of pool_1 down to 70% by migrating the largest
 files to storage pool pool_2: RULE 'mig1' MIGRATE FROM POOL 'pool_1'
 THRESHOLD(90,70) WEIGHT(KB_ALLOCATED) TO POOL 'pool_2'

 	Delete files from the storage pool named pool_1 that
 have not been accessed in the last 30 days, and are named like temporary
 files or appear in any directory that is named tmp: RULE 'del1' DELETE FROM POOL 'pool_1'
 WHERE (DAYS(CURRENT_TIMESTAMP) – DAYS(ACCESS_TIME) > 30)
 AND (lower(NAME) LIKE '%.tmp' OR PATH_NAME LIKE '%/tmp/%')

 	Use the SQL LIKE predicate to test
 file names and path names: RULE '*/_*' DELETE WHERE PATH_NAME LIKE '%/x_%' ESCAPE 'x'
RULE '*XYZ*' DELETE WHERE NAME LIKE '%XYZ%'
RULE '12_45' DELETE WHERE NAME LIKE '12x_45' ESCAPE 'x'
RULE '12%45' DELETE WHERE NAME LIKE '12x%45' ESCAPE 'x'
RULE '12?45' DELETE WHERE NAME LIKE '12_45'
RULE '12*45' DELETE WHERE NAME LIKE '12%45'
RULE '*_*' DELETE WHERE NAME LIKE '%x_%' ESCAPE 'x'

 Where:

 	A percent % wildcard in the name represents
 zero or more characters.

 	An underscore (_) wildcard in the name
 represents one byte.

 Use the optional ESCAPE clause
 to establish an escape character, when you need to match '_' or '%'
 exactly.

 	Use the SQL UPPER and LOWER functions
 to ignore case when testing names:RULE 'UPPER' DELETE WHERE upper(PATH_NAME) LIKE '%/TMP/OLD/%'
RULE 'lower' DELETE WHERE lower(PATH_NAME) LIKE '%/tmp/old/%'

 	Use the SQL SUBSTR or SUBSTRING
 functions to test a substring of a name: RULE 's1' DELETE WHERE SUBSTRING(NAME FROM 1 FOR 5)='XXXX-'
RULE 's2' DELETE WHERE SUBSTR(NAME,1,5)='YYYY-'

 	Use the SQL SUBSTR and LENGTH functions
 to test the suffix of a name: RULE 'sfx' DELETE WHERE SUBSTR(NAME,LENGTH(NAME)-3)='.tmp'

 	Use a WHEN clause to restrict rule applicability
 to a particular day of the week: RULE 'D_SUN' WHEN (DayOfWeek(CURRENT_DATE)=1) /* Sunday */
 DELETE WHERE PATH_NAME LIKE '%/tmp/%'

 CURRENT_DATE is an SQL built
 in operand that returns the date portion of the CURRENT_TIMESTAMP value.

 	Use the SQL IN operator to test several
 possibilities:RULE 'D_WEEKEND' WHEN (DayOfWeek(CURRENT_DATE) IN (7,1)) /* Saturday or Sunday */
 DELETE WHERE PATH_NAME LIKE '%/tmp/%'

 For information on how to use a macro processor such
 as m4 to make reading and writing policy
 rules easier, see Using macro processing utilities to simplify policy creation, comprehension, and maintenance.

 	Use a FILESET clause to restrict the
 rule to files within particular filesets: RULE 'fsrule1' MIGRATE TO POOL 'pool_2'
 FOR FILESET('root','fset1')

 In this example there is no FROM POOL clause,
 so regardless of their current storage pool placement, all files from
 the named filesets are subject to migration to storage pool pool_2.

 	Use an EXCLUDE rule to exclude a set
 of files from all subsequent rules: RULE 'Xsuper' EXCLUDE WHERE USER_ID=0
RULE 'mpg' DELETE WHERE lower(NAME) LIKE '%.mpg' AND FILE_SIZE>20123456

 Notes:

 	Specify the EXCLUDE rule before rules
 that might match the files that are being excluded.

 	You cannot define a list and what to exclude from the list in
 a single rule. You must define two LIST statements, one specifying
 which files will be in the list, and one specifying what to exclude
 from the list. For example, to exclude files containing the word test from
 the LIST rule allfiles, define the following:RULE EXTERNAL LIST 'allfiles' EXEC '/u/brownap/policy/CHE/exec.list'

RULE 'exclude_allfiles' LIST 'allfiles' EXCLUDE where name like '%test%'

RULE 'all' LIST 'allfiles' SHOW('misc_attr ='|| MISC_ATTRIBUTES || HEX(MISC_ATTRIBUTES)) \
 where name like '%'

 	Use the SQL NOT operator with keywords,
 along with AND and OR: RULE 'D_WEEKDAY' WHEN (DayOfWeek(CURRENT_DATE) NOT IN (7,1)) /* a weekday */
 DELETE WHERE (PATH_NAME LIKE '%/tmp/%' OR NAME LIKE '%.tmp')
 AND (KB_ALLOCATED > 9999 AND NOT USER_ID=0)

 	Use a REPLICATE clause to increase the
 availability of selected files: RULE 'R2' MIGRATE FROM POOL 'ypooly' TO POOL 'ypooly'
 REPLICATE(2) WHERE USER_ID=0

 Before increasing the data replication factor for any
 file, the file system must be configured to support data replication.

 	The difference of two SQL Timestamp values may be compared to
 an SQL Interval value:rule 'a' migrate to pool 'A' where CURRENT_TIMESTAMP - MODIFICATION_TIME > INTERVAL '10' DAYS
rule 'b' migrate to pool 'B' where CURRENT_TIMESTAMP - MODIFICATION_TIME > INTERVAL '10' HOURS
rule 'c' migrate to pool 'C' where CURRENT_TIMESTAMP - MODIFICATION_TIME > INTERVAL '10' MINUTES
rule 'd' migrate to pool 'D' where CURRENT_TIMESTAMP - MODIFICATION_TIME > INTERVAL '10' SECONDS

 For
 the best precision, use the INTERVAL...SECONDS construct.

 	By carefully assigning both weights and thresholds, the administrator
 can formally express rules like this:
 If the storage pool named pool_X has
 an occupancy percentage above 90% now, bring the occupancy percentage
 of storage pool named pool_X down to 80%
 by migrating files that are three months or older to the storage pool
 named pool_ZZ. But, if you can find enough
 year-old files to bring the occupancy percentage down to 50%, do that
 also.

 RULE 'year-old' MIGRATE FROM POOL 'pool_X'
 THRESHOLD(90,50) WEIGHT(weight_expression)
 TO POOL 'pool_ZZ'
 WHERE DAYS(CURRENT_TIMESTAMP) – DAYS(ACCESS_TIME) > 365

RULE '3month-old' MIGRATE FROM POOL 'pool_X'
 THRESHOLD(90,80) WEIGHT(weight_expression)
 TO POOL 'pool_ZZ'
 WHERE DAYS(CURRENT_TIMESTAMP) – DAYS(ACCESS_TIME) > 90

 More information about weights is available in the next
 example. A goal of this mmapplypolicy job
 is to reduce the occupancy percentage of the FROM POOL to
 the low occupancy percentage specified on the THRESHOLD clause,
 if possible. The mmapplypolicy job does
 not migrate or delete more files than are necessary to produce this
 occupancy percentage. The task consists of these steps:

 	Each candidate file is assigned a weight.

 	All candidate files are sorted by weight.

 	The highest weight files are chosen to MIGRATE or DELETE until
 the low occupancy percentage is achieved, or there are no more candidates.

 The administrator who writes the rules must ensure that
 the computed weights are as intended, and that the comparisons are
 meaningful. This is similar to the TSM convention, where the weighting
 function for each file is determined by the equation: X * access_age + Y * file_size

 where:
 	access_age is DAYS(CURRENT_TIMESTAMP) - DAYS(ACCESS_TIME)

 	file_size is FILE_SIZE or KB_ALLOCATED

 	X and Y are weight factors chosen by the system administrator.

 	The WEIGHT clause can
 be used to express ideas like this (stated informally): [image: Start of change]IF access_age > 365 days THEN weight = 100000 + access_age
ELSE IF access_age < 30 days THEN weight = 0
ELSE weight= KB_ALLOCATED
[image: End of change]

 This means:

 	Give a very large weight bias to any file older than a year.

 	Force the weight of any file younger than 30 days to 0.

 	Assign weights to all other files according to the number of kilobytes
 occupied.

 The formal SQL syntax is this:CASE
 WHEN DAYS(CURRENT_TIMESTAMP) – DAYS(ACCESS_TIME) > 365
 THEN 100000 + DAYS(CURRENT_TIMESTAMP) – DAYS(ACCESS_TIME)
 WHEN DAYS(CURRENT_TIMESTAMP) – DAYS(ACCESS_TIME) < 30
 THEN 0
 ELSE
 KB_ALLOCATED
END

 	The SHOW clause has no effect in matching
 files but can be used to define additional attributes to be exported
 with the candidate file lists. It may be used for any purpose but
 is primarily used to support file aggregation.
 To support aggregation,
 you can use the SHOW clause to output an
 aggregation value for each file selected by a rule. You can then output
 those values to a file list and input that list to an external program
 that groups the files into aggregates.

 	If you have a large number of filesets against which to test,
 use the FILESET_NAME variable as shown in
 the following example:RULE 'x' SET POOL 'gold' WHERE FILESET_NAME LIKE 'xyz.%.xyz'

 However,
 if you are testing against just a few filesets, you can use the FOR
 FILESET(’xyz1’, ’xyz2’) form instead.

 	You may convert a time interval value to a number of seconds using
 SQL cast syntax; for example: define([toSeconds],[(($1) SECONDS(12,6))])

define([toUnixSeconds],[toSeconds($1 - '1970-1-1@0:00')])

[image: Start of change]RULE external list b
RULE list b SHOW('sinceNow=' toSeconds(current_timestamp-modification_time))
RULE external list c
RULE list c SHOW('sinceUnixEpoch=' toUnixSeconds(modification_time))[image: End of change]

 The
 following is also supported:define(access_age_in_days,(INTEGER(((CURRENT_TIMESTAMP - ACCESS_TIME) SECONDS)) /(24*3600.0)))

[image: Start of change]RULE external list w exec ''
RULE list w weight(access_age_in_days) show(access_age_in_days)[image: End of change]

 	Using macro processing utilities to simplify policy creation, comprehension, and maintenance

 Parent topic: Policies and rules

 Related concepts:

 Policies

 Policy rules

 Semantics of the mmapplypolicy command and its policy rules

 Working with external storage pools

 Backup and restore with storage pools

 Related tasks:

 Managing policies

 Using macro processing utilities to simplify policy creation,
 comprehension, and maintenance

 About this task

 Prior to evaluating the policy rules, GPFS invokes the m4 macro
 processor to process the policy file. This allows you to incorporate
 into the policy file some of the traditional m4 facilities
 and to define simple and parameterized macros, conditionally include
 text, perform conditional evaluation, perform simple string operations,
 perform simple integer arithmetic and much more.
 Note: GPFS uses the m4 built-in changequote macro
 to change the quote pair to [] and the changecom macro
 to change the comment pair to /* */ (as in the C programming language).

 Utilizing m4 as
 a front-end processor simplifies writing policies and produces policies
 that are easier to understand and maintain. Here is Example 16 from Policy rules - examples and tips written with
 a few m4 style macro definitions: define(access_age,(DAYS(CURRENT_TIMESTAMP) - DAYS(ACCESS_TIME)))

define(weight_expression,
 CASE
 WHEN access_age > 365
 THEN 100000 + access_age
 WHEN access_age < 30
 THEN 0
 ELSE
 KB_ALLOCATED
 END
)

RULE year-old MIGRATE FROM POOL pool_X
 THRESHOLD(90,50) WEIGHT(weight_expression)
 TO POOL pool_ZZ
 WHERE access_age > 365

RULE 3month-old MIGRATE FROM POOL pool_X
 THRESHOLD(90,80) WEIGHT(weight_expression)
 TO POOL pool_ZZ
 WHERE access_age > 90

 If you would like to use megabytes or gigabytes
 instead of kilobytes to represent file sizes, and SUNDAY, MONDAY,
 and so forth instead of 1, 2, and so forth to represent the days of
 the week, you can use macros and rules like this: define(MB_ALLOCATED,(KB_ALLOCATED/1024.0))
define(GB_ALLOCATED,(KB_ALLOCATED/1048576.0))
define(SATURDAY,7)
define(SUNDAY,1)
define(MONDAY,2)
define(DAY_OF_WEEK, DayOfWeek(CURRENT_DATE))

RULE 'gb1' WHEN(DAY_OF_WEEK IN (SATURDAY,SUNDAY))
 	 MIGRATE TO POOL 'ypooly' WHERE GB_ALLOCATED >= .015

RULE 'mb4' MIGRATE TO POOL 'zpoolz' WHERE MB_ALLOCATED >= 4

 The mmapplypolicy command
 provides a -M option that can be used to
 specify m4 macro definitions when the command
 is invoked. The policy rules may include variable identifiers whose
 values can be set using one or more -M options
 on the mmapplypolicy command. The policy
 rules could then compare file attributes to the currently provided
 values for the macro defined variables.

 Among other things,
 this allows you to create a single policy file and reuse it for incremental
 backups without editing the file for each backup. For example, if
 your policy file contains the rules:RULE EXTERNAL POOL 'archive' EXEC '/opts/hpss/archiveScript' OPTS '-server archive_server'
RULE 'mig1' MIGRATE TO POOL 'dead' WHERE ACCESS_TIME < TIMESTAMP(deadline)
RULE 'bak1' MIGRATE TO POOL 'archive' WHERE MODIFICATION_SNAPID > last_snapid

 Then, if you invoke mmapplypolicy with
 these optionsmmapplypolicy ... -M "deadline='2006-11-30'" -M "last_snapid=SNAPID('2006_DEC')" \
-M archive_server="archive.abc.com"

 The "mig1" rule will migrate old files
 that were not accessed since 2006/11/30 to an online pool named "dead".
 The "bak1" rule will migrate files that have changed
 since the 2006_DEC snapshot to an external pool named "archive".
 When the external script /opts/hpss/archiveScript is
 invoked, its arguments will include "-server archive.abc.com".

 Parent topic: Policy rules - examples and tips

 Managing policies

 About this task

 Policies and the rules that they contain are used to assign
 files to specific storage pools. A storage pool typically contains
 a set of volumes that provide a specific quality of service for a
 specific use, such as to store all files for a particular application
 or a specific business division.

 Managing policies includes:

 	Creating a policy

 	Installing a policy

 	Changing the active policy

 	Listing policies

 	Validating policies

 	Deleting policies

 Parent topic: Policies and rules

 Related concepts:

 Policies

 Policy rules

 Semantics of the mmapplypolicy command and its policy rules

 Working with external storage pools

 Backup and restore with storage pools

 Related reference:

 Policy rules - examples and tips

 Creating a policy

 About this task

 Create a text file for your policy following these guidelines:

 	A policy must contain at least one rule.

 	A policy file is limited to a size of 1 MB.

 	The last placement rule of a policy rule list should be of this form,
 so that if no other placement rules apply to a file, the file will be assigned
 to a default pool: RULE ‘DEFAULT’ SET POOL ‘default-data-pool’

 If
 you do not do this, and no other rule applies, an EINVAL error
 code is returned.

 	Comments within a policy must start with a /* and
 end with a */: /* This is a comment */

 See Policy rules

 Parent topic: Managing policies

 Related tasks:

 Installing a policy

 Changing the active policy

 Listing policies

 Validating policies

 Deleting policies

 Installing a policy

 About this task

 To install a policy:

 	Create a text file containing the desired policy rules.

 	Issue the mmchpolicy command.

 Parent topic: Managing policies

 Related tasks:

 Creating a policy

 Changing the active policy

 Listing policies

 Validating policies

 Deleting policies

 Changing the active policy

 About this task

 Prepare a file with the new or changed policy
 rules and then issue the mmchpolicy command.
 The mmchpolicy command will activate the
 following sequence of events:

 	The policy file is read into memory, and the information is passed
 to the current file system manager node.

 	The policy rules are validated by the file system manager.

 	If the policy file contains incorrect rules, no updates are made
 and an error is returned.

 	If no errors are detected, the new policy rules are installed
 in an internal file.

 Policy changes take effect immediately on all nodes that
 have the affected file system mounted. For nodes that do not have
 the file system mounted, policy changes take effect upon the next
 mount of the file system.

 Parent topic: Managing policies

 Related tasks:

 Creating a policy

 Installing a policy

 Listing policies

 Validating policies

 Deleting policies

 Listing policies

 About this task

 The mmlspolicy command displays policy information
 for a given file system. The information displayed is:

 	When the policy file was installed.

 	The user who installed the policy file.

 	The first line of the original policy file.

 The mmlspolicy -L command
 returns the installed (original) policy file. This shows all the rules and
 comments as they were in the policy file when it was installed. This is useful
 if you want to change policy rules - simply retrieve the original policy file
 using the mmlspolicy -L command and edit it.

 Parent topic: Managing policies

 Related tasks:

 Creating a policy

 Installing a policy

 Changing the active policy

 Validating policies

 Deleting policies

 Validating policies

 About this task

 The mmchpolicy -I test command validates but does not install
 a policy file.

 Parent topic: Managing policies

 Related tasks:

 Creating a policy

 Installing a policy

 Changing the active policy

 Listing policies

 Deleting policies

 Deleting policies

 About this task

 To remove the current policy rules and restore the default GPFS file-placement policy, specify DEFAULT as
 the name of the policy file on the mmchpolicy command.
 This is equivalent to installing a policy file with just one rule:RULE 'DEFAULT' SET POOL 'system'

 Parent topic: Managing policies

 Related tasks:

 Creating a policy

 Installing a policy

 Changing the active policy

 Listing policies

 Validating policies

 Working with external storage pools

 The following topics describe how to work with external storage
 pools:

 	Defining external pools

 	User provided program for managing external pools

 	File list format

 	Record format

 	Migrate and recall with external pools

 	Pre-migrating files with external storage pools

 	Purging files from external storage pools

 	Using thresholds with external pools

 Parent topic: Policies and rules

 Related concepts:

 Policies

 Policy rules

 Semantics of the mmapplypolicy command and its policy rules

 Backup and restore with storage pools

 Related tasks:

 Managing policies

 Related reference:

 Policy rules - examples and tips

 Defining external pools

 GPFS file management policy
 rules control data migration into external storage pools. Before you
 can write a migration policy you must define the external storage
 pool that the policy will reference. After you define the storage
 pool, you can then create policies that set thresholds that trigger
 data migration into or out of the referenced external pool.

 When a storage pool reaches the defined threshold or when you invoke mmapplypolicy, GPFS processes the metadata, generates
 a list of files, and invokes a user provided script or program which
 initiates the appropriate commands for the external data management
 application to process the files. This allows GPFS to transparently control offline storage
 and provide a tiered storage solution that includes tape or other
 media.

 Before you can migrate data to an external storage pool, you must
 define that pool. To define external storage pools, use a GPFS policy rule as follows:RULE EXTERNAL POOL 'PoolName' EXEC 'InterfaceScript' [OPTS 'OptionsString'] [ESCAPE 'SpecialCharacters']

 Where:
 	PoolName defines the name of the storage pool

 	InterfaceScript defines the program or script
 to be invoked to migrate data to or from the external pool

 	OptionsString is an optional string that, if
 provided, will be passed to the InterfaceScript

 You must have a separate EXTERNAL POOL rule for each external
 pool that you wish to define.

 Example of a rule that defines a storage pool

 The
 following rule defines a storage pool called externalpoolA.RULE EXTERNAL POOL 'externalpoolA' EXEC '/usr/hsm/bin/hsmControl' OPTS '-server=hsm-manager.nyc.com'

 In
 this example:
 	externalpoolA is the name of the external pool

 	/usr/hsm/bin/hsmControl is the location of the
 executable script that will be invoked when there are files for migration

 	-server=hsm-manager.nyc.com is the location of
 storage pool externalpoolA

 Parent topic: Working with external storage pools

 User provided program for managing external pools

 Once you have defined an external storage pool, subsequent migration
 or deletion rules may refer to that pool as a source or target storage
 pool. When the mmapplypolicy command is
 invoked and a rule dictates that data should be moved to or from an
 external pool, the user provided program identified with the EXEC clause
 in the policy rule launches. That executable program receives three
 arguments:

 	The command to be executed. Your script should implement each
 of the following sub-commands:

 	LIST - Provides arbitrary lists of files with no semantics on
 the operation.

 	MIGRATE - Migrate files to external storage and reclaim the online
 space allocated to the file.

 	PREMIGRATE - Migrate files to external storage but do not reclaim
 the online space.

 	PURGE - Delete files from both the online file system and the
 external storage.

 	RECALL - Recall files from external storage to the online storage.

 	TEST – Test for presence and operation readiness. Return
 zero for success. Return non-zero if the script should not be used
 on a given node.

 	The name of a file containing a list of files to be migrated,
 premigrated, or purged. See File list format for
 detailed description of the layout of the file.

 	Any optional parameters specified with the OPTS clause in the
 rule. These optional parameters are not interpreted by the GPFS policy engine.

 The mmapplypolicy command invokes the
 external pool script on all nodes in the cluster that have installed
 the script in its designated location. The script must be installed
 at the node that runs mmapplypolicy. You
 can also install the script at other nodes for parallel operation
 but that is not required. GPFS may
 call your exit script one or more times for each command.

 Important: Use the EXCLUDE rule
 to exclude any special files that are created by an external application.
 For example, when using Tivoli Storage
 Manager (TSM) or Hierarchical Storage Management (HSM), exclude the .SpaceMan directory
 to avoid migration of .SpaceMan, which is an HSM repository.

 Parent topic: Working with external storage pools

 File list format

 Each call to the external pool script specifies the pathname for
 a temporary file that contains a list of files to be operated on.
 This file list defines one file per line as follows: InodeNumber GenNumber SnapId [OptionalShowArgs] -- FullPathToFile

 where:
 	InodeNumber is a 64-bit inode number.

 	GenNumber is a 32-bit file generation number.

 	SnapId is a 64-bit snapshot identifier.

 	OptionalShowArgs is the result, if any, from
 the evaluation of the SHOW clause in the policy rule.

 	FullPathToFile is a fully qualified path name
 to the file. When there are multiple paths within a file system to
 a particular file (Inode, GenNumber,
 and SnapId), each path is shown.

 	The "--" characters are a field delimiter that separates the optional
 show parameters from the path name to the file.

 Note: GPFS does not restrict
 the character set used for path and file names. All characters except
 '\0' are valid. To make the files readily parsable,
 files or directories containing the newline character and/or other
 special characters are "escaped", as described previously, in
 connection with the ESCAPE '%special-characters' clause.

 Parent topic: Working with external storage pools

 Record format

 The format of the records in each file list file can be expressed
 as:iAggregate:WEIGHT:INODE:GENERATION:SIZE:iRule:resourceID:attr_flags:
path-length!PATH_NAME:pool-length!POOL_NAME
[;show-length>!SHOW]end-of-record-character

 where:

 	iAggregate is a grouping index that is assigned by mmapplypolicy.

 	WEIGHT represents the WEIGHT policy
 language file attribute.

 	INODE represents the INODE policy
 language file attribute.

 	GENERATION represents the GENERATION policy
 language file attribute.

 	SIZE represents the SIZE policy
 language file attribute.

 	iRule is a rule index number assigned by mmapplypolicy,
 which relates to the policy rules file that is supplied with the -P argument.

 	resourceID represents a pool index, USER_ID, GROUP_ID,
 or fileset identifier, depending on whether thresholding is done with
 respect to pool usage or to user, group, or fileset quotas.

 	attr_flags represents a hexadecimal encoding of some of
 the attributes that are also encoded by the policy language variable MISC_ATTRIBUTES.
 The low-order 20 bits of attr_flags are taken from the ia_flags word
 that is defined in the gpfs.h API definition.

 	path-length represents the length of the character string
 PATH_NAME.

 	pool-length represents the length of the character string
 POOL_NAME.

 	show-length represents the length of the character string
 SHOW.

 	end-of-record-character is \n or \0.

 Note: You can only change the values of the iAggregate, WEIGHT, SIZE,
 and attr_flags fields. Changing the values of other fields
 can cause unpredictable policy execution results.

 [image: Start of change]All of the numeric fields are represented as hexadecimal
 strings, except the path-length, pool-length,
 and show-length fields, which are decimal
 encoded. These fields can be preceded by a minus sign (-),
 which indicates that the string that follows it contains escape sequences.
 In this case, the string might contain occurrences of the character
 pair \n, which represents a single newline
 character with a hexadecimal value of 0xA in the filename. Also, the
 string might contain occurrences of the character pair \\,
 which represents a single \ character in
 the filename. A \ will only be represented
 by \\ if there are also newline characters
 in the filename. The value of the length field within the record counts
 any escape characters.[image: End of change]

 The encoding of WEIGHT is based on the 64-bit IEEE floating
 format, but its bits are flipped so that when a file list is
 sorted using a conventional collating sequence, the files appear in
 decreasing order, according to their WEIGHT.

 The encoding of WEIGHT can be expressed and printed using
 C++ as:double w = - WEIGHT;
/* This code works correctly on big-endian and little-endian systems */
uint64 u = *(uint64*)&w; /* u is a 64 bit long unsigned integer
 containing the IEEE 64 bit encoding of the double floating point
 value of variable w */
 uint64 hibit64 = ((uint64)1<<63);
[image: Start of change]if (w < 0.0) u = ~u; /* flip all bits */[image: End of change]
else u = u | hibit64; /* force the high bit from 0 to 1,
 also handles both “negatively” and “positively” signed 0.0 */
printf(“%016llx”,u);

 The format of the majority of each record can be expressed in C++
 as:printf("%03x:%016llx:%016llx:%llx:%llx:%x:%x:%llx:%d!%s:%d!%s",
 iAggregate, u /*encoding of –1*WEIGHT from above*/, INODE, …);

 Notice that the first three fields are fixed in length to facilitate
 the sorting of the records by the field values iAggregate, WEIGHT,
 and INODE.

 The format of the optional SHOW string portion of the record can
 be expressed as:if(SHOW && SHOW[0]) printf(“;%d!%s",strlen(SHOW),SHOW);

 For more information about the mmapplypolicy command,
 refer to the GPFS:
 Administration and Programming Reference.

 Parent topic: Working with external storage pools

 Migrate and recall with external pools

 Once you have defined an external storage pool, subsequent migration
 or deletion rules may refer to that pool as a source or target storage
 pool. When you invoke mmapplypolicy and
 a rule dictates that data should be deleted or moved to or from an
 external pool, the program identified in the EXTERNAL POOL rule is
 invoked with the following arguments:

 	The command to be executed.

 	The name of the file containing a list of files to be migrated,
 pre-migrated, or purged.

 	Optional parameters, if any.

 For example, let us assume an external pool definition:RULE EXTERNAL POOL 'externalpoolA'
 EXEC '/usr/hsm/bin/hsmControl' OPTS '-server=hsm-manager.nyc.com'

 To move files from the internal system pool
 to storage pool "externalpoolA" you would simply define a migration
 rule that may look something like this:RULE 'MigToExt' MIGRATE FROM POOL('system') TO POOL('externalpoolA') WHERE ...

 This
 would result in the external pool script being invoked as follows: /usr/hsm/bin/hsmControl MIGRATE /tmp/filelist -server=hsm-manager.nyc.com

 Similarly,
 a rule to migrate data from an external pool back to an internal storage
 pool could look like: RULE 'MigFromExt' MIGRATE FROM POOL 'externalpoolA' TO POOL 'system' WHERE ...

 This
 would result in the external pool script being invoked as follows:/usr/hsm/bin/hsmControl RECALL /tmp/filelist -server=hsm-manager.nyc.com

 Notes:

 	When migrating to an external storage pool, GPFS ignores the LIMIT and REPLICATION clauses
 in the policy rule.

 	If you are using HSM with external storage pools, you may need
 to create specific rules to avoid system problems. These rules should
 exclude HSM-related system files from both migration and deletion.
 These rules use the form: RULE 'exclude hsm system files' EXCLUDE WHERE PATH_NAME LIKE '%/.SpaceMan%'

 Parent topic: Working with external storage pools

 Pre-migrating files with external storage pools

 Pre-migration is a standard technique of Hierarchical Storage Management
 (HSM) systems such as Tivoli Storage
 Manager. Pre-migration copies data from GPFS internal
 storage pools to external pools but leaves the original data online
 in the active file system. Pre-migrated files are often referred to
 as "dual resident" to indicate that the data for the files are available
 both online in GPFS and offline
 in the external storage manager. Files in the pre-migrated state allow
 the external storage manager to respond more quickly to low space
 conditions by simply deleting the copy of the file data that is stored
 online.

 The files to be pre-migrated are determined by the policy rules
 that migrate data to an external storage pool. The rule will select
 files to be migrated and optionally select additional files to be
 pre-migrated. The THRESHOLD clause of the rule determines the files
 that need to be pre-migrated.

 If you specify the THRESHOLD clause in file migration rules, the mmapplypolicy command
 selects files for migration when the affected storage pool reaches
 the specified high occupancy percentage threshold. Files are migrated
 until the storage pool utilization is reduced to the specified low
 occupancy percentage threshold. When migrating to an external storage
 pool, GPFS allows you to specify
 a third pool occupancy percentage which defines the file pre-migration
 threshold: after the low occupancy percentage is reached, files are
 pre-migrated until the pre-migration occupancy percentage is reached.

 To explain thresholds in another way, think of an internal storage
 pool with a high threshold of 90%, a low threshold of 80%, and a pre-migrate
 threshold of 60%. When this internal storage pool reaches 90% occupancy,
 the policy rule will migrate files until the occupancy of the pool
 reaches 80% then it will continue to pre-migrate another 20% of the
 file space until the 60% threshold is reached.

 Pre-migration can only be done with external storage managers using
 the XDSM Data Storage Management API (DMAPI). Files in the migrated
 and pre-migrated state will have a DMAPI managed region set on the
 file data. Files with a managed region are visible to mmapplypolicy and
 may be referenced by a policy rule. You can approximate the amount
 of pre-migrated space required by counting the space used after the
 end of the first full data block on all files with managed regions.
 Note:

 	If you do not set a pre-migrate threshold or if you set a value
 that is greater than or equal to the low threshold, then GPFS will not pre-migrate files. This is the
 default setting.

 	If you set the pre-migrate threshold to zero, then GPFS will pre-migrate all files.

 Parent topic: Working with external storage pools

 Purging files from external storage pools

 Files that have been migrated to an external storage pool continue
 to have their file name and attributes stored in GPFS; only the file data has been migrated.
 Files that have been migrated or pre-migrated to an external storage
 pool may be deleted from the GPFS internal
 storage pool and from the external storage pool with the policy language
 using a DELETE rule.RULE 'DelFromExt' DELETE WHERE ...

 If
 the file has been migrated or pre-migrated, this would result in the
 external pool script being invoked as follows:/usr/hsm/bin/hsmControl PURGE /tmp/filelist -server=hsm-manager.nyc.com

 The script should delete a file from both the online file system
 and the external storage manager. However, most HSM systems automatically
 delete a file from the external storage manager whenever the online
 file is deleted. If that is how your HSM system functions, your script
 will only have to delete the online file.

 Parent topic: Working with external storage pools

 Using thresholds with external pools

 Exhausting space in any one online storage pool generates a NO_SPACE
 event even though there might be space available in other online storage
 pools. To create free space, file data can be moved to other online
 storage pools, deleted, or moved to external storage pools.

 Under most conditions, Hierarchical Storage Management (HSM) systems
 try to avoid NO_SPACE events by monitoring file system space usage
 and migrating data to near-line storage when the system exceeds a
 specified threshold. You can set up a policy to monitor space usage
 using a threshold. When GPFS reaches
 a similar threshold, it generates a LOW_SPACE event, which triggers mmapplypolicy to
 generate a list of files to be migrated to external storage.

 A NO_SPACE event is generated if the file system is out of space.
 A LOW_SPACE event requires a threshold. If a threshold is specified,
 a LOW_SPACE event will be generated.

 GPFS provides user exits
 for NO_SPACE and LOW_SPACE events. Using the mmaddcallback command,
 you can specify a script that will run when either of these events
 occurs. For more information about the mmaddcallback
 command, see the GPFS:
 Administration and Programming Reference.

 The file with the policy rules used by mmapplypolicy is
 the one that is currently installed in the file system. The HSM user
 should define migration or deletion rules to reduce the usage in each
 online storage pool. Migration rules defined with a high and low THRESHOLD
 establish the threshold used to signal the LOW_SPACE event for that
 pool. Because more than one migration rule can be defined, the threshold
 for a pool is the minimum of the high thresholds set by the rules
 for that pool. Each pool has its own threshold. Pools without migration
 rules do not signal a LOW_SPACE event.

 Parent topic: Working with external storage pools

 Backup and restore with storage pools

 You can use the GPFS ILM
 tools to backup data for disaster recovery or data archival to an
 external storage manager such as the TSM Backup-Archive client. When backing
 up data, the external storage manager must preserve the file name,
 attributes, extended attributes, and the file data. Among other things,
 the extended attributes of the file also contain information about
 the assigned storage pool for the file. When you restore the file,
 this information is used to assign the storage pool for the file data.

 The file data may be restored to the storage pool to which it was
 assigned when it was backed up or it may be restored to a pool selected
 by a restore or placement rule using the backed up attributes for
 the file. GPFS supplies three
 subroutines that support backup and restore functions with external
 pools:

 	gpfs_fgetattrs()

 	gpfs_fputattrs()

 	gpfs_fputattrswithpathname()

 GPFS exports the extended
 attributes for a file, including its ACLs, using gpfs_fgetattrs().
 Included in the extended attributes is the name of the storage pool
 to which the file has been assigned, as well as file attributes that
 are used for file placement. When the file is restored the extended
 attributes are restored using either gpfs_fputattrs() or gpfs_fputattrswithpathname().

 When a backup application uses gpfs_fputattrs() to
 restore the file, GPFS assigns
 the restored file to the storage pool with the same name as when the
 file was backed up. Thus by default, restored files are assigned to
 the same storage pool they were in when they were backed up. If that
 pool is not available, GPFS tries
 to select a pool using the current file placement rules. If that fails, GPFS assigns the file to the system
 storage pool.

 Note: If a backup application uses gpfs_fputattrs() to
 restore a file, it will omit the RESTORE RULE.

 When a backup application restores the file using gpfs_fputattrswithpathname(), GPFS is able to access additional
 file attributes that may have been used by placement or migration
 policy rules to select the storage pool for the file. This information
 includes the UID and GID for the owner, the access time for the file,
 file modification time, file size, the amount of storage allocated,
 and the full path to the file. GPFS uses gpfs_fputattrswithpathname() to
 match this information with restore policy rules you define.

 In other words, the RESTORE rule looks
 at saved file attributes rather than the current file attributes.
 The call to gpfs_fputattrswithpathname() tries
 to match the saved information to a RESTORE rule.
 If the RESTORE rules cannot match saved
 attributes, GPFS tries to restore
 the file to the same storage pool it was in when the file was backed
 up. If that pool is not available GPFS tries
 to select a pool by matching placement rules. If that fails, GPFS assigns the file to the system
 storage pool.
 Note: When a RESTORE rule is
 used, and restoring the file to the specified pool would exceed the
 occupancy percentage defined for that pool, GPFS skips that rule and the policy engine looks
 for the next rule that matches. While testing for matching rules, GPFS takes into account the specified
 replication factor and the KB_ALLOCATED attribute
 of the file that is being restored.

 The gpfs_fgetattrs(), gpfs_fputattrs() and gpfs_fputattrswithpathname() subroutines
 have several optional flags that you can use to further control the
 storage pools selection. For detailed information, refer to the GPFS:
 Administration and Programming Reference.

 	Working with external lists

 Parent topic: Policies and rules

 Related concepts:

 Policies

 Policy rules

 Semantics of the mmapplypolicy command and its policy rules

 Working with external storage pools

 Related tasks:

 Managing policies

 Related reference:

 Policy rules - examples and tips

 Working with external lists

 External lists, like external pools, generate lists of files. For
 external pools, the operations on the files correspond to the rule
 that references the external pool. For external lists, there is no
 implied operation; it is simply a list of files that match the criteria
 specified in the policy rule.

 External lists must be defined before they can be used. External
 lists are defined by:RULE EXTERNAL LIST 'ListName' EXEC 'InterfaceScript' [OPTS 'OptionsString'] [ESCAPE 'SpecialCharacters']

 Where:
 	ListName defines the name of the external list

 	InterfaceScript defines the program to be invoked to operate
 on the list of files

 	OptionsString is an optional string that, if provided,
 will be passed to the InterfaceScript

 See User provided program for managing external pools.

 Example

 The following rule defines an external
 list called listfiles:RULE EXTERNAL LIST 'listfiles' EXEC '/var/mmfs/etc/listControl' OPTS '-verbose'

 In
 this example:
 	listfiles is the name of the external list

 	/var/mmfs/etc/listControl is the location of
 the executable script that defines the operations on the list of files

 	-verbose is an optional flag to the listControl script

 The EXTERNAL LIST rule provides the binding between the
 lists generated with regular LIST rules and the external program that
 you want to run with these lists as input. For example, this rule
 would generate a list of all files that have more than 1 MB of data
 in an internal storage pool:RULE 'ListLargeFiles' LIST 'listfiles'	WHERE KB_ALLOCATED > 1024

 By default, only user files are included in lists.
 To include directories, symbolic links, and other file system objects,
 the DIRECTORIES_PLUS clause must be specified. For example, this rule
 would generate a list of all objects in the file system.RULE 'ListAllObjects' LIST 'listfiles' DIRECTORIES_PLUS

 Parent topic: Backup and restore with storage pools

 Filesets

 In most file systems, a file hierarchy is represented as
 a series of directories that form a tree-like structure. Each directory
 contains other directories, files, or other file-system objects such
 as symbolic links and hard links. Every file system object has a name
 associated with it, and is represented in the namespace as a node
 of the tree.

 In addition, GPFS utilizes
 a file system object called a fileset. A fileset is a subtree
 of a file system namespace that in many respects behaves like an independent
 file system. Filesets provide a means of partitioning the file system
 to allow administrative operations at a finer granularity than the
 entire file system:

 	Filesets can be used to define quotas on both data blocks and
 inodes.

 	The owning fileset is an attribute of each file and can be specified
 in a policy to control initial data placement, migration, and replication
 of the file's data. See Policies and rules.

 	Fileset snapshots can be created instead of creating a snapshot
 of an entire file system.

 GPFS supports independent
 and dependent filesets. An independent fileset is a fileset with its
 own inode space. An inode space is a collection of inode number ranges
 reserved for an independent fileset. An inode space enables more efficient
 per-fileset functions, such as fileset snapshots. A dependent fileset
 shares the inode space of an existing, independent fileset. Files
 created in a dependent fileset are assigned inodes in the same collection
 of inode number ranges that were reserved for the independent fileset
 from which it was created.

 When
 the file system is created, only one fileset, called the root fileset,
 exists. The root fileset is an independent fileset that cannot be
 deleted. It contains the root directory as well as any system files
 such as quota files. As new files and directories are created, they
 automatically become part of the parent directory's fileset. The fileset
 to which a file belongs is largely transparent for ordinary file access,
 but the containing fileset can be displayed along with the other attributes
 of each file using the mmlsattr -L command.

 The root directory of a GPFS file
 system is also the root of the root fileset.

 	Fileset namespace

 	Filesets and quotas

 	Filesets and storage pools

 	Filesets and global snapshots

 	Fileset-level snapshots

 	Filesets and backup

 	Managing filesets

 Parent topic: Information Lifecycle Management for GPFS

 Fileset namespace

 A newly created fileset consists of an empty directory for the
 root of the fileset, and it is initially not linked into the file
 system's namespace. A newly created fileset is not visible to the
 user until it is attached to the namespace by issuing the mmlinkfileset command.
 Filesets are attached to the namespace with a special link called
 a junction. A junction is a special directory
 entry, much like a POSIX hard link, that connects a name in a directory
 of one fileset to the root directory of another fileset. Only one
 junction is allowed per fileset, so that a fileset has a unique position
 in the namespace and a unique path to any of its directories. The
 target of the junction is referred to as the child fileset,
 and a fileset can have any number of children. From the user's viewpoint,
 a junction always appears as if it were a directory, but the user
 is not allowed to issue the unlink or rmdir commands
 on a junction.

 Once a fileset has been created and linked into the namespace,
 an administrator can unlink the fileset from the namespace by issuing
 the mmunlinkfileset command. This makes
 all files and directories within the fileset inaccessible. If other
 filesets were linked below it, the other filesets become inaccessible,
 but they do remain linked and will become accessible again when the
 fileset is re-linked. Unlinking a fileset, like unmounting a file
 system, fails if there are open files. The mmunlinkfileset command
 has a force option to close the files and force the unlink. If there
 are open files in a fileset and the fileset is unlinked with the force
 option, future references to those files will result in ESTALE errors.
 Once a fileset is unlinked, it can be re-linked into the namespace
 at its original location or any other location (it cannot be linked
 into its children since they are not part of the namespace while the
 parent fileset is unlinked).

 The namespace inside a fileset is restricted to a single, connected
 subtree. In other words, a fileset has only one root directory and
 no other entry points such as hard links from directories in other
 filesets. Filesets are always connected at the root directory and
 only the junction makes this connection. Consequently, hard links
 cannot cross fileset boundaries. Symbolic links, of course, can be
 used to provide shortcuts to any file system object in the namespace.

 The root fileset is an exception. The root fileset is attached
 to the local namespace using the standard mount command.
 It cannot be created, linked, unlinked or deleted using the GPFS fileset commands.

 See Managing filesets.

 Parent topic: Filesets

 Related concepts:

 Filesets and quotas

 Filesets and storage pools

 Filesets and global snapshots

 Fileset-level snapshots

 Filesets and backup

 Related tasks:

 Managing filesets

 Filesets and quotas

 The GPFS quota commands support
 the -j option for fileset block and inode
 allocation. The quota limit on blocks and inodes in a fileset are
 independent of the limits for specific users or groups of users. See
 these commands:

 	mmdefedquota

 	mmdefedquotaon

 	mmdefedquotaoff

 	mmedquota

 	mmlsquota

 	mmquotaoff

 	mmquotaon

 	mmrepquota

 In addition, see the description of the --perfileset-quota parameter
 of the following commands:

 	mmchfs

 	mmcrfs

 	mmlsfs

 Parent topic: Filesets

 Related concepts:

 Fileset namespace

 Filesets and storage pools

 Filesets and global snapshots

 Fileset-level snapshots

 Filesets and backup

 Related tasks:

 Managing filesets

 Filesets and storage pools

 Filesets are not specifically related to storage pools, although each file
 in a fileset physically resides in blocks in a storage pool. This relationship
 is many-to-many; each file in the fileset can be stored in a different user
 storage pool. A storage pool can contain files from many filesets. However,
 all of the data for a particular file is wholly contained within one storage
 pool.

 Using file-placement policies, you can specify that all files created in
 a particular fileset are to be stored in a specific storage pool. Using file-management
 policies, you can define how files in a specific fileset are to be moved or
 deleted during the file's life cycle. See Policy rule syntax definitions.

 Parent topic: Filesets

 Related concepts:

 Fileset namespace

 Filesets and quotas

 Filesets and global snapshots

 Fileset-level snapshots

 Filesets and backup

 Related tasks:

 Managing filesets

 Filesets and global snapshots

 A GPFS global snapshot preserves
 the contents of the entire file system, including all its filesets,
 even unlinked ones. The state of filesets in the snapshot is unaffected
 by changes made to filesets in the active file system, such as unlink,
 link or delete. The saved file system can be accessed through the .snapshots directories
 and the namespace, including all linked filesets, appears as it did
 when the snapshot was created. Unlinked filesets are inaccessible
 in the snapshot, as they were in the active file system. However,
 restoring a snapshot also restores the unlinked filesets, which can
 then be re-linked and accessed.

 If a fileset is included in a global snapshot, it can be deleted
 but it is not entirely removed from the file system. In this case,
 the fileset is emptied of all contents and given a status of 'deleted'.
 The contents of a fileset remain available in the snapshots that include
 the fileset (that is, through some path containing a .snapshots component)
 even after the fileset is deleted, since all the contents of the fileset
 are saved when a snapshot is created. The fileset remains in the deleted
 state until the last snapshot containing it is deleted, at which time
 the fileset is automatically deleted.

 A fileset is included in a global snapshot if the snapshot is created
 after the fileset was created. Deleted filesets appear in the output
 of the mmlsfileset and mmlsfileset
 --deleted commands, and the -L option
 can be used to display the latest snapshot that includes a fileset.

 During a restore from a global snapshot, attributes of filesets
 included in the snapshot can be altered. The filesets included in
 the global snapshot are restored to their former state, and newer
 filesets are deleted. Also, restore may undelete deleted filesets
 and change linked filesets to unlinked or vice versa. If the name
 of a fileset was changed since the snapshot was taken, the old fileset
 name will be restored.

 Parent topic: Filesets

 Related concepts:

 Fileset namespace

 Filesets and quotas

 Filesets and storage pools

 Fileset-level snapshots

 Filesets and backup

 Related tasks:

 Managing filesets

 Fileset-level snapshots

 Instead of creating a global snapshot of an entire file system,
 a fileset snapshot can be created to preserve the contents of a single
 independent fileset plus all dependent filesets that share the same
 inode space. If an independent fileset has dependent filesets that
 share its inode space, then a snapshot of the independent fileset
 will also include those dependent filesets. In other words, a fileset
 snapshot is a snapshot of the whole inode space.

 Each independent fileset has its own hidden .snapshots directory
 in the root directory of the fileset that contains any fileset snapshots.
 The mmsnapdir command allows setting an
 option that makes global snapshots also available through .snapshots in
 the root directory of all independent filesets. The .snapshots directory
 in the file system root directory lists both global snapshots and
 fileset snapshots of the root fileset (the root fileset is an independent
 fileset). This behavior can be customized with the mmsnapdir command.

 Fileset snapshot names need not be unique across different filesets,
 so it is valid to use the same name for fileset snapshots of two different
 filesets because they will appear under .snapshots in
 two different fileset root directories.

 Independent fileset snapshot data and attribute files can be restored
 using the mmrestorefs command. See the mmrestorefs command
 in the GPFS:
 Administration and Programming Reference
 for complete usage information.

 Parent topic: Filesets

 Related concepts:

 Fileset namespace

 Filesets and quotas

 Filesets and storage pools

 Filesets and global snapshots

 Filesets and backup

 Related tasks:

 Managing filesets

 Filesets and backup

 The mmbackup command and TSM are unaware
 of the existence of filesets. When restoring a file system that had
 been backed up to TSM, the files are restored to their original path
 names, regardless of the filesets of which they were originally a
 part.

 TSM has no mechanism to create or link filesets during restore.
 Therefore, if a file system is migrated to TSM and then filesets are
 unlinked or deleted, restore or recall of the file system does not
 restore the filesets.

 During a full restore from backup, all fileset information is lost
 and all files are restored into the root fileset. It is recommended
 that you save the output of the mmlsfileset command
 to aid in the reconstruction of fileset names and junction locations.
 Saving mmlsfileset -L also allows reconstruction
 of fileset comments. Both command outputs are needed to fully restore
 the fileset configuration.

 A partial restore can also lead to confusion if filesets have been
 deleted, unlinked, or their junctions moved, since the backup was
 made. For example, if the backed up data was in a fileset that has
 since been unlinked, the restore process puts it into files and directories
 in the parent fileset. The unlinked fileset cannot be re-linked into
 the same location until the restored data is moved out of the way.
 Similarly, if the fileset was deleted, restoring its contents does
 not recreate the deleted fileset, but the contents are instead restored
 into the parent fileset.

 Since the mmbackup command operates by
 traversing the directory structure, it does not include the contents
 of unlinked filesets, even though they are part of the file system.
 If it is desired to include these filesets in the backup, they should
 be re-linked, perhaps into a temporary location. Conversely, temporarily
 unlinking a fileset is a convenient mechanism to exclude it from a
 backup.

 Note: It is recommended not to unlink filesets when doing backups.
 Unlinking a fileset during an mmbackup run
 can cause the following:

 	failure to back up changes in files that belong to an unlinked
 fileset

 	expiration of files that were backed up in a previous mmbackup run

 In summary, fileset information should be saved by periodically
 recording mmlsfileset output somewhere in
 the file system, where it is preserved as part of the backup process.
 During restore, care should be exercised when changes in the fileset
 structure have occurred since the backup was created.

 Attention: If you are using the TSM Backup-Archive client you must
 use caution when you unlink filesets that contain data backed up by
 TSM. TSM tracks files by pathname and does not track filesets. As
 a result, when you unlink a fileset, it appears to TSM that you deleted
 the contents of the fileset. Therefore, the TSM Backup-Archive client inactivates
 the data on the TSM server which may result in the loss of backup
 data during the expiration process.

 Parent topic: Filesets

 Related concepts:

 Fileset namespace

 Filesets and quotas

 Filesets and storage pools

 Filesets and global snapshots

 Fileset-level snapshots

 Related tasks:

 Managing filesets

 Managing filesets

 About this task

 Managing your filesets includes
 the tasks of creating, deleting, linking and unlinking the filesets.
 You should also monitor your filesets periodically and make any necessary
 adjustments.

 	Creating a fileset

 	Deleting a fileset

 	Linking a fileset

 	Unlinking a fileset

 	Changing fileset attributes

 	Displaying fileset information

 Parent topic: Filesets

 Related concepts:

 Fileset namespace

 Filesets and quotas

 Filesets and storage pools

 Filesets and global snapshots

 Fileset-level snapshots

 Filesets and backup

 Creating a fileset

 About this task

 Filesets are created with the mmcrfileset command.
 By default, filesets are created as dependent filesets that share
 the root’s inode space. The --inode-space ExistingFileset option
 can be used to create a dependent fileset that will share inode space
 an existing fileset. The ExistingFileset specified
 can be root or any other independent fileset,
 but cannot be the reserved keyword new.
 The --inode-space new option can be used
 to create an independent fileset with its own dedicated inode space.

 A
 newly created fileset consists of an empty directory for the root
 of the fileset and it is initially not linked into the existing namespace.
 Consequently, a new fileset is not visible, nor can files be added
 to it, but the fileset name is valid and the administrator can establish
 quotas on it, or policies for it. The administrator must link the
 fileset into its desired location in the file system's namespace by
 issuing the mmlinkfileset command in order
 to make use of it.

 After the fileset is linked, the administrator
 can change the ownership and permissions for the new fileset's root
 directory, which default to root and 0700,
 to allow users access to it. Files and directories copied into, or
 created within, the fileset's directory will become part of the new
 fileset.

 Fileset names must follow these conventions:

 	Are character strings and must be less than 256 characters in
 length.

 	Must be unique within a file system.

 	The name root is reserved for the fileset
 of the files system's root directory.

 See the mmcrfileset and mmlinkfileset commands
 in the GPFS:
 Administration and Programming Reference
 for complete usage information.

 Parent topic: Managing filesets

 Related tasks:

 Deleting a fileset

 Linking a fileset

 Unlinking a fileset

 Changing fileset attributes

 Displaying fileset information

 Deleting a fileset

 About this task

 Filesets are deleted with the mmdelfileset command.
 There are several notes to keep in mind when deleting filesets:

 	The root fileset cannot be deleted.

 	A fileset that is not empty cannot be deleted unless the -f flag
 is specified.

 	A fileset that is currently linked into the name space cannot
 be deleted until it is unlinked with the mmunlinkfileset command.

 	A dependent fileset can be deleted at any time.

 	An independent fileset cannot be deleted if it has any dependent
 filesets or fileset snapshots.

 	Deleting a dependent fileset that is included in a fileset or
 global snapshot removes it from the active file system, but it remains
 part of the file system in a deleted state.

 	Deleting an independent fileset that is included in any global
 snapshots removes it from the active file system, but it remains part
 of the file system in a deleted state.

 	A fileset in the deleted state is displayed in the mmlsfileset output
 with the fileset name in parenthesis. If the -L flag
 is specified, the latest including snapshot is also displayed. The --deleted option
 of the mmlsfileset command can be used to
 display only deleted filesets.

 	The contents of a deleted fileset are still available in the snapshot,
 through some path name containing a .snapshots component,
 because it was saved when the snapshot was created.

 	When the last snapshot that includes the fileset has been deleted,
 the fileset is fully removed from the file system.

 See the mmdelfileset, mmlsfileset,
 and mmunlinkfileset commands in the GPFS:
 Administration and Programming Reference for complete
 usage information.

 Parent topic: Managing filesets

 Related tasks:

 Creating a fileset

 Linking a fileset

 Unlinking a fileset

 Changing fileset attributes

 Displaying fileset information

 Linking a fileset

 About this task

 After the fileset is created, a junction must be created
 to link it to the desired location in the file system's namespace
 using the mmlinkfileset command. The file
 system must be mounted in order to link a fileset. An independent
 fileset can be linked into only one location anywhere in the namespace,
 specified by the JunctionPath parameter:

 	The root directory

 	Any subdirectory

 	The root fileset or to any other fileset

 A dependent fileset can only be linked inside its own
 inode space.

 If JunctionPath is not
 specified, the junction is created in the current directory and has
 the same name as the fileset being linked. After the command completes,
 the new junction appears as an ordinary directory, except that the
 user is not allowed to unlink or delete it with the rmdir command
 it. The user can use the mv command on the
 directory to move to a new location in the parent fileset, but the mv command
 is not allowed to move the junction to a different fileset.

 See
 the mmlinkfileset command in the GPFS:
 Administration and Programming Reference for complete
 usage information.

 Parent topic: Managing filesets

 Related tasks:

 Creating a fileset

 Deleting a fileset

 Unlinking a fileset

 Changing fileset attributes

 Displaying fileset information

 Unlinking a fileset

 About this task

 A junction to a fileset is removed with the mmunlinkfileset command,
 which unlinks the fileset only from the active directory namespace,
 but the linked or unlinked state of a fileset in a snapshot is unaffected.
 The unlink fails if there are files open in the fileset, unless the -f option
 is specified. The root fileset cannot be unlinked.

 After issuing
 the mmunlinkfileset command, the fileset
 can be re-linked to a different parent using the mmlinkfileset command.
 Until the fileset is re-linked, it is not accessible.

 Note: If
 run against a file system that has an unlinked fileset, mmapplypolicy will
 not traverse the unlinked fileset.

 Attention: If
 you are using the TSM Backup-Archive client you
 must use caution when you unlink filesets that contain data backed
 up by TSM. TSM tracks files by pathname and does not track filesets.
 As a result, when you unlink a fileset, it appears to TSM that you
 deleted the contents of the fileset. Therefore, the TSM Backup-Archive client inactivates
 the data on the TSM server which may result in the loss of backup
 data during the expiration process.

 See the mmunlinkfileset command
 in the GPFS:
 Administration and Programming Reference
 for complete usage information.

 Parent topic: Managing filesets

 Related tasks:

 Creating a fileset

 Deleting a fileset

 Linking a fileset

 Changing fileset attributes

 Displaying fileset information

 Changing fileset attributes

 About this task

 To change a fileset's junction, you have to first unlink
 the fileset using the mmunlinkfileset command,
 and then create the new junction using the mmlinkfileset command.

 To
 change the attributes of an existing fileset, including the fileset
 name, use the mmchfileset command.

 Note: In
 an HSM-managed file system, moving or renaming migrated files between
 filesets will result in recalling of the date from the TSM server.

 See
 the mmchfileset, mmlinkfileset,
 and mmunlinkfileset commands in the GPFS:
 Administration and Programming Reference for complete
 usage information.

 Parent topic: Managing filesets

 Related tasks:

 Creating a fileset

 Deleting a fileset

 Linking a fileset

 Unlinking a fileset

 Displaying fileset information

 Displaying fileset information

 About this task

 Fileset status and attributes are displayed with the mmlsfileset command.
 Some of the attributes displayed include:

 	Name of the fileset.

 	Fileset identifier of the fileset.

 	Junction path to the fileset.

 	Status of the fileset.

 	Root inode number of the fileset.

 	Path to the fileset (if linked).

 	Inode space.

 	User provided comments (if any).

 See the mmlsfileset command
 in the GPFS:
 Administration and Programming Reference
 for complete usage information.

 To display the name of the
 fileset that includes a given file, issue the mmlsattr command
 and specify the -L option. See the mmlsattr command
 in the GPFS:
 Administration and Programming Reference for
 the complete usage information.

 Parent topic: Managing filesets

 Related tasks:

 Creating a fileset

 Deleting a fileset

 Linking a fileset

 Unlinking a fileset

 Changing fileset attributes

 Immutability and appendOnly restrictions

 To prevent files from being changed or deleted unexpectedly, GPFS provides immutability and appendOnly
 restrictions.

 Applying immutability and appendOnly restrictions
 to individual files or to directories

 You
 can apply immutability and appendOnly restrictions either to individual
 files within a fileset or to a directory.

 An immutable file
 cannot be changed or renamed. An appendOnly file allows append operations,
 but not delete, modify, or rename operations.

 An immutable
 directory cannot be deleted or renamed, and files cannot be added
 or deleted under such a directory. An appendOnly directory allows
 new files or subdirectories to be created with 0 byte length; all
 such new created files and subdirectories are marked as appendOnly
 automatically.

 The immutable flag
 and the appendOnly flag can be set independently.
 If both immutability and appendOnly are set on a file, immutability
 restrictions will be in effect.

 To set or unset these attributes,
 use the following command options:

 	mmchattr -i yes|no

 	Sets or unsets a file to or from an immutable state.

 	-i yes

 	Sets the immutable attribute of the
 file to yes.

 	-i no

 	Sets the immutable attribute of the
 file to no.

 	mmchattr -a yes|no

 	Sets or unsets a file to or from an appendOnly state.

 	-a yes

 	Sets the appendOnly attribute of the
 file to yes.

 	-a no

 	Sets the appendOnly attribute of the
 file to no.

 Note: Before an immutable or appendOnly file can be
 deleted, you must change it to mutable or set appendOnly to no (by
 using the mmchattr command).
 Storage
 pool assignment of an immutable or appendOnly file can be changed;
 an immutable or appendOnly file is allowed to transfer from one storage
 pool to another.

 To
 display whether or not a file is immutable or appendOnly, issue this
 command:mmlsattr -L myfile

 The system
 displays information similar to the following: file name: myfile
metadata replication: 2 max 2
data replication: 1 max 2
immutable: no
appendOnly: no
flags:
storage pool name: sp1
fileset name: root
snapshot name:
creation Time: Wed Feb 22 15:16:29 2012
Windows attributes: ARCHIVE

 The effects of file operations on immutable
 and appendOnly files

Once
 a file has been set as immutable or appendOnly, the following file
 operations and attributes work differently from the way they work
 on regular files:

 	delete

 	An immutable or appendOnly file cannot be deleted.

 	modify/append

 	An immutable file cannot be modified or appended
 An appendOnly
 file cannot be modified, but it can be appended.

 .
 Note: The immutable
 and appendOnly flag check takes effect after the file is closed; therefore,
 the file can be modified if it is opened before the file is changed
 to immutable.

 	mode

 	An immutable or appendOnly file's mode cannot be changed.

 	ownership, acl

 	These attributes cannot be changed for an immutable or appendOnly
 file.

 	extended attributes

 	These attributes cannot be added, deleted, or modified for an
 immutable or appendOnly file.

 	timestamp

 	The timestamp of an immutable or appendOnly file can be changed.

 	directory

 	If a directory is marked as immutable, no files can be created,
 renamed, or deleted under that directory. However, a subdirectory
 under an immutable directory remains mutable unless it is explicitly
 changed by mmchattr.
 If a directory is
 marked as appendOnly, no files can be renamed or deleted under that
 directory. However, 0 byte length files can be created.

 The following table shows the effects of file
 operations on an immutable file or an appendOnly file:

 The effects of file operations on an immutable file or an appendOnly
 file

 	Operation

 	immutable

 	appendOnly

 	Add, delete, modify,
 or rename

 	No

 	No

 	Append

 	No

 	Yes

 	Change ownership, mode,
 or acl

 	No

 	No

 	Change atime, mtime,
 or ctime

 	Yes

 	Yes

 	Add, delete, or modify extended
 attributes

 	Disallowed by external methods such as setfattr.
 Allowed
 internally for dmapi, directio,
 and others.

 	Same as for immutable.

 	Create a file under
 an immutable or appendOnly directory

 	No

 	Yes, 0 byte length only

 	Rename or delete a
 file under an immutable or appendOnly directory

 	No

 	No

 	Modify a mutable file under
 an immutable directory

 	Yes

 	Not applicable

 	Set an immutable file back to mutable

 	Yes

 	Not applicable

 	Set an appendOnly file back to a non-appendOnly
 state

 	Not applicable

 	Yes

 Parent topic: Information Lifecycle Management for GPFS

 Creating and maintaining snapshots of GPFS file systems

 A snapshot of an entire GPFS file
 system can be created to preserve the contents of the file system
 at a single point in time. Snapshots of the entire file system are
 also known as global snapshots. The storage overhead for maintaining
 a snapshot is keeping a copy of data blocks that would otherwise be
 changed or deleted after the time of the snapshot.

 Snapshots of a file system are read-only; changes can only be made
 to the active (that is, normal, non-snapshot) files and directories.

 The snapshot function allows a backup or mirror program to run
 concurrently with user updates and still obtain a consistent copy
 of the file system as of the time that the snapshot was created. Snapshots
 also provide an online backup capability that allows easy recovery
 from common problems such as accidental deletion of a file, and comparison
 with older versions of a file.

 Notes:

 	Because snapshots are not copies of the entire file system, they
 should not be used as protection against media failures. For information
 about protection against media failures, see Recoverability considerations in
 the GPFS:
 Concepts, Planning, and Installation Guide.

 	Fileset snapshots provide a method to create a snapshot of an
 independent fileset instead of the entire file system. For more information
 about fileset snapshots, see Fileset-level snapshots.

 	A snapshot of a file creates a new file that captures the user
 data and user attributes from the original. The snapshot file is independent
 from the original file. For DMAPI managed file systems, the snapshot
 of a file is not automatically managed by DMAPI, regardless of the
 state of the original file. The DMAPI attributes from the original
 file are not inherited by the snapshot. For more information about
 DMAPI restrictions for GPFS,
 see the GPFS:
 Data Management API Guide.

 	When snapshots are present, deleting files from the active file
 system does not always result in any space actually being freed up;
 rather, blocks may be pushed to the previous snapshot. In this situation,
 the way to free up space is to delete the oldest snapshot. Before
 creating new snapshots, it is good practice to ensure that the file
 system is not close to being full.

 	The use of clones functionally provides writable snapshots. See Creating and managing file clones.

 Management of snapshots of a GPFS file
 system includes:

 	Creating your GPFS snapshot

 Use the mmcrsnapshot command
 to create a snapshot of an entire GPFS file
 system at a single point in time. Snapshots appear in the file system
 tree as hidden subdirectories of the root.

 	Listing GPFS snapshots

 Use the mmlssnapshot command
 to display existing snapshots of a file system and their attributes.

 	Restoring a GPFS file system from a snapshot

 Use the mmrestorefs command to
 restore user data and attribute files in an active file system from
 the specified global snapshot.

 	Using the policy engine to read a snapshot

 	Linking to your GPFS snapshots

 Snapshot root directories appear in a special .snapshots directory
 under the file system root.

 	Deleting your GPFS snapshot

 Use the mmdelsnapshot command
 to delete GPFS snapshots of
 a file system.

 Creating your GPFS snapshot

 Use the mmcrsnapshot command
 to create a snapshot of an entire GPFS file
 system at a single point in time. Snapshots appear in the file system
 tree as hidden subdirectories of the root.

 About this task

 Global snapshots appear in a subdirectory in the root
 directory of the file system, whose default name is .snapshots.
 If you prefer to access snapshots from each directory rather than
 traversing through the root directory, you can use an invisible directory
 to make the connection by issuing the mmsnapdir command.
 See Linking to your GPFS snapshots for more information.

 A
 snapshot of the file system, Device, is
 identified by a SnapshotName name on the mmcrsnapshot command.
 For example, given the file system fs1 to
 create a snapshot snap1, enter: mmcrsnapshot fs1 snap1

 The
 output is similar to this: Writing dirty data to disk.
Quiescing all file system operations.
Writing dirty data to disk again.
Snapshot snap1 created with id 1.

 Before issuing
 the command, the directory structure would appear similar to: /fs1/file1
/fs1/userA/file2
/fs1/userA/file3

 After the command has been issued,
 the directory structure would appear similar to: /fs1/file1
/fs1/userA/file2
/fs1/userA/file3

/fs1/.snapshots/snap1/file1
/fs1/.snapshots/snap1/userA/file2
/fs1/.snapshots/snap1/userA/file3

 If a second snapshot
 were to be created at a later time, the first snapshot would remain
 as is. Snapshots are only made of active file systems, not existing
 snapshots. For example: mmcrsnapshot fs1 snap2

 The
 output is similar to this: Writing dirty data to disk.
Quiescing all file system operations.
Writing dirty data to disk again.
Snapshot snap2 created with id 2.

 After the command
 has been issued, the directory structure would appear similar to: /fs1/file1
/fs1/userA/file2
/fs1/userA/file3

/fs1/.snapshots/snap1/file1
/fs1/.snapshots/snap1/userA/file2
/fs1/.snapshots/snap1/userA/file3

/fs1/.snapshots/snap2/file1
/fs1/.snapshots/snap2/userA/file2
/fs1/.snapshots/snap2/userA/file3

 See the mmcrsnapshot command
 in the GPFS:
 Administration and Programming Reference
 for complete usage information.

 Parent topic: Creating and maintaining snapshots of GPFS file systems

 Related concepts:

 Using the policy engine to read a snapshot

 Related tasks:

 Listing GPFS snapshots

 Restoring a GPFS file system from a snapshot

 Linking to your GPFS snapshots

 Deleting your GPFS snapshot

 Listing GPFS snapshots

 Use the mmlssnapshot command
 to display existing snapshots of a file system and their attributes.

 About this task

 The -d option displays the amount
 of storage used by a snapshot. GPFS quota
 management does not take the data blocks used to store snapshots into
 account when reporting on and determining if quota limits have been
 exceeded. This is a slow operation and its usage is suggested for
 problem determination only.

 For example, to display the snapshot
 information for the file system fs1 with
 additional storage information, issue this command:mmlssnapshot fs1 -d

 The
 system displays information similar to: Snapshots in file system fs1: [data and metadata in KB]
Directory SnapId Status Created Data Metadata
snap1 1 Valid Fri Oct 17 10:56:22 2003 0 512

 See
 the mmlssnapshot command in the GPFS:
 Administration and Programming Reference for complete
 usage information.

 Parent topic: Creating and maintaining snapshots of GPFS file systems

 Related concepts:

 Using the policy engine to read a snapshot

 Related tasks:

 Creating your GPFS snapshot

 Restoring a GPFS file system from a snapshot

 Linking to your GPFS snapshots

 Deleting your GPFS snapshot

 Restoring a GPFS file
 system from a snapshot

 Use the mmrestorefs command to
 restore user data and attribute files in an active file system from
 the specified global snapshot.

 About this task

 Prior to issuing the mmrestorefs command,
 you must unmount the file system from all nodes in the cluster. The
 file system may not be remounted until the mmrestorefs command
 has successfully completed, unless you have specified the -c option
 to force the restore to continue even in the event errors are encountered.

 Existing
 snapshots, including the one being used in the restore, are not modified by the mmrestorefs command.
 To obtain a snapshot of the restored file system, you must reissue
 the mmcrsnapshot command.

 As
 an example, suppose that you have a directory structure similar to
 the following: /fs1/file1
/fs1/userA/file2
/fs1/userA/file3
/fs1/.snapshots/snap1/file1
/fs1/.snapshots/snap1/userA/file2
/fs1/.snapshots/snap1/userA/file3

 If the directory userA is
 then deleted, the structure becomes similar to this: /fs1/file1
/fs1/.snapshots/snap1/file1
/fs1/.snapshots/snap1/userA/file2
/fs1/.snapshots/snap1/userA/file3

 [image: Start of change]The directory userB is
 then created, and the inode originally assigned to userA may
 be able to be reused. Another snapshot is taken: mmcrsnapshot fs1 snap2

 [image: End of change]

 The
 output is similar to this: Writing dirty data to disk.
Quiescing all file system operations.
Writing dirty data to disk again.
Snapshot snap2 created with id 2.

 The
 resulting directory structure is similar to this: /fs1/file1
/fs1/userB/file2b
/fs1/userB/file3b
/fs1/.snapshots/snap1/file1
/fs1/.snapshots/snap1/userA/file2
/fs1/.snapshots/snap1/userA/file3
/fs1/.snapshots/snap2/file1
/fs1/.snapshots/snap2/userB/file2b
/fs1/.snapshots/snap2/userB/file3b

 The file system is then restored
 from snap1: mmrestorefs fs1 snap1

 The resulting directory structure is similar to this: /fs1/file1
/fs1/userA/file2
/fs1/userA/file3
/fs1/.snapshots/snap1/file1
/fs1/.snapshots/snap1/userA/file2
/fs1/.snapshots/snap1/userA/file3
/fs1/.snapshots/snap2/file1
/fs1/.snapshots/snap2/userB/file2b
/fs1/.snapshots/snap2/userB/file3b

 See the mmrestorefs command
 in the GPFS:
 Administration and Programming Reference
 for complete usage information.

 Parent topic: Creating and maintaining snapshots of GPFS file systems

 Related concepts:

 Using the policy engine to read a snapshot

 Related tasks:

 Creating your GPFS snapshot

 Listing GPFS snapshots

 Linking to your GPFS snapshots

 Deleting your GPFS snapshot

 Using the policy engine to read a snapshot

 You can use the policy engine to read the contents of a snapshot
 for backup purposes. The mmapplypolicy command
 provides the -S option to specify the snapshot
 during a policy run. Instead of matching rules to the active file
 system, the policy engine matches the rules against files in the snapshot.

 Notes:

 	Snapshots are read-only. Policy rules such as MIGRATE or DELETE
 that make changes or delete files cannot be used with a snapshot.

 	[image: Start of change]An instance of mmapplypolicy can
 only scan one snapshot. Directing it at the .snapshots directory
 itself will result in a failure. [image: End of change]

 See the mmapplypolicy command in the GPFS:
 Administration and Programming Reference for complete
 usage information.

 Parent topic: Creating and maintaining snapshots of GPFS file systems

 Related tasks:

 Creating your GPFS snapshot

 Listing GPFS snapshots

 Restoring a GPFS file system from a snapshot

 Linking to your GPFS snapshots

 Deleting your GPFS snapshot

 Linking to your GPFS snapshots

 Snapshot root directories appear in a special .snapshots directory
 under the file system root.

 About this task

 If you prefer to link directly to the snapshot rather
 than always traverse the root directory, you can use the mmsnapdir command
 with the -a option to add a .snapshots subdirectory
 to all directories in the file system. These .snapshots subdirectories
 will contain a link into the corresponding directory for each snapshot
 that includes the directory in the active file system.

 Unlike .snapshots in
 the root directory, however, the .snapshots directories
 added by the -a option of the mmsnapdir command
 are invisible in the sense that the ls command
 or readdir() function does not return .snapshots.
 This is to prevent recursive file system utilities such as find or tar from
 entering into the snapshot tree for each directory they process.
 For example, if you enter ls -a /fs1/userA,
 the .snapshots directory is not listed.
 However, you can enter ls /fs1/userA/.snapshots or cd
 /fs1/userA/.snapshots to confirm that .snapshots is
 present. If a user wants to make one of their snapshot directories
 more visible, it is suggested to create a symbolic link to .snapshots.

 The
 inode numbers that are used for and within these special .snapshots directories
 are constructed dynamically and do not follow the standard rules.
 These inode numbers are visible to applications through standard commands,
 such as stat, readdir,
 or ls. The inode numbers reported for these
 directories can also be reported differently on different operating
 systems. Applications should not expect consistent numbering for such
 inodes.

 Specifying the -r option on
 the mmsnapdir command reverses the effect
 of the -a option, and reverts to the default
 behavior of a single .snapshots directory
 in the root directory.

 The -s option
 allows you to change the name of the .snapshots directory.
 See the mmsnapdir command in the GPFS:
 Administration and Programming Reference for complete
 usage information.

 To illustrate this point, assume that a GPFS file system called fs1,
 which is mounted at /fs1, has one snapshot
 called snap1. The file system might appear
 similar to this: /fs1/userA/file2b
/fs1/userA/file3b
/fs1/.snapshots/snap1/userA/file2b
/fs1/.snapshots/snap1/userA/file3b

 To create links to the snapshots from each directory,
 and instead of .snapshots, use the name .links,
 enter: mmsnapdir fs1 -a -s .links

 After
 the command completes, the directory structure would appear similar
 to: /fs1/userA/file2b
/fs1/userA/file3b
/fs1/userA/.links/snap1/file2b
/fs1/userA/.links/snap1/file3b

/fs1/.links/snap1/userA/file2b
/fs1/.links/snap1/userA/file3b

 To delete the links, issue: mmsnapdir fs1 -r

 After
 the command completes, the directory structure would appear similar
 to: /fs1/userA/file2b
/fs1/userA/file3b

/fs1/.links/snap1/userA/file2b
/fs1/.links/snap1/userA/file3b

 See the mmsnapdir command
 in the GPFS:
 Administration and Programming Reference
 for complete usage information.

 Parent topic: Creating and maintaining snapshots of GPFS file systems

 Related concepts:

 Using the policy engine to read a snapshot

 Related tasks:

 Creating your GPFS snapshot

 Listing GPFS snapshots

 Restoring a GPFS file system from a snapshot

 Deleting your GPFS snapshot

 Deleting your GPFS snapshot

 Use the mmdelsnapshot command
 to delete GPFS snapshots of
 a file system.

 About this task

 For example, to delete snap1 for the file system fs1,
 enter: mmdelsnapshot fs1 snap1

 The output is
 similar to this: Invalidating snapshot files...
Deleting snapshot files...
 100.00 % complete on Tue Feb 28 10:40:59 2012
Delete snapshot snap1 complete, err = 0

 See the mmdelsnapshot command
 in the GPFS:
 Administration and Programming Reference for
 complete usage information.

 Parent topic: Creating and maintaining snapshots of GPFS file systems

 Related concepts:

 Using the policy engine to read a snapshot

 Related tasks:

 Creating your GPFS snapshot

 Listing GPFS snapshots

 Restoring a GPFS file system from a snapshot

 Linking to your GPFS snapshots

 Creating and managing file clones

 A file clone is a writable snapshot of an individual file.
 File clones can be used to provision virtual machines by creating
 a virtual disk for each machine by cloning a common base image. A
 related usage is to clone the virtual disk image of an individual
 machine as part of taking a snapshot of the machine state.

 Cloning a file is similar to creating a copy of a file, but the
 creation process is faster and more space efficient because no additional
 disk space is consumed until the clone or the original file is modified.
 Multiple clones of the same file can be created with no additional
 space overhead. You can also create clones of clones.

 Management of file clones in a GPFS file
 system includes:

 	Creating file clones

 File clones can be created from a regular file or a file
 in a snapshot using the mmclone command.

 	Listing file clones

 Use the mmclone command to display
 status for specified files.

 	Deleting file clones

 There is no explicit GPFS command
 available for deleting file clones. File clones can be deleted using
 a regular delete (rm) command. Clone parent
 files cannot be deleted until all file clone copies of the parent
 have been deleted and all open file handles to them have been closed.

 	Splitting file clones from clone parents

 Use the mmclone command to split
 a file clone from a clone parent.

 	File clones and disk space management

 	File clones and snapshots

 	File clones and policy files

 Policy files can be created to examine clone attributes.

 Creating file clones

 File clones can be created from a regular file or a file
 in a snapshot using the mmclone command.

 About this task

 Creating a file clone from a regular file is a two-step
 process using the mmclone command with the snap and copy keywords:

 	Issue the mmclone snap command
 to create a read-only snapshot of the file to be cloned. This read-only
 snapshot becomes known as the clone parent. For example, the following
 command creates a clone parent called snap1 from
 the original file file1:mmclone snap file1 snap1

 Alternately,
 if only one file is specified with the mmclone snap command,
 it will convert the file to a read-only clone parent without creating
 a separate clone parent file. When using this method to create a clone
 parent, the specified file cannot be open for writing or have hard
 links. For example, the following command converts file1 into
 a clone parent.mmclone snap file1

 	Issue the mmclone copy command to create
 a writable clone from a clone parent. For example, the following command
 creates a writable file clone called file2 from
 the clone parent snap1:mmclone copy snap1 file2

 Creating a file clone where the source is in a snapshot
 only requires one step using the mmclone command
 with the copy keyword. For example, the
 following command creates a writable file clone called file3.clone from
 a file called file3 in a snapshot called snap2: mmclone copy /fs1/.snapshots/snap2/file3 file3.clone

 In
 this case, file3 becomes the clone parent.

 Note: Extended attributes of clone parents are not passed along
 to file clones.

 After a clone has been created, the clone
 and the file that it was cloned from are interchangeable, which is
 similar to a regular copy (cp) command.
 The file clone will have a new inode number and attributes that can
 be modified independently of the original file.

 Additional
 clones can be created from the same clone parent by issuing additional mmclone
 copy commands, for example:mmclone copy snap1 file3

 File
 clones of clones can also be created, as shown in the following example:mmclone snap file1 snap1
mmclone copy snap1 file2
echo hello >> file2
mmclone snap file2 snap2
mmclone copy snap2 file3

 The echo command updates the last
 block of file clone file2. When file2 is
 snapped to snap2, the mmclone
 snap operation is performed as described previously.
 When a block in file3 is read, the clone
 parent inode is found first. For the case of the last block, with
 the hello text, the disk address will be
 found in snap2. However, for other blocks,
 the disk address will be found in snap1.

 See
 the mmclone command for complete usage information.

 Parent topic: Creating and managing file clones

 Listing file clones

 Use the mmclone command to display
 status for specified files.

 About this task

 The show keyword of the mmclone command
 provides a report to determine the current status of one or more files.
 When a file is a clone, the report will show the parent inode number.
 When a file was cloned from a file in a
 snapshot, mmclone show displays the snapshot
 and fileset information.

 Consider the following scenario:

 	The ls command is issued to show all img files
 in the current directory:ls -ils *.img

 The system
 displays output similar to the following:148485 5752576 -rw-r--r-- 1 root root 21474836480 Jan 9 16:19 test01.img

 	A file clone is then created with the following commands:mmclone snap test01.img base.img
mmclone copy base.img test02.img

 	After the file clone is created, the mmclone show command
 is issued to show information about all img files
 in the current directory:mmclone show *.img

 The
 system displays output similar to the following:Parent Depth Parent inode File name
------ ----- -------------- ---------
 yes 0 base.img
 no 1 148488 test01.img
 no 1 148488 test02.img

 	A subsequent ls command would display
 output similar to the following:# ls -ils *.img
148488 5752576 -rw-r--r-- 3 root root 21474836480 Jan 9 16:25 base.img
148485 0 -rw-r--r-- 1 root root 21474836480 Jan 9 16:19 test01.img
148480 0 -rw-r--r-- 1 root root 21474836480 Jan 9 16:25 test02.img

 See the mmclone command for
 complete usage information.

 Parent topic: Creating and managing file clones

 Deleting file clones

 There is no explicit GPFS command
 available for deleting file clones. File clones can be deleted using
 a regular delete (rm) command. Clone parent
 files cannot be deleted until all file clone copies of the parent
 have been deleted and all open file handles to them have been closed.

 Note: There is a brief period of time, immediately following the deletion
 of the file clone copies, when deletion of the parent can fail because
 the clone copy deletions are still running in the background.

 Parent topic: Creating and managing file clones

 Splitting file clones from clone parents

 Use the mmclone command to split
 a file clone from a clone parent.

 About this task

 File clones can be split from their clone parents in
 one of two ways:

 	Using the mmclone redirect command to
 split the file clone from the immediate clone parent only. The clone
 child remains a file clone, but the clone parent can be deleted.

 	Using the mmclone split command to split
 the file clone from all clone parents. This converts the former clone
 child to a regular file. The clone parent does not change.

 See the mmclone command for
 complete usage information.

 Parent topic: Creating and managing file clones

 File clones and disk space management

 File clones have the following considerations related to disk space
 management:

 	Replication and storage pools
 Each file clone has its own inode,
 so attributes and permissions for each clone can be set independently.
 For example, timestamps (atime, mtime, and ctime) are maintained separately
 for each clone. Clone parent attributes must be changed separately.
 If different clones have different values for replication or storage
 pool, it is not possible for every one of the clones to have all data
 blocks readable through that clone to be replicated and placed consistent
 with its replication and pool settings. Thus, changes to replication
 and storage pool only apply to blocks added to the clone and leave
 the clone parent unchanged.

 	Clone ownership, block counts, and quotas
 Creating a clone parent
 requires read access to the file being cloned. The person creating
 the clone parent does not have to be the owner of the original file,
 but will become the owner of the new clone parent. The block count
 and disk quota of the original file will be transferred to the new
 clone parent inode and then set to zero in the original file. Any
 blocks allocated by copy-on-write of a clone file will be added to
 the block count in the clone inode, with quota charged against the
 owner of the file. If even a single byte of data
 in a clone child is changed, the entire block will be copied from
 the parent.

 	Clones and DMAPI
 Clone parent files and clone copy files will
 be preserved across migrations and recalls to and from tape.

 Parent topic: Creating and managing file clones

 File clones and snapshots

 When a snapshot is created and a file clone is subsequently updated,
 the previous state of the file clone will be saved in the snapshot.
 When reading a file clone in the snapshot, the system will distinguish
 between the states of the clone:

 	The data block has not been modified since the snapshot was taken,
 so look for the data in the same file in the next most recent snapshot
 or active file system.

 	The file clone was updated, which indicates that the corresponding
 data block should be found in the clone parent. The system will look
 for the data in the clone parent within the same snapshot.

 When a snapshot has file clones, those
 file clones should be deleted or split from their clone parents prior
 to deleting the snapshot. See Deleting file clones and Splitting file clones from clone parents for more information.
 A policy file can be created to help determine if a snapshot has file
 clones. See File clones and policy files for
 more information.

 Parent topic: Creating and managing file clones

 File clones and policy files

 Policy files can be created to examine clone attributes.

 About this task

 The following clone attributes can be examined in a policy
 file:

 	The depth of the clone tree.

 	If file is an immutable clone parent.

 	The fileset ID of the clone parent.

 	The inode number of the clone parent for the file.

 	If the clone parent is in a snapshot.

 	The snapshot ID of the clone parent.

 See Using file attributes for
 more information about the clone attributes available for policy files.

 The
 following example shows a policy file that can be created for displaying
 clone attributes for all files:RULE EXTERNAL LIST 'x' EXEC ''
RULE 'nonClone' LIST 'x' SHOW('nonclone') WHERE Clone_Parent_Inode IS NULL
RULE 'normalClone' LIST 'x' SHOW(
 'inum ' || varchar(Clone_Parent_Inode) ||
 ' par ' || varchar(Clone_Is_Parent) ||
 ' psn ' || varchar(Clone_Parent_Is_Snap) ||
 ' dep ' || varchar(Clone_Depth))
 WHERE Clone_Parent_Inode IS NOT NULL AND Clone_Parent_Is_Snap == 0
RULE 'snapClone' LIST 'x' SHOW(
 'inum ' || varchar(Clone_Parent_Inode) ||
 ' par ' || varchar(Clone_Is_Parent) ||
 ' psn ' || varchar(Clone_Parent_Is_Snap) ||
 ' dep ' || varchar(Clone_Depth) ||
 ' Fid ' || varchar(Clone_Parent_Fileset_Id) ||
 ' snap ' || varchar(Clone_Parent_Snap_Id))
 WHERE Clone_Parent_Inode IS NOT NULL AND Clone_Parent_Is_Snap != 0

 If this policy file was called pol.file,
 the following command would display the clone attributes: mmapplypolicy fs0 -P pol.file -I defer -f pol -L 0

 Parent topic: Creating and managing file clones

 Scale Out Backup and Restore (SOBAR)

 Scale Out Backup and Restore (SOBAR) is a specialized mechanism
 for data protection against disaster only for GPFS file systems that are managed by Tivoli Storage Manager (TSM)
 Hierarchical Storage Management (HSM).

 Note: This feature is available
 with GPFS Standard
 Edition or
 higher.

 To protect a file system against disaster the following steps must
 be taken to ensure all data is safely stored in a second location:

 	Record the file system configuration with the mmbackupconfig command.

 	Ensure all file data is pre-migrated (see Pre-migrating files with external storage pools for more information).

 	Perform a metadata image backup with the mmimgbackup command.

 The mmbackupconfig command must be run
 prior to running the mmimgbackup command.
 No changes to file system configuration, filesets, quotas, or other
 settings should be done between running the mmbackupconfig command
 and the mmimgbackup command. To recover
 from a disaster, the mmrestoreconfig command
 must be run prior to running the mmimgrestore command.
 After restoring the image data and adjusting quota settings, the file
 system can be mounted read-write, and the HSM system re-enabled to
 permit file data recall. Users may be permitted to access the file
 system, and/or the system administrator can manually recall file data
 with the Tivoli HSM command dsmrecall.

 These commands cannot be run from a Windows node.

 	Backup procedure with SOBAR

 This section provides a detailed example of the backup
 procedure used with SOBAR.

 	Restore procedure with SOBAR

 This section provides a detailed example of the restore
 procedure used with SOBAR.

 Backup procedure with SOBAR

 This section provides a detailed example of the backup
 procedure used with SOBAR.

 Throughout these procedures, the sample file system used is called smallfs.
 Where appropriate, replace this value with your file system name.

 	Backup the cluster configuration information.
 The cluster configuration
 must be backed up by the administrator. The minimum cluster configuration
 information needed is: IP addresses, node names, roles, quorum and
 server roles, cluster-wide configuration settings from mmchconfig,
 cluster manager node roles, remote shell configuration, mutual ssh and rsh authentication
 setup, and the cluster UID. More complete configuration information
 can be found in the mmsdrfs file.

 	Preserve disk configuration information.
 Disk configuration
 must also be preserved in order to recover a file system. The basic
 disk configuration information needed, for a backup intended for disaster
 recovery, is the number of disk volumes that were previously available
 and the sizes of those volumes. In order to recover from a complete
 file system loss, at least as much disk space as was previously available
 will be needed for restoration. It is only feasible to restore the
 image of a file system onto replacement disks if the disk volumes
 available are of similar enough sizes to the originals that all data
 can be restored to the new disks. At a minimum, the following disk
 configuration information is needed:

 	Disk device names

 	Disk device sizes

 	The number of disk volumes

 	NSD server configuration

 	Disk RAID configurations

 	Failure group designations

 	The mmsdrfs file contents

 	Backup the GPFS file system
 configuration information.
 In addition to the disks, the file system
 built on those volumes has configuration information that can be captured
 using the mmbackupconfig command. This information
 includes block size, replication factors, number and size of disks,
 storage pool layout, filesets and junction points, policy rules, quota
 information, and a number of other file system attributes. The file
 system configuration information can be backed up into a single file
 using a command similar to the following:mmbackupconfig smallfs -o /tmp/smallfs.bkpcfg.out925

 	Pre-migrate all newer file data into secondary storage.
 File
 contents in a space-managed GPFS will
 reside in secondary storage managed by the HSM. In the case of Tivoli Storage Manager HSM, disk
 and tape pools will typically hold the offline images of migrated
 files. HSM can also be used to pre-migrate all newer file data into
 secondary storage, so that all files will have either a migrated or
 pre-migrated status (XATTR) recorded, and
 their current contents are copied or updated into the secondary storage.
 The TSM command dsmmigrate can be used as
 follows:dsmmigrate -Premigrate -Recursive /smallfs

 To
 optionally check the status of the files that were pre-migrated with
 the previous command, use the following command:dsmls /smallfs/*

 	Create a global snapshot of the live file system, to provide a
 quiescent image for image backup, using a command similar to the following:mmcrsnapshot smallfs smallfssnap

 	Choose a staging area in which to save the GPFS metadata image files.
 The image backup
 process stores each piece of the partial file system image backup
 in its own file in the shared work directory typically used by policy
 runs. These files can become quite large depending on the number of
 files in the file system. Also, because the file system holding this
 shared directory must be accessible to every node participating in
 the parallel backup task, it might also be a GPFS file system. It is imperative that the
 staging directory chosen be accessible to both the tsapolicy archiver
 process and the TSM Backup-Archive client.
 This staging directory is specified with the -g option
 of the mmimgbackup command.

 	Backup the file system image.
 The following command will back
 up an image of the GPFS metadata
 from the file system using a parallel policy run with the default
 TSM backup client to backup the file system metadata image:mmimgbackup smallfs -S smallfssnap -g /u/user/backup -N aixnodes

 The
 metadata of the file system, the directories, inodes, attributes,
 symlinks, and so on are all captured in parallel by using the archive
 module extension feature of the mmapplypolicy command.
 After completing the parallel execution of the policy-driven archiving
 process, a collection of image files in this format will remain. These
 image files are gathered by the mmimgbackup command
 and archived to TSM automatically.

 If using the -N nodes option,
 it is recommended that the same operating system be used when running mmimgbackup.
 Note the directory created with -g GlobalWorkDirectory to
 store the image files.

 	After the image backup is complete, delete the snapshot used for
 backup with the following command:mmdelsnapshot smallfs smallfssnap

 Parent topic: Scale Out Backup and Restore (SOBAR)

 Related concepts:

 Restore procedure with SOBAR

 Restore procedure with SOBAR

 This section provides a detailed example of the restore
 procedure used with SOBAR.

 In order to restore a file system, the configuration data stored
 from a previous run of mmbackupconfig and
 the image files produced from mmimgbackup must
 be accessible.

 Throughout these procedures, the sample file system used is called smallfs.
 Where appropriate, replace this value with your file system name.

 	Restore the metadata image files from mmimgbackup and
 the backup configuration data from mmbackupconfig with
 a dsmc command similar to the following:dsmc restore -subdir=yes /u/user/backup/8516/

 	Retrieve the base file system configuration information.
 Use
 the mmrestoreconfig command to generate
 a configuration file, which contains the details of the former file
 system: mmrestoreconfig Device -i InputFile -F QueryResultFile

 	Recreate NSDs if they are missing.
 Using the output file generated
 in the previous step as a guide, the administrator might need to recreate
 NSD devices for use with the restored file system. In the output file,
 the NSD configuration section contains the
 NSD information; for example: ######## NSD configuration ##################
Disk descriptor format for the mmcrnsd command.
Please edit the disk and desired name fields to match
your current hardware settings.
##
The user then can uncomment the descriptor lines and
use this file as input to the -F option.
#
%nsd:
device=DiskName
nsd=nsd8
usage=dataAndMetadata
failureGroup=-1
pool=system
#

 If changes are needed, edit the file in a text editor
 and follow the included instructions to use it as input to the mmcrnsd command,
 then issue the following command:mmcrnsd -F StanzaFile

 	Recreate the base file system.
 The administrator must recreate
 the initial file system. The output query file specified in the previous
 commands can be used as a guide. The following example shows the section
 of this file that is needed when recreating the file system:######### File system configuration #############
The user can use the predefined options/option values
when recreating the filesystem. The option values
represent values from the backed up filesystem.
#
mmcrfs FS_NAME NSD_DISKS -j cluster -k posix -Q yes -L 4194304 --disable-fastea
 -T /fs2 -A no --inode-limit 278016#
#
When preparing the file system for image restore, quota
enforcement must be disabled at file system creation time.
If this is not done, the image restore process will fail.

 Do
 one of the following to recreate the file system:
 	Edit the output file. Uncomment the mmcrfs command,
 and specify the appropriate file system name and NSD disk(s). Remove
 the -Q option to ensure quotas are not enabled.
 Save the changes and run the file as a shell script:sh OutputFile

 	From the command line, issue an mmcrfs command
 similar to the one in the output file, but specify the appropriate
 file system name and NSD disk(s). Do not specify the -Q option
 to ensure quotas are not enabled.

 	Restore essential file system configuration.
 Using the mmrestoreconfig command,
 the essential file system configuration can be restored to the file
 system that was just created in the previous step. Quota is disabled
 in this step because the quota system must remain inactive until after
 the file system image has been restored. Filesets will also be restored
 and linked, if necessary, using a method specific for image restore.
 The --image-restore option should be used
 to restore the configuration data in the proper format for SOBAR;
 for example: mmrestoreconfig smallfs -i /tmp/smallfs.bkpcfg.out925 --image-restore

 	Mount the file system in read-only mode for image restore with
 the following command:mmmount smallfs -o ro

 	Perform the image restore; for example:mmimgrestore smallfs /u/user/backup/8516/mmPolicy.8551.D4D85229

 	To optionally display the restored file system structure, use
 the following command: ls -l /smallfs/*

 The
 system displays information similar to the following: -rw-r--r-- 1 root root 1024 Sep 25 11:34 /smallfs/1Kfile.1
-rw-r--r-- 1 root root 1024 Sep 25 11:34 /smallfs/1Kfile.2
-rwxr--r-- 1 root root 238 Sep 25 11:34 /smallfs/generateChksums*

 	Unmount the file system with the following command: mmumount smallfs

 	Restore quota configuration.
 If any quota enforcement was used
 in the prior file system, it can be restored now using the mmrestoreconfig command.
 This step will not enable quotas if they were not in use at the time
 of the configuration backup. To restore the quota configuration, issue
 a command similar to the following:mmrestoreconfig smallfs -i /tmp/smallfs.bkpcfg.out925 -Q only

 	Mount the file system in read-write mode with the following command:mmmount smallfs

 	Delete the unusable HSM directory.
 The .SpaceMan directory
 contains file stubs from the former space management control information.
 This directory must be deleted prior to restarting HSM management.
 Use the following command:rm -rf /smallfs/.SpaceMan

 	To optionally restart HSM, use the following command:dsmmigfs restart

 	Resume HSM management on the newly reconstructed file system,
 to resume managing disk space and to permit recall of files, with
 the following command:dsmmigfs add /smallfs

 	To optionally display the managed file system from HSM, use the
 following command:dsmls /smallfs/*

 All files
 are currently in the migrate state.

 	To optionally begin recalling files by forcing a specific recall,
 use the following command:dsmrecall -Recursive /smallfs/*

 Parent topic: Scale Out Backup and Restore (SOBAR)

 Related concepts:

 Backup procedure with SOBAR

 Establishing disaster recovery for your GPFS cluster

 The ability to detect and quickly recover from a massive
 hardware failure is of paramount importance to businesses that make
 use of real-time data processing systems.

 GPFS provides a number of
 features that facilitate the implementation of highly-available GPFS environments capable of withstanding
 catastrophic hardware failures. By maintaining a replica of the file
 system's data at a geographically-separate location, the system sustains
 its processing using the secondary replica of the file system in the
 event of a total failure in the primary environment.

 On a very high level, a disaster-resilient GPFS cluster is made up of two or three, distinct,
 geographically-separate hardware sites operating in a coordinated
 fashion. Two of the sites consist of GPFS nodes
 and storage resources holding a complete replica of the file system.
 If a third site is active, it consists of a single node and a single
 disk used as a tiebreaker for GPFS quorum.
 In the event of a catastrophic hardware failure that disables the
 operation of an entire site, and assuming the tiebreaker site remains
 operational, file system services failover to the remaining subset
 of the cluster and continue serving the data using the replica of
 the file system that survived the disaster. However if the tiebreaker
 fails during the disaster, the remaining number of nodes and disks
 is insufficient to satisfy the quorum rules and the surviving site
 loses access to the GPFS file
 system. A manual procedure is needed to instruct GPFS to disregard the existing quorum assignments
 and continue operating with whatever resources are available.

 The secondary replica is maintained by one of several methods:

 	Synchronous mirroring utilizing GPFS replication.
 The
 data and metadata replication features of GPFS are used to implement synchronous mirroring
 between a pair of geographically-separate sites. The use of logical
 replication-based mirroring offers a generic solution that relies
 on no specific support from the disk subsystem beyond the basic ability
 to read and write data blocks. See Synchronous mirroring utilizing GPFS replication.

 	Synchronous mirroring utilizing IBM TotalStorage Enterprise Storage
 Server (ESS) Peer-to-Peer Remote Copy (PPRC).
 The PPRC feature
 of the ESS establishes a persistent mirroring relationship between
 pairs of Logical Units (LUNs) on two subsystems connected over an ESCON or a Fibre
 Channel link. All updates performed on the set of primary, or source,
 LUNs appear in the same order on the secondary, or target, disks in
 the target subsystem. The PPRC mechanism provides for an exact bitwise
 replica of the source's content as seen at the time of the failure
 on the target should the source volume fail. See Synchronous mirroring
 utilizing IBM TotalStorage ESS PPRC.

 Usage
 of synchronous IBM TotalStorage Enterprise Storage
 Server (ESS) Peer-to-Peer Remote Copy (PPRC) now extends to IBM TotalStorage Metro Mirror.

 Usage
 of asynchronous PPRC now extends to IBM TotalStorage Global
 Mirror.

 	Asynchronous mirroring utilizing ESS FlashCopy.
 Periodic point-in-time copies
 of the file system are taken using the facilities of ESS FlashCopy. The copy is subsequently transferred
 to a remote backup location using PPRC, written to tape, or both.
 See Asynchronous mirroring utilizing ESS FlashCopy.

 The primary advantage of both synchronous mirroring methods is
 the minimization of the risk of permanent data loss. Both methods
 provide two consistent, up-to-date replicas of the file system, each
 available for recovery should the other one fail. However, inherent
 to all solutions that synchronously mirror data over a wide area network
 link is the latency penalty induced by the replicated write I/Os.
 This makes both synchronous mirroring methods prohibitively inefficient
 for certain types of performance-oriented applications. The asynchronous
 method effectively eliminates this penalty. However, asynchronous
 mirroring may result in two distinct and not necessarily consistent
 replicas of the file system. There are no guarantees as to the validity
 of data kept in the snapshot beyond the fact that the file system's
 metadata is consistent and that the user data must have been valid
 at the time the snapshot was taken.

 	Synchronous mirroring utilizing GPFS replication

 In a configuration utilizing GPFS replication,
 a single GPFS cluster is defined
 over three geographically-separate sites consisting of two production
 sites and a third tiebreaker site. One or more file systems are created,
 mounted, and accessed concurrently from the two active production
 sites.

 	Synchronous mirroring utilizing IBM TotalStorage ESS PPRC

 PPRC is a function that continuously updates a secondary
 (target) copy of an ESS disk volume to match changes made to a primary
 (source) volume. Any pair of equal-sized ESS disks can be configured
 for a PPRC relationship, during which all write operations performed
 on the source are synchronously mirrored to the target device.

 	Asynchronous mirroring utilizing ESS FlashCopy

 The FlashCopy feature
 of ESS provides an easy implementation to make a point-in-time copy
 of a GPFS file system as an
 online backup mechanism. This function provides an instantaneous copy
 of the original data on the target disk, while the actual transfer
 of data takes place asynchronously and is fully transparent to the
 user.

 Synchronous mirroring utilizing GPFS replication

 In a configuration utilizing GPFS replication,
 a single GPFS cluster is defined
 over three geographically-separate sites consisting of two production
 sites and a third tiebreaker site. One or more file systems are created,
 mounted, and accessed concurrently from the two active production
 sites.

 The data and metadata replication features of GPFS are used to maintain a secondary copy of
 each file system block, relying on the concept of disk failure groups
 to control the physical placement of the individual copies:

 	Separate the set of available disk volumes into two failure groups.
 Define one failure group at each of the active production sites.

 	Create a replicated file system. Specify a replication factor
 of 2 for both data and metadata.

 When allocating new file system blocks, GPFS always assigns replicas of the same block
 to distinct failure groups. This provides a sufficient level of redundancy
 allowing each site to continue operating independently should the
 other site fail.

 GPFS enforces a node quorum
 rule to prevent multiple nodes from assuming the role of the file
 system manager in the event of a network partition. Thus, a majority
 of quorum nodes must remain active in order for the cluster to sustain
 normal file system usage. Furthermore, GPFS uses
 a quorum replication algorithm to maintain the content of the file
 system descriptor (one of the central elements of the GPFS metadata). When formatting the file system, GPFS assigns some number
 of disks
 (usually three) as the descriptor replica holders that are responsible
 for maintaining an up-to-date copy of the descriptor. Similar to the
 node quorum requirement, a majority of the replica holder disks must
 remain available at all times to sustain normal file system operations.
 This file system descriptor quorum is internally controlled by the GPFS daemon. However, when a disk
 has failed due to a disaster you must manually inform GPFS that the disk is no longer available and
 it should be excluded from use.

 Considering these quorum constraints, it is suggested that a third
 site in the configuration fulfill the role of a tiebreaker for the
 node and the file system descriptor quorum decisions. The tiebreaker
 site consists of:

 	A single quorum node
 As the function of this node is to serve
 as a tiebreaker in GPFS quorum
 decisions, it does not require normal file system access and SAN connectivity.
 To ignore disk access errors on the tiebreaker node, enable the unmountOnDiskFail configuration
 parameter through the mmchconfig command.
 When enabled, this parameter forces the tiebreaker node to treat the
 lack of disk connectivity as a local error, resulting in a failure
 to mount the file system, rather that reporting this condition to
 the file system manager as a disk failure.

 	A single network shared disk
 The function of this disk is to
 provide an additional replica of the file system descriptor file needed
 to sustain quorum should a disaster cripple one of the other descriptor
 replica disks. Create a network shared disk over the tiebreaker node's
 internal disk defining:

 	the local node as an NSD server

 	the disk usage as descOnly
 The descOnly option
 instructs GPFS to only store
 file system descriptor information on the disk.

 This three-site configuration is resilient to a complete failure
 of any single hardware site. Should all disk volumes in one of the
 failure groups become unavailable, GPFS performs
 a transparent failover to the remaining set of disks and continues
 serving the data to the surviving subset of nodes with no administrative
 intervention. While nothing prevents you from placing the tiebreaker
 resources at one of the active sites, to minimize the risk of double-site
 failures it is suggested you install the tiebreakers at a third, geographically
 distinct location.

 The high-level organization of a replicated GPFS cluster for synchronous mirroring where
 all disks are directly attached to all nodes in the cluster is shown
 in Figure 1. An alternative to this
 design would be to have the data served through designated NSD servers.

 [image: This figure illustrates synchronous mirroring utilizing GPFS replication. The entire figure represents one GPFS cluster. It consists of three sites, named site A, site B, and site C. They are attached through an IP network. Site A has four nodes: one node designated as the primary cluster configuration server, two quorum nodes, and one non-quorum node. Site B has four nodes: one node designated as the secondary cluster configuration server, two quorum nodes, and one non-quorum node. Sites A and B share their disks using shared NSD access. Site C is called the tiebreaker site, and consists of one quorum node and one disk.]

Figure 5. Synchronous mirroring utilizing GPFS replication

 	Setting up a GPFS cluster with synchronous mirroring utilizing GPFS replication

 	Steps to take after a disaster when using GPFS replication

 Parent topic: Establishing disaster recovery for your GPFS cluster

 Setting up a GPFS cluster
 with synchronous mirroring utilizing GPFS replication

 About this task

 To establish a disaster-resilient GPFS cluster utilizing replication as shown
 in Figure 1 of Synchronous mirroring utilizing GPFS replication,
 consider the configuration:

 	Site A

 	Consisting of:

 	Nodes – nodeA001, nodeA002, nodeA003, nodeA004

 	Disk device names – diskA1, diskA2
 diskA1 and diskA2 are
 SAN-attached and accessible from all nodes at site A and site B.

 	Site B

 	Consisting of:

 	Nodes – nodeB001, nodeB002, nodeB003, nodeB004

 	Disks – diskB1, diskB2
 diskB1 and diskB2 are
 SAN-attached and accessible from all nodes at site A and site B.

 	Site C (tiebreaker)

 	Consisting of:

 	Node – nodeC

 	Disk – diskC
 diskC is an NSD defined over
 the internal disk of the node nodeC and is directly accessible
 only from site C

 	Create a GPFS cluster selecting nodeA001 at
 site A as the primary cluster data server node, nodeB001 at
 site B as the secondary cluster data server nodes, and the
 nodes in the cluster contained in the file clusterNodes. The clusterNodes file
 contains the node descriptors: nodeA001:quorum-manager
nodeA002:quorum-manager
nodeA003:quorum-manager
nodeA004:client
nodeB001:quorum-manager
nodeB002:quorum-manager
nodeB003:quorum-manager
nodeB004:client
nodeC:quorum-client

 Issue this command: mmcrcluster –N clusterNodes –p nodeA001 –s nodeB001

 	Prevent false disk errors in the SAN configuration from being
 reported to the file system manager by enabling the unmountOnDiskFail option
 on the tiebreaker node: mmchconfig unmountOnDiskFail=yes -N nodeC

 	Define the set of network shared disks for the cluster where disks
 at sites A and B are assigned to failure groups 1 and
 2, respectively. The tiebreaker disk is assigned to failure group
 3. The disk descriptors contained in the file clusterDisks are: /dev/diskA1:nodeA002:nodeA003:dataAndMetadata:1
/dev/diskA2:nodeA002:nodeA003:dataAndMetadata:1
/dev/diskB1:nodeB002:nodeB003:dataAndMetadata:2
/dev/diskB2:nodeB002:nodeB003:dataAndMetadata:2
/dev/diskC1:nodeC::descOnly:3

 Issue this command: mmcrnsd –F clusterDisks

 	Issue the mmlsnsd command to verify
 that the network shared disks have been created: mmlsnsd -m

 Output
 is similar to this: Disk name NSD volume ID Device Node name Remarks

 gpfs1nsd 0972445B416BE502 /dev/diskA1 nodeA002 server node
 gpfs1nsd 0972445B416BE502 /dev/diskA1 nodeA003 server node
 gpfs2nsd 0972445B416BE509 /dev/diskA2 nodeA002 server node
 gpfs2nsd 0972445B416BE509 /dev/diskA2 nodeA003 server node
 gpfs3nsd 0972445F416BE4F8 /dev/diskB1 nodeB002 server node
 gpfs3nsd 0972445F416BE4F8 /dev/diskB1 nodeB003 server node
 gpfs4nsd 0972445F416BE4FE /dev/diskB2 nodeB002 server node
 gpfs4nsd 0972445F416BE4FE /dev/diskB2 nodeB003 server node
 gpfs5nsd 0972445D416BE504 /dev/diskC1 nodeC server node

 	Start the GPFS daemon on
 all nodes: mmstartup -a

 	Create a replicated file system fs0: mmcrfs /gpfs/fs0 fs0 –F clusterDisks –m 2 –M 2 –r 2 –R 2

 	Mount fs0 on all nodes at sites A and B.

 Parent topic: Synchronous mirroring utilizing GPFS replication

 Steps to take after a disaster when using GPFS replication

 About this task

 Utilizing GPFS replication
 allows for failover to the surviving site without disruption
 of service as long as both the remaining site and the tiebreaker site
 remain functional. It remains in this state until a decision is made
 to restore the operation of the affected site by executing the failback procedure.
 If the tiebreaker site is also affected by the disaster and is no
 longer operational, GPFS quorum
 is broken and manual intervention is required to resume file system
 access. Existing quorum designations must be relaxed in order to allow
 the surviving site to fulfill quorum requirements:

 	To relax node quorum, temporarily change the designation of each
 of the failed quorum nodes to non-quorum nodes. Issue the mmchnode
 --nonquorum command.

 	To relax file system descriptor quorum, temporarily eliminate
 the failed disks from the group of disks from which the GPFS daemon uses to write the file system descriptor
 file to. Issue the mmfsctl exclude command
 for each of the failed disks.

 While the GPFS cluster
 is in a failover state, it is suggested that no changes to the GPFS configuration be made. Changes
 to your GPFS configuration require
 both cluster configuration servers to be operational. If both servers
 are not operational, the sites would have distinct, and possibly inconsistent,
 copies of the GPFS mmsdrfs configuration
 data file. While the servers can be migrated to the surviving site,
 it is best to avoid this step if the disaster does not leave the affected
 site permanently disabled.

 If it becomes absolutely necessary
 to modify the GPFS configuration
 while in failover mode, for example to relax quorum, you must ensure
 that all nodes at the affected site are powered down and left in a
 stable inactive state. They must remain in such state until the decision
 is made to execute the failback procedure. As a means of precaution,
 we suggest disabling the GPFS autoload
 option on all nodes to prevent GPFS from
 bringing itself up automatically on the affected nodes should they
 come up spontaneously at some point after a disaster.

 	Failover to the surviving site

 	Failback procedures

 Parent topic: Synchronous mirroring utilizing GPFS replication

 Failover to the surviving site

 Following a disaster, which failover process is implemented depends
 upon whether or not the tiebreaker site is affected:

 	Failover without the loss of tiebreaker site C
 The proposed
 three-site configuration is resilient to a complete failure of any
 single hardware site. Should all disk volumes in one of the failure
 groups become unavailable, GPFS performs
 a transparent failover to the remaining set of disks and continues
 serving the data to the surviving subset of nodes with no administrative
 intervention.

 	Failover with the loss of tiebreaker site C
 If both
 site A and site C fail:

 	Shut the GPFS daemon down
 on the surviving nodes at site B, where the file gpfs.siteB lists
 all of the nodes at site B: mmshutdown -N gpfs.siteB

 	If it is necessary to make changes to the configuration, migrate
 the primary cluster configuration server to a node at site B: mmchcluster -p nodeB002

 	Relax node quorum by temporarily changing the designation of each
 of the failed quorum nodes to non-quorum nodes: mmchnode --nonquorum -N nodeA001,nodeA002,nodeA003,nodeC

 	Relax file system descriptor quorum by informing the GPFS daemon to migrate the file system descriptor
 off of the failed disks: mmfsctl fs0 exclude -d "gpfs1nsd;gpfs2nsd;gpfs5nsd"

 	Restart the GPFS daemon
 on the surviving nodes: mmstartup -N gpfs.siteB

 	Mount the file system on the surviving nodes at site B.

 Parent topic: Steps to take after a disaster when using GPFS replication

 Failback procedures

 About this task

 Which failback procedure you follow depends upon whether
 the nodes and disks at the affected site have been repaired or replaced.
 If the disks have been repaired, you must also consider the state
 of the data on the failed disks:

 	For nodes and disks that have been repaired and you are certain the
 data on the failed disks has not been changed, follow either:

 	failback with temporary loss and no configuration changes

 	failback with temporary loss and configuration changes

 	If the nodes have been replaced and either the disks have been
 replaced or repaired, and you are not certain the data on
 the fail disks has not been changed, follow the procedure for failback
 with permanent loss.

 Delayed failures: In certain
 failure cases the loss of data may not be immediately apparent. For
 example, consider this sequence of events:

 	Site B loses connectivity with sites A and C.

 	Site B then goes down due to loss of node quorum.

 	Sites A and C remain operational long enough to
 modify some of the data on disk but suffer a disastrous failure shortly
 afterwards.

 	Node and file system descriptor quorums are overridden to enable
 access at site B.

 Now the two replicas of the file system are inconsistent and
 the only way to reconcile these copies during recovery is to:

 	Remove the damaged disks at sites A and C.

 	Either replace the disk and format a new NSD or simply reformat
 the existing disk if possible.

 	Add the disk back to the file system, performing a full resynchronization
 of the file system's data and metadata and restore the replica balance
 using the mmrestripefs command.

 	Failback with temporary loss and no configuration changes

 	Failback with temporary loss and configuration changes

 	Failback with permanent loss

 Parent topic: Steps to take after a disaster when using GPFS replication

 Failback with temporary loss and no configuration changes

 About this task

 If the outage was of a temporary nature and your configuration
 has not been altered, it is a simple process to failback to the original
 state. After all affected nodes and disks have been repaired and you
 are certain the data on the failed disks has not been changed:

 	Start GPFS on the repaired
 nodes where the file gpfs.sitesAC lists all of the nodes at
 sites A and C: mmstartup -N gpfs.sitesAC

 	Restart the affected disks. If more than one disk in the file
 system is down, they must all be started at the same time: mmchdisk fs0 start -a

 Parent topic: Failback procedures

 Related tasks:

 Failback with temporary loss and configuration changes

 Failback with permanent loss

 Failback with temporary loss and configuration changes

 About this task

 If the outage was of a temporary nature and your configuration
 has been altered, follow this procedure to failback to the original
 state. After all affected nodes and disks have been repaired and you
 are certain the data on the failed disks has not been changed:

 	Ensure that all nodes have the latest copy of the mmsdrfs file: mmchcluster -p LATEST

 	Migrate the primary cluster configuration server back to site A: mmchcluster -p nodeA001

 	Restore node quorum designations at sites A and C: mmchnode --quorum -N nodeA001,nodeA002,nodeA003,nodeC

 	Start GPFS on the repaired
 nodes where the file gpfs.sitesAC lists all of the nodes at
 sites A and C: mmstartup -N gpfs.sitesAC

 	Restore the file system descriptor quorum by informing the GPFS to include the repaired disks: mmfsctl fs0 include -d "gpfs1nsd;gpfs2nsd;gpfs5nsd"

 	Bring the disks online and restripe the file system across all
 disks in the cluster to restore the initial replication properties: mmchdisk fs0 start -a
mmrestripefs fs0 -b

 The -r flag may be used on the mmrestripefs command
 instead.

 Parent topic: Failback procedures

 Related tasks:

 Failback with temporary loss and no configuration changes

 Failback with permanent loss

 Failback with permanent loss

 About this task

 If the outage is of a permanent nature:

 	Remove the failed resources from the GPFS configuration

 	Replace the failed resources, then add the new resources into
 the configuration

 	Resume the operation of GPFS across
 the entire cluster

 Assume that sites A and C have had permanent
 losses. To remove all references of the failed nodes and disks from
 the GPFS configuration and replace
 them :

 	To remove the failed resources from the GPFS configuration:

 	If as part of the failover process, you did not migrate
 the primary cluster configuration server, migrate the server to node nodeB002 at
 site B: mmchcluster –p nodeB002

 	Delete the failed disks from the GPFS configuration: mmdeldisk fs0 "gpfs1nsd;gpfs2nsd;gpfs5nsd"
mmdelnsd "gpfs1nsd;gpfs2nsd;gpfs5nsd"

 	Delete the failed nodes from the GPFS configuration: mmdelnode -N nodeA001,nodeA002,nodeA003,nodeA004,nodeC

 	If there are new resources to add to the configuration:

 	Add the new nodes at sites A and C to the cluster
 where the file gpfs.sitesAC lists of the new nodes: mmaddnode -N gpfs.sitesAC

 	Ensure that all nodes have the latest copy of the mmsdrfs file: mmchcluster -p LATEST

 	Migrate the primary cluster configuration server back to site A: mmchcluster -p nodeA001

 	Start GPFS on the new nodes mmstartup -N gpfs.sitesAC

 	Prepare the new disks for use in the cluster, create the NSDs
 using the original disk descriptors for site A contained in
 the file clusterDisksAC: /dev/diskA1:nodeA002:nodeA003:dataAndMetadata:1
/dev/diskA2:nodeA002:nodeA003:dataAndMetadata:1
/dev/diskC1:nodeC::descOnly:3

 Issue this command: mmcrnsd -F clusterDisksAC

 	Add the new NSDs to the file system specifying the -r option
 to rebalance the data on all disks: mmadddisk fs0 -F clusterDisksAC -r

 Parent topic: Failback procedures

 Related tasks:

 Failback with temporary loss and no configuration changes

 Failback with temporary loss and configuration changes

 Synchronous mirroring utilizing IBM TotalStorage ESS
 PPRC

 PPRC is a function that continuously updates a secondary
 (target) copy of an ESS disk volume to match changes made to a primary
 (source) volume. Any pair of equal-sized ESS disks can be configured
 for a PPRC relationship, during which all write operations performed
 on the source are synchronously mirrored to the target device.

 The PPRC protocol guarantees that the secondary copy is constantly
 up-to-date by ensuring that the primary copy is written only if the
 primary storage subsystem received acknowledgement that the secondary
 copy has been written. The paired volumes typically reside on two
 distinct and geographically separated ESS devices communicating over ESCON or over
 a Fibre Channel link.

 A number of PPRC tasks are provided to facilitate recovery in the
 event of a site-wide failure. After the failure of the primary volume
 (or the failure of the entire storage subsystem), users execute the
 PPRC failover task, which suspends the PPRC relationship between the
 given pair of volumes and turns the target volume into a primary.
 When a volume enters the suspended state, a modification bitmap is
 established to keep track of the write operations performed on that
 volume to allow for an efficient resynchronization.

 Once the operation of the original primary volume has been restored,
 the PPRC failback task is executed to resynchronize the content of
 the two volumes. The original source volume is switched to the target
 mode, after which all modified data tracks (those recorded in the
 modification bitmap) are copied from the original target disk. The
 volume pair is then suspended again and another task is executed to
 reverse the volumes' roles, thus bringing the pair into its initial
 state.

 The ESS Copy Services Web Interface User's Guide as described
 in the IBM TotalStorage Enterprise Storage Server Web
 Interface User's Guide, is a GUI that allows users to establish
 and terminate PPRC pairs, and invoke failover, failback, and related
 PPRC functions. A Java-based command-line interface as described in
 the IBM Enterprise Storage Server Command-Line
 Interfaces User's Guide, provides another method of interaction.

 A PPRC-based GPFS cluster
 can be established in two manners:

 	A single GPFS cluster encompassing
 two sites and an optional tiebreaker site

 	Two distinct GPFS clusters

 	An active/active GPFS cluster

 	An active/passive GPFS cluster

 	Data integrity and the use of PPRC consistency groups

 Parent topic: Establishing disaster recovery for your GPFS cluster

 An active/active GPFS cluster

 The high-level organization of PPRC-based active/active GPFS cluster is illustrated in Figure 1. A single GPFS cluster is created over three sites. The
 data is mirrored between two active sites with a cluster configuration
 server residing at each site and a tiebreaker quorum node installed
 at the third location. The presence of an optional tiebreaker node
 allows the surviving site to satisfy the node quorum requirement with
 no additional intervention. Without the tiebreaker, the failover procedure
 requires an additional administrative command to relax node quorum
 and allow the remaining site to function independently. Furthermore,
 the nodes at the recovery site have direct disk paths to the primary
 site's storage.

 [image: This figure illustrates a synchronous active/active PPRC-based, mirrored GPFS configuration with a tiebreaker site. The entire figure represents one GPFS cluster. It consists of three sites, named: the GPFS production site, the GPFS recovery site, and the tiebreaker site. They are attached using an IP network. The GPFS production site has four nodes: one node designated as the primary cluster configuration server, two quorum nodes, and one non-quorum node. The GPFS production site has disks referred to as PPRC source volumes, and they are attached with shared NSD access. The GPFS recovery site has four nodes: one node designated as the secondary cluster configuration server, two quorum nodes, and one non-quorum node. The GPFS recovery site has disks referred to as PPRC target volumes, and they are attached with shared NSD access. The GPFS production site and the GPFS recovery site share their disks using shared NSD access. The Peer-to-Peer Remote Copy function also connects the disks from the GPFS production site and the GPFS recovery site. The tiebreaker site consists of one quorum node.]

Figure 6. A synchronous active/active
 PPRC-based mirrored GPFS configuration
 with a tiebreaker site

 	Setting up an active/active GPFS configuration

 	Failover to the recovery site and subsequent failback for an active/active configuration

 Parent topic: Synchronous mirroring utilizing IBM TotalStorage ESS PPRC

 Setting up an active/active GPFS configuration

 About this task

 To establish an active/active PPRC-based GPFS cluster with a tiebreaker site as shown
 in Figure 1 of An active/active GPFS cluster,
 consider the configuration:

 	Site A (production site)

 	Consists of:

 	Nodes – nodeA001, nodeA002, nodeA003, nodeA004

 	Storage subsystems – Enterprise Storage Server (ESS) A,
 logical subsystem (LSS) A

 	Disk volumes – diskA on LSS A
 diskA is
 SAN-attached and accessible from sites A and B

 	Site B (recovery site)

 	Consists of:

 	Nodes – nodeB001, nodeB002, nodeB003, nodeB004

 	Storage subsystems – ESS B, LSS B

 	Disk volumes – diskB on LSS B
 diskB is
 SAN-attached and accessible from site B only

 	Site C (tiebreaker)

 	Consists of:

 	Nodes – nodeC
 diskC is an NSD defined over
 the internal disk of the node nodeC and is directly accessible
 only from site C

 	Create a dual-active ESS copy services domain assigning ESS A
 as ServerA and ESS B as ServerB. See the IBM Enterprise Storage Server User's
 Guide. In order to provide for the availability of at least one
 server after a disaster, the servers should reside at different sites.

 	Establish a PPRC logical path from LSS A to LSS B.
 See the IBM Enterprise Storage Server Implementing
 ESS Copy Services in Open Environments.

 	In order to protect the order of dependent writes that span multiple
 disk volumes, multiple LSS devices, or both, a consistency group should
 be defined over all logical subsystems at the primary site. See the IBM Enterprise Storage Server Implementing
 ESS Copy Services in Open Environments. In this case that would
 only be LSS A. See Data integrity and the use of PPRC consistency
 groups.

 	Establish a synchronous PPRC volume pair between the source and
 target using the copy entire volume option and leave the permit
 read from secondary option disabled. In this case it would be
 diskA-diskB. See the IBM Enterprise Storage
 Server Implementing ESS Copy Services in Open Environments.

 	Create a GPFS cluster defining
 the primary cluster configuration server as nodes nodeA001 at
 site A, the secondary cluster configuration server as nodeB001 at
 site B, an equal number of quorum nodes at each site, including
 the tiebreaker node at site C, nodeC. To prevent the
 tiebreaker node from assuming the role of file system manager, define
 it as client. Define all other quorum nodes as manager.
 List the nodes in the cluster in the file NodeDescFile. The NodeDescFile file
 contains the node descriptors: nodeA001:quourum-manager
nodeA002:quorum-manager
nodeA003:quorum-manager
nodeA004:client
nodeB001:quorum-manager
nodeB002:quorum-manager
nodeB003:quorum-manager
nodeB004:client
nodeC:quorum-client

 Issue this command: mmcrcluster –N NodeDescFile –p nodeA001 –s nodeB001

 	Enable the unmountOnDiskFail option
 on the tiebreaker node preventing false disk errors in the SAN configuration
 from being reported to the file system manager by issuing the mmchconfig command: mmchconfig unmountOnDiskFail=yes -N nodeC

 	Create an NSD over diskA. The disk descriptor contained
 in the file DiskDescFile is: /dev/diskA:nodeA001:nodeA002:dataAndMetadata:1

 Issue this command: mmcrnsd –F DiskDescFileP

 	Start the GPFS daemon on
 all nodes: mmstartup -a

 	Create a GPFS file system
 and mount it on all nodes at sites A and B. mmcrfs /gpfs/fs0 fs0 -F DiskDescFile

 Parent topic: An active/active GPFS cluster

 Failover to the recovery site and subsequent failback for an
 active/active configuration

 About this task

 For an active/active PPRC-based cluster, follow these
 steps to restore access to the file system through site B after
 site A has experienced a disastrous failure:

 	Stop the GPFS daemon on
 the surviving nodes as site B where the file gpfs.siteB lists
 all of the nodes at site B: mmshutdown -N gpfs.siteB

 	Perform PPRC failover, establishing a synchronous PPRC pair diskB-diskA with
 the PPRC failover option. See the IBM Enterprise Storage
 Server Implementing ESS Copy Services in Open Environments.
 The PPRC state of diskB is changed from duplex target to suspended
 source and is available for regular I/O. Refer to the IBM Enterprise Storage Server for
 a detailed explanation of PPRC failover.

 	If you needed to relax node quorum or make configuration changes,
 migrate the primary cluster configuration server to site B,
 issue this command: mmchcluster -p nodeB001

 	If site C, the tiebreaker, failed along with site A,
 existing node quorum designations must be relaxed in order to allow
 the surviving site to fulfill quorum requirements. To relax node quorum,
 temporarily change the designation of each of the failed quorum nodes
 to non-quorum nodes: mmchnode --nonquorum -N nodeA001,nodeA002,nodeA003,nodeC

 	Ensure the source volumes are not accessible to the recovery
 site:

 	Disconnect the cable

 	Define the nsddevices user exit file
 to exclude the source volumes

 	Restart the GPFS daemon
 on all surviving nodes: mmstartup -N gpfs.siteB

 Once the operation of site A has been restored,
 the failback procedure is executed to restore the access to the file
 system from that location. The failback operation is a two-step process:

 	Resynchronize the paired volumes by establishing a temporary PPRC
 pair with diskB defined as the source and diskA as the
 target. The modification bitmap is traversed to find the mismatching
 disk sectors, whose content is then copied from diskB to diskA.

 	Establish a PPRC path from LSS B to LSS A enabling
 the consistency group option. See the IBM Enterprise Storage Server Implementing
 ESS Copy Services in Open Environments.

 	Establish a synchronous PPRC pair diskB-diskA with
 the PPRC failback option and permit read from secondary left
 disabled. See the IBM Enterprise Storage
 Server Implementing ESS Copy Services in Open Environments.

 	Wait for the volume pair to reach the duplex (fully synchronized)
 state.

 	Shut GPFS down at site B and
 reverse the disk roles (the original primary disk becomes the primary
 again), bringing the PPRC pair to its initial state.

 	Stop the GPFS daemon on
 all nodes.

 	Establish a synchronous PPRC pair diskA-diskB with
 the PPRC failover option. See the IBM Enterprise Storage
 Server Implementing ESS Copy Services in Open Environments.

 	Establish a synchronous PPRC pair diskA-diskB with
 the PPRC failback option and permit read from secondary left
 disabled. See the IBM Enterprise Storage
 Server Implementing ESS Copy Services in Open Environments.

 	If during failover you migrated the primary cluster configuration
 server to a node in site B:

 	Migrate the primary cluster configuration server back to site A: mmchcluster -p nodeA001

 	Restore the initial quorum assignments: mmchnode --quorum -N nodeA001,nodeA002,nodeA003,nodeC

 	Ensure that all nodes have the latest copy of the [image: Start of change]mmsdrfs[image: End of change] file: mmchcluster -p LATEST

 	Ensure the source volumes are accessible to the recovery
 site:

 	Reconnect the cable

 	Edit the nsddevices user exit file to include the
 source volumes

 	Start the GPFS daemon on
 all nodes: mmstartup -a

 	Mount the file system on all the nodes at sites A and B.

 Parent topic: An active/active GPFS cluster

 An active/passive GPFS cluster

 In an active/passive environment, two GPFS clusters
 are set up in two geographically distinct locations (the production
 and the recovery sites). We refer to these as peer GPFS clusters. A GPFS file
 system is defined over a set of disk volumes located at the production
 site and these disks are mirrored using PPRC to a secondary set of
 volumes located at the recovery site. During normal operation, only
 the nodes in the production GPFS cluster
 mount and access the GPFS file
 system at any given time, which is the primary difference between
 a configuration of this type and the active/active model.

 In the event of a catastrophe in the production cluster, the PPRC
 failover task is executed to enable access to the secondary replica
 of the file system located on the target PPRC disks. See IBM Redbooks for IBM TotalStorage Enterprise Storage Server Implementing
 ESS Copy Services in Open Environments for a detailed explanation
 of PPRC failover and failback and the means of invoking these procedures
 in your environment.

 The secondary replica is then mounted on nodes in the recovery
 cluster as a regular GPFS file
 system, thus allowing the processing of data to resume at the recovery
 site. At a latter point, after restoring the physical operation of
 the production site, we execute the failback procedure to resynchronize
 the content of the PPRC volume pairs between the two clusters and
 re-enable access to the file system in the production environment.

 The high-level organization of synchronous active/passive PPRC-based GPFS cluster is shown in Figure 1.

 [image: This figure illustrates a synchronous, active/passive PPRC-based GPFS configuration without a tiebreaker site. The entire figure consists of two GPFS clusters, named the production site and the recovery site. They are attached using an IP network. The production cluster has five nodes: one node designated as the primary cluster configuration server, one node designated as the secondary cluster configuration server, two quorum nodes, and a non-quorum node. The production cluster has disks referred to as PPRC source volumes, and they are attached with shared NSD access. The recovery cluster has five nodes: one node designated as the primary cluster configuration server, one node designated as the secondary cluster configuration server, two quorum nodes, and one non-quorum node. The recovery cluster has disks referred to as PPRC target volumes, and they are attached with shared NSD access. The PPRC source and target disks are attached using the Peer-to-Peer Remote Copy function.]

Figure 7. A synchronous
 active/passive PPRC-based GPFS configuration
 without a tiebreaker site

 	Setting up an active/passive GPFS configuration

 	Failover to the recovery site and subsequent failback for an active/passive configuration

 Parent topic: Synchronous mirroring utilizing IBM TotalStorage ESS PPRC

 Setting up an active/passive GPFS configuration

 About this task

 To establish an active/passive PPRC based GPFS cluster as shown in Figure 1 of An active/passive GPFS cluster,
 consider the configuration:

 	Production site

 	Consists of:

 	Nodes – nodeP001, nodeP002, nodeP003, nodeP004, nodeP005

 	Storage subsystems – Enterprise Storage Server (ESS) P,
 logical subsystem (LSS) P

 	LUN ids and disk volume names – lunP1 (hdisk11), lunP2 (hdisk12), lunP3 (hdisk13), lunP4 (hdisk14)

 	Recovery site

 	Consists of:

 	Nodes – nodeR001, nodeR002, nodeR003, nodeR004, nodeR005

 	Storage subsystems – ESS R, LSS R

 	LUN ids and disk volume names – lunR1 (hdisk11), lunR2 (hdisk12), lunR3 (hdisk13), lunR4 (hdisk14)

 All disks are SAN-attached and directly accessible
 from all local nodes.

 	Create a dual-active ESS copy services domain assigning ESS P as ServerA and
 ESS R as ServerB. See the IBM Enterprise Storage Server User's
 Guide.

 	Establish a PPRC logical path from LSS P to LSS R enabling
 the consistency group option. See the IBM Enterprise Storage
 Server Implementing ESS Copy Services in Open Environments,
 section on Data integrity and the use of PPRC consistency groups.

 	Establish synchronous PPRC volume pairs using the copy entire
 volume option and leave the permit read from secondary option
 disabled: lunP1-lunR1 (source-target)
lunP2-lunR2 (source-target)
lunP3-lunR3 (source-target)
lunP4-lunR4 (source-target)

 See the IBM Enterprise Storage
 Server Implementing ESS Copy Services in Open Environments.

 	Create the recovery cluster selecting nodeR001 as the primary
 cluster data server node, nodeR002 as the secondary cluster
 data server nodes, and the nodes in the cluster contained in the file NodeDescFileR.
 The NodeDescFileR file contains the node descriptors: nodeR001:quourum-manager
nodeR002:quourum-manager
nodeR003:quourum-manager
nodeR004:quourum-manager
nodeR005

 Issue this command: mmcrcluster –N NodeDescFileR –p nodeR001 –s nodeR002

 	Create the GPFS production
 cluster selecting nodeP001 as the primary cluster data server
 node, nodeP002 as the secondary cluster data server node, and
 the nodes in the cluster contained in the file NodeDescFileP.
 The NodeDescFileP file contains the node descriptors: nodeP001:quourum-manager
nodeP002:quourum-manager
nodeP003:quourum-manager
nodeP004:quourum-manager
nodeP005

 Issue this command: mmcrcluster –N NodeDescFileP –p nodeP001 –s nodeP002

 	At all times the peer clusters must see a consistent image of
 the mirrored file system's configuration state contained in the mmsdrfs file.
 After the initial creation of the file system, all subsequent updates
 to the local configuration data must be propagated and imported into
 the peer cluster. Execute the mmfsctl syncFSconfig command
 to resynchronize the configuration state between the peer clusters
 after each of these actions in the primary GPFS cluster:

 	Addition of disks through the mmadddisk command

 	Removal of disks through the mmdeldisk command

 	Replacement of disks through the mmrpldisk command

 	Modifications to disk attributes through the mmchdisk command

 	Changes to the file system's mount point through the mmchfs
 -T command

 To automate the propagation of the configuration state to
 the recovery cluster, activate and use the syncFSconfig user
 exit. Follow the instructions in the prolog of /usr/lpp/mmfs/samples/syncfsconfig.sample.

 	From a node in the production cluster, start the GPFS daemon on all nodes: mmstartup -a

 	Create the NSDs at the production site. The disk descriptors contained
 in the file DiskDescFileP are: /dev/hdisk11:nodeP001:nodeP002:dataAndMetadata:-1
/dev/hdisk12:nodeP001:nodeP002:dataAndMetadata:-1
/dev/hdisk13:nodeP001:nodeP002:dataAndMetadata:-1
/dev/hdisk14:nodeP001:nodeP002:dataAndMetadata:-1

 Issue
 this command: mmcrnsd –F DiskDescFileP

 	Create the GPFS file system
 and mount it on all nodes at the production site: mmcrfs /gpfs/fs0 fs0 -F DiskDescFileP

 Parent topic: An active/passive GPFS cluster

 Failover to the recovery site and subsequent failback for an
 active/passive configuration

 About this task

 For an active/passive PPRC-based cluster, follow these
 steps to failover production to the recovery site:

 	If the GPFS daemon is not
 already stopped on all surviving nodes in the production cluster,
 from a node in the production cluster issue: mmshutdown –a

 	Perform PPRC failover. This step involves establishing synchronous
 PPRC pairs with the failover option:

 	lunR1-lunP1

 	lunR2-lunP2

 	lunR3-lunP3

 	lunR4-lunP4

 See the IBM Enterprise Storage
 Server Implementing ESS Copy Services in Open Environments.
 After the completion of this step, the volumes on ESS R enter the suspended
 source PPRC state.

 	From a node in the recovery cluster start GPFS: mmstartup –a

 	Mount the file system on all nodes in the recovery cluster.

 Once the physical operation of the production site has
 been restored, execute the failback procedure to transfer the file
 system activity back to the production GPFS cluster.
 The failback operation is a two-step process:

 	For each of the paired volumes, resynchronize the pairs by establishing
 a temporary PPRC pair with the recovery LUN acting as the sources
 for the production LUN. The PPRC modification bitmap is traversed
 to find the mismatching disk tracks, whose content is then copied
 from the recovery LUN to the production LUN.

 	Establish a PPRC path from LSS R to LSS P enabling
 the consistency group option. See the IBM Enterprise Storage Server Implementing
 ESS Copy Services in Open Environments.

 	Establish synchronous PPRC volume pairs with the failback option,
 leaving the permit read from secondary option disabled.

 	lunR1-lunP1

 	lunR2-lunP2

 	lunR3-lunP3

 	lunR4-lunP4

 See the IBM Enterprise Storage
 Server Implementing ESS Copy Services in Open Environments.

 	Wait for all PPRC pairs to reach the duplex (fully synchronized)
 state.

 	If the state of the system configuration has changed, update the GPFS configuration data in the production
 cluster to propagate the changes made while in failover mode. From
 a node at the recovery site, issue: mmfsctl all syncFSconfig –n gpfs.sitePnodes

 	Stop GPFS on all nodes in
 the recovery cluster and reverse the disk roles so the original primary
 disks become the primaries again:

 	From a node in the recovery cluster, stop the GPFS daemon on all nodes in the recovery cluster: mmshutdown –a

 	Establish synchronous PPRC volume pairs with the PPRC failover
 option:

 	lunP1-lunR1

 	lunP2-lunR2

 	lunP3-lunR3

 	lunP4-lunR4

 See the IBM Enterprise Storage
 Server Implementing ESS Copy Services in Open Environments.

 	Establish synchronous PPRC volume pairs with the PPRC failback
 option, leaving the permit read from secondary option disabled:

 	lunP1-lunR1

 	lunP2-lunR2

 	lunP3-lunR3

 	lunP4-lunR4

 See the IBM Enterprise Storage
 Server Implementing ESS Copy Services in Open Environments.

 	From a node in the production cluster, start GPFS: mmstartup –a		

 	From a node in the production cluster, mount the file system on
 all nodes in the production cluster.

 Parent topic: An active/passive GPFS cluster

 Data integrity and the use of PPRC consistency groups

 The integrity of the post-disaster replica of the file system contained
 on the secondary PPRC disk volumes depends on the assumption that
 the order of dependent write operations is preserved by the PPRC mirroring
 mechanism. While the synchronous nature of PPRC guarantees such ordering
 during periods of stability, certain types of rolling failure scenarios
 require additional consideration. By default, without the PPRC consistency
 group option enabled, if the primary ESS detects the loss of the
 physical PPRC connectivity or the failure of one of the secondary
 disks, it responds by moving the corresponding primary volumes to
 the suspended state but continues to process the subsequent I/O requests
 as normal. The subsystem does not report this condition to the driver
 and, as a result, the application continues normal processing without
 any knowledge of the lost updates. GPFS relies
 on log recovery techniques to provide for the atomicity of updates
 to the file system's metadata, which is why such behavior would expose GPFS to a serious data integrity
 risk. Therefore to provide for the proper ordering of updates to the
 recovery copy of the file system, it is suggested you always enable
 the consistency group option when configuring the PPRC paths
 between the peer logical subsystems.

 Figure 1 illustrates this problem.
 Consider a setup with two primary and two secondary subsystems, each
 providing access to two LUNs. The four primary LUNs make up the primary
 replica of the file system. At some point, GPFS attempts to issue a sequence of four write
 requests, one to each primary disk, with the expectation that the
 updates appear in the exact order they were issued. If PPRC path 1
 breaks before the start of the first write, the recovery site receives
 updates 3 and 4, but not necessarily 1 and 2 – a result that
 violates the write dependency rule and renders the target replica
 of the file system unusable.

 The PPRC consistency group option determines the behavior
 of the primary subsystem in situations where a sudden failure of the
 secondary volume, or a failure of the inter-site interconnect, makes
 it impossible to sustain the normal synchronous mirroring process.
 If the PPRC path between the pair has been defined with the consistency
 group option, the primary volume enters a long busy state, and
 the subsystem reports this condition back to the host system with
 the QUEUE FULL (QF) SCSI status byte code. Typically, the driver makes
 several attempts to re-queue the request and ultimately reports the
 failure to the requestor. This allows GPFS to
 execute the appropriate action in response to the failure by either
 marking the disk down or panicking the file system. See the GPFS:
 Problem Determination Guide.

 [image: This figure illustrates violation of write ordering without the use of a PPRC consistency group. The entire figure consists of two GPFS clusters, named production site and recovery site. The production site has two ESS subsystems, named ESS A1, designated as a PPRC primary, and ESS A2, also a PPRC primary. ESS A1 has two disks, labelled 1 and 2. ESS A2 has two disks, labelled 3 and 4. The recovery site has two ESS subsystems, named ESS B1, designated as a PPRC secondary, and ESS B2, also a PPRC secondary. ESS B1 has two disks, labelled 1 and 2. ESS B2 has two disks, labelled 3 and 4. ESS A1 is connected to ESS B1 with a broken PPRC path called PPRC path 1. ESS A2 is connected to ESS B2 with a PPRC path called PPRC path 2, but this path has been broken.]

Figure 8. Violation of write ordering without the use
 of a PPRC consistency group

 Parent topic: Synchronous mirroring utilizing IBM TotalStorage ESS PPRC

 Asynchronous mirroring utilizing ESS FlashCopy

 The FlashCopy feature
 of ESS provides an easy implementation to make a point-in-time copy
 of a GPFS file system as an
 online backup mechanism. This function provides an instantaneous copy
 of the original data on the target disk, while the actual transfer
 of data takes place asynchronously and is fully transparent to the
 user.

 When a FlashCopy disk
 is first created, the subsystem establishes a control bitmap that
 is subsequently used to track the changes between the source and the
 target disks. When processing read I/O requests sent to the target
 disk, this bitmap is consulted to determine whether the request can
 be satisfied using the target's copy of the requested block.
 If the track containing the requested data has not yet been copied,
 the source disk is instead accessed and its copy of the data is used
 to satisfy the request. The FlashCopy feature
 is further described in the IBM Enterprise Storage
 Server. Similar to PPRC, FlashCopy operations
 can be invoked using the ESS Copy Services web interface or the command-line
 scripts.

 To prevent the appearance of out-of-order updates, it is important
 to consider data consistency when using FlashCopy. Prior to taking the FlashCopy image all disk volumes
 that make up the file system must be brought to same logical point
 in time. Two methods may be used to provide for data consistency in
 the FlashCopy image of
 your GPFS file system. Both
 techniques guarantee the consistency of the FlashCopy image by the means of temporary
 suspension of I/O, but either can be seen as the preferred method
 depending on your specific requirements and the nature of your GPFS client application:

 	The use of FlashCopy consistency
 groups provides for the proper ordering of updates, but this method
 does not by itself suffice to guarantee the atomicity of updates as
 seen from the point of view of the user application. If the application
 process is actively writing data to GPFS,
 the on-disk content of the file system may, at any point in time,
 contain some number of incomplete data record updates and possibly
 some number of in-progress updates to the GPFS metadata. These appear as partial updates
 in the FlashCopy image
 of the file system, which must be dealt before enabling the image
 for normal file system use. The use of metadata logging techniques
 enables GPFS to detect and recover
 from these partial updates to the file system's metadata. However,
 ensuring the atomicity of updates to the actual data remains the responsibility
 of the user application. Consequently, the use of FlashCopy consistency groups is suitable
 only for applications that implement proper mechanisms for the recovery
 from incomplete updates to their data.
 The FlashCopy consistency group mechanism is
 used to freeze the source disk volume at the logical instant
 at which its image appears on the target disk:

 	Issue the FlashCopy creation
 command, enabling the freeze FlashCopy consistency
 group option to suspend all I/O activity against each source volume
 in the file system. All I/O requests directed to the volumes now receive
 the SCSI status code QUEUE FULL (QF).

 	Issue the FlashCopy consistency
 created task to release the consistency group and resume the normal
 processing of I/O. For details on the use of FlashCopy consistency groups, see the IBM Enterprise Storage Server Implementing
 ESS Copy Services in Open Environments.

 Assuming a configuration with:

 	Storage subsystems – ESS 1; logical subsystem LSS 1

 	LUN ids and disk volume names – lunS1 (hdisk11), lunS2 (hdisk12), lunT1, lunT2
 lunS1 and lunS2 are
 the FlashCopy source volumes.
 These disks are SAN-connected and appear on the GPFS nodes as hdisk11 and hdisk12,
 respectively. A single GPFS file
 system fs0 has been defined over these two disks.

 lunT1 and lunT2 are
 the FlashCopy target volumes.
 None of the GPFS nodes have
 direct connectivity to these disks.

 To generate a FlashCopy image
 using a consistency group:

 	Run the establish FlashCopy pair task
 with the freeze FlashCopy consistency
 group option. Create the volume pairs: lunS1 – lunT1 	(source-target)
lunS2 – lunT2 	(source-target)

 See the IBM Enterprise Storage Server Implementing
 ESS Copy Services in Open Environments.

 	Run the consistency created task on all logical subsystems
 that hold any of the FlashCopy disks.
 See the IBM Enterprise Storage Server Implementing
 ESS Copy Services in Open Environments.

 	The use of file-system-level suspension through the mmfsctl command
 prevents incomplete updates in the FlashCopy image
 and is the suggested method for protecting the integrity of your FlashCopy images. Issuing
 the mmfsctl command leaves the on-disk copy of the file system
 in a fully consistent state, ready to be flashed and copied onto a
 set of backup disks. The command instructs GPFS to flush the data buffers on all nodes,
 write the cached metadata structures to disk, and suspend the execution
 of all subsequent I/O requests.

 	To initiate file-system-level suspension, issue the mmfsctl
 suspend command.

 	To resume normal file system I/O, issue the mmfsctl resume command.

 Assuming a configuration with:

 	Storage subsystems – ESS 1; logical subsystem LSS 1

 	LUN ids and disk volume names – lunS1 (hdisk11), lunS2 (hdisk12), lunT1, lunT2
 lunS1 and lunS2 are
 the FlashCopy source volumes.
 These disks are SAN-connected and appear on the GPFS nodes as hdisk11 and hdisk12,
 respectively. A single GPFS file
 system fs0 has been defined over these two disks.

 lunT1 and lunT2 are
 the FlashCopy target volumes.
 None of the GPFS nodes have
 direct connectivity to these disks.

 To generate a FlashCopy image
 using file-system-level suspension:

 	From any node in the GPFS cluster,
 suspend all file system activity and flush the GPFS buffers on all nodes: mmfsctl fs0 suspend

 	Run the establish FlashCopy pair task
 to create the following volume pairs: lunS1 – lunT1 	(source-target)
lunS2 – lunT2 	(source-target)

 See the IBM Enterprise Storage Server Implementing
 ESS Copy Services in Open Environments.

 	From any node in the GPFS cluster,
 resume the file system activity: mmfsctl fs0 resume

 Several uses of the FlashCopy replica
 after its initial creation can be considered. For example, if your
 primary operating environment suffers a permanent loss or a corruption
 of data, you may choose to flash the target disks back onto the originals
 to quickly restore access to a copy of the file system as seen at
 the time of the previous snapshot. Before restoring the file system
 from a FlashCopy, please
 make sure to suspend the activity of the GPFS client
 processes and unmount the file system on all GPFS nodes.

 To protect your data against site-wide disasters, you may chose
 to instead transfer the replica offsite to a remote location using
 PPRC or any other type of bulk data transfer technology. Alternatively,
 you may choose to mount the FlashCopy image
 as a separate file system on your backup processing server and transfer
 the data to tape storage. To enable regular file system access to
 your FlashCopy replica,
 create a single-node GPFS cluster
 on your backup server node and execute the mmfsctl syncFSconfig command
 to import the definition of the file system from your production GPFS cluster. Figure 1 provides a schematic view of an
 asynchronous recovery GPFS environment
 using a combination of PPRC and FlashCopy.
 In such environments, two independent GPFS clusters
 are set up in distinct geographic locations (production and recovery
 sites). We refer to such clusters as peer GPFS clusters. Peer clusters must share the
 same UID/GID space, but otherwise need not belong to the same administrative
 domain. In particular, the administrator is free to identify nodes
 in both clusters with the same set of short hostnames if such a configuration
 is indeed desired.

 [image: This figure illustrates high-level organization of a FlashCopy/PPRC recovery environment. The entire figure consists of two GPFS clusters, named production site and recovery site. They are connected using an IP network. The production site has a node designated as the primary cluster configuration server, a node designated at the secondary cluster configuration server, two quorum nodes, a non-quorum node, and two disks named diskA1 and diskA2. They are connected together using FlashCopy, and they are connected to the nodes of the production site using shared NSD access. DiskA2 is referred to as the Flash Copy target and PPRC source. The recovery site has a node designated as the primary cluster configuration server, a node designated at the secondary cluster configuration server, two quorum nodes, a non-quorum node, and a disk named diskB1, designated as a PPRC target and connected to the nodes of the recovery site using shared NSD access. DiskA2 is connected to diskB2 with a PPRC path.]

Figure 9. High-level organization
 of a FlashCopy/PPRC recovery environment

 FlashCopy/PPRC provides for the availability of the file system's
 on-disk content in the recovery cluster. But in order to make the
 file system known and accessible, you must issue the mmfsctl
 syncFSConfig command to:

 	Import the state of the file system's configuration from
 the primary location.

 	Propagate all relevant changes to the configuration in the primary
 cluster to its peer to prevent the risks of discrepancy between the
 peer's mmsdrfs file and the content
 of the file system descriptor found in the snapshot.
 It is suggested
 you generate a new FlashCopy replica
 immediately after every administrative change to the state of the
 file system. This eliminates the risk of a discrepancy between the GPFS configuration data contained
 in the mmsdrfs file and the on-disk content of the replica.

 Restriction: The primary copy of a GPFS file system and its FlashCopy image cannot coexist
 in the same GPFS cluster. A
 node can mount either the original copy of the file system or one
 of its FlashCopy replicas,
 but not both. This restriction has to do with the current implementation
 of the NSD-to-LUN mapping mechanism, which scans all locally-attached
 disks, searching for a specific value (the NSD id) at a particular
 location on disk. If both the original volume and its FlashCopy image are visible to a particular
 node, these disks would appear to GPFS as
 distinct devices with identical NSD ids
 For this reason, we ask
 users to zone their SAN configurations such that at most one replica
 of any given GPFS disk is visible
 from any node. That is, the nodes in your production cluster should
 have access to the disks that make up the actual file system but should
 not see the disks holding the FlashCopy images,
 whereas the backup server should see the FlashCopy targets but not the originals.

 Alternatively,
 you can use the nsddevices user exit located
 in /var/mmfs/etc/ to explicitly define the subset of the locally
 visible disks to be accessed during the NSD device scan on the local
 node. See Setting up FlashCopy using file-system-level suspension.

 In the production GPFS cluster, FlashCopy is used to take
 periodic volume-level snapshots of the GPFS file
 system onto a set of idle local disks and the snapshots are then propagated
 to the peer recovery cluster using PPRC. The goal of this technique
 is to provide a consistent (but not necessarily up-to-date) image
 of the file system at the recovery site that can be used to restore
 operation in the event of a disaster in the primary cluster. Note
 that since from the GPFS perspective,
 the replicas are two entirely distinct file systems, nothing prevents
 the administrator from mounting and operating on both replicas concurrently
 if deemed necessary.

 	Setting up FlashCopy using file-system-level suspension

 Parent topic: Establishing disaster recovery for your GPFS cluster

 Setting up FlashCopy using
 file-system-level suspension

 About this task

 To prepare a file system as depicted in Figure 1 of Asynchronous mirroring utilizing ESS FlashCopy,
 using file-system-level suspension to provide for data consistency,
 consider the configuration:

 	Site A - primary cluster

 	Consisting of:

 	Nodes – nodeA001, nodeA002, nodeA003, nodeA004, nodeA005

 	Disk device names – diskA1, diskA2

 	Site B - recovery site

 	Consisting of:

 	Nodes – nodeB001, nodeB002, nodeB003, nodeB004, nodeB005

 	Disks – diskB1

 There is a single file system, fs0, defined
 on diskA1. To create a volume-level snapshot and propagate
 the snapshot to the recovery cluster:

 	Define an nsddevices user exit file
 to prevent the production site from using the FlashCopy target disk diskA2: echo "echo diskA1 hdisk" > /var/mmfs/etc/nsddevices
chmod 744 /var/mmfs/etc/nsddevices

 Refer to the prolog
 of /usr/lpp/mmfs/samples/nsddevices.samples for
 detailed instructions on the usage of nsddevices.

 	In the primary cluster, suspend all file system I/O activity and
 flush the GPFS buffers: mmfsctl fs0 suspend

 	Establish a FlashCopy pair
 using diskA1 as the source and diskA2 as the target.
 See the IBM Enterprise Storage Server Implementing
 ESS Copy Services in Open Environments.

 	Resume the file system I/O activity: mmfsctl fs0 resume

 	Establish a PPRC path and a synchronous PPRC volume pair diskA2-diskB (primary-secondary).
 Use the copy entire volume option and leave the permit read
 from secondary option disabled. See the IBM Enterprise Storage Server Implementing
 ESS Copy Services in Open Environments.

 	Wait for the completion of the FlashCopy background
 task. Wait for the PPRC pair to reach the duplex (fully synchronized)
 state.

 	Terminate the PPRC volume pair diskA2-diskB. See
 the IBM Enterprise Storage Server Implementing
 ESS Copy Services in Open Environments.

 	If this is the first time the snapshot is taken, or if the configuration
 state of fs0 changed since the previous snapshot, propagate
 the most recent configuration to site B: mmfsctl all syncFSconfig -n nodes.siteB

 The
 file nodes.siteB lists all of the nodes,
 one per line, at the recovery site.

 Parent topic: Asynchronous mirroring utilizing ESS FlashCopy

 Implementing a clustered NFS using GPFS on Linux

 In addition to the traditional exporting of GPFS file systems using the Network File System
 (NFS) protocol, GPFS allows
 you to configure a subset of the nodes in the cluster to provide
 a highly-available solution for exporting GPFS file systems using NFS.

 Note: This feature is available
 with GPFS Standard
 Edition or
 higher.

 The participating nodes are designated as Cluster NFS (CNFS) member
 nodes and the entire setup is frequently referred to as CNFS or a
 CNFS cluster.

 In this solution, all CNFS nodes export the same file systems to
 the NFS clients. When one of the CNFS nodes fails, the NFS serving
 load moves from the failing node to another node in the CNFS cluster.
 Failover is done using recovery groups to help choose the preferred
 node for takeover. For the NFS client node to experience a seamless
 failover, hard mounts must be used. The use of soft mounts will
 likely result in stale NFS file handle conditions when a server experiences
 a problem, even though CNFS failover will still be done.

 Currently, CNFS is supported only in the Linux environment. For an up-to-date list of
 supported operating systems, specific distributions, and other dependencies,
 refer to the GPFS FAQ
 in IBM Knowledge Center.

 	NFS monitoring

 Every node in the CNFS cluster runs a separate GPFS utility that monitors GPFS, NFS, and networking components on the
 node. Upon failure detection and based on your configuration, the
 monitoring utility might invoke a failover.

 	NFS failover

 As part of GPFS recovery,
 the CNFS cluster failover mechanism is invoked. It transfers the NFS
 serving load that was served by the failing node to another node in
 the CNFS cluster. Failover is done using recovery groups to help choose
 the preferred node for takeover.

 	NFS locking and load balancing

 CNFS supports a failover of all of the node’s load together
 (all of its NFS IP addresses) as one unit to another node. However,
 if no locks are outstanding, individual IP addresses can be moved
 to other nodes for load balancing purposes.

 	CNFS network setup

 In addition to one set of IP addresses for the GPFS cluster, a separate set of one or more
 IP addresses is required for CNFS serving.

 	CNFS setup

 You can set up a clustered NFS environment within a GPFS cluster.

 	CNFS administration

 There are some common CNFS administration tasks in this
 topic along with a sample configuration.

 NFS monitoring

 Every node in the CNFS cluster runs a separate GPFS utility that monitors GPFS, NFS, and networking components on the
 node. Upon failure detection and based on your configuration, the
 monitoring utility might invoke a failover.

 Parent topic: Implementing a clustered NFS using GPFS on Linux

 Related concepts:

 NFS failover

 NFS locking and load balancing

 CNFS network setup

 CNFS setup

 CNFS administration

 NFS failover

 As part of GPFS recovery,
 the CNFS cluster failover mechanism is invoked. It transfers the NFS
 serving load that was served by the failing node to another node in
 the CNFS cluster. Failover is done using recovery groups to help choose
 the preferred node for takeover.

 The failover mechanism is based on IP address failover. The CNFS
 IP address is moved from the failing node to a healthy node in the
 CNFS cluster. In addition, it guarantees NFS lock (NLM) recovery.

 Failover processing may involve rebooting of the problem node.
 To minimize the effects of the reboot, it is recommended that the
 CNFS nodes be dedicated to that purpose and are
 not used to run other critical processes. CNFS node rebooting should
 not be disabled or the failover reliability will be severely impacted.

 Parent topic: Implementing a clustered NFS using GPFS on Linux

 Related concepts:

 NFS monitoring

 NFS locking and load balancing

 CNFS network setup

 CNFS setup

 CNFS administration

 NFS locking and load balancing

 CNFS supports a failover of all of the node’s load together
 (all of its NFS IP addresses) as one unit to another node. However,
 if no locks are outstanding, individual IP addresses can be moved
 to other nodes for load balancing purposes.

 CNFS is dependent on DNS for any automated load balancing
 of NFS clients among the NFS cluster nodes. Using the round-robin
 algorithm is highly recommended.

 Parent topic: Implementing a clustered NFS using GPFS on Linux

 Related concepts:

 NFS monitoring

 NFS failover

 CNFS network setup

 CNFS setup

 CNFS administration

 CNFS network setup

 In addition to one set of IP addresses for the GPFS cluster, a separate set of one or more
 IP addresses is required for CNFS serving.

 [image: Start of change]The GPFS cluster
 can be defined over an IPv4 or IPv6 network. The IP addresses specified
 for CNFS can also be IPv4 or IPv6. The GPFS cluster
 and CNFS are not required to be on the same version of IP, but IPv6
 must be enabled on GPFS to support
 IPv6 on CNFS.[image: End of change]

 Parent topic: Implementing a clustered NFS using GPFS on Linux

 Related concepts:

 NFS monitoring

 NFS failover

 NFS locking and load balancing

 CNFS setup

 CNFS administration

 CNFS setup

 You can set up a clustered NFS environment within a GPFS cluster.

 To do this, follow these steps:

 	Designate a separate directory for the CNFS shared
 files:mmchconfig cnfsSharedRoot=directory

 where:

 	cnfsSharedRoot=directory

 	Is the path name to a GPFS directory,
 preferably on a small separate file system that is not exported by
 NFS. The GPFS file system that
 contains the directory must be configured to be mounted automatically
 upon GPFS start on each of
 the CNFS nodes (-A yes option on the mmchfs command).
 cnfsSharedRoot is a mandatory parameter and must be defined
 first.

 	Add all GPFS file systems
 that need to be exported to /etc/exports. See Exporting
 a GPFS file system using NFS in
 the GPFS:
 Administration and Programming Reference
 for NFS export considerations. If the shared directory from step 1
 is in an exported file system, restrict access to that directory.

 	Use the mmchnode command to add nodes to the CNFS cluster: mmchnode --cnfs-interface=nfs_ip_address_list -N node

 where:
 	nfs_ip_address_list

 	Is a comma-separated list of host names or IP addresses to be
 used for GPFS cluster NFS serving.

 	node

 	Identifies a GPFS node to
 be added to the CNFS cluster.

 See the description of the mmchnode command
 in the GPFS:
 Administration and Programming Reference
 for information about how to use the command with a list of nodes.

 	Use the mmchconfig command to configure the optional CNFS
 parameters.

 	cnfsMountdPort=mountd_port

 	Specifies the port number to be used for the rpc.mountd daemon.
 For
 CNFS to work correctly with the automounter (AMD), the rpc.mountd daemon
 on the different nodes must be bound to the same port.

 	cnfsNFSDprocs=nfsd_procs

 	Specifies the number of nfsd kernel threads. The default
 is 32.

 	If multiple failover groups are desired, assign a group ID to
 each NFS node:mmchnode --cnfs-groupid=nn -N node

 To assign NFS nodes to different groups, use a group
 ID that is in a different range of ten. For example, a node with group
 ID 2n will fail over only to nodes in the same range of ten
 (which means any node with group ID 20 to 29). Failover in the same
 group will first look for one of the nodes with the same group ID.
 If none are found, any node in the group range starting at n0
 to n9 is selected.

 Parent topic: Implementing a clustered NFS using GPFS on Linux

 Related concepts:

 NFS monitoring

 NFS failover

 NFS locking and load balancing

 CNFS network setup

 CNFS administration

 CNFS administration

 There are some common CNFS administration tasks in this
 topic along with a sample configuration.

 To query the current CNFS configuration,
 enter:

 mmlscluster --cnfs

 To temporarily disable CNFS on one or more nodes, enter:mmchnode --cnfs-disable -N NodeList

 Note: This
 operation affects only the high-availability aspects of the CNFS functionality.
 Normal NFS exporting of the data from the node is not affected. All
 currently defined CNFS IP addresses remain unchanged. There will be
 no automatic failover from or to this node in case of a failure. If
 failover is desired, GPFS should
 be shut down on the affected node prior to issuing the mmchnode command.

 To re-enable previously-disabled CNFS member nodes, enter:mmchnode --cnfs-enable -N NodeList

 Note: If the GPFS daemon
 is running on a node on which CNFS is being re-enabled, the node will
 try to activate its CNFS IP address. If the IP address was currently
 on some other CNFS-enabled node, that activation would include a takeover.

 To permanently remove nodes from the CNFS cluster, enter:mmchnode --cnfs-interface=DELETE -N NodeList

 Note: This
 operation affects only the high-availability aspects of the CNFS functionality.
 Normal NFS exporting of the data from the node is not affected. All
 currently defined CNFS IP addresses remain unchanged. There will be
 no automatic failover from or to this node in case of a failure. If
 failover is desired, GPFS should
 be shut down on the affected node prior to issuing the mmchnode command.

 A sample CNFS configuration

 Here
 is a CNFS configuration example, which assumes the following:

 	Your GPFS cluster contains
 three nodes: fin18, fin19,
 and fin20

 	[image: Start of change]The host names for NFS serving are: fin18nfs, fin19nfs,
 and fin20nfs[image: End of change]

 To define a CNFS cluster made up of these nodes, follow
 these steps:

 	Add the desired GPFS file
 systems to /etc/exports on each of the nodes.

 	Create a directory called ha in one of the GPFS file systems by entering:mkdir /gpfs/fs1/ha

 	Create a temporary file called /tmp/hanfs-list, which contains
 the following lines:fin18 --cnfs-interface=fin18nfs
fin19 --cnfs-interface=fin19nfs
fin20 --cnfs-interface=fin20nfs

 	Set the CNFS shared directory by entering:mmchconfig cnfsSharedRoot=/gpfs/fs1/ha

 	Create the CNFS cluster with the mmchnode command, by entering:mmchnode -S /tmp/hanfs-list

 	Access the exported GPFS file
 systems over NFS. If one or more GPFS nodes
 fail, the NFS clients should continue uninterrupted.

 Parent topic: Implementing a clustered NFS using GPFS on Linux

 Related concepts:

 NFS monitoring

 NFS failover

 NFS locking and load balancing

 CNFS network setup

 CNFS setup

 Performance and health monitoring

 GPFS provides system
 administrators with the ability to monitor GPFS performance and health.

 Performance and health topics include:

 	Network performance monitoring

 Network performance can be monitored with Remote Procedure
 Call (RPC) statistics.

 Network performance monitoring

 Network performance can be monitored with Remote Procedure
 Call (RPC) statistics.

 The GPFS daemon caches statistics
 relating to RPCs. Most statistics are related to RPCs sent to other
 nodes. This includes a set of up to seven statistics cached per node
 and one statistic that is cached per size of the RPC message. For
 RPCs received from other nodes, one statistic is cached for each type
 of RPC message.

 The statistics cached per node are the following:

 	Channel wait time

 	The amount of time the RPC must wait for access to a communication
 channel to the target node.

 	Send time TCP

 	The amount of time to transfer an RPC message to an Ethernet interface.

 	Send time verbs

 	The amount of time to transfer an RPC message to an InfiniBand
 interface.

 	Receive time TCP

 	The amount of time to transfer an RPC message from an Ethernet
 interface into the daemon.

 	Latency TCP

 	The latency of the RPC when sent and received over an Ethernet
 interface.

 	Latency verbs

 	The latency of the RPC when sent and received over an InfiniBand
 interface.

 	Latency mixed

 	The latency of the RPC when sent over one type of interface (Ethernet
 or InfiniBand) and received over the other (InfiniBand or Ethernet).

 If an InfiniBand network is not configured, no statistics are cached
 for send time verbs, latency verbs, and latency mixed.

 The latency of an RPC is defined as the round-trip time minus the
 execution time on the target node. The round-trip time is measured
 from the start of writing the RPC message to the interface until the
 RPC reply is completely received. The execution time is measured on
 the target node from the time the message is completely received until
 the time the reply is sent. The latency, therefore, is the amount
 of time the RPC is being transmitted and received over the network
 and is a relative measure of the network performance as seen by the GPFS daemon.

 There is a statistic associated with each of a set of size ranges,
 each with an upper bound that is a power of 2. The first range is
 0 through 64, then 65 through 128, then 129 through 256, and then
 continuing until the last range has an upper bound of twice the maxBlockSize.
 For example, if the maxBlockSize is 1 MB,
 the upper bound of the last range is 2,097,152 (2 MB). For each of
 these ranges, the associated statistic is the latency of the RPC whose
 size falls within that range. The size of an RPC is the amount of
 data sent plus the amount of data received. However, if one amount
 is more than 16 times greater than the other, only the larger amount
 is used as the size of the RPC.

 The final statistic associated with each type of RPC message, on
 the node where the RPC is received, is the execution time of the RPC.

 Each of the statistics described so far is actually an aggregation
 of values. By default, an aggregation consists of 60 one-second intervals,
 60 one-minute intervals, 24 one-hour intervals, and 30 one-day intervals.
 Each interval consists of a sum of values accumulated during the interval,
 a count of values added into the sum, the minimum value added into
 the sum, and the maximum value added into the sum. Sixty seconds after
 the daemon starts, each of the one-second intervals contains data
 and every second thereafter the oldest interval is discarded and a
 new one entered. An analogous pattern holds for the minute, hour,
 and day periods.

 As each RPC reply is received, the following information is saved
 in a raw statistics buffer:

 	channel wait time

 	send time

 	receive time

 	latency

 	length of data sent

 	length of data received

 	flags indicating if the RPC was sent or received over InfiniBand

 	target node identifier

 As each RPC completes execution, the execution time for the RPC
 and the message type of the RPC is saved in a raw execution buffer.
 Once per second these raw buffers are processed and the values are
 added to the appropriate aggregated statistic. For each value, the
 value is added to the statistic's sum, the count is incremented, and
 the value is compared to the minimum and maximum, which are adjusted
 as appropriate. Upon completion of this processing, for each statistic
 the sum, count, minimum, and maximum values are entered into the next
 one-second interval.

 Every 60 seconds, the sums and counts in the 60 one-second intervals
 are added into a one-minute sum and count. The smallest of the 60
 minimum values is determined, and the largest of the 60 maximum values
 is determined. This one-minute sum, count, minimum, and maximum are
 then entered into the next one-minute interval.

 An analogous pattern holds for the minute, hour, and day periods.
 For any one particular interval, the sum is the sum of all raw values
 processed during that interval, the count is the count of all values
 during that interval, the minimum is the minimum of all values during
 that interval, and the maximum is the maximum of all values during
 that interval.

 When statistics are displayed for any particular interval, an average
 is calculated from the sum and count, then the average, minimum, maximum,
 and count are displayed. The average, minimum and maximum are displayed
 in units of milliseconds, to three decimal places (one microsecond
 granularity).

 The following mmchconfig attributes are
 available to control the RPC buffers and intervals:

 	rpcPerfRawStatBufferSize

 	rpcPerfRawExecBufferSize

 	rpcPerfNumberSecondIntervals

 	rpcPerfNumberMinuteIntervals

 	rpcPerfNumberHourIntervals

 	rpcPerfNumberDayIntervals

 The mmdiag command with the --rpc parameter
 can be used to query RPC statistics.

 The mmchconfig and mmdiag commands
 are fully described in the Commands topic in the GPFS:
 Administration and Programming Reference.

 Parent topic: Performance and health monitoring

 Monitoring GPFS I/O performance
 with the mmpmon command

 Use the mmpmon command to monitor GPFS performance on the node in
 which it is run, and other specified nodes.

 Before attempting to use the mmpmon command,
 review the command documentation in the GPFS:
 Administration and Programming Reference, and then
 read all the following relevant mmpmon topics.

 	Overview of mmpmon

 The mmpmon facility allows the
 system administrator to collect I/O statistics from the point of view
 of GPFS servicing application
 I/O requests.

 	Specifying input to the mmpmon command

 	Display I/O statistics per mounted file system

 	Display I/O statistics for the entire node

 	Understanding the node list facility

 	Reset statistics to zero

 	Understanding the request histogram facility

 	[image: Start of change]Understanding the Remote Procedure Call (RPC) facility[image: End of change]

 	Displaying mmpmon version

 	Example mmpmon scenarios and how to analyze and interpret their results

 This topic is an illustration of how mmpmon is
 used to analyze I/O data and draw conclusions based on it.

 	Other information about mmpmon output

 When interpreting the results from the mmpmon output
 there are several points to consider.

 	Displaying vdisk I/O statistics

 	Resetting vdisk I/O statistics

 The vio_s_reset request resets the statistics that
 are displayed with vio_s requests.

 Overview of mmpmon

 The mmpmon facility allows the
 system administrator to collect I/O statistics from the point of view
 of GPFS servicing application
 I/O requests.

 The collected data can be used for many purposes, including:

 	Tracking I/O demand over longer periods of
 time - weeks or months.

 	Recording I/O patterns over time (when peak usage occurs, and
 so forth).

 	Determining if some nodes service more application demand than
 others.

 	Monitoring the I/O patterns of a single application which is spread
 across multiple nodes.

 	Recording application I/O request service times.

 Figure 1 shows the software layers
 in a typical system with GPFS. mmpmon is
 built into GPFS.

 [image: This is a node with GPFS running, mmpmon. It consists of four layers. The top layer is the application. The second layer is the operating system, either AIX or Linux. The third layer is GPFS with mmpmon as a subset of GPFS. The fourth layer is the NSD layer.]

Figure 10. Node running mmpmon

 Parent topic: Monitoring GPFS I/O performance with the mmpmon command

 Related concepts:

 Understanding the node list facility

 Understanding the request histogram facility

 [image: Start of change]Understanding the Remote Procedure Call (RPC) facility[image: End of change]

 Displaying vdisk I/O statistics

 Resetting vdisk I/O statistics

 Related tasks:

 Specifying input to the mmpmon command

 Display I/O statistics per mounted file system

 Display I/O statistics for the entire node

 Reset statistics to zero

 Displaying mmpmon version

 Related reference:

 Example mmpmon scenarios and how to analyze and interpret their results

 Other information about mmpmon output

 Specifying input to the mmpmon command

 About this task

 The mmpmon command must be
 run using root authority. For command syntax, see mmpmon in
 the GPFS:
 Administration and Programming Reference.

 The mmpmon command
 is controlled by an input file that contains a series of requests,
 one per line. This input can be specified with the -i flag,
 or read from standard input (stdin). Providing input using stdin allows mmpmon to
 take keyboard input or output piped from a user script or application.

 Leading
 blanks in the input file are ignored. A line beginning with a pound
 sign (#) is treated as a comment. Leading blanks in a line whose first
 non-blank character is a pound sign (#) are ignored.

 Table 1 describes the mmpmon input
 requests.

 Table 4. Input
 requests to the mmpmon command

 	Request

 	Description

 	fs_io_s

 	Display I/O statistics per mounted file system

 	io_s

 	Display I/O statistics for the entire node

 	nlist add name[name...]

 	Add node names to a list of nodes for mmpmon processing

 	nlist del

 	Delete a node list

 	nlist new name[name...]

 	Create a new node list

 	nlist s

 	Show the contents of the current node list

 	nlist sub name[name...]

 	Delete node names from a list of nodes for mmpmon processing

 	once request

 	Indicates that the
 request is to be performed only once.

 	reset

 	Reset statistics to zero

 	rhist nr

 	Changing the request histogram facility request size and latency ranges

 	rhist off

 	Disabling the request histogram facility. This is the default.

 	rhist on

 	Enabling the request histogram facility

 	rhist p

 	Displaying the request histogram facility pattern

 	rhist reset

 	Resetting the request histogram facility data to zero

 	rhist s

 	Displaying the request histogram facility statistics values

 	[image: Start of change]rpcs[image: End of change]

 	[image: Start of change]Displaying the aggregation of execution time for Remote Procedure Calls (RPCs)[image: End of change]

 	[image: Start of change]rpcs size[image: End of change]

 	[image: Start of change]Displaying the Remote Procedure Call (RPC) execution time according to the size of messages[image: End of change]

 	source filename

 	Using request source and prefix directive once

 	ver

 	Displaying mmpmon version

 	[image: Start of change]vio_s[image: End of change]

 	[image: Start of change]Displaying vdisk I/O statistics[image: End of change]

 	[image: Start of change]vio_s_reset[image: End of change]

 	[image: Start of change]Resetting vdisk I/O statistics[image: End of change]

 	Running mmpmon on multiple nodes

 	Running mmpmon concurrently from multiple users on the same node

 Parent topic: Monitoring GPFS I/O performance with the mmpmon command

 Related concepts:

 Overview of mmpmon

 Understanding the node list facility

 Understanding the request histogram facility

 [image: Start of change]Understanding the Remote Procedure Call (RPC) facility[image: End of change]

 Displaying vdisk I/O statistics

 Resetting vdisk I/O statistics

 Related tasks:

 Display I/O statistics per mounted file system

 Display I/O statistics for the entire node

 Reset statistics to zero

 Displaying mmpmon version

 Related reference:

 Example mmpmon scenarios and how to analyze and interpret their results

 Other information about mmpmon output

 Running mmpmon on multiple nodes

 About this task

 The mmpmon command
 may be invoked on one node to submit requests to multiple nodes in
 a local GPFS cluster by using
 the nlist requests. See Understanding the node list facility.

 Parent topic: Specifying input to the mmpmon command

 Running mmpmon concurrently from multiple users on the
 same node

 About this task

 Five
 instances of mmpmon may be run on a given node concurrently.
 This is intended primarily to allow different user-written performance analysis
 applications or scripts to work with the performance data. For example, one
 analysis application might deal with fs_io_s and io_s data,
 while another one deals with rhist data, and another
 gathers data from other nodes in the cluster. The applications might be separately
 written or separately maintained, or have different sleep and wake-up schedules.

 Be
 aware that there is only one set of counters for fs_io_s and io_s data,
 and another, separate set for rhist data. Multiple
 analysis applications dealing with the same set of data must coordinate any
 activities that could reset the counters, or in the case of rhist requests,
 disable the feature or modify the ranges.

 Parent topic: Specifying input to the mmpmon command

 Display I/O statistics per mounted file system

 About this task

 The fs_io_s (file system I/O
 statistics) request returns strings containing I/O statistics taken
 over all mounted file systems as seen by that node, and are presented
 as total values for each file system. The values are cumulative since
 the file systems were mounted or since the last reset request,
 whichever is most recent. When a file system is unmounted, its statistics
 are lost.

 Read and write statistics are recorded separately.
 The statistics for a given file system are for the file system activity
 on the node running mmpmon, not the file
 system in total (across the cluster).

 Table 1 describes the keywords for the fs_io_s response,
 in the order that they appear in the output. These keywords are used
 only when mmpmon is invoked with the -p flag.

 Table 5. Keywords and values for
 the mmpmon fs_io_s response

 	Keyword

 	Description

 	n

 	IP address of the node responding. This is the
 address by which GPFS knows
 the node.

 	nn

 	The hostname that corresponds to the IP address
 (the _n_ value).

 	rc

 	Indicates the status of the operation.

 	t

 	Indicates the current time of day in seconds
 (absolute seconds since Epoch (1970)).

 	tu

 	Microseconds part of the current time of day.

 	cl

 	Name of the cluster that owns the file system.

 	fs

 	The name of the file system for which data are
 being presented.

 	d

 	The number of disks in the file system.

 	br

 	Total number of bytes read, from both disk and
 cache.

 	bw

 	Total number of bytes written, to both disk
 and cache.

 	oc

 	Count of open() call
 requests serviced by GPFS. This
 also includes creat() call counts.

 	cc

 	Number of close() call
 requests serviced by GPFS.

 	rdc

 	Number of application read requests serviced
 by GPFS.

 	wc

 	Number of application write requests serviced
 by GPFS.

 	dir

 	Number of readdir() call
 requests serviced by GPFS.

 	iu

 	Number of inode updates to disk.

 	Example of mmpmon fs_io_s request

 Parent topic: Monitoring GPFS I/O performance with the mmpmon command

 Related concepts:

 Overview of mmpmon

 Understanding the node list facility

 Understanding the request histogram facility

 [image: Start of change]Understanding the Remote Procedure Call (RPC) facility[image: End of change]

 Displaying vdisk I/O statistics

 Resetting vdisk I/O statistics

 Related tasks:

 Specifying input to the mmpmon command

 Display I/O statistics for the entire node

 Reset statistics to zero

 Displaying mmpmon version

 Related reference:

 Example mmpmon scenarios and how to analyze and interpret their results

 Other information about mmpmon output

 Example of mmpmon fs_io_s request

 Assume that commandFile contains this
 line: fs_io_s

 and this command is issued: mmpmon -p -i commandFile

 The output is two lines in total, and similar to this: _fs_io_s_ _n_ 1992.18.1.8 _nn_ node1 _rc_ 0 _t_ 1066660148 _tu_ 407431 _cl_ myCluster.xxx.com
fs gpfs2 _d_ 2 _br_ 6291456 _bw_ 314572800 _oc_ 10 _cc_ 16 _rdc_ 101 _wc_ 300 _dir_ 7 _iu_ 2
_fs_io_s_ _n_ 199.18.1.8 _nn_ node1 _rc_ 0 _t_ 1066660148 _tu_ 407455 _cl_ myCluster.xxx.com
fs gpfs1 _d_ 3 _br_ 5431636 _bw_ 173342800 _oc_ 6 _cc_ 8 _rdc_ 54 _wc_ 156 _dir_ 3 _iu_ 6

 The
 output consists of one string per mounted file system. In this example, there
 are two mounted file systems, gpfs1 and gpfs2.

 If the -p flag is not specified, the
 output is similar to: mmpmon node 199.18.1.8 name node1 fs_io_s OK
cluster: myCluster.xxx.com
filesystem: gpfs2
disks: 2
timestamp: 1066660148/407431
bytes read: 6291456
bytes written: 314572800
opens: 10
closes: 16
reads: 101
writes: 300
readdir: 7
inode updates: 2

mmpmon node 199.18.1.8 name node1 fs_io_s OK
cluster: myCluster.xxx.com
filesystem: gpfs1
disks: 3
timestamp: 1066660148/407455
bytes read: 5431636
bytes written: 173342800
opens: 6
closes: 8
reads: 54
writes: 156
readdir: 3
inode updates: 6

 When no file systems are mounted, the responses are similar to: _fs_io_s_ _n_ 199.18.1.8 _nn_ node1 _rc_ 1 _t_ 1066660148 _tu_ 407431 _cl_ - _fs_ -

 The _rc_ field is nonzero and the both
 the _fs_ and _cl_ fields
 contains a minus sign. If the -p flag is not specified,
 the results are similar to: mmpmon node 199.18.1.8 name node1 fs_io_s status 1
no file systems mounted

 Parent topic: Display I/O statistics per mounted file system

 Display I/O statistics for the entire node

 About this task

 The io_s (I/O statistics) request
 returns strings containing I/O statistics taken over all mounted file
 systems as seen by that node, and are presented as total values for
 the entire node. The values are cumulative since the file systems
 were mounted or since the last reset, whichever
 is most recent. When a file system is unmounted, its statistics are
 lost and its contribution to the total node statistics vanishes. Read
 and write statistics are recorded separately.

 Table 1 describes the keywords for the io_s response,
 in the order that they appear in the output. These keywords are used
 only when mmpmon is invoked with the -p flag.

 Table 6. Keywords and values for the mmpmon
 io_s response

 	Keyword

 	Description

 	n

 	IP address of the node responding. This is the
 address by which GPFS knows
 the node.

 	nn

 	The hostname that corresponds to the IP address
 (the _n_ value).

 	rc

 	Indicates the status of the operation.

 	t

 	Indicates the current time of day in seconds
 (absolute seconds since Epoch (1970)).

 	tu

 	Microseconds part of the current time of day.

 	br

 	Total number of bytes read, from both disk and
 cache.

 	bw

 	Total number of bytes written, to both disk
 and cache.

 	oc

 	Count of open() call
 requests serviced by GPFS. The
 open count also includes creat() call counts.

 	cc

 	Number of close() call
 requests serviced by GPFS.

 	rdc

 	Number of application read requests serviced
 by GPFS.

 	wc

 	Number of application write requests serviced
 by GPFS.

 	dir

 	Number of readdir() call
 requests serviced by GPFS.

 	iu

 	Number of inode updates to disk. This includes
 inodes flushed to disk because of access time updates.

 	Example of mmpmon io_s request

 Parent topic: Monitoring GPFS I/O performance with the mmpmon command

 Related concepts:

 Overview of mmpmon

 Understanding the node list facility

 Understanding the request histogram facility

 [image: Start of change]Understanding the Remote Procedure Call (RPC) facility[image: End of change]

 Displaying vdisk I/O statistics

 Resetting vdisk I/O statistics

 Related tasks:

 Specifying input to the mmpmon command

 Display I/O statistics per mounted file system

 Reset statistics to zero

 Displaying mmpmon version

 Related reference:

 Example mmpmon scenarios and how to analyze and interpret their results

 Other information about mmpmon output

 Example of mmpmon io_s request

 Assume that commandFile contains this
 line: io_s

 and this command is issued: mmpmon -p -i commandFile

 The output is one line in total, and similar to this: _io_s_ _n_ 199.18.1.8 _nn_ node1 _rc_ 0 _t_ 1066660148 _tu_ 407431 _br_ 6291456
bw 314572800 _oc_ 10 _cc_ 16 _rdc_ 101 _wc_ 300 _dir_ 7 _iu_ 2

 If the -p flag is not specified, the
 output is similar to: mmpmon node 199.18.1.8 name node1 io_s OK
timestamp: 1066660148/407431
bytes read: 6291456
bytes written: 314572800
opens: 10
closes: 16
reads: 101
writes: 300
readdir: 7
inode updates: 2

 Parent topic: Display I/O statistics for the entire node

 Understanding the node list facility

 The
 node list facility can be used to invoke mmpmon on
 multiple nodes and gather data from other nodes in the cluster. Table 1 describes the nlist requests:

 Table 7. nlist requests for the mmpmon command

 	Request

 	Description

 	nlist add name[name...]

 	Add node names to a list of nodes for mmpmon processing

 	nlist del

 	Delete a node list

 	nlist new name[name...]

 	Create a new node list

 	nlist s

 	Show the contents of the current node list

 	nlist sub name[name...]

 	Delete node names from a list of nodes for mmpmon processing

 When specifying node names, keep these points in mind:

 	A node name of '.' (dot) indicates the current node.

 	A node name of '*' (asterisk) indicates all currently connected
 local cluster nodes.

 	The nodes named in the node list must belong to the local cluster.
 Nodes in remote clusters are not supported.

 	A node list can contain nodes that are currently down. When an
 inactive node comes up, mmpmon will attempt
 to gather data from it.

 	If a node list contains an incorrect or unrecognized node name,
 all other entries in the list are processed. Suitable messages are
 issued for an incorrect node name.

 	When mmpmon gathers responses from the
 nodes in a node list, the full response from one node is presented
 before the next node. Data is not interleaved. There is no guarantee
 of the order of node responses.

 	The node that issues the mmpmon command
 need not appear in the node list. The case of this node serving only
 as a collection point for data from other nodes is a valid configuration.

 	Add node names to a list of nodes for mmpmon processing

 	Delete a node list

 	Create a new node list

 	Show the contents of the current node list

 	Delete node names from a list of nodes for mmpmon processing

 	Node list examples and error handling

 Parent topic: Monitoring GPFS I/O performance with the mmpmon command

 Related concepts:

 Overview of mmpmon

 Understanding the request histogram facility

 [image: Start of change]Understanding the Remote Procedure Call (RPC) facility[image: End of change]

 Displaying vdisk I/O statistics

 Resetting vdisk I/O statistics

 Related tasks:

 Specifying input to the mmpmon command

 Display I/O statistics per mounted file system

 Display I/O statistics for the entire node

 Reset statistics to zero

 Displaying mmpmon version

 Related reference:

 Example mmpmon scenarios and how to analyze and interpret their results

 Other information about mmpmon output

 Add node names to a list of nodes for mmpmon processing

 About this task

 The nlist add (node list add)
 request is used to add node names to a list of nodes for mmpmon to
 collect their data. The node names are separated by blanks.

 Table 1 describes the keywords
 for the nlist add response, in the order
 that they appear in the output. These keywords are used only when mmpmon is
 invoked with the -p flag.

 Table 8. Keywords and values for the mmpmon
 nlist add response

 	Keyword

 	Description

 	n

 	IP address of the node processing the node list.
 This is the address by which GPFS knows
 the node.

 	nn

 	The hostname that corresponds to the IP address
 (the _n_ value).

 	req

 	The action requested. In this case, the value
 is add.

 	rc

 	Indicates the status of the operation.

 	t

 	Indicates the current time of day in seconds
 (absolute seconds since Epoch (1970)).

 	tu

 	Microseconds part of the current time of day.

 	c

 	The number of nodes in the user-supplied list.

 	ni

 	Node name input. A user-supplied node name from
 the offered list of names.

 	nx

 	Node name translation. The preferred GPFS name for the node.

 	nxip

 	Node name translated IP address. The preferred GPFS IP address for the node.

 	did

 	The number of nodes names considered valid and
 processed by the requests.

 	nlc

 	The number of nodes in the node list now (after
 all processing).

 If the nlist add request is
 issued when no node list exists, it is handled as if it were an nlist
 new request.

 	Example of mmpmon nlist add request

 Parent topic: Understanding the node list facility

 Example of mmpmon nlist add request

 A two- node cluster has nodes node1 (199.18.1.2),
 a non-quorum node, and node2 (199.18.1.5), a quorum
 node. A remote cluster has node node3 (199.18.1.8).
 The mmpmon command is run on node1.

 Assume that commandFile contains this
 line: nlist add n2 199.18.1.2

 and this command is issued: mmpmon -p -i commandFile

 Note in this example that an alias name n2 was
 used for node2, and an IP address was used for node1.
 Notice how the values for _ni_ and _nx_ differ
 in these cases.

 The output is similar to this: _nlist_ _n_ 199.18.1.2 _nn_ node1 _req_ add _rc_ 0 _t_ 1121955894 _tu_ 261881 _c_ 2
nlist _n_ 199.18.1.2 _nn_ node1 _req_ add _rc_ 0 _t_ 1121955894 _tu_ 261881 _ni_ n2 _nx_
node2 _nxip_ 199.18.1.5
nlist _n_ 199.18.1.2 _nn_ node1 _req_ add _rc_ 0 _t_ 1121955894 _tu_ 261881 _ni_
199.18.1.2 _nx_ node1 _nxip_ 199.18.1.2
nlist _n_ 199.18.1.2 _nn_ node1 _req_ add _rc_ 0 _t_ 1121955894 _tu_ 261881 _did_ 2 _nlc_
2

 If the -p flag is not specified, the
 output is similar to: mmpmon node 199.18.1.2 name node1 nlist add
initial status 0
name count 2
timestamp 1121955879/468858
node name n2, OK (name used: node2, IP address 199.18.1.5)
node name 199.18.1.2, OK (name used: node1, IP address 199.18.1.2)
final status 0
node names processed 2
current node list count 2

 The requests nlist add and nlist
 sub behave in a similar way and use the same keyword and response
 format.

 These requests are rejected if issued while quorum has been lost.

 Parent topic: Add node names to a list of nodes for mmpmon processing

 Delete a node list

 About this task

 The nlist del (node list delete)
 request deletes a node list, if one exists. If no node list exists,
 the request succeeds and no error code is produced.

 Table 1 describes the keywords for
 the nlist del response, in the order that
 they appear in the output. These keywords are used only when mmpmon is
 invoked with the -p flag.

 Table 9. Keywords and values for the mmpmon
 nlist del response

 	Keyword

 	Description

 	n

 	IP address of the node responding. This is the
 address by which GPFS knows
 the node.

 	nn

 	The hostname that corresponds to the IP address
 (the _n_ value).

 	req

 	The action requested. In this case, the value
 is del.

 	rc

 	Indicates the status of the operation.

 	t

 	Indicates the current time of day in seconds
 (absolute seconds since Epoch (1970)).

 	tu

 	Microseconds part of the current time of day.

 	Example of mmpmon nlist del request

 Parent topic: Understanding the node list facility

 Example of mmpmon nlist del request

 Assume that commandFile contains this
 line: nlist del

 and this command is issued: mmpmon -p -i commandFile

 The output is similar to this: _nlist_ _n_ 199.18.1.2 _nn_ node1 _req_ del _rc_ 0 _t_ 1121956817 _tu_ 46050

 If the -p flag is not specified, the
 output is similar to: mmpmon node 199.18.1.2 name node1 nlist del status OK timestamp 1121956908/396381

 Parent topic: Delete a node list

 Create a new node list

 About this task

 The nlist new (node list new)
 request deletes the current node list if one exists, creates a new,
 empty node list, and then attempts to add the specified node names
 to the node list. The node names are separated by blanks.

 Table 1 describes the keywords for
 the nlist new response, in the order that
 they appear in the output. These keywords are used only when mmpmon is
 invoked with the -p flag.

 Table 10. Keywords and values for the mmpmon
 nlist new response

 	Keyword

 	Description

 	n

 	IP address of the node responding. This is the
 address by which GPFS knows
 the node.

 	nn

 	The hostname that corresponds to the IP address
 (the _n_ value).

 	req

 	The action requested. In this case, the value
 is new.

 	rc

 	Indicates the status of the operation.

 	t

 	Indicates the current time of day in seconds
 (absolute seconds since Epoch (1970)).

 	tu

 	Microseconds part of the current time of day.

 Parent topic: Understanding the node list facility

 Show the contents of the current node list

 About this task

 The nlist s (node list show)
 request displays the current contents of the node list. If no node
 list exists, a count of zero is returned and no error is produced.

 Table 1 describes the keywords
 for the nlist s response, in the order that
 they appear in the output. These keywords are used only when mmpmon is
 invoked with the -p flag.

 Table 11. Keywords and values for the mmpmon
 nlist s response

 	Keyword

 	Description

 	n

 	IP address of the node processing the request.
 This is the address by which GPFS knows
 the node.

 	nn

 	The hostname that corresponds to the IP address
 (the _n_ value).

 	req

 	The action requested. In this case, the value
 is s.

 	rc

 	Indicates the status of the operation.

 	t

 	Indicates the current time of day in seconds
 (absolute seconds since Epoch (1970)).

 	tu

 	Microseconds part of the current time of day.

 	c

 	Number of nodes in the node list.

 	mbr

 	GPFS preferred
 node name for the list member.

 	ip

 	GPFS preferred
 IP address for the list member.

 	Example of mmpmon nlist s request

 Parent topic: Understanding the node list facility

 Example of mmpmon nlist s request

 Assume that commandFile contains this
 line: nlist s

 and this command is issued: mmpmon -p -i commandFile

 The output is similar to this: _nlist_ _n_ 199.18.1.2 _nn_ node1 _req_ s _rc_ 0 _t_ 1121956950 _tu_ 863292 _c_ 2
nlist _n_ 199.18.1.2 _nn_ node1 _req_ s _rc_ 0 _t_ 1121956950 _tu_ 863292 _mbr_ node1
ip 199.18.1.2
nlist _n_ 199.18.1.2 _nn_ node1 _req_ s _rc_ 0 _t_ 1121956950 _tu_ 863292 _mbr_
node2 _ip_ 199.18.1.5

 If the -p flag is not specified, the
 output is similar to: mmpmon node 199.18.1.2 name node1 nlist s
status 0
name count 2
timestamp 1121957505/165931
node name node1, IP address 199.18.1.2
node name node2, IP address 199.18.1.5

 If there is no node list, the response looks like: _nlist_ _n_ 199.18.1.2 _nn_ node1 _req_ s _rc_ 0 _t_ 1121957395 _tu_ 910440 _c_ 0

 If the -p flag is not specified, the
 output is similar to: mmpmon node 199.18.1.2 name node1 nlist s
status 0
name count 0
timestamp 1121957436/353352
the node list is empty

 The nlist s request is rejected if issued
 while quorum has been lost. Only one response line is presented. _failed_ _n_ 199.18.1.8 _nn_ node2 _rc_ 668 _t_ 1121957395 _tu_ 910440

 If the -p flag is not specified, the
 output is similar to: mmpmon node 199.18.1.8 name node2: failure status 668 timestamp 1121957395/910440
lost quorum

 Parent topic: Show the contents of the current node list

 Delete node names from a list of nodes for mmpmon processing

 About this task

 The nlist sub (subtract
 a node from the node list) request removes a node from a list of node names.
 This keywords and responses are similar to the nlist add request.
 The _req_ keyword (action requested) for nlist
 sub is sub.

 Parent topic: Understanding the node list facility

 Node list examples and error handling

 The nlist facility
 can be used to obtain GPFS performance
 data from nodes other than the one on which the mmpmon command
 is invoked. This information is useful to see the flow of GPFS I/O from one node to another, and spot
 potential problems.

 	A successful fs_io_s request propagated to two nodes

 	Failure on a node accessed by mmpmon

 	Node shutdown and quorum loss

 	Node list failure values

 Parent topic: Understanding the node list facility

 A successful fs_io_s request propagated to two nodes

 In this example, an fs_io_s request
 is successfully propagated to two nodes. This command is issued: mmpmon -p -i command_file

 where command_file has this: nlist new node1 node2
fs_io_s

 The output is similar to this: _fs_io_s_ _n_ 199.18.1.2 _nn_ node1 _rc_ 0 _t_ 1121974197 _tu_ 278619 _cl_
xxx.localdomain _fs_ gpfs2 _d_ 2 _br_ 0 _bw_ 0 _oc_ 0 _cc_ 0 _rdc_ 0 _wc_ 0
dir 0 _iu_ 0
_fs_io_s_ _n_ 199.18.1.2 _nn_ node1 _rc_ 0 _t_ 1121974197 _tu_ 278619 _cl_
xxx.localdomain _fs_ gpfs1 _d_ 1 _br_ 0 _bw_ 0 _oc_ 0 _cc_ 0 _rdc_ 0 _wc_ 0
dir 0 _iu_ 0
_fs_io_s_ _n_ 199.18.1.5 _nn_ node2 _rc_ 0 _t_ 1121974167 _tu_ 116443 _cl_
cl1.xxx.com _fs_ fs3 _d_ 3 _br_ 0 _bw_ 0 _oc_ 0 _cc_ 0 _rdc_ 0 _wc_ 0 _dir_ 0
iu 3
_fs_io_s_ _n_ 199.18.1.5 _nn_ node2 _rc_ 0 _t_ 1121974167 _tu_ 116443 _cl_
cl1.xxx.comm _fs_ fs2 _d_ 2 _br_ 0 _bw_ 0 _oc_ 0 _cc_ 0 _rdc_ 0 _wc_ 0 _dir_ 0
iu 0
_fs_io_s_ _n_ 199.18.1.5 _nn_ node2 _rc_ 0 _t_ 1121974167 _tu_ 116443 _cl_
xxx.localdomain _fs_ gpfs2 _d_ 2 _br_ 0 _bw_ 0 _oc_ 0 _cc_ 0 _rdc_ 0 _wc_ 0
dir 0 _iu_ 0

 The responses from a propagated request are the same as
 they would have been if issued on each node separately.

 If the -p flag is not specified,
 the output is similar to: mmpmon node 199.18.1.2 name node1 fs_io_s OK
cluster: xxx.localdomain
filesystem: gpfs2
disks: 2
timestamp: 1121974088/463102
bytes read: 0
bytes written: 0
opens: 0
closes: 0
reads: 0
writes: 0
readdir: 0
inode updates: 0

mmpmon node 199.18.1.2 name node1 fs_io_s OK
cluster: xxx.localdomain
filesystem: gpfs1
disks: 1
timestamp: 1121974088/463102
bytes read: 0
bytes written: 0
opens: 0
closes: 0
reads: 0
writes: 0
readdir: 0
inode updates: 0

mmpmon node 199.18.1.5 name node2 fs_io_s OK
cluster: cl1.xxx.com
filesystem: fs3
disks: 3
timestamp: 1121974058/321741
bytes read: 0
bytes written: 0
opens: 0
closes: 0
reads: 0
writes: 0
readdir: 0
inode updates: 2

mmpmon node 199.18.1.5 name node2 fs_io_s OK
cluster: cl1.xxx.com
filesystem: fs2
disks: 2
timestamp: 1121974058/321741
bytes read: 0
bytes written: 0
opens: 0
closes: 0
reads: 0
writes: 0
readdir: 0
inode updates: 0

mmpmon node 199.18.1.5 name node2 fs_io_s OK
cluster: xxx.localdomain
filesystem: gpfs2
disks: 2
timestamp: 1121974058/321741
bytes read: 0
bytes written: 0
opens: 0
closes: 0
reads: 0
writes: 0
readdir: 0
inode updates: 0

 Parent topic: Node list examples and error handling

 Failure on a node accessed by mmpmon

 In this example, the same scenario is run on node2,
 but with a failure on node1 (a non-quorum
 node) because node1 was shutdown: _failed_ _n_ 199.18.1.5 _nn_ node2 _fn_ 199.18.1.2 _fnn_ node1 _rc_ 233
t 1121974459 _tu_ 602231
_fs_io_s_ _n_ 199.18.1.5 _nn_ node2 _rc_ 0 _t_ 1121974459 _tu_ 616867 _cl_
cl1.xxx.com _fs_ fs2 _d_ 2 _br_ 0 _bw_ 0 _oc_ 0 _cc_ 0 _rdc_ 0 _wc_ 0 _dir_ 0
iu 0
_fs_io_s_ _n_ 199.18.1.5 _nn_ node2 _rc_ 0 _t_ 1121974459 _tu_ 616867 _cl_
cl1.xxx.com _fs_ fs3 _d_ 3 _br_ 0 _bw_ 0 _oc_ 0 _cc_ 0 _rdc_ 0 _wc_ 0 _dir_ 0
iu 0
_fs_io_s_ _n_ 199.18.1.5 _nn_ node2 _rc_ 0 _t_ 1121974459 _tu_ 616867 _cl_
node1.localdomain _fs_ gpfs2 _d_ 2 _br_ 0 _bw_ 0 _oc_ 0 _cc_ 0 _rdc_ 0 _wc_ 0

 If the -p flag is not specified,
 the output is similar to: mmpmon node 199.18.1.5 name node2:
from node 199.18.1.2 from name node1: failure status 233 timestamp 1121974459/602231
node failed (or never started)
mmpmon node 199.18.1.5 name node2 fs_io_s OK
cluster: cl1.xxx.com
filesystem: fs2
disks: 2
timestamp: 1121974544/222514
bytes read: 0
bytes written: 0
opens: 0
closes: 0
reads: 0
writes: 0
readdir: 0
inode updates: 0

mmpmon node 199.18.1.5 name node2 fs_io_s OK
cluster: cl1.xxx.com
filesystem: fs3
disks: 3
timestamp: 1121974544/222514
bytes read: 0
bytes written: 0
opens: 0
closes: 0
reads: 0
writes: 0
readdir: 0
inode updates: 0

mmpmon node 199.18.1.5 name node2 fs_io_s OK
cluster: xxx.localdomain
filesystem: gpfs2
disks: 2
timestamp: 1121974544/222514
bytes read: 0
bytes written: 0
opens: 0
closes: 0
reads: 0
writes: 0
readdir: 0
inode updates: 0

 Parent topic: Node list examples and error handling

 Node shutdown and quorum loss

 In this example, the quorum node (node2) is shutdown,
 causing quorum loss on node1. Running the same example
 on node2, the output is similar to: _failed_ _n_ 199.18.1.2 _nn_ node1 _rc_ 668 _t_ 1121974459 _tu_ 616867

 If the -p flag is not specified, the output is
 similar to: mmpmon node 199.18.1.2 name node1: failure status 668 timestamp 1121974459/616867
lost quorum

 In this scenario there can be a window where node2 is
 down and node1 has not yet lost quorum. When quorum
 loss occurs, the mmpmon command does not attempt
 to communicate with any nodes in the node list. The goal with failure handling
 is to accurately maintain the node list across node failures, so that when
 nodes come back up they again contribute to the aggregated responses.

 Parent topic: Node list examples and error handling

 Node list failure values

 Table 1 describes
 the keywords and values produced by the mmpmon command
 on a node list failure:

 Table 12. Keywords and values for the mmpmon nlist failures

 	Keyword

 	Description

 	n

 	IP address of the node processing the node list.
 This is the address by which GPFS knows
 the node.

 	nn

 	The hostname that corresponds to the IP address
 (the _n_ value).

 	fn

 	IP address of the node that is no longer responding
 to mmpmon requests.

 	fnn

 	The name by which GPFS knows
 the node that is no longer responding to mmpmon requests

 	rc

 	Indicates the status of the operation. See Return codes from mmpmon.

 	t

 	Indicates the current time of day in seconds
 (absolute seconds since Epoch (1970)).

 	tu

 	Microseconds part of the current time of day.

 Parent topic: Node list examples and error handling

 Reset statistics to zero

 About this task

 The reset request resets the
 statistics that are displayed with fs_io_s and io_s requests.
 The reset request does not reset
 the histogram data, which is controlled and displayed with rhist requests. Table 1 describes the keywords for the reset response,
 in the order that they appear in the output. These keywords are used
 only when mmpmon is invoked with the -p flag.
 The response is a single string.

 Table 13. Keywords and values for the mmpmon reset response

 	Keyword

 	Description

 	n

 	IP address of the node responding. This is the
 address by which GPFS knows
 the node.

 	nn

 	The hostname that corresponds to the IP address
 (the _n_ value).

 	rc

 	Indicates the status of the operation.

 	t

 	Indicates the current time of day in seconds
 (absolute seconds since Epoch (1970)).

 	tu

 	Microseconds part of the current time of day.

 	Example of mmpmon reset request

 Parent topic: Monitoring GPFS I/O performance with the mmpmon command

 Related concepts:

 Overview of mmpmon

 Understanding the node list facility

 Understanding the request histogram facility

 [image: Start of change]Understanding the Remote Procedure Call (RPC) facility[image: End of change]

 Displaying vdisk I/O statistics

 Resetting vdisk I/O statistics

 Related tasks:

 Specifying input to the mmpmon command

 Display I/O statistics per mounted file system

 Display I/O statistics for the entire node

 Displaying mmpmon version

 Related reference:

 Example mmpmon scenarios and how to analyze and interpret their results

 Other information about mmpmon output

 Example of mmpmon reset request

 Assume that commandFile contains this
 line: reset

 and this command is issued: mmpmon -p -i commandFile

 The output is similar to this: _reset_ _n_ 199.18.1.8 _nn_ node1 _rc_ 0 _t_ 1066660148 _tu_ 407431

 If the -p flag is not specified, the
 output is similar to: mmpmon node 199.18.1.8 name node1 reset OK

 Parent topic: Reset statistics to zero

 Understanding the request histogram facility

 The mmpmon requests that
 start with rhist control the request
 histogram facility. This facility tallies I/O operations using a set
 of counters. Counters for reads and writes are kept separately. They
 are categorized according to a pattern that may be customized by the
 user. A default pattern is also provided. The size range and latency
 range input parameters to the rhist nr request
 are used to define the pattern.

 The first time that you run the rhist requests,
 assess if there is a noticeable performance degradation. Collecting
 histogram data may cause performance degradation. This is possible
 once the histogram facility is enabled, but will probably not be noticed
 while the commands themselves are running. It is more of a long term
 issue as the GPFS daemon runs
 with histograms enabled.

 The histogram lock is used to prevent two rhist requests
 from being processed simultaneously. If an rhist request
 fails with an _rc_ of 16, the lock is in
 use. Reissue the request.

 The histogram data survives file system mounts and unmounts. In
 order to reset this data, use the rhist reset request.

 Table 1 describes the rhist requests:

 Table 14. rhist requests for the mmpmon command

 	Request

 	Description

 	rhist nr

 	Changing the request histogram facility request size and latency ranges

 	rhist off

 	Disabling the request histogram facility.
 This is the default.

 	rhist on

 	Enabling the request histogram facility

 	rhist p

 	Displaying the request histogram facility pattern

 	rhist reset

 	Resetting the request histogram facility data to zero

 	rhist s

 	Displaying the request histogram facility statistics values

 	Specifying the size ranges for I/O histograms

 	Specifying the latency ranges for I/O

 	Changing the request histogram facility request size and latency ranges

 	Disabling the request histogram facility

 	Enabling the request histogram facility

 	Displaying the request histogram facility pattern

 	Resetting the request histogram facility data to zero

 	Displaying the request histogram facility statistics values

 Parent topic: Monitoring GPFS I/O performance with the mmpmon command

 Related concepts:

 Overview of mmpmon

 Understanding the node list facility

 [image: Start of change]Understanding the Remote Procedure Call (RPC) facility[image: End of change]

 Displaying vdisk I/O statistics

 Resetting vdisk I/O statistics

 Related tasks:

 Specifying input to the mmpmon command

 Display I/O statistics per mounted file system

 Display I/O statistics for the entire node

 Reset statistics to zero

 Displaying mmpmon version

 Related reference:

 Example mmpmon scenarios and how to analyze and interpret their results

 Other information about mmpmon output

 Specifying the size ranges for I/O histograms

 About this task

 The
 size ranges are used to categorize the I/O according to the size, in bytes,
 of the I/O operation. The size ranges are specified using a string of positive
 integers separated by semicolons (;). No white space is allowed within the
 size range operand. Each number represents the upper bound, in bytes, of the
 I/O request size for that range. The numbers must be monotonically increasing.
 Each number may be optionally followed by the letters K or k to denote multiplication
 by 1024, or by the letters M or m to denote multiplication by 1048576 (1024*1024).

 For
 example, the size range operand: 512;1m;4m

 represents these four size ranges 0 to 512 bytes
513 to 1048576 bytes
1048577 to 4194304 bytes
4194305 and greater bytes

 In this example, a read of size 3 MB would fall in the third size
 range, a write of size 20 MB would fall in the fourth size range.

 A
 size range operand of = (equal sign) indicates that the current size range
 is not to be changed. A size range operand of * (asterisk) indicates that
 the current size range is to be changed to the default size range. A maximum
 of 15 numbers may be specified, which produces 16 total size ranges.

 The
 default request size ranges are: 0 to 255 bytes
256 to 511 bytes
512 to 1023 bytes
1024 to 2047 bytes
2048 to 4095 bytes
4096 to 8191 bytes
8192 to 16383 bytes
16384 to 32767 bytes
32768 to 65535 bytes
65536 to 131071 bytes
131072 to 262143 bytes
262144 to 524287 bytes
524288 to 1048575 bytes
1048576 to 2097151 bytes
2097152 to 4194303 bytes
4194304 and greater bytes

 The last size range collects
 all request sizes greater than or equal to 4 MB. The request size ranges can
 be changed by using the rhist nr request.

 Parent topic: Understanding the request histogram facility

 Specifying the latency ranges for I/O

 About this task

 The
 latency ranges are used to categorize the I/O according to the latency
 time, in milliseconds, of the I/O operation. A full set of latency
 ranges are produced for each size range. The latency ranges are the
 same for each size range.

 The latency ranges are changed using
 a string of positive decimal numbers separated by semicolons (;).
 No white space is allowed within the latency range operand. Each number
 represents the upper bound of the I/O latency time (in milliseconds)
 for that range. The numbers must be monotonically increasing. If decimal
 places are present, they are truncated to tenths.

 For example,
 the latency range operand: 1.3;4.59;10

 represents these four latency ranges: 0.0 to 1.3 milliseconds
 1.4 to 4.5 milliseconds
 4.6 to 10.0 milliseconds
10.1 and greater milliseconds

 In this example, a read that completes in 0.85 milliseconds
 falls into the first latency range. A write that completes in 4.56
 milliseconds falls into the second latency range, due to the truncation.

 A
 latency range operand of = (equal sign) indicates that the current
 latency range is not to be changed. A latency range operand of * (asterisk)
 indicates that the current latency range is to be changed to the default
 latency range. If the latency range operand is missing, * (asterisk)
 is assumed. A maximum of 15 numbers may be specified, which produces
 16 total latency ranges.

 The latency times are in milliseconds.
 The default latency ranges are: 0.0 to 1.0 milliseconds
1.1 to 10.0 milliseconds
10.1 to 30.0 milliseconds
30.1 to 100.0 milliseconds
100.1 to 200.0 milliseconds
200.1 to 400.0 milliseconds
400.1 to 800.0 milliseconds
800.1 to 1000.0 milliseconds
1000.1 and greater milliseconds

 The last latency range collects all latencies
 greater than or equal to 1000.1 milliseconds. The latency ranges can
 be changed by using the rhist nr request.

 Parent topic: Understanding the request histogram facility

 Changing the request histogram facility request size and latency
 ranges

 About this task

 The rhist nr (new range) request
 allows the user to change the size and latency ranges used in the
 request histogram facility. The use of rhist nr implies
 an rhist reset. Counters for read and write
 operations are recorded separately. If there are no mounted file systems
 at the time rhist nr is issued, the request
 still runs. The size range operand appears first, followed by a blank,
 and then the latency range operand.

 Table 1 describes
 the keywords for the rhist nr response,
 in the order that they appear in the output. These keywords are used
 only when mmpmon is invoked with the -p flag.

 Table 15. Keywords and values for
 the mmpmon rhist nr response

 	Keyword

 	Description

 	n

 	IP address of the node responding. This is the
 address by which GPFS knows
 the node.

 	nn

 	The hostname that corresponds to the IP address
 (the _n_ value).

 	req

 	The action requested. In this case, the value
 is nr.

 	rc

 	Indicates the status of the operation.

 	t

 	Indicates the current time of day in seconds
 (absolute seconds since Epoch (1970)).

 	tu

 	Microseconds part of the current time of day.

 An _rc_ value of 16 indicates
 that the histogram operations lock is busy. Retry the request.

 	Processing of rhist nr

 	Example of mmpmon rhist nr request

 Parent topic: Understanding the request histogram facility

 Processing of rhist nr

 Processing of rhist nr is as follows:

 	The size range and latency range operands are parsed and checked for validity.
 If they are not valid, an error is returned and processing terminates.

 	The histogram facility is disabled.

 	The new ranges are created, by defining the following histogram counters:

 	Two sets, one for read and one for write.

 	Within each set, one category for each size range.

 	Within each size range category, one counter for each latency range.
 For
 example, if the user specifies 11 numbers for the size range operand and 2
 numbers for the latency range operand, this produces 12 size ranges, each
 having 3 latency ranges, because there is one additional range for the top
 endpoint. The total number of counters is 72: 36 read counters and 36 write
 counters.

 	The new ranges are made current.

 	The old ranges are discarded. Any accumulated histogram data is lost.

 The histogram facility must be explicitly enabled again using rhist
 on to begin collecting histogram data using the new ranges.

 The mmpmon command does not have the ability
 to collect data only for read operations, or only for write operations. The mmpmon command
 does not have the ability to specify size or latency ranges that have different
 values for read and write operations. The mmpmon command
 does not have the ability to specify latency ranges that are unique to a given
 size range.

 Parent topic: Changing the request histogram facility request size and latency ranges

 Example of mmpmon rhist nr request

 Assume that commandFile contains this
 line: rhist nr 512;1m;4m 1.3;4.5;10

 and this command
 is issued: mmpmon -p -i commandFile

 The output is similar to this: _rhist_ _n_ 199.18.2.5 _nn_ node1 _req_ nr 512;1m;4m 1.3;4.5;10 _rc_ 0 _t_ 1078929833 _tu_ 765083

 If the -p flag is not specified, the
 output is similar to: mmpmon node 199.18.1.8 name node1 rhist nr 512;1m;4m 1.3;4.5;10 OK

 In this case, mmpmon has been instructed
 to keep a total of 32 counters. There are 16 for read and 16 for write. For
 the reads, there are four size ranges, each of which has four latency ranges.
 The same is true for the writes. They are as follows: size range 0 to 512 bytes
 latency range 0.0 to 1.3 milliseconds
 latency range 1.4 to 4.5 milliseconds
 latency range 4.6 to 10.0 milliseconds
 latency range 10.1 and greater milliseconds
size range 513 to 1048576 bytes
 latency range 0.0 to 1.3 milliseconds
 latency range 1.4 to 4.5 milliseconds
 latency range 4.6 to 10.0 milliseconds
 latency range 10.1 and greater milliseconds
size range 1048577 to 4194304 bytes
 latency range 0.0 to 1.3 milliseconds
 latency range 1.4 to 4.5 milliseconds
 latency range 4.6 to 10.0 milliseconds
 latency range 10.1 and greater milliseconds
size range 4194305 and greater bytes
 latency range 0.0 to 1.3 milliseconds
 latency range 1.4 to 4.5 milliseconds
 latency range 4.6 to 10.0 milliseconds
 latency range 10.1 and greater milliseconds

 In this example, a read of size 15 MB that completes in 17.8 milliseconds
 would fall in the last latency range listed here. When this read completes,
 the counter for the last latency range will be increased by one.

 An _rc_ value of 16 indicates that the
 histogram operations lock is busy. Retry the request.

 An example of an unsuccessful response is: _rhist_ _n_ 199.18.2.5 _nn_ node1 _req_ nr 512;1m;4m 1;4;8;2 _rc_ 22 _t_ 1078929596 _tu_ 161683

 If the -p flag is not specified, the
 output is similar to: mmpmon node 199.18.1.8 name node1 rhist nr 512;1m;4m 1;4;8;2 status 22 range error

 In
 this case, the last value in the latency range, 2, is out of numerical order.

 Note that the request rhist nr = = does
 not make any changes. It is ignored.

 Parent topic: Changing the request histogram facility request size and latency ranges

 Disabling the request histogram facility

 About this task

 The rhist off request disables
 the request histogram facility. The data objects remain persistent,
 and the data they contain is not disturbed. This data is not updated
 again until rhist on is issued. rhist
 off may be combined with rhist on as
 often as desired. If there are no mounted file systems at the time rhist
 off is issued, the facility is still disabled. The response
 is a single string.

 Table 1 describes
 the keywords for the rhist off response,
 in the order that they appear in the output. These keywords are used
 only when mmpmon is invoked with the -p flag.

 Table 16. Keywords and values for
 the mmpmon rhist off response

 	Keyword

 	Description

 	n

 	IP address of the node responding. This is the
 address by which GPFS knows
 the node.

 	nn

 	The hostname that corresponds to the IP address
 (the _n_ value).

 	req

 	The action requested. In this case, the value
 is off.

 	rc

 	Indicates the status of the operation.

 	t

 	Indicates the current time of day in seconds
 (absolute seconds since Epoch (1970)).

 	tu

 	Microseconds part of the current time of day.

 An _rc_ value of 16 indicates
 that the histogram operations lock is busy. Retry the request.

 	Example of mmpmon rhist off request

 Parent topic: Understanding the request histogram facility

 Example of mmpmon rhist off request

 Assume that commandFile contains this
 line: rhist off

 and this command is issued: mmpmon -p -i commandFile

 The output is similar to this: _rhist_ _n_ 199.18.1.8 _nn_ node1 _req_ off _rc_ 0 _t_ 1066938820 _tu_ 5755

 If the -p flag is not specified, the
 output is similar to: mmpmon node 199.18.1.8 name node1 rhist off OK

 An _rc_ value of 16 indicates that the
 histogram operations lock is busy. Retry the request. mmpmon node 199.18.1.8 name node1 rhist off status 16
lock is busy

 Parent topic: Disabling the request histogram facility

 Enabling the request histogram facility

 About this task

 The rhist on request enables
 the request histogram facility. When invoked the first time, this
 request creates the necessary data objects to support histogram data
 gathering. This request may be combined with rhist off (or
 another rhist on) as often as desired. If
 there are no mounted file systems at the time rhist on is
 issued, the facility is still enabled. The response is a single string.

 Table 1 describes the keywords for the rhist
 on response, in the order that they appear in the output.
 These keywords are used only when mmpmon is
 invoked with the -p flag.

 Table 17. Keywords and values for the mmpmon
 rhist on response

 	Keyword

 	Description

 	n

 	IP address of the node responding. This is the
 address by which GPFS knows
 the node.

 	nn

 	The hostname that corresponds to the IP address
 (the _n_ value).

 	req

 	The action requested. In this case, the value
 is on.

 	rc

 	Indicates the status of the operation.

 	t

 	Indicates the current time of day in seconds
 (absolute seconds since Epoch (1970)).

 	tu

 	Microseconds part of the current time of day.

 An _rc_ value of 16 indicates
 that the histogram operations lock is busy. Retry the request.

 	Example of mmpmon rhist on request

 Parent topic: Understanding the request histogram facility

 Example of mmpmon rhist on request

 Assume that commandFile contains this
 line: rhist on

 and this command is issued: mmpmon -p -i commandFile

 The output is similar to this: _rhist_ _n_ 199.18.1.8 _nn_ node1 _req_ on _rc_ 0 _t_ 1066936484 _tu_ 179346

 If the -p flag is not specified, the
 output is similar to: mmpmon node 199.18.1.8 name node1 rhist on OK

 An _rc_ value of 16 indicates that the
 histogram operations lock is busy. Retry the request. mmpmon node 199.18.1.8 name node1 rhist on status 16
lock is busy

 Parent topic: Enabling the request histogram facility

 Displaying the request histogram facility pattern

 About this task

 The rhist p request returns
 the entire enumeration of the request size and latency ranges. The
 facility must be enabled for a pattern to be returned. If there are
 no mounted file systems at the time this request is issued, the request
 still runs and returns data. The pattern is displayed for both read
 and write.

 Table 1 describes the
 keywords for the rhist p response, in the
 order that they appear in the output. These keywords are used only
 when mmpmon is invoked with the -p flag.

 Table 18. Keywords and values for the mmpmon
 rhist p response

 	Keyword

 	Description

 	n

 	IP address of the node responding. This is the
 address by which GPFS knows
 the node.

 	nn

 	The hostname that corresponds to the IP address
 (the _n_ value).

 	req

 	The action requested. In this case, the value
 is p.

 	rc

 	Indicates the status of the operation.

 	t

 	Indicates the current time of day in seconds
 (absolute seconds since Epoch (1970)).

 	tu

 	Microseconds part of the current time of day.

 	k

 	The kind, r or w,
 (read or write) depending on what the statistics are for.

 	R

 	Request size range, minimum and maximum number
 of bytes.

 	L

 	Latency range, minimum and maximum, in milliseconds.

 The request size ranges are in bytes. The zero value used
 for the upper limit of the last size range means 'and above'. The
 request size ranges can be changed by using the rhist
 nr request.

 The latency times are in milliseconds
 The zero value used for the upper limit of the last latency range
 means 'and above'. The latency ranges can be changed by using the rhist
 nr request.

 The rhist p request
 allows an application to query for the entire latency pattern. The
 application can then configure itself accordingly. Since latency statistics
 are reported only for ranges with nonzero counts, the statistics responses
 may be sparse. By querying for the pattern, an application can be
 certain to learn the complete histogram set. The user may have changed
 the pattern using the rhist nr request.
 For this reason, an application should query for the pattern and analyze
 it before requesting statistics.

 If the facility has never
 been enabled, the _rc_ field will be nonzero.
 An _rc_ value of 16 indicates that the histogram
 operations lock is busy. Retry the request.

 If the facility
 has been previously enabled, the rhist p request
 will still display the pattern even if rhist off is
 currently in effect.

 If there are no mounted file systems at
 the time rhist p is issued, the pattern
 is still displayed.

 	Example of mmpmon rhist p request

 Parent topic: Understanding the request histogram facility

 Example of mmpmon rhist p request

 Assume that commandFile contains
 this line: rhist p

 and this command is issued: mmpmon -p -i commandFile

 The response contains all the latency ranges inside each
 of the request ranges. The data are separate for read and write: _rhist_ _n_ 199.18.1.8 _nn_ node1 _req_ p _rc_ 0 _t_ 1066939007 _tu_ 386241 _k_ r
... data for reads ...
rhist _n_ 199.18.1.8 _nn_ node1 _req_ p _rc_ 0 _t_ 1066939007 _tu_ 386241 _k_ w
... data for writes ...
end

 If the -p flag is not specified,
 the output is similar to: mmpmon node 199.18.1.8 name node1 rhist p OK read
... data for reads ...
mmpmon node 199.188.1.8 name node1 rhist p OK write
... data for writes ...

 Here is an example of data for reads: _rhist_ _n_ 199.18.1.8 _nn_ node1 _req_ p _rc_ 0 _t_ 1066939007 _tu_ 386241 _k_ r
R 0 255
L 0.0 1.0
L 1.1 10.0
L 10.1 30.0
L 30.1 100.0
L 100.1 200.0
L 200.1 400.0
L 400.1 800.0
L 800.1 1000.0
L 1000.1 0
R 256 511
L 0.0 1.0
L 1.1 10.0
L 10.1 30.0
L 30.1 100.0
L 100.1 200.0
L 200.1 400.0
L 400.1 800.0
L 800.1 1000.0
L 1000.1 0
R 512 1023
L 0.0 1.0
L 1.1 10.0
L 10.1 30.0
L 30.1 100.0
L 100.1 200.0
L 200.1 400.0
L 400.1 800.0
L 800.1 1000.0
L 1000.1 0
...
R 4194304 0
L 0.0 1.0
L 1.1 10.0
L 10.1 30.0
L 30.1 100.0
L 100.1 200.0
L 200.1 400.0
L 400.1 800.0
L 800.1 1000.0
L 1000.1 0

 If the -p flag is not specified,
 the output is similar to: mmpmon node 199.18.1.8 name node1 rhist p OK read
size range 0 to 255
 latency range 0.0 to 1.0
 latency range 1.1 to 10.0
 latency range 10.1 to 30.0
 latency range 30.1 to 100.0
 latency range 100.1 to 200.0
 latency range 200.1 to 400.0
 latency range 400.1 to 800.0
 latency range 800.1 to 1000.0
 latency range 1000.1 to 0
size range 256 to 511
 latency range 0.0 to 1.0
 latency range 1.1 to 10.0
 latency range 10.1 to 30.0
 latency range 30.1 to 100.0
 latency range 100.1 to 200.0
 latency range 200.1 to 400.0
 latency range 400.1 to 800.0
 latency range 800.1 to 1000.0
 latency range 1000.1 to 0
size range 512 to 1023
 latency range 0.0 to 1.0
 latency range 1.1 to 10.0
 latency range 10.1 to 30.0
 latency range 30.1 to 100.0
 latency range 100.1 to 200.0
 latency range 200.1 to 400.0
 latency range 400.1 to 800.0
 latency range 800.1 to 1000.0
 latency range 1000.1 to 0
...
size range 4194304 to 0
 latency range 0.0 to 1.0
 latency range 1.1 to 10.0
 latency range 10.1 to 30.0
 latency range 30.1 to 100.0
 latency range 100.1 to 200.0
 latency range 200.1 to 400.0
 latency range 400.1 to 800.0
 latency range 800.1 to 1000.0
 latency range 1000.1 to 0

 If the facility has never been enabled, the _rc_ field
 will be nonzero. _rhist_ _n_ 199.18.1.8 _nn_ node1 _req_ p _rc_ 1 _t_ 1066939007 _tu_ 386241

 If the -p flag is not specified,
 the output is similar to this: mmpmon node 199.18.1.8 name node1 rhist p status 1
not yet enabled

 Parent topic: Displaying the request histogram facility pattern

 Resetting the request histogram facility data to zero

 About this task

 The rhist reset request resets
 the histogram statistics. Table 1 describes
 the keywords for the rhist reset response,
 in the order that they appear in the output. These keywords are used
 only when mmpmon is invoked with the -p flag.
 The response is a single string.

 Table 19. Keywords and values for the mmpmon rhist reset response

 	Keyword

 	Description

 	n

 	IP address of the node responding. This is the
 address by which GPFS knows
 the node.

 	nn

 	The hostname that corresponds to the IP address
 (the _n_ value).

 	req

 	The action requested. In this case, the value
 is reset.

 	rc

 	Indicates the status of the operation.

 	t

 	Indicates the current time of day in seconds
 (absolute seconds since Epoch (1970)).

 	tu

 	Microseconds part of the current time of day.

 If the facility has been previously enabled, the reset
 request will still reset the statistics even if rhist
 off is currently in effect. If there are no mounted
 file systems at the time rhist reset is
 issued, the statistics are still reset.

 An _rc_ value
 of 16 indicates that the histogram operations lock is busy. Retry
 the request.

 	Example of mmpmon rhist reset request

 Parent topic: Understanding the request histogram facility

 Example of mmpmon rhist reset request

 Assume that commandFile contains this
 line: rhist reset

 and this command is issued: mmpmon -p -i commandFile

 The output is similar to this: _rhist_ _n_ 199.18.1.8 _nn_ node1 _req_ reset _rc_ 0 _t_ 1066939007 _tu_ 386241

 If the -p flag is not specified, the
 output is similar to: _rhist_ _n_ 199.18.1.8 _nn_ node1 _req_ reset _rc_ 0 _t_ 1066939007 _tu_ 386241

 If the facility has never been enabled, the _rc_ value
 will be nonzero: _rhist_ _n_ 199.18.1.8 _nn_ node1 _req_ reset _rc_ 1 _t_ 1066939143 _tu_ 148443

 If the -p flag is not specified, the
 output is similar to: mmpmon node 199.18.1.8 name node1 rhist reset status 1
not yet enabled

 Parent topic: Resetting the request histogram facility data to zero

 Displaying the request histogram facility statistics values

 About this task

 The rhist s request returns
 the current values for all latency ranges which have a nonzero count.

 Table 1 describes the keywords for the rhist
 s response, in the order that they appear in the output.
 These keywords are used only when mmpmon is
 invoked with the -p flag.

 Table 20. Keywords and values for the mmpmon
 rhist s response

 	Keyword

 	Description

 	n

 	IP address of the node responding. This is the
 address by which GPFS knows
 the node.

 	nn

 	The hostname that corresponds to the IP address
 (the _n_ value).

 	req

 	The action requested. In this case, the value
 is s.

 	rc

 	Indicates the status of the operation.

 	t

 	Indicates the current time of day in seconds
 (absolute seconds since Epoch (1970)).

 	tu

 	Microseconds part of the current time of day.

 	k

 	The kind, r or w,
 (read or write) depending on what the statistics are for.

 	R

 	Request size range, minimum and maximum number
 of bytes.

 	NR

 	Number of requests that fell in this size range.

 	L

 	Latency range, minimum and maximum, in milliseconds.

 	NL

 	Number of requests that fell in this latency
 range. The sum of all _NL_ values for a
 request size range equals the _NR_ value
 for that size range.

 If the facility has been previously enabled, the rhist
 s request will still display the statistics even if rhist
 off is currently in effect. This allows turning the
 histogram statistics on and off between known points and reading them
 later. If there are no mounted file systems at the time rhist
 s is issued, the statistics are still displayed.

 An _rc_ value
 of 16 indicates that the histogram operations lock is busy. Retry
 the request.

 	Example of mmpmon rhist s request

 Parent topic: Understanding the request histogram facility

 Example of mmpmon rhist s request

 Assume that commandFile contains this
 line: rhist s

 and this command is issued: mmpmon -p -i commandFile

 The output is similar to this: _rhist_ _n_ 199.18.2.5 _nn_ node1 _req_ s _rc_ 0 _t_ 1066939007 _tu_ 386241 _k_ r
R 65536 131071 _NR_ 32640
L 0.0 1.0 _NL_ 25684
L 1.1 10.0 _NL_ 4826
L 10.1 30.0 _NL_ 1666
L 30.1 100.0 _NL_ 464
R 262144 524287 _NR_ 8160
L 0.0 1.0 _NL_ 5218
L 1.1 10.0 _NL_ 871
L 10.1 30.0 _NL_ 1863
L 30.1 100.0 _NL_ 208
R 1048576 2097151 _NR_ 2040
L 1.1 10.0 _NL_ 558
L 10.1 30.0 _NL_ 809
L 30.1 100.0 _NL_ 673
rhist _n_ 199.18.2.5 _nn_ node1 _req_ s _rc_ 0 _t_ 1066939007 _tu_ 386241 _k_ w
R 131072 262143 _NR_ 12240
L 0.0 1.0 _NL_ 10022
L 1.1 10.0 _NL_ 1227
L 10.1 30.0 _NL_ 783
L 30.1 100.0 _NL_ 208
R 262144 524287 _NR_ 6120
L 0.0 1.0 _NL_ 4419
L 1.1 10.0 _NL_ 791
L 10.1 30.0 _NL_ 733
L 30.1 100.0 _NL_ 177
R 524288 1048575 _NR_ 3060
L 0.0 1.0 _NL_ 1589
L 1.1 10.0 _NL_ 581
L 10.1 30.0 _NL_ 664
L 30.1 100.0 _NL_ 226
R 2097152 4194303 _NR_ 762
L 1.1 2.0 _NL_ 203
L 10.1 30.0 _NL_ 393
L 30.1 100.0 _NL_ 166
end

 This small example shows that the reports for read and write may
 not present the same number of ranges or even the same ranges. Only those
 ranges with nonzero counters are represented in the response. This is true
 for both the request size ranges and the latency ranges within each request
 size range.

 If the -p flag is not specified, the
 output is similar to: mmpmon node 199.18.2.5 name node1 rhist s OK timestamp 1066933849/93804 read
size range 65536 to 131071 count 32640
 latency range 0.0 to 1.0 count 25684
 latency range 1.1 to 10.0 count 4826
 latency range 10.1 to 30.0 count 1666
 latency range 30.1 to 100.0 count 464
size range 262144 to 524287 count 8160
 latency range 0.0 to 1.0 count 5218
 latency range 1.1 to 10.0 count 871
 latency range 10.1 to 30.0 count 1863
 latency range 30.1 to 100.0 count 208
size range 1048576 to 2097151 count 2040
 latency range 1.1 to 10.0 count 558
 latency range 10.1 to 30.0 count 809
 latency range 30.1 to 100.0 count 673
mmpmon node 199.18.2.5 name node1 rhist s OK timestamp 1066933849/93968 write
size range 131072 to 262143 count 12240
 latency range 0.0 to 1.0 count 10022
 latency range 1.1 to 10.0 count 1227
 latency range 10.1 to 30.0 count 783
 latency range 30.1 to 100.0 count 208
size range 262144 to 524287 count 6120
 latency range 0.0 to 1.0 count 4419
 latency range 1.1 to 10.0 count 791
 latency range 10.1 to 30.0 count 733
 latency range 30.1 to 100.0 count 177
size range 524288 to 1048575 count 3060
 latency range 0.0 to 1.0 count 1589
 latency range 1.1 to 10.0 count 581
 latency range 10.1 to 30.0 count 664
 latency range 30.1 to 100.0 count 226
size range 2097152 to 4194303 count 762
 latency range 1.1 to 2.0 count 203
 latency range 10.1 to 30.0 count 393
 latency range 30.1 to 100.0 count 166

 If the facility has never been enabled, the _rc_ value
 will be nonzero: _rhist_ _n_ 199.18.1.8 _nn_ node1 _req_ reset _rc_ 1 _t_ 1066939143 _tu_ 148443

 If the -p flag is not specified, the
 output is similar to: mmpmon node 199.18.1.8 name node1 rhist reset status 1
not yet enabled

 An _rc_ value of 16 indicates that the
 histogram operations lock is busy. Retry the request.

 Parent topic: Displaying the request histogram facility statistics values

 Understanding the Remote Procedure Call (RPC) facility

 The mmpmon requests that start with rpcs display
 an aggregation of execution time taken by RPCs for a time unit, for
 example the last 10 seconds. The statistics displayed are the average,
 minimum, and maximum of RPC execution time over the last 60 seconds,
 60 minutes, 24 hours, and 30 days.

 Table 1 describes the rpcs requests:

 Table 21. rpcs requests for the mmpmon command

 	Request

 	Description

 	rpcs

 	Displaying the aggregation of execution time for Remote Procedure Calls (RPCs)

 	rpcs size

 	Displaying the Remote Procedure Call (RPC) execution time according to the size of messages

 The information displayed with rpcs is
 similar to what is displayed with the mmdiag --rpc command.

 	[image: Start of change]Displaying the aggregation of execution time for Remote Procedure Calls (RPCs)[image: End of change]

 	[image: Start of change]Displaying the Remote Procedure Call (RPC) execution time according to the size of messages[image: End of change]

 Parent topic: Monitoring GPFS I/O performance with the mmpmon command

 Related concepts:

 Overview of mmpmon

 Understanding the node list facility

 Understanding the request histogram facility

 Displaying vdisk I/O statistics

 Resetting vdisk I/O statistics

 Related tasks:

 Specifying input to the mmpmon command

 Display I/O statistics per mounted file system

 Display I/O statistics for the entire node

 Reset statistics to zero

 Displaying mmpmon version

 Related reference:

 Example mmpmon scenarios and how to analyze and interpret their results

 Other information about mmpmon output

 Displaying the aggregation of execution time for Remote Procedure
 Calls (RPCs)

 About this task

 The rpcs request returns the
 aggregation of execution time for RPCs.

 Table 1 describes
 the keywords for the rpcs response, in the
 order that they appear in the output.

 Table 22. Keywords and values for the mmpmon rpcs response

 	Keyword

 	Description

 	req

 	Indicates the action requested. The action can
 be either size, node,
 or message. If no action is requested, the
 default is the rpcs action.

 	n

 	Indicates the IP address of the node responding.
 This is the address by which GPFS knows
 the node.

 	nn

 	Indicates the hostname that corresponds to the
 IP address (the _n_ value).

 	rn

 	Indicates the IP address of the remote node responding. This
 is the address by which GPFS knows
 the node. The statistics displayed are the averages from _nn_ to
 this _rnn_.

 	rnn

 	Indicates the hostname that corresponds to the remote node
 IP address (the _rn_ value). The statistics
 displayed are the averages from _nn_ to
 this _rnn_.

 	rc

 	Indicates the status of the operation.

 	t

 	Indicates the current time of day in seconds
 (absolute seconds since Epoch (1970)).

 	tu

 	Indicates the microseconds part of the current time of day.

 	rpcObj

 	Indicates the beginning of the statistics for _obj_.

 	obj

 	Indicates the RPC object being displayed.

 	nsecs

 	Indicates the number of one-second intervals maintained.

 	nmins

 	Indicates the number of one-minute intervals maintained.

 	nhours

 	Indicates the number of one-hour intervals maintained.

 	ndays

 	Indicates the number of one-day intervals maintained.

 	stats

 	Indicates the beginning of the RPC statistics.

 	tmu

 	Indicates the time unit (seconds, minutes, hours, or days).

 	av

 	Indicates the average value of execution time for _cnt_ RPCs
 during this time unit.

 	min

 	Indicates the minimum value of execution time for _cnt_ RPCs
 during this time unit.

 	max

 	Indicates the maximum value of execution time for _cnt_ RPCs
 during this time unit.

 	cnt

 	Indicates the count of RPCs that occurred during this time
 unit.

 The values allowed for _rpcObj_ are
 the following:

 	AG_STAT_CHANNEL_WAIT

 	AG_STAT_SEND_TIME_TCP

 	AG_STAT_SEND_TIME_VERBS

 	AG_STAT_RECEIVE_TIME_TCP

 	AG_STAT_RPC_LATENCY_TCP

 	AG_STAT_RPC_LATENCY_VERBS

 	AG_STAT_RPC_LATENCY_MIXED

 	AG_STAT_LAST

 	[image: Start of change]Example of mmpmon rpcs request[image: End of change]

 Parent topic: [image: Start of change]Understanding the Remote Procedure Call (RPC) facility[image: End of change]

 Example of mmpmon rpcs request

 Assume that commandFile contains
 this line: rpcs

 and this command is issued: mmpmon -p -i commandFile

 The
 output is similar to this: _response_ begin mmpmon rpcs
mmpmon::rpcs _req_ node _n_ 192.168.56.168 _nn_ node3 _rn_ 192.168.56.167 _rnn_ node2 _rc_ 0 _t_ 1388417709 _tu_ 641530
rpcObj _obj_ AG_STAT_CHANNEL_WAIT _nsecs_ 60 _nmins_ 60 _nhours_ 24 _ndays_ 30
stats _tmu_ sec _av_ 0.000, _min_ 0.000, _max_ 0.000, _cnt_ 0
stats _tmu_ sec _av_ 0.000, _min_ 0.000, _max_ 0.000, _cnt_ 0
stats _tmu_ sec _av_ 0.000, _min_ 0.000, _max_ 0.000, _cnt_ 0
…............
…............
…............
rpcObj _obj_ AG_STAT_SEND_TIME_TCP _nsecs_ 60 _nmins_ 60 _nhours_ 24 _ndays_ 30
stats _tmu_ sec _av_ 0.000, _min_ 0.000, _max_ 0.000, _cnt_ 0
stats _tmu_ sec _av_ 0.000, _min_ 0.000, _max_ 0.000, _cnt_ 0
stats _tmu_ sec _av_ 0.000, _min_ 0.000, _max_ 0.000, _cnt_ 0
stats _tmu_ sec _av_ 0.000, _min_ 0.000, _max_ 0.000, _cnt_ 0
…..........................
…..........................
…..........................
response end

 Parent topic: [image: Start of change]Displaying the aggregation of execution time for Remote Procedure Calls (RPCs)[image: End of change]

 Displaying the Remote Procedure Call (RPC) execution time according
 to the size of messages

 About this task

 The rpcs size request returns
 the cached RPC-related size statistics.

 Table 1 describes the keywords for the rpcs
 size response, in the order that they appear in the
 output.

 Table 23. Keywords
 and values for the mmpmon rpcs size response

 	Keyword

 	Description

 	req

 	Indicates the action requested. In this case,
 the value is rpcs size.

 	n

 	Indicates the IP address of the node responding.
 This is the address by which GPFS knows
 the node.

 	nn

 	Indicates the hostname that corresponds to the
 IP address (the _n_ value).

 	rc

 	Indicates the status of the operation.

 	t

 	Indicates the current time of day in seconds
 (absolute seconds since Epoch (1970)).

 	tu

 	Indicates the microseconds part of the current time of day.

 	rpcSize

 	Indicates the beginning of the statistics for this _size_ group.

 	size

 	Indicates the size of the messages for which statistics are
 collected.

 	nsecs

 	Indicates the number of one-second intervals maintained.

 	nmins

 	Indicates the number of one-minute intervals maintained.

 	nhours

 	Indicates the number of one-hour intervals maintained.

 	ndays

 	Indicates the number of one-day intervals maintained.

 	stats

 	Indicates the beginning of the RPC-size statistics.

 	tmu

 	Indicates the time unit.

 	av

 	Indicates the average value of execution time for _cnt_ RPCs
 during this time unit.

 	min

 	Indicates the minimum value of execution time for _cnt_ RPCs
 during this time unit.

 	max

 	Indicates the maximum value of execution time for _cnt_ RPCs
 during this time unit.

 	cnt

 	Indicates the count of RPCs that occurred during this time
 unit.

 	[image: Start of change]Example of mmpmon rpcs size request[image: End of change]

 Parent topic: [image: Start of change]Understanding the Remote Procedure Call (RPC) facility[image: End of change]

 Example of mmpmon rpcs size request

 Assume that commandFile contains
 this line: rpcs size

 and this command is issued: mmpmon -p -i commandFile

 The
 output is similar to this: _mmpmon::rpcs_ _req_ size _n_ 192.168.56.167 _nn_ node2 _rc_ 0 _t_ 1388417852 _tu_ 572950
rpcSize _size_ 64 _nsecs_ 60 _nmins_ 60 _nhours_ 24 _ndays_ 30
stats _tmu_ sec _av_ 0.000, _min_ 0.000, _max_ 0.000, _cnt_ 0
stats _tmu_ sec _av_ 0.000, _min_ 0.000, _max_ 0.000, _cnt_ 0
stats _tmu_ sec _av_ 0.000, _min_ 0.000, _max_ 0.000, _cnt_ 0
stats _tmu_ sec _av_ 0.000, _min_ 0.000, _max_ 0.000, _cnt_ 0
stats _tmu_ sec _av_ 0.000, _min_ 0.000, _max_ 0.000, _cnt_ 0
stats _tmu_ sec _av_ 0.000, _min_ 0.000, _max_ 0.000, _cnt_ 0
…...................
…...................
…...................
rpcSize _size_ 256 _nsecs_ 60 _nmins_ 60 _nhours_ 24 _ndays_ 30
stats _tmu_ sec _av_ 0.000, _min_ 0.000, _max_ 0.000, _cnt_ 0
stats _tmu_ sec _av_ 0.000, _min_ 0.000, _max_ 0.000, _cnt_ 0
stats _tmu_ sec _av_ 0.000, _min_ 0.000, _max_ 0.000, _cnt_ 0
stats _tmu_ sec _av_ 0.000, _min_ 0.000, _max_ 0.000, _cnt_ 0
stats _tmu_ sec _av_ 0.000, _min_ 0.000, _max_ 0.000, _cnt_ 0
…..................
…..................
stats _tmu_ min _av_ 0.692, _min_ 0.692, _max_ 0.692, _cnt_ 1
stats _tmu_ min _av_ 0.000, _min_ 0.000, _max_ 0.000, _cnt_ 0
stats _tmu_ min _av_ 0.000, _min_ 0.000, _max_ 0.000, _cnt_ 0
stats _tmu_ min _av_ 0.000, _min_ 0.000, _max_ 0.000, _cnt_ 0
response end

 Parent topic: [image: Start of change]Displaying the Remote Procedure Call (RPC) execution time according to the size of messages[image: End of change]

 Displaying mmpmon version

 About this task

 The ver request
 returns a string containing version information. Table 1 describes the keywords for the ver (version)
 response, in the order that they appear in the output. These keywords
 are used only when mmpmon is invoked with
 the -p flag.

 Table 24. Keywords and values for the mmpmon ver response

 	Keyword

 	Description

 	n

 	IP address of the node responding. This is the
 address by which GPFS knows
 the node.

 	nn

 	The hostname that corresponds to the IP address
 (the _n_ value).

 	v

 	The version of mmpmon.

 	lv

 	The level of mmpmon.

 	vt

 	The fix level variant of mmpmon.

 	Example of mmpmon ver request

 Parent topic: Monitoring GPFS I/O performance with the mmpmon command

 Related concepts:

 Overview of mmpmon

 Understanding the node list facility

 Understanding the request histogram facility

 [image: Start of change]Understanding the Remote Procedure Call (RPC) facility[image: End of change]

 Displaying vdisk I/O statistics

 Resetting vdisk I/O statistics

 Related tasks:

 Specifying input to the mmpmon command

 Display I/O statistics per mounted file system

 Display I/O statistics for the entire node

 Reset statistics to zero

 Related reference:

 Example mmpmon scenarios and how to analyze and interpret their results

 Other information about mmpmon output

 Example of mmpmon ver request

 Assume that commandFile contains
 this line: ver

 and this command is issued: mmpmon -p -i commandFile

 The output is similar to this: _ver_ _n_ 199.18.1.8 _nn_ node1 _v_ 3 _lv_ 3 _vt_ 0

 If the -p flag is not specified,
 the output is similar to: mmpmon node 199.18.1.8 name node1 version 3.3.0

 Parent topic: Displaying mmpmon version

 Example mmpmon scenarios and how to analyze and interpret their
 results

 This topic is an illustration of how mmpmon is
 used to analyze I/O data and draw conclusions based on it.

 The fs_io_s and io_s requests
 are used to determine a number of GPFS I/O
 parameters and their implication for overall performance. The rhist requests
 are used to produce histogram data about I/O sizes and latency times
 for I/O requests. The request source and prefix directive once allow
 the user of mmpmon to more finely tune its
 operation.

 	fs_io_s and io_s output - how to aggregate and analyze the results

 	Request histogram (rhist) output - how to aggregate and analyze the results

 	Using request source and prefix directive once

 Parent topic: Monitoring GPFS I/O performance with the mmpmon command

 Related concepts:

 Overview of mmpmon

 Understanding the node list facility

 Understanding the request histogram facility

 [image: Start of change]Understanding the Remote Procedure Call (RPC) facility[image: End of change]

 Displaying vdisk I/O statistics

 Resetting vdisk I/O statistics

 Related tasks:

 Specifying input to the mmpmon command

 Display I/O statistics per mounted file system

 Display I/O statistics for the entire node

 Reset statistics to zero

 Displaying mmpmon version

 Related reference:

 Other information about mmpmon output

 fs_io_s and io_s output - how to aggregate and analyze the
 results

 The output from the fs_io_s and io_s requests
 can be used to determine:

 	The I/O service rate of a node, from the application point of
 view. The io_s request presents this as
 a sum for the entire node, while fs_io_s presents
 the data per file system. A rate can be approximated by taking the _br_ (bytes
 read) or _bw_ (bytes written) values from
 two successive invocations of fs_io_s (or io_s_)
 and dividing by the difference of the sums of the individual _t_ and _tu_
 values (seconds and microseconds).
 This must be done for a number
 of samples, with a reasonably small time between samples, in order
 to get a rate which is reasonably accurate. Since we are sampling
 the information at a given interval, inaccuracy can exist if the I/O
 load is not smooth over the sampling time.

 For example, here
 is a set of samples taken approximately one second apart, when it
 was known that continuous I/O activity was occurring: _fs_io_s_ _n_ 199.18.1.3 _nn_ node1 _rc_ 0 _t_ 1095862476 _tu_ 634939 _cl_ cluster1.xxx.com
fs gpfs1m _d_ 3 _br_ 0 _bw_ 3737124864 _oc_ 4 _cc_ 3 _rdc_ 0 _wc_ 3570 _dir_ 0 _iu_ 5

 _fs_io_s_ _n_ 199.18.1.3 _nn_ node1 _rc_ 0 _t_ 1095862477 _tu_ 645988 _cl_ cluster1.xxx.com
fs gpfs1m _d_ 3 _br_ 0 _bw_ 3869245440 _oc_ 4 _cc_ 3 _rdc_ 0 _wc_ 3696 _dir_ 0 _iu_ 5

 _fs_io_s_ _n_ 199.18.1.3 _nn_ node1 _rc_ 0 _t_ 1095862478 _tu_ 647477 _cl_ cluster1.xxx.com
fs gpfs1m _d_ 3 _br_ 0 _bw_ 4120903680 _oc_ 4 _cc_ 3 _rdc_ 0 _wc_ 3936 _dir_ 0 _iu_ 5

 _fs_io_s_ _n_ 199.18.1.3 _nn_ node1 _rc_ 0 _t_ 1095862479 _tu_ 649363 _cl_ cluster1.xxx.com
fs gpfs1m _d_ 3 _br_ 0 _bw_ 4309647360 _oc_ 4 _cc_ 3 _rdc_ 0 _wc_ 4116 _dir_ 0 _iu_ 5

 _fs_io_s_ _n_ 199.18.1.3 _nn_ node1 _rc_ 0 _t_ 1095862480 _tu_ 650795 _cl_ cluster1.xxx.com
fs gpfs1m _d_ 3 _br_ 0 _bw_ 4542431232 _oc_ 4 _cc_ 3 _rdc_ 0 _wc_ 4338 _dir_ 0 _iu_ 5

 _fs_io_s_ _n_ 199.18.1.3 _nn_ node1 _rc_ 0 _t_ 1095862481 _tu_ 652515 _cl_ cluster1.ibm.com
fs gpfs1m _d_ 3 _br_ 0 _bw_ 4743757824 _oc_ 4 _cc_ 3 _rdc_ 0 _wc_ 4530 _dir_ 0 _iu_ 5

 _fs_io_s_ _n_ 199.18.1.3 _nn_ node1 _rc_ 0 _t_ 1095862482 _tu_ 654025 _cl_ cluster1.xxx.com
fs gpfs1m _d_ 3 _br_ 0 _bw_ 4963958784 _oc_ 4 _cc_ 3 _rdc_ 0 _wc_ 4740 _dir_ 0 _iu_ 5

 _fs_io_s_ _n_ 199.18.1.3 _nn_ node1 _rc_ 0 _t_ 1095862483 _tu_ 655782 _cl_ cluster1.xxx.com
fs gpfs1m _d_ 3 _br_ 0 _bw_ 5177868288 _oc_ 4 _cc_ 3 _rdc_ 0 _wc_ 4944 _dir_ 0 _iu_ 5

 _fs_io_s_ _n_ 199.18.1.3 _nn_ node1 _rc_ 0 _t_ 1095862484 _tu_ 657523 _cl_ cluster1.xxx.com
fs gpfs1m _d_ 3 _br_ 0 _bw_ 5391777792 _oc_ 4 _cc_ 3 _rdc_ 0 _wc_ 5148 _dir_ 0 _iu_ 5

 _fs_io_s_ _n_ 199.18.1.3 _nn_ node1 _rc_ 0 _t_ 1095862485 _tu_ 665909 _cl_ cluster1.xxx.com
fs gpfs1m _d_ 3 _br_ 0 _bw_ 5599395840 _oc_ 4 _cc_ 3 _rdc_ 0 _wc_ 5346 _dir_ 0 _iu_ 5

 This
 simple awk script performs a basic rate
 calculation: BEGIN {
 count=0;
 prior_t=0;
 prior_tu=0;
 prior_br=0;
 prior_bw=0;
}

{
 count++;

 t = $9;
 tu = $11;
 br = $19;
 bw = $21;

 if(count > 1)
 {
 delta_t = t-prior_t;
 delta_tu = tu-prior_tu;
 delta_br = br-prior_br;
 delta_bw = bw-prior_bw;
 dt = delta_t + (delta_tu / 1000000.0);
 if(dt > 0) {
 rrate = (delta_br / dt) / 1000000.0;
 wrate = (delta_bw / dt) / 1000000.0;

printf("%5.1f MB/sec read %5.1f MB/sec write\n",rrate,wrate);
 }
 }

 prior_t=t;
 prior_tu=tu;
 prior_br=br;
 prior_bw=bw;
}

 The calculated service rates for each adjacent
 pair of samples is: 0.0 MB/sec read 130.7 MB/sec write
 0.0 MB/sec read 251.3 MB/sec write
 0.0 MB/sec read 188.4 MB/sec write
 0.0 MB/sec read 232.5 MB/sec write
 0.0 MB/sec read 201.0 MB/sec write
 0.0 MB/sec read 219.9 MB/sec write
 0.0 MB/sec read 213.5 MB/sec write
 0.0 MB/sec read 213.5 MB/sec write
 0.0 MB/sec read 205.9 MB/sec write

 Since these are discrete samples, there can be
 variations in the individual results. For example, there may be other
 activity on the node or interconnection fabric. I/O size, file system
 block size, and buffering also affect results. There can be many reasons
 why adjacent values differ. This must be taken into account when building
 analysis tools that read mmpmon output and
 interpreting results.

 For example, suppose a file is read for
 the first time and gives results like this. 0.0 MB/sec read 0.0 MB/sec write
 0.0 MB/sec read 0.0 MB/sec write
 92.1 MB/sec read 0.0 MB/sec write
 89.0 MB/sec read 0.0 MB/sec write
 92.1 MB/sec read 0.0 MB/sec write
 90.0 MB/sec read 0.0 MB/sec write
 96.3 MB/sec read 0.0 MB/sec write
 0.0 MB/sec read 0.0 MB/sec write
 0.0 MB/sec read 0.0 MB/sec write

 If most or all of the file remains in the GPFS cache, the second read may give quite different
 rates: 0.0 MB/sec read 0.0 MB/sec write
 0.0 MB/sec read 0.0 MB/sec write
235.5 MB/sec read 0.0 MB/sec write
287.8 MB/sec read 0.0 MB/sec write
 0.0 MB/sec read 0.0 MB/sec write
 0.0 MB/sec read 0.0 MB/sec write

 Considerations such as these need to be taken
 into account when looking at application I/O service rates calculated
 from sampling mmpmon data.

 	Usage patterns, by sampling at set times of the day (perhaps every
 half hour) and noticing when the largest changes in I/O volume occur.
 This does not necessarily give a rate (since there are too few samples)
 but it can be used to detect peak usage periods.

 	If some nodes service significantly more I/O volume than others
 over a given time span.

 	When a parallel application is split across several nodes, and
 is the only significant activity in the nodes, how well the I/O activity
 of the application is distributed.

 	The total I/O demand that applications are placing on the cluster.
 This is done by obtaining results from fs_io_s and io_s in
 aggregate for all nodes in a cluster.

 	The rate data may appear to be erratic. Consider this example: 0.0 MB/sec read 0.0 MB/sec write
 6.1 MB/sec read 0.0 MB/sec write
92.1 MB/sec read 0.0 MB/sec write
89.0 MB/sec read 0.0 MB/sec write
12.6 MB/sec read 0.0 MB/sec write
 0.0 MB/sec read 0.0 MB/sec write
 0.0 MB/sec read 0.0 MB/sec write
 8.9 MB/sec read 0.0 MB/sec write
92.1 MB/sec read 0.0 MB/sec write
90.0 MB/sec read 0.0 MB/sec write
96.3 MB/sec read 0.0 MB/sec write
 4.8 MB/sec read 0.0 MB/sec write
 0.0 MB/sec read 0.0 MB/sec write

 The low rates which appear before and after each group
 of higher rates can be due to the I/O requests occurring late (in
 the leading sampling period) and ending early (in the trailing sampling
 period.) This gives an apparently low rate for those sampling periods.

 The
 zero rates in the middle of the example could be caused by reasons
 such as no I/O requests reaching GPFS during
 that time period (the application issued none, or requests were satisfied
 by buffered data at a layer above GPFS),
 the node becoming busy with other work (causing the application to
 be undispatched), or other reasons.

 Parent topic: Example mmpmon scenarios and how to analyze and interpret their results

 Request histogram (rhist) output - how to aggregate and analyze the
 results

 The
 output from the rhist requests can be used to determine:

 	The number of I/O requests in a given size range. The sizes may vary
 based on operating system, explicit application buffering, and other considerations.
 This information can be used to help determine how well an application or
 set of applications is buffering its I/O. For example, if are there many
 very small or many very large I/O transactions. A large number of overly small
 or overly large I/O requests may not perform as well as an equivalent number
 of requests whose size is tuned to the file system or operating system parameters.

 	The number of I/O requests in a size range that have a given latency time.
 Many factors can affect the latency time, including but not limited to: system
 load, interconnection fabric load, file system block size, disk block size,
 disk hardware characteristics, and the operating system on which the I/O request
 is issued.

 Parent topic: Example mmpmon scenarios and how to analyze and interpret their results

 Using request source and prefix directive once

 The source request
 causes mmpmon to read requests from a file,
 and when finished return to reading requests from the input stream.

 The prefix directive once can be placed in front of any mmpmon request.
 The once prefix indicates that the request be run only once,
 irrespective of the setting of the -r flag
 on the mmpmon command. It is useful for
 requests that do not need to be issued more than once, such as to
 set up the node list or turn on the request histogram facility.

 These rules apply when using the once prefix directive and source request:

 	once with nothing after it is an error that terminates mmpmon processing.

 	A file invoked with the source request
 may contain source requests, causing file nesting of arbitrary
 depth. No check is done for loops in this situation.

 	The request once source filename causes
 the once prefix to be applied to all the mmpmon requests
 in filename, including any source requests
 in the file.

 	If a filename specified with the source request
 cannot be opened for read, an error is returned and mmpmon terminates.

 	If the -r flag on the mmpmon command
 has any value other than one, and all requests are prefixed with once, mmpmon runs
 all the requests once, issues a message, and then terminates.

 	An example of once and source usage

 Parent topic: Example mmpmon scenarios and how to analyze and interpret their results

 An example of once and source usage

 This example illustrates the use of once and source.
 This command is issued: mmpmon -p -i command.file -r 0 -d 5000 | tee output.file

 File command.file consists of this: once source mmpmon.header
once rhist nr 512;1024;2048;4096 =
once rhist on
source mmpmon.commands

 File mmpmon.header consists of this: ver
reset

 File mmpmon.commands consists of this: fs_io_s
rhist s

 The output.file is similar to this: _ver_ _n_ 199.18.1.8 _nn_ node1 _v_ 2 _lv_ 4 _vt_ 0
reset _n_ 199.18.1.8 _nn_ node1 _rc_ 0 _t_ 1129770129 _tu_ 511981
rhist _n_ 199.18.1.8 _nn_ node1 _req_ nr 512;1024;2048;4096 = _rc_ 0 _t_ 1129770131 _tu_ 524674
rhist _n_ 199.18.1.8 _nn_ node1 _req_ on _rc_ 0 _t_ 1129770131 _tu_ 524921
_fs_io_s_ _n_ 199.18.1.8 _nn_ node1 _rc_ 0 _t_ 1129770131 _tu_ 525062 _cl_ node1.localdomain
fs gpfs1 _d_ 1 _br_ 0 _bw_ 0 _oc_ 0 _cc_ 0 _rdc_ 0 _wc_ 0 _dir_ 0 _iu_ 0
_fs_io_s_ _n_ 199.18.1.8 _nn_ node1 _rc_ 0 _t_ 1129770131 _tu_ 525062 _cl_ node1.localdomain
fs gpfs2 _d_ 2 _br_ 0 _bw_ 0 _oc_ 0 _cc_ 0 _rdc_ 0 _wc_ 0 _dir_ 0 _iu_ 0
rhist _n_ 199.18.1.8 _nn_ node1 _req_ s _rc_ 0 _t_ 1129770131 _tu_ 525220 _k_ r
rhist _n_ 199.18.1.8 _nn_ node1 _req_ s _rc_ 0 _t_ 1129770131 _tu_ 525228 _k_ w
end
_fs_io_s_ _n_ 199.18.1.8 _nn_ node1 _rc_ 0 _t_ 1129770136 _tu_ 526685 _cl_ node1.localdomain
fs gpfs1 _d_ 1 _br_ 0 _bw_ 0 _oc_ 0 _cc_ 0 _rdc_ 0 _wc_ 0 _dir_ 0 _iu_ 0
_fs_io_s_ _n_ 199.18.1.8 _nn_ node1 _rc_ 0 _t_ 1129770136 _tu_ 526685 _cl_ node1.localdomain
fs gpfs2 _d_ 2 _br_ 0 _bw_ 395018 _oc_ 504 _cc_ 252 _rdc_ 0 _wc_ 251 _dir_ 0 _iu_ 147
rhist _n_ 199.18.1.8 _nn_ node1 _req_ s _rc_ 0 _t_ 1129770136 _tu_ 526888 _k_ r
rhist _n_ 199.18.1.8 _nn_ node1 _req_ s _rc_ 0 _t_ 1129770136 _tu_ 526896 _k_ w
R 0 512 _NR_ 169
L 0.0 1.0 _NL_ 155
L 1.1 10.0 _NL_ 7
L 10.1 30.0 _NL_ 1
L 30.1 100.0 _NL_ 4
L 100.1 200.0 _NL_ 2
R 513 1024 _NR_ 16
L 0.0 1.0 _NL_ 15
L 1.1 10.0 _NL_ 1
R 1025 2048 _NR_ 3
L 0.0 1.0 _NL_ 32
R 2049 4096 _NR_ 18
L 0.0 1.0 _NL_ 18
R 4097 0 _NR_ 16
L 0.0 1.0 _NL_ 16
end
_fs_io_s_ _n_ 199.18.1.8 _nn_ node1 _rc_ 0 _t_ 1129770141 _tu_ 528613 _cl_ node1.localdomain
fs gpfs1 _d_ 1 _br_ 0 _bw_ 0 _oc_ 0 _cc_ 0 _rdc_ 0 _wc_ 0 _dir_ 0 _iu_ 0
_fs_io_s_ _n_ 199.18.1.8 _nn_ node1 _rc_ 0 _t_ 1129770141 _tu_ 528613 _cl_ node1.localdomain
fs gpfs2 _d_ 2 _br_ 0 _bw_ 823282 _oc_ 952 _cc_ 476 _rdc_ 0 _wc_ 474 _dir_ 0 _iu_ 459
rhist _n_ 199.18.1.8 _nn_ node1 _req_ s _rc_ 0 _t_ 1129770141 _tu_ 528812 _k_ r
rhist _n_ 199.18.1.8 _nn_ node1 _req_ s _rc_ 0 _t_ 1129770141 _tu_ 528820 _k_ w
R 0 512 _NR_ 255
L 0.0 1.0 _NL_ 241
L 1.1 10.0 _NL_ 7
L 10.1 30.0 _NL_ 1
L 30.1 100.0 _NL_ 4
L 100.1 200.0 _NL_ 2
R 513 1024 _NR_ 36
L 0.0 1.0 _NL_ 35
L 1.1 10.0 _NL_ 1
R 1025 2048 _NR_ 90
L 0.0 1.0 _NL_ 90
R 2049 4096 _NR_ 55
L 0.0 1.0 _NL_ 55
R 4097 0 _NR_ 38
L 0.0 1.0 _NL_ 37
L 1.1 10.0 _NL_ 1
end
_fs_io_s_ _n_ 199.18.1.8 _nn_ node1 _rc_ 0 _t_ 1129770146 _tu_ 530570 _cl_ node1.localdomain
fs gpfs1 _d_ 1 _br_ 0 _bw_ 0 _oc_ 0 _cc_ 0 _rdc_ 0 _wc_ 0 _dir_ 0 _iu_ 1
_fs_io_s_ _n_ 199.18.1.8 _nn_ node1 _rc_ 0 _t_ 1129770146 _tu_ 530570 _cl_ node1.localdomain
fs gpfs2 _d_ 2 _br_ 0 _bw_ 3069915 _oc_ 1830 _cc_ 914 _rdc_ 0 _wc_ 901 _dir_ 0 _iu_ 1070
rhist _n_ 199.18.1.8 _nn_ node1 _req_ s _rc_ 0 _t_ 1129770146 _tu_ 530769 _k_ r
rhist _n_ 199.18.1.8 _nn_ node1 _req_ s _rc_ 0 _t_ 1129770146 _tu_ 530778 _k_ w
R 0 512 _NR_ 526
L 0.0 1.0 _NL_ 501
L 1.1 10.0 _NL_ 14
L 10.1 30.0 _NL_ 2
L 30.1 100.0 _NL_ 6
L 100.1 200.0 _NL_ 3
R 513 1024 _NR_ 74
L 0.0 1.0 _NL_ 70
L 1.1 10.0 _NL_ 4
R 1025 2048 _NR_ 123
L 0.0 1.0 _NL_ 117
L 1.1 10.0 _NL_ 6
R 2049 4096 _NR_ 91
L 0.0 1.0 _NL_ 84
L 1.1 10.0 _NL_ 7
R 4097 0 _NR_ 87
L 0.0 1.0 _NL_ 81
L 1.1 10.0 _NL_ 6
end
.............. and so forth

 If this command is issued with the same file contents: mmpmon -i command.file -r 0 -d 5000 | tee output.file.english

 The file output.file.english is similar
 to this: mmpmon node 199.18.1.8 name node1 version 3.1.0
mmpmon node 199.18.1.8 name node1 reset OK
mmpmon node 199.18.1.8 name node1 rhist nr 512;1024;2048;4096 = OK
mmpmon node 199.18.1.8 name node1 rhist on OK
mmpmon node 199.18.1.8 name node1 fs_io_s OK
cluster: node1.localdomain
filesystem: gpfs1
disks: 1
timestamp: 1129770175/950895
bytes read: 0
bytes written: 0
opens: 0
closes: 0
reads: 0
writes: 0
readdir: 0
inode updates: 0

mmpmon node 199.18.1.8 name node1 fs_io_s OK
cluster: node1.localdomain
filesystem: gpfs2
disks: 2
timestamp: 1129770175/950895
bytes read: 0
bytes written:

opens: 0
closes: 0
reads: 0
writes: 0
readdir: 0
inode updates: 0
mmpmon node 199.18.1.8 name node1 rhist s OK read timestamp 1129770175/951117
mmpmon node 199.18.1.8 name node1 rhist s OK write timestamp 1129770175/951125
mmpmon node 199.18.1.8 name node1 fs_io_s OK
cluster: node1.localdomain
filesystem: gpfs1
disks: 1
timestamp: 1129770180/952462
bytes read: 0
bytes written: 0
opens: 0
closes: 0
reads: 0
writes: 0
readdir: 0
inode updates: 0

mmpmon node 199.18.1.8 name node1 fs_io_s OK
cluster: node1.localdomain
filesystem: gpfs2
disks: 2
timestamp: 1129770180/952462
bytes read: 0
bytes written: 491310
opens: 659
closes: 329
reads: 0
writes: 327
readdir: 0
inode updates: 74
mmpmon node 199.18.1.8 name node1 rhist s OK read timestamp 1129770180/952711
mmpmon node 199.18.1.8 name node1 rhist s OK write timestamp 1129770180/952720
size range 0 to 512 count 214
 latency range 0.0 to 1.0 count 187
 latency range 1.1 to 10.0 count 15
 latency range 10.1 to 30.0 count 6
 latency range 30.1 to 100.0 count 5
 latency range 100.1 to 200.0 count 1
size range 513 to 1024 count 27
 latency range 0.0 to 1.0 count 26
 latency range 100.1 to 200.0 count 1
size range 1025 to 2048 count 32
 latency range 0.0 to 1.0 count 29
 latency range 1.1 to 10.0 count 1
 latency range 30.1 to 100.0 count 2
size range 2049 to 4096 count 31
 latency range 0.0 to 1.0 count 30
 latency range 30.1 to 100.0 count 1
size range 4097 to 0 count 23
 latency range 0.0 to 1.0 count 23
mmpmon node 199.18.1.8 name node1 fs_io_s OK
cluster: node1.localdomain
filesystem: gpfs1
disks: 1
timestamp: 1129770185/954401
bytes read: 0
bytes written: 0
opens: 0
closes: 0
reads: 0
writes: 0
readdir: 0
inode updates: 0

mmpmon node 199.18.1.8 name node1 fs_io_s OK
cluster: node1.localdomain
filesystem: gpfs2
disks: 2
timestamp: 1129770185/954401
bytes read: 0
bytes written: 1641935
opens: 1062
closes: 531
reads: 0
writes: 529
readdir: 0
inode updates: 523
mmpmon node 199.18.1.8 name node1 rhist s OK read timestamp 1129770185/954658
mmpmon node 199.18.1.8 name node1 rhist s OK write timestamp 1129770185/954667
size range 0 to 512 count 305
 latency range 0.0 to 1.0 count 270
 latency range 1.1 to 10.0 count 21
 latency range 10.1 to 30.0 count 6
 latency range 30.1 to 100.0 count 6
 latency range 100.1 to 200.0 count 2
size range 513 to 1024 count 39
 latency range 0.0 to 1.0 count 36
 latency range 1.1 to 10.0 count 1
 latency range 30.1 to 100.0 count 1
 latency range 100.1 to 200.0 count 1
size range 1025 to 2048 count 89
 latency range 0.0 to 1.0 count 84
 latency range 1.1 to 10.0 count 2
 latency range 30.1 to 100.0 count 3
size range 2049 to 4096 count 56
 latency range 0.0 to 1.0 count 54
 latency range 1.1 to 10.0 count 1
 latency range 30.1 to 100.0 count 1
size range 4097 to 0 count 40
 latency range 0.0 to 1.0 count 39
 latency range 1.1 to 10.0 count 1
mmpmon node 199.18.1.8 name node1 fs_io_s OK
cluster: node1.localdomain
filesystem: gpfs1
disks: 1
timestamp: 1129770190/956480
bytes read: 0
bytes written: 0
opens: 0
closes: 0
reads: 0
writes: 0
readdir: 0
inode updates: 0

mmpmon node 199.18.1.8 name node1 fs_io_s OK
cluster: node1.localdomain
filesystem: gpfs2
disks: 2
timestamp: 1129770190/956480
bytes read: 0
bytes written: 3357414
opens: 1940
closes: 969
reads: 0
writes: 952
readdir: 0
inode updates: 1101
mmpmon node 199.18.1.8 name node1 rhist s OK read timestamp 1129770190/956723
mmpmon node 199.18.1.8 name node1 rhist s OK write timestamp 1129770190/956732
size range 0 to 512 count 539
 latency range 0.0 to 1.0 count 494
 latency range 1.1 to 10.0 count 29
 latency range 10.1 to 30.0 count 6
 latency range 30.1 to 100.0 count 8
 latency range 100.1 to 200.0 count 2
size range 513 to 1024 count 85
 latency range 0.0 to 1.0 count 81
 latency range 1.1 to 10.0 count 2
 latency range 30.1 to 100.0 count 1
 latency range 100.1 to 200.0 count 1
size range 1025 to 2048 count 133
 latency range 0.0 to 1.0 count 124
 latency range 1.1 to 10.0 count 5
 latency range 10.1 to 30.0 count 1
 latency range 30.1 to 100.0 count 3
size range 2049 to 4096 count 99
 latency range 0.0 to 1.0 count 91
 latency range 1.1 to 10.0 count 6
 latency range 10.1 to 30.0 count 1
 latency range 30.1 to 100.0 count 1
size range 4097 to 0 count 95
 latency range 0.0 to 1.0 count 90
 latency range 1.1 to 10.0 count 4
 latency range 10.1 to 30.0 count 1
mmpmon node 199.18.1.8 name node1 fs_io_s OK
cluster: node1.localdomain
filesystem: gpfs1
disks: 1
timestamp: 1129770195/958310
bytes read: 0
bytes written: 0
opens: 0
closes: 0
reads: 0
writes: 0
readdir: 0
inode updates: 0

mmpmon node 199.18.1.8 name node1 fs_io_s OK
cluster: node1.localdomain
filesystem: gpfs2
disks: 2
timestamp: 1129770195/958310
bytes read: 0
bytes written: 3428107
opens: 2046
closes: 1023
reads: 0
writes: 997
readdir: 0
inode updates: 1321
mmpmon node 199.18.1.8 name node1 rhist s OK read timestamp 1129770195/958568
mmpmon node 199.18.1.8 name node1 rhist s OK write timestamp 1129770195/958577
size range 0 to 512 count 555
 latency range 0.0 to 1.0 count 509
 latency range 1.1 to 10.0 count 30
 latency range 10.1 to 30.0 count 6
 latency range 30.1 to 100.0 count 8
 latency range 100.1 to 200.0 count 2
size range 513 to 1024 count 96
 latency range 0.0 to 1.0 count 92
 latency range 1.1 to 10.0 count 2
 latency range 30.1 to 100.0 count 1
 latency range 100.1 to 200.0 count 1
size range 1025 to 2048 count 143
 latency range 0.0 to 1.0 count 134
 latency range 1.1 to 10.0 count 5
 latency range 10.1 to 30.0 count 1
 latency range 30.1 to 100.0 count 3
size range 2049 to 4096 count 103
 latency range 0.0 to 1.0 count 95
 latency range 1.1 to 10.0 count 6
 latency range 10.1 to 30.0 count 1
 latency range 30.1 to 100.0 count 1
size range 4097 to 0 count 100
 latency range 0.0 to 1.0 count 95
latency range 1.1 to 10.0 count 4
latency range 10.1 to 30.0 count 1
.............. and so forth

 Parent topic: Using request source and prefix directive once

 Other information about mmpmon output

 When interpreting the results from the mmpmon output
 there are several points to consider.

 Consider
 these important points:

 	On a node acting as a server of a GPFS file
 system to NFS clients, NFS I/O is accounted for in the statistics.
 However, the I/O is that which goes between GPFS and NFS. If NFS caches data, in order to
 achieve better performance, this activity is not recorded.

 	I/O requests made at the application level may not be exactly
 what is reflected to GPFS. This
 is dependent on the operating system, and other factors. For example,
 an application read of 100 bytes may result in obtaining, and caching,
 a 1 MB block of data at a code level above GPFS (such as the libc I/O layer.) . Subsequent
 reads within this block result in no additional requests to GPFS.

 	The counters kept by mmpmon are not
 atomic and may not be exact in cases of high parallelism or heavy
 system load. This design minimizes the performance impact associated
 with gathering statistical data.

 	Reads from data cached by GPFS will
 be reflected in statistics and histogram data. Reads and writes to
 data cached in software layers above GPFS will
 be reflected in statistics and histogram data when those layers actually
 call GPFS for I/O.

 	Activity from snapshots affects statistics. I/O activity necessary
 to maintain a snapshot is counted in the file system statistics.

 	Some (generally minor) amount of activity in the root directory
 of a file system is reflected in the statistics of the file system
 manager node, and not the node which is running the activity.

 	The open count also includes creat() call
 counts.

 	Counter sizes and counter wrapping

 	Return codes from mmpmon

 Parent topic: Monitoring GPFS I/O performance with the mmpmon command

 Related concepts:

 Overview of mmpmon

 Understanding the node list facility

 Understanding the request histogram facility

 [image: Start of change]Understanding the Remote Procedure Call (RPC) facility[image: End of change]

 Displaying vdisk I/O statistics

 Resetting vdisk I/O statistics

 Related tasks:

 Specifying input to the mmpmon command

 Display I/O statistics per mounted file system

 Display I/O statistics for the entire node

 Reset statistics to zero

 Displaying mmpmon version

 Related reference:

 Example mmpmon scenarios and how to analyze and interpret their results

 Counter sizes and counter wrapping

 The mmpmon command
 may be run continuously for extended periods of time. The user must
 be aware that counters may wrap. This information applies to the counters
 involved:

 	The statistical counters used for the io_s and fs_io_s requests
 are maintained by GPFS at all
 times, even when mmpmon has not been invoked.
 It is suggested that you use the reset request
 prior to starting a sequence of io_s or fs_io_s requests.

 	The bytes read and bytes written counters are unsigned 64-bit
 integers. They are used in the fs_io_s and io_s requests,
 as the _br_ and _bw_ fields.

 	The counters associated with the rhist requests
 are updated only when the request histogram facility has been enabled.

 	The counters used in the rhist requests
 are unsigned 64-bit integers.

 	All other counters are unsigned 32-bit integers.

 Parent topic: Other information about mmpmon output

 Return codes from mmpmon

 These
 are the return codes that can appear in the _rc_ field:

 	0

 	Successful completion.

 	1

 	One of these has occurred:

 	For the fs_io_s request, no file systems are
 mounted.

 	For an rhist request, a request was issued that
 requires the request histogram facility to be enabled, but it is not. The
 facility is not enabled if:

 	Since the last mmstartup was issued, rhist
 on was never issued.

 	rhist nr was issued and rhist on was
 not issued afterwards.

 	2

 	For one of the nlist requests, the node name
 is not recognized.

 	13

 	For one of the nlist requests, the node name
 is a remote node, which is not allowed.

 	16

 	For one of the rhist requests, the histogram
 operations lock is busy. Retry the request.

 	17

 	For one of the nlist requests, the node name
 is already in the node list.

 	22

 	For one of the rhist requests, the size or latency
 range parameters were not in ascending order or were otherwise incorrect.

 	233

 	For one of the nlist requests, the specified
 node is not joined to the cluster.

 	668

 	For one of the nlist requests, quorum has been
 lost in the cluster.

 Parent topic: Other information about mmpmon output

 Displaying vdisk I/O statistics

 To display vdisk I/O statistics, run mmpmon with
 the following command included in the input file:

 vio_s [f [rg RecoveryGroupName [da DeclusteredArrayName [v VdiskName]]]] [reset]

 This request returns strings containing vdisk I/O statistics as
 seen by that node. The values are presented as total values for the
 node, or they can be filtered with the f option.
 The reset option indicates that the statistics should be reset after
 the data is sampled.

 If the -p option is specified when running mmpmon,
 the vdisk I/O statistics are provided in the form of keywords and
 values in the vio_s response. Table 1 lists and describes these keywords
 in the order in which they appear in the output.

 Table 25. Keywords and descriptions
 of values provided in the mmpmon vio_s response

 	Keyword

 	Description

 	n

 	The IP address of the node responding. This
 is the address by which GPFS knows
 the node.

 	nn

 	The name by which GPFS knows
 the node.

 	rc

 	The reason or error code. In this case, the
 reply value is 0 (OK).

 	t

 	The current time of day in seconds (absolute
 seconds since Epoch (1970)).

 	tu

 	The microseconds part of the current time of
 day.

 	rg

 	The name of the recovery group.

 	da

 	The name of the declustered array.

 	[image: Start of change]_v_[image: End of change]

 	[image: Start of change]The name of the disk.[image: End of change]

 	r

 	The total number of read operations.

 	sw

 	The total number of short write operations.

 	mw

 	The total number of medium write operations.

 	pfw

 	The total number of promoted full track write
 operations.

 	ftw

 	The total number of full track write operations.

 	fuw

 	The total number of flushed update write operations.

 	fpw

 	The total number of flushed promoted full track
 write operations.

 	m

 	The total number of migrate operations.

 	s

 	The total number of scrub operations.

 	l

 	The total number log write operations.

 	fc

 	The total number of force consistency operations.

 	fix

 	The total number of buffer range fix operations.

 	ltr

 	The total number of log tip read operations.

 	lhr

 	The total number of log home read operations.

 	rgd

 	The total number of recovery group descriptor
 write operations.

 	meta

 	The total number metadata block write operations.

 To display these statistics, use the sample script /usr/lpp/mmfs/samples/vdisk/viostat.
 The following shows the usage of the viostat script:

 viostat [-F NodeFile | [--recovery-group RecoveryGroupName
 [--declustered-array DeclusteredArrayName
 [--vdisk VdiskName]]]]
 [Interval [Count]]

 	Example of mmpmon vio_s request

 Parent topic: Monitoring GPFS I/O performance with the mmpmon command

 Related concepts:

 Overview of mmpmon

 Understanding the node list facility

 Understanding the request histogram facility

 [image: Start of change]Understanding the Remote Procedure Call (RPC) facility[image: End of change]

 Resetting vdisk I/O statistics

 Related tasks:

 Specifying input to the mmpmon command

 Display I/O statistics per mounted file system

 Display I/O statistics for the entire node

 Reset statistics to zero

 Displaying mmpmon version

 Related reference:

 Example mmpmon scenarios and how to analyze and interpret their results

 Other information about mmpmon output

 [image: Start of change]Example of mmpmon vio_s request

 Suppose commandFile contains this line:
 vio_s

 and this command is issued:
 mmpmon -i commandFile

 The output is similar to this:
 mmpmon node 172.28.213.53 name kibgpfs003 vio_s OK VIOPS per second
timestamp: 1399010914/597072
recovery group: *
declustered array: *
vdisk: *
client reads: 207267
client short writes: 26162
client medium writes: 2
client promoted full track writes: 1499
client full track writes: 864339
flushed update writes: 0
flushed promoted full track writes: 0
migrate operations: 24
scrub operations: 5307
log writes: 878084
force consistency operations: 0
fixit operations: 0
logTip read operations: 48
logHome read operations: 52
rgdesc writes: 12
metadata writes: 5153

 Parent topic: Displaying vdisk I/O statistics

[image: End of change]
 [image: Start of change]Resetting vdisk I/O statistics

 The vio_s_reset request resets the statistics that
 are displayed with vio_s requests.

 Table 1 describes the keywords
 for the vio_s_reset response, in the order
 that they appear in the output. These keywords are used only when mmpmon is
 invoked with the -p flag. The response is
 a single string.

 Table 26. Keywords
 and values for the mmpmon vio_s_reset response

 	Keyword

 	Description

 	n

 	IP address of the node responding. This is the
 address by which GPFS knows
 the node.

 	nn

 	The hostname that corresponds to the IP address
 (the _n_ value).

 	rc

 	Indicates the status of the operation.

 	t

 	Indicates the current time of day in seconds
 (absolute seconds since Epoch (1970)).

 	tu

 	Microseconds part of the current time of day.

 	Example of mmpmon vio_s_reset request

 Parent topic: Monitoring GPFS I/O performance with the mmpmon command

 Related concepts:

 Overview of mmpmon

 Understanding the node list facility

 Understanding the request histogram facility

 [image: Start of change]Understanding the Remote Procedure Call (RPC) facility[image: End of change]

 Displaying vdisk I/O statistics

 Related tasks:

 Specifying input to the mmpmon command

 Display I/O statistics per mounted file system

 Display I/O statistics for the entire node

 Reset statistics to zero

 Displaying mmpmon version

 Related reference:

 Example mmpmon scenarios and how to analyze and interpret their results

 Other information about mmpmon output

[image: End of change]
 [image: Start of change]Example of mmpmon vio_s_reset request

 Suppose commandFile contains this
 line: vio_s_reset

 and this command is issued: mmpmon -p -i commandFile

 The output is similar to this: _vio_s_reset_ _n_ 199.18.1.8 _nn_ node1 _rc_ 0 _t_ 1066660148 _tu_ 407431

 If the -p flag is not specified, the
 output is similar to this: mmpmon node 199.18.1.8 name node1 reset OK

 Parent topic: Resetting vdisk I/O statistics

[image: End of change]

 GPFS SNMP support

 GPFS supports the
 use of the SNMP protocol for monitoring the status and configuration
 of the GPFS cluster. Using
 an SNMP application, the system administrator can get a detailed view
 of the system and be instantly notified of important events, such
 as a node or disk failure.

 The Simple Network Management Protocol
 (SNMP) is an application-layer protocol that facilitates the exchange
 of management information between network devices. It is part of the
 Transmission Control Protocol/Internet Protocol (TCP/IP) protocol
 suite. SNMP enables network administrators to manage network performance,
 find and solve network problems, and plan for network growth.

 SNMP consists of commands to enumerate, read, and write managed
 variables that are defined for a particular device. It also has a trap command,
 for communicating events asynchronously.

 The variables are organized as instances of objects, known as management
 information bases (MIBs). MIBs are organized in a hierarchical tree
 by organization (for example, IBM).
 A GPFS MIB is defined for monitoring
 many aspects of GPFS.

 An SNMP agent software architecture typically consists of a master
 agent and a set of subagents, which communicate with the master agent
 through a specific agent/subagent protocol (the AgentX protocol in
 this case). Each subagent handles a particular system or type of device.
 A GPFS SNMP subagent is provided,
 which maps the SNMP objects and their values.

 	Installing Net-SNMP

 The SNMP subagent runs on the collector node of the GPFS cluster. The collector node
 is designated by the system administrator.

 	Configuring Net-SNMP

 The GPFS subagent
 process connects to the Net-SNMP master agent, snmpd.

 	Configuring management applications

 To configure any SNMP-based management applications you
 might be using (such as Tivoli NetView or Tivoli Netcool,
 or others), you must make the GPFS MIB
 file available on the processor on which the management application
 runs.

 	Installing MIB files on the collector node and management node

 The GPFS management
 information base (MIB) file is found on the collector node in the /usr/lpp/mmfs/data directory
 with the name GPFS-MIB.txt.

 	Collector node administration

 Collector node administration includes: assigning, unassigning,
 and changing collector nodes. You can also see if a collector node
 is defined.

 	Starting and stopping the SNMP subagent

 The SNMP subagent is started and stopped automatically.

 	The management and monitoring subagent

 The GPFS SNMP management
 and monitoring subagent runs under an SNMP master agent such as Net-SNMP.
 It handles a portion of the SNMP OID space.

 Installing Net-SNMP

 The SNMP subagent runs on the collector node of the GPFS cluster. The collector node
 is designated by the system administrator.

 See Collector node administration for
 information.

 The Net-SNMP master agent (also called the SNMP daemon, or snmpd)
 must be installed on the collector node to communicate with the GPFS subagent and with your SNMP
 management application. Net-SNMP is included in most Linux distributions and should be supported
 by your Linux vendor. Source
 and binaries for several platforms are available from the download
 section of the Net-SNMP
 website.

 Note: Currently, the collector node must run on the Linux operating system. For an up-to-date list
 of supported operating systems, specific distributions, and other
 dependencies, refer to the GPFS FAQ
 in IBM Knowledge Center.

 The GPFS subagent expects
 to find the following libraries:libnetsnmpagent.so -- from Net-SNMP
libnetsnmphelpers.so -- from Net-SNMP
libnetsnmpmibs.so -- from Net-SNMP
libnetsnmp.so -- from Net-SNMP
libwrap.so -- from TCP Wrappers
libcrypto.so -- from OpenSSL

 Note: [image: Start of change]TCP Wrappers and OpenSSL are prerequisites
 and should have been installed when you installed Net-SNMP.[image: End of change]

 The installed libraries will be found in /lib64 or /usr/lib64 or /usr/local/lib64.
 They may be installed under names like libnetsnmp.so.5.1.2.
 The GPFS subagent expects to
 find them without the appended version information in the name. Library
 installation should create these symbolic links for you, so you will
 rarely need to create them yourself. You can ensure that symbolic
 links exist to the versioned name from the plain name. For example, # cd /usr/lib64
ln -s libnetsnmpmibs.so.5.1.2 libnetsnmpmibs.so

 Repeat this process for all the libraries listed in this topic.

 Note: For possible Linux platform
 and Net-SNMP version compatibility restrictions, see the GPFS README and the GPFS FAQ
 in IBM Knowledge Center.

 Parent topic: GPFS SNMP support

 Related concepts:

 Configuring Net-SNMP

 Configuring management applications

 Installing MIB files on the collector node and management node

 Collector node administration

 Starting and stopping the SNMP subagent

 The management and monitoring subagent

 Configuring Net-SNMP

 The GPFS subagent
 process connects to the Net-SNMP master agent, snmpd.

 The following entries are required in the snmpd configuration
 file on the collector node (usually, /etc/snmp/snmpd.conf): master agentx
AgentXSocket tcp:localhost:705
trap2sink managementhost

 where:

 	managementhost

 	Is the host name or IP address of the host to which you want SNMP
 traps sent.

 If your GPFS cluster has
 a large number of nodes or a large number of file systems for which
 information must be collected, you must increase the timeout and retry
 parameters for communication between the SNMP master agent and the GPFS subagent to allow time for
 the volume of information to be transmitted. The snmpd configuration
 file entries for this are: agentXTimeout 60
agentXRetries 10

 where:

 	agentXTimeout

 	Is set to 60 seconds for subagent to master agent communication.

 	agentXRetries

 	Is set to 10 for the number of communication retries.

 Note: Other values may be appropriate depending on
 the number of nodes and file systems in your GPFS cluster.

 After modifying the configuration file, restart the SNMP daemon.

 Parent topic: GPFS SNMP support

 Related concepts:

 Installing Net-SNMP

 Configuring management applications

 Installing MIB files on the collector node and management node

 Collector node administration

 Starting and stopping the SNMP subagent

 The management and monitoring subagent

 Configuring management applications

 To configure any SNMP-based management applications you
 might be using (such as Tivoli NetView or Tivoli Netcool,
 or others), you must make the GPFS MIB
 file available on the processor on which the management application
 runs.

 You must also supply the management application with the host name
 or IP address of the collector node to be able to extract GPFS monitoring information through SNMP. To
 do this, you must be familiar with your SNMP-based management applications.

 [image: Start of change]For more information about Tivoli NetView or Tivoli Netcool, see IBM Knowledge Center.[image: End of change]

 Parent topic: GPFS SNMP support

 Related concepts:

 Installing Net-SNMP

 Configuring Net-SNMP

 Installing MIB files on the collector node and management node

 Collector node administration

 Starting and stopping the SNMP subagent

 The management and monitoring subagent

 Installing MIB files on the collector node and management node

 The GPFS management
 information base (MIB) file is found on the collector node in the /usr/lpp/mmfs/data directory
 with the name GPFS-MIB.txt.

 To install this file on the collector node, do the following:

 	Copy or link the /usr/lpp/mmfs/data/GPFS-MIB.txt MIB file
 into the SNMP MIB directory (usually, /usr/share/snmp/mibs).

 Alternatively, you could add the following line to the snmp.conf file
 (usually found in the directory /etc/snmp):mibdirs +/usr/lpp/mmfs/data

 	Add the following entry to the snmp.conf file (usually
 found in the directory /etc/snmp):mibs +GPFS-MIB

 	Restart the SNMP daemon.

 Different management applications have different locations and
 ways for installing and loading a new MIB file. The following steps
 for installing the GPFS MIB
 file apply only to Net-SNMP. If you are using other management applications,
 such as NetView and NetCool,
 refer to corresponding product manuals (listed in Configuring management applications) for the
 procedure of MIB file installation and loading.

 	Remotely copy the /usr/lpp/mmfs/data/GPFS-MIB.txt MIB file
 from the collector node into the SNMP MIB directory (usually, /usr/share/snmp/mibs).

 	Add the following entry to the snmp.conf file (usually
 found in the directory /etc/snmp): mibs +GPFS-MIB

 	You might need to restart the SNMP management application. Other
 steps might be necessary to make the GPFS MIB
 available to your management application.

 Parent topic: GPFS SNMP support

 Related concepts:

 Installing Net-SNMP

 Configuring Net-SNMP

 Configuring management applications

 Collector node administration

 Starting and stopping the SNMP subagent

 The management and monitoring subagent

 Collector node administration

 Collector node administration includes: assigning, unassigning,
 and changing collector nodes. You can also see if a collector node
 is defined.

 To
 assign a collector node and start the SNMP agent, enter: mmchnode --snmp-agent -N NodeName

 To unassign a collector node and stop the SNMP agent, enter:mmchnode --nosnmp-agent -N NodeName

 To see if there is a GPFS SNMP
 subagent collector node defined, enter:mmlscluster |grep snmp

 To change the collector node, issue the following two commands:mmchnode --nosnmp-agent -N OldNodeName

mmchnode --snmp-agent -N NewNodeName

 Parent topic: GPFS SNMP support

 Related concepts:

 Installing Net-SNMP

 Configuring Net-SNMP

 Configuring management applications

 Installing MIB files on the collector node and management node

 Starting and stopping the SNMP subagent

 The management and monitoring subagent

 Starting and stopping the SNMP subagent

 The SNMP subagent is started and stopped automatically.

 The
 SNMP subagent is started automatically when GPFS is started on the collector node. If GPFS is already running when the
 collector node is assigned, the mmchnode command will automatically
 start the SNMP subagent.

 The SNMP subagent is stopped automatically when GPFS is stopped on the node (mmshutdown)
 or when the SNMP collector node is unassigned (mmchnode).

 Parent topic: GPFS SNMP support

 Related concepts:

 Installing Net-SNMP

 Configuring Net-SNMP

 Configuring management applications

 Installing MIB files on the collector node and management node

 Collector node administration

 The management and monitoring subagent

 The management and monitoring subagent

 The GPFS SNMP management
 and monitoring subagent runs under an SNMP master agent such as Net-SNMP.
 It handles a portion of the SNMP OID space.

 The management and monitoring subagent connects to the GPFS daemon on the collector node to retrieve
 updated information about the status of the GPFS cluster.

 SNMP data can be retrieved using an SNMP application such as Tivoli NetView. NetView provides
 a MIB browser for retrieving user-requested data, as well as an event
 viewer for displaying asynchronous events.

 Information that is collected includes status, configuration, and
 performance data about GPFS clusters,
 nodes, disks, file systems, storage pools, and asynchronous events.
 The following is a sample of the data that is collected for each of
 the following categories:

 	Cluster status and configuration (see Cluster status information and Cluster configuration information)

 	Name

 	Number of nodes

 	Primary and secondary servers

 	Node status and configuration (see Node status information and Node configuration information)

 	Name

 	Current status

 	Type

 	Platform

 	File system status and performance (see File system status information and File system performance information)

 	Name

 	Status

 	Total space

 	Free space

 	Accumulated statistics

 	Storage pools (see Storage pool information)

 	Name

 	File system to which the storage pool belongs

 	Total storage pool space

 	Free storage pool space

 	Number of disks in the storage pool

 	Disk status, configuration, and performance (see Disk status information, Disk configuration information, and Disk performance information)

 	Name

 	Status

 	Total space

 	Free space

 	Usage (metadata/data)

 	Availability

 	Statistics

 	Asynchronous events (traps) (see Net-SNMP traps)

 	File system mounted or unmounted

 	Disks added, deleted, or changed

 	Node failure or recovery

 	File system creation, deletion, or state change

 	Storage pool is full or nearly full

 Note: If file systems are not mounted on the collector node at the
 time that an SNMP request is received, the subagent can still obtain
 a list of file systems, storage pools, and disks, but some information,
 such as performance statistics, will be missing.

 	SNMP object IDs

 	MIB objects

 	Cluster status information

 	Cluster configuration information

 	Node status information

 	Node configuration information

 	File system status information

 	File system performance information

 	Storage pool information

 	Disk status information

 	Disk configuration information

 	Disk performance information

 	Net-SNMP traps

 Parent topic: GPFS SNMP support

 Related concepts:

 Installing Net-SNMP

 Configuring Net-SNMP

 Configuring management applications

 Installing MIB files on the collector node and management node

 Collector node administration

 Starting and stopping the SNMP subagent

 SNMP object IDs

 The management and monitoring
 SNMP subagent serves the OID space defined as ibm.ibmProd.ibmGPFS,
 which is the numerical enterprises.2.6.212 OID space.

 Underneath this top-level space are the following:

 	gpfsTraps at ibmGPFS.0

 	gpfsMIBObjects at ibmGPFS.1

 Parent topic: The management and monitoring subagent

 MIB objects

 gpfsMIBObjects provides a space of objects that can be retrieved
 using a MIB browser application. Net-SNMP provides the snmpget, snmpgetnext, snmptable,
 and snmpwalk commands, which can be used to retrieve the contents of
 these fields.

 Parent topic: The management and monitoring subagent

 Cluster status information

 Table 1 shows the current
 status information for the GPFS cluster:

 Table 27. gpfsClusterStatusTable: Cluster status
 information

 	Value

 	Description

 	gpfsClusterName

 	The cluster name.

 	gpfsClusterId

 	The cluster ID.

 	gpfsClusterMinReleaseLevel

 	The currently enabled cluster functionality level.

 	gpfsClusterNumNodes

 	The number of nodes that belong to the cluster.

 	gpfsClusterNumFileSystems

 	The number of file systems that belong to the cluster.

 Parent topic: The management and monitoring subagent

 Cluster configuration information

 Table 1 shows the GPFS cluster configuration information:

 Table 28. gpfsClusterConfigTable: Cluster configuration
 information

 	Value

 	Description

 	gpfsClusterConfigName

 	The cluster name.

 	gpfsClusterUidDomain

 	The UID domain name for the cluster.

 	gpfsClusterRemoteShellCommand

 	The remote shell command being used.

 	gpfsClusterRemoteFileCopyCommand

 	The remote file copy command being used.

 	gpfsClusterPrimaryServer

 	The primary GPFS cluster
 configuration server.

 	gpfsClusterSecondaryServer

 	The secondary GPFS cluster
 configuration server.

 	gpfsClusterMaxBlockSize

 	The maximum file system block size.

 	gpfsClusterDistributedTokenServer

 	Indicates whether the distributed token server
 is enabled.

 	gpfsClusterFailureDetectionTime

 	The desired time for GPFS to react to a node failure.

 	gpfsClusterTCPPort

 	The TCP port number.

 	gpfsClusterMinMissedPingTimeout

 	The lower bound on a missed ping timeout
 (seconds).

 	gpfsClusterMaxMissedPingTimeout

 	The upper bound on missed ping timeout
 (seconds).

 Parent topic: The management and monitoring subagent

 Node status information

 Table 1 shows the collected
 status data for each node:

 Table 29. gpfsNodeStatusTable:
 Node status information

 	Node

 	Description

 	gpfsNodeName

 	The node name used by the GPFS daemon.

 	gpfsNodeIp

 	The node IP address.

 	gpfsNodePlatform

 	The operating system being used.

 	gpfsNodeStatus

 	The node status (for example, up or down).

 	gpfsNodeFailureCount

 	The number of node failures.

 	gpfsNodeThreadWait

 	The longest hung thread's wait time (milliseconds).

 	gpfsNodeHealthy

 	Indicates whether the node is healthy in terms of hung threads.
 If there are hung threads, the value is no.

 	gpfsNodeDiagnosis

 	Shows the number of hung threads and detail on the longest
 hung thread.

 	gpfsNodeVersion

 	The GPFS product version
 of the currently running daemon.

 Parent topic: The management and monitoring subagent

 Node configuration information

 Table 1 shows the collected
 configuration data for each node:

 Table 30. gpfsNodeConfigTable:
 Node configuration information

 	Node

 	Description

 	gpfsNodeConfigName

 	The node name used by the GPFS daemon.

 	gpfsNodeType

 	The node type (for example, manager/client or quorum/nonquorum).

 	gpfsNodeAdmin

 	Indicates whether the node is one of the preferred admin nodes.

 	gpfsNodePagePoolL

 	The size of the cache (low 32 bits).

 	gpfsNodePagePoolH

 	The size of the cache (high 32 bits).

 	gpfsNodePrefetchThreads

 	The number of prefetch threads.

 	gpfsNodeMaxMbps

 	An estimate of how many megabytes of data can be transferred
 per second.

 	gpfsNodeMaxFilesToCache

 	The number of inodes to cache for recently-used files that
 have been closed.

 	gpfsNodeMaxStatCache

 	The number of inodes to keep in the stat cache.

 	gpfsNodeWorker1Threads

 	The maximum number of worker threads that can be started.

 	gpfsNodeDmapiEventTimeout

 	The maximum time the file operation threads will block while
 waiting for a DMAPI synchronous event (milliseconds).

 	gpfsNodeDmapiMountTimeout

 	The maximum time that the mount operation will wait for a disposition
 for the mount event to be set (seconds).

 	gpfsNodeDmapiSessFailureTimeout

 	The maximum time the file operation threads will wait for the
 recovery of the failed DMAPI session (seconds).

 	gpfsNodeNsdServerWaitTimeWindowOnMount

 	Specifies a window of time during which a mount can wait for
 NSD servers to come up (seconds).

 	gpfsNodeNsdServerWaitTimeForMount

 	The maximum time that the mount operation will wait for NSD
 servers to come up (seconds).

 	gpfsNodeUnmountOnDiskFail

 	Indicates how the GPFS daemon
 will respond when a disk failure is detected. If it is "true", any
 disk failure will cause only the local node to forcibly unmount the
 file system that contains the failed disk.

 Parent topic: The management and monitoring subagent

 File system status information

 Table 1 shows the collected
 status information for each file system:

 Table 31. gpfsFileSystemStatusTable:
 File system status information

 	Value

 	Description

 	gpfsFileSystemName

 	The file system name.

 	gpfsFileSystemStatus

 	The status of the file system.

 	gpfsFileSystemXstatus

 	The executable status of the file system.

 	gpfsFileSystemTotalSpaceL

 	The total disk space of the file system in kilobytes (low 32 bits).

 	gpfsFileSystemTotalSpaceH

 	The total disk space of the file system in kilobytes (high 32 bits).

 	gpfsFileSystemNumTotalInodesL

 	The total number of file system inodes (low 32 bits).

 	gpfsFileSystemNumTotalInodesH

 	The total number of file system inodes (high 32 bits).

 	gpfsFileSystemFreeSpaceL

 	The free disk space of the file system in kilobytes (low 32 bits).

 	gpfsFileSystemFreeSpaceH

 	The free disk space of the file system in kilobytes (high 32 bits).

 	gpfsFileSystemNumFreeInodesL

 	The number of free file system inodes (low 32 bits).

 	gpfsFileSystemNumFreeInodesH

 	The number of free file system inodes (high 32 bits).

 Parent topic: The management and monitoring subagent

 File system performance information

 Table 1 shows the file
 system performance information:

 Table 32. gpfsFileSystemPerfTable:
 File system performance information

 	Value

 	Description

 	gpfsFileSystemPerfName

 	The file system name.

 	gpfsFileSystemBytesReadL

 	The number of bytes read from disk, not counting those read from cache
 (low 32 bits).

 	gpfsFileSystemBytesReadH

 	The number of bytes read from disk, not counting those read from cache
 (high 32 bits).

 	gpfsFileSystemBytesCacheL

 	The number of bytes read from the cache (low 32 bits).

 	gpfsFileSystemBytesCacheH

 	The number of bytes read from the cache (high 32 bits).

 	gpfsFileSystemBytesWrittenL

 	The number of bytes written, to both disk and cache (low 32 bits).

 	gpfsFileSystemBytesWrittenH

 	The number of bytes written, to both disk and cache (high 32 bits).

 	gpfsFileSystemReads

 	The number of read operations supplied from disk.

 	gpfsFileSystemCaches

 	The number of read operations supplied from cache.

 	gpfsFileSystemWrites

 	The number of write operations to both disk and cache.

 	gpfsFileSystemOpenCalls

 	The number of file system open calls.

 	gpfsFileSystemCloseCalls

 	The number of file system close calls.

 	gpfsFileSystemReadCalls

 	The number of file system read calls.

 	gpfsFileSystemWriteCalls

 	The number of file system write calls.

 	gpfsFileSystemReaddirCalls

 	The number of file system readdir calls.

 	gpfsFileSystemInodesWritten

 	The number of inode updates to disk.

 	gpfsFileSystemInodesRead

 	The number of inode reads.

 	gpfsFileSystemInodesDeleted

 	The number of inode deletions.

 	gpfsFileSystemInodesCreated

 	The number of inode creations.

 	gpfsFileSystemStatCacheHit

 	The number of stat cache hits.

 	gpfsFileSystemStatCacheMiss

 	The number of stat cache misses.

 Parent topic: The management and monitoring subagent

 Storage pool information

 Table 1 shows the collected information
 for each storage pool:

 Table 33. gpfsStgPoolTable: Storage
 pool information

 	Value

 	Description

 	gpfsStgPoolName

 	The name of the storage pool.

 	gpfsStgPoolFSName

 	The name of the file system to which the storage pool belongs.

 	gpfsStgPoolTotalSpaceL

 	The total disk space in the storage pool in kilobytes (low 32 bits).

 	gpfsStgPoolTotalSpaceH

 	The total disk space in the storage pool in kilobytes (high 32 bits).

 	gpfsStgPoolFreeSpaceL

 	The free disk space in the storage pool in kilobytes (low 32 bits).

 	gpfsStgPoolFreeSpaceH

 	The free disk space in the storage pool in kilobytes (high 32 bits).

 	gpfsStgPoolNumDisks

 	The number of disks in the storage pool.

 Parent topic: The management and monitoring subagent

 Disk status information

 Table 1 shows the collected
 status information for each disk:

 Table 34. gpfsDiskStatusTable:
 Disk status information

 	Value

 	Description

 	gpfsDiskName

 	The disk name.

 	gpfsDiskFSName

 	The name of the file system to which the disk belongs.

 	gpfsDiskStgPoolName

 	The name of the storage pool to which the disk belongs.

 	gpfsDiskStatus

 	The status of a disk (values: NotInUse, InUse, Suspended, BeingFormatted,
 BeingAdded, BeingEmptied, BeingDeleted, BeingDeleted-p, ReferencesBeingRemoved,
 BeingReplaced or Replacement).

 	gpfsDiskAvailability

 	The availability of the disk (Unchanged, OK, Unavailable, Recovering).

 	gpfsDiskTotalSpaceL

 	The total disk space in kilobytes (low 32 bits).

 	gpfsDiskTotalSpaceH

 	The total disk space in kilobytes (high 32 bits).

 	gpfsDiskFullBlockFreeSpaceL

 	The full block (unfragmented) free space in kilobytes (low 32 bits).

 	gpfsDiskFullBlockFreeSpaceH

 	The full block (unfragmented) free space in kilobytes (high 32 bits).

 	gpfsDiskSubBlockFreeSpaceL

 	The sub-block (fragmented) free space in kilobytes (low 32 bits).

 	gpfsDiskSubBlockFreeSpaceH

 	The sub-block (fragmented) free space in kilobytes (high 32 bits).

 Parent topic: The management and monitoring subagent

 Disk configuration information

 Table 1 shows
 the collected disk configuration information for each disk:

 Table 35. gpfsDiskConfigTable: Disk configuration information

 	Value

 	Description

 	gpfsDiskConfigName

 	The disk name.

 	gpfsDiskConfigFSName

 	The name of the file system to which the disk belongs.

 	gpfsDiskConfigStgPoolName

 	The name of the storage pool to which the disk belongs.

 	gpfsDiskMetadata

 	Indicates whether the disk holds metadata.

 	gpfsDiskData

 	Indicates whether the disk holds data.

 Parent topic: The management and monitoring subagent

 Disk performance information

 Table 1 shows the collected disk
 performance information for each disk:

 Table 36. gpfsDiskPerfTable:
 Disk performance information

 	Value

 	Description

 	gpfsDiskPerfName

 	The disk name.

 	gpfsDiskPerfFSName

 	The name of the file system to which the disk belongs.

 	gpfsDiskPerfStgPoolName

 	The name of the storage pool to which the disk belongs.

 	gpfsDiskReadTimeL

 	The total time spent waiting for disk read operations (low 32 bits).

 	gpfsDiskReadTimeH

 	The total time spent waiting for disk read operations (high 32 bits).

 	gpfsDiskWriteTimeL

 	The total time spent waiting for disk write operations in microseconds
 (low 32 bits).

 	gpfsDiskWriteTimeH

 	The total time spent waiting for disk write operations in microseconds
 (high 32 bits).

 	gpfsDiskLongestReadTimeL

 	The longest disk read time in microseconds (low 32 bits).

 	gpfsDiskLongestReadTimeH

 	The longest disk read time in microseconds (high 32 bits).

 	gpfsDiskLongestWriteTimeL

 	The longest disk write time in microseconds (low 32 bits).

 	gpfsDiskLongestWriteTimeH

 	The longest disk write time in microseconds (high 32 bits).

 	gpfsDiskShortestReadTimeL

 	The shortest disk read time in microseconds (low 32 bits).

 	gpfsDiskShortestReadTimeH

 	The shortest disk read time in microseconds (high 32 bits).

 	gpfsDiskShortestWriteTimeL

 	The shortest disk write time in microseconds (low 32 bits).

 	gpfsDiskShortestWriteTimeH

 	The shortest disk write time in microseconds (high 32 bits).

 	gpfsDiskReadBytesL

 	The number of bytes read from the disk (low 32 bits).

 	gpfsDiskReadBytesH

 	The number of bytes read from the disk (high 32 bits).

 	gpfsDiskWriteBytesL

 	The number of bytes written to the disk (low 32 bits).

 	gpfsDiskWriteBytesH

 	The number of bytes written to the disk (high 32 bits).

 	gpfsDiskReadOps

 	The number of disk read operations.

 	gpfsDiskWriteOps

 	The number of disk write operations.

 Parent topic: The management and monitoring subagent

 Net-SNMP traps

 Traps provide asynchronous notification to the SNMP application
 when a particular event has been triggered in GPFS. Table 1 shows
 the trap types that are defined:

 Table 37. Net-SNMP
 traps

 	Net-SNMP trap type

 	This event is triggered by:

 	Mount

 	By the mounting node when the file system is mounted on a node.

 	Unmount

 	By the unmounting node when the file system is unmounted on
 a node.

 	Add Disk

 	By the file system manager when a disk is added to a file system
 on a node.

 	Delete Disk

 	By the file system manager when a disk is deleted from a file
 system.

 	Change Disk

 	By the file system manager when the status of a disk or the
 availability of a disk is changed within the file system.

 	SGMGR Takeover

 	By the cluster manager when a file system manager takeover
 is successfully completed for the file system.

 	Node Failure

 	By the cluster manager when a node fails.

 	Node Recovery

 	By the cluster manager when a node recovers normally.

 	File System Creation

 	By the file system manager when a file system is successfully
 created.

 	File System Deletion

 	By the file system manager when a file system is deleted.

 	File System State Change

 	By the file system manager when the state of a file system
 changes.

 	New Connection

 	When a new connection thread is established between the events
 exporter and the management application.

 	Event Collection Buffer Overflow

 	By the collector node when the internal event collection buffer
 in the GPFS daemon overflows.

 	Hung Thread

 	By the affected node when a hung thread is detected. The GPFS Events Exporter Watchdog thread
 periodically checks for threads that have been waiting for longer
 than a threshold amount of time.

 	Storage Pool Utilization

 	By the file system manager when the utilization of a storage
 pool becomes full or almost full.

 Parent topic: The management and monitoring subagent

 Identity management on Windows

 GPFS allows file
 sharing among AIX, Linux, and Windows nodes. AIX and Linux rely on 32-bit user and group IDs for
 file ownership and access control purposes, while Windows uses variable-length security identifiers
 (SIDs). The difference in the user identity description models presents
 a challenge to any subsystem that allows for heterogeneous file sharing.

 GPFS uses 32-bit ID name
 space as the canonical name space, and Windows SIDs are mapped into this name space
 as needed. Two different mapping algorithms are used (depending on
 system configuration):

 	GPFS built-in auto-generated
 mapping

 	User-defined mappings stored in the Microsoft Windows Active
 Directory using the Microsoft Identity
 Management for UNIX (IMU) component

 	Auto-generated ID mappings

 Auto-generated ID mappings are the default. If no explicit
 mappings are created by the system administrator in the Active Directory
 using Microsoft Identity
 Management for UNIX (IMU), all
 mappings between security identifiers (SIDs) and UNIX IDs will be created automatically using
 a reserved range in UNIX ID
 space.

 	Installing Windows IMU

 The Identity Management for UNIX (IMU)
 feature is included in Windows Server.
 This feature needs to be installed on the primary domain controller,
 as well as on any backup domain controllers. It is not installed by
 default. There are two components that need to be installed in order
 for IMU to function correctly.

 	Configuring ID mappings in IMU

 To configure ID mappings in Microsoft Identity Management for UNIX (IMU), follow the steps in
 this procedure.

 Auto-generated ID mappings

 Auto-generated ID mappings are the default. If no explicit
 mappings are created by the system administrator in the Active Directory
 using Microsoft Identity
 Management for UNIX (IMU), all
 mappings between security identifiers (SIDs) and UNIX IDs will be created automatically using
 a reserved range in UNIX ID
 space.

 Unless the default reserved ID range overlaps with an ID already
 in use, no further configuration is needed to use the auto-generated
 mapping function. If you have a specific file system or subtree that
 are only accessed by user applications from Windows nodes (even if AIX or Linux nodes
 are used as NSD servers), auto-generated mappings will be sufficient
 for all application needs.

 The default reserved ID range used by GPFS starts
 with ID 15,000,000 and covers 15,000,000 IDs. The reserved range should
 not overlap with any user or group ID in use on any AIX or Linux nodes.
 To change the starting location or the size of the reserved ID range,
 use the following GPFS configuration
 parameters:

 	sidAutoMapRangeLength

 	Controls the length of the reserved range for Windows SID to UNIX ID
 mapping.

 	sidAutoMapRangeStart

 	Specifies the start of the reserved range for Windows SID to UNIX ID
 mapping.

 Note: For planning purposes, remember that auto-generated ID mappings
 are stored permanently with file system metadata. A change in the sidAutoMapRangeStart value
 is only effective for file systems created after the configuration
 change.

 Parent topic: Identity management on Windows

 Related concepts:

 Configuring ID mappings in IMU

 Related tasks:

 Installing Windows IMU

 Installing Windows IMU

 The Identity Management for UNIX (IMU)
 feature is included in Windows Server.
 This feature needs to be installed on the primary domain controller,
 as well as on any backup domain controllers. It is not installed by
 default. There are two components that need to be installed in order
 for IMU to function correctly.

 Before you begin

 When Active Directory is running on Windows Server 2008, follow these steps to
 add the IMU service:

 	Open Server Manager.

 	Under Roles, select Active Directory Domain Services .

 	Under Role Services, select Add Role Services.

 	Under the Identity Management for UNIX role
 service, check Server for Network Information Services .

 	Click Next, then Install .

 	Restart the system when the installation completes.

 Parent topic: Identity management on Windows

 Related concepts:

 Auto-generated ID mappings

 Configuring ID mappings in IMU

 Configuring ID mappings in IMU

 To configure ID mappings in Microsoft Identity Management for UNIX (IMU), follow the steps in
 this procedure.

 	Open Active Directory Users and Computers (accessible under
 Administrative Tools).

 	Select the Users branch in the tree on the left under the
 branch for your domain to see the list of users and groups in this
 domain.

 	Double-click on any user or group line to bring up the Properties
 window. If IMU is set up correctly, there will be a UNIX Attributes tab as shown in Figure 1:

 [image: This graphic shows the UNIX Attributes panel of the Properties window. From top to bottom, the five fields on this panel are: NIS Domain, UID, Login Shell, Home Directory, and Primary group name/GID. To update the information on this panel, refer to the list that follows this graphic.]

Figure 11. Properties window

 Note: Because the IMU subsystem was originally designed to support
 integration with the UNIX Network
 Information Service (NIS), there is an NIS Domain field in
 the Properties window. You do not need to have NIS set up on the UNIX side. For GPFS, the NIS language does not matter.

 Update information on the UNIX Attributes panel
 as follows:

 	Under the NIS Domain drop-down list, select the name of
 your Active Directory domain. Selecting <none> will remove
 an existing mapping.

 	Specify a UID in the UID field, and for Group objects,
 specify a GID. This will create a bidirectional mapping between the
 corresponding SID and a UNIX ID.
 IMU will disallow the use of the same UID or GID for more than one
 user or group to ensure that all mappings are unique. In addition
 to creating mappings for domain users and groups, you can create mappings
 for certain built-in accounts by going to the Builtin branch in
 the Active Directory Users and Computers panel.

 	Disregard the Primary group name/GID field because GPFS does not use it.

 It is generally better to configure all ID mappings before mounting
 a GPFS file system for the first
 time. Doing that ensures that GPFS only
 stores properly remapped IDs on disk. However, it is possible to add
 or delete mappings at any time while GPFS file
 systems are mounted. GPFS picks
 up mapping changes dynamically (the code currently checks for mapping
 changes every 60 seconds), and will start using them at that time.

 If an IMU mapping is configured for an ID that is already recorded
 in some file metadata, you must proceed with caution to avoid user
 confusion and access disruption. Auto-generated mappings already stored
 in access control lists (ACLs) on disk will continue to map correctly
 to Windows SIDs. However,
 because the SID is now mapped to a different UNIX ID, when you access a file with an ACL
 containing its auto-generated ID, this access will effectively appear
 to GPFS as an access by a different
 user. Depending on the file access permissions, you might not be able
 to access files that were previously accessible. Rewriting affected
 ACLs after setting up a new mapping will help replace auto-generated
 IDs with IMU-mapped IDs, and will restore proper file access for the
 affected ID (this operation might need to be performed by the system
 administrator). Examining file ownership and permission information
 from a UNIX node (for example,
 using the mmgetacl command) is the easiest way to determine
 whether the ACL for a specified file contains auto-generated or IMU-mapped
 IDs.

 Parent topic: Identity management on Windows

 Related concepts:

 Auto-generated ID mappings

 Related tasks:

 Installing Windows IMU

 GPFS Native
 RAID (GNR)

 GPFS Native RAID
 (GNR) is available on the following:

 	IBM Power 775 Disk Enclosure.

 	IBM System x GPFS Storage
 Server (GSS). GSS is a high-capacity, high-performance storage solution
 that combines IBM System x servers, storage enclosures, and
 drives, software (including GPFS Native
 RAID), and networking
 components. GSS uses a building-block approach to create highly-scalable
 storage for use in a broad range of application environments.

 GPFS Native
 RAID is
 a software implementation of storage RAID technologies within GPFS. Using conventional dual-ported
 disks in a JBOD configuration, GPFS Native
 RAID implements
 sophisticated data placement and error correction algorithms to deliver
 high levels of storage reliability, availability, and performance.
 Standard GPFS file systems are
 created from the NSDs defined through GPFS Native
 RAID.

 This section describes the basic concepts, advantages,
 and motivations behind GPFS Native
 RAID: redundancy
 codes, end-to-end checksums, data declustering, and administrator
 configuration, including recovery groups, declustered arrays, virtual
 disks, and virtual disk NSDs.

 	Overview

 	GPFS Native RAID features

 	Disk configurations

 	Virtual and physical disks

 	GNR with pdisk-group fault tolerance

 	Disk hospital

 	Managing GPFS Native RAID

 This section describes, in more detail, the characteristics
 and behavior of these GPFS Native
 RAID entities:
 recovery groups, pdisks, declustered arrays, and vdisks.
 Overall GPFS Native
 RAID management,
 [image: Start of change]pdisk-group fault tolerance,[image: End of change]
 and disk maintenance are also described.

 	GPFS Native RAID setup and disk replacement on the IBM Power 775 Disk Enclosure

 	GPFS Native RAID setup and maintenance on the IBM System x GPFS Storage Server (GSS)

 Overview

 GPFS Native
 RAID integrates
 the functionality of an advanced storage controller into the GPFS NSD server. [image: Start of change] Unlike
 an external storage controller, where configuration, LUN definition,
 and maintenance are beyond the control of GPFS, GPFS Native
 RAID itself
 takes on the role of controlling, managing, and maintaining physical
 disks, both hard disk drives (HDDs) and solid-state drives (SSDs). [image: End of change]

 Sophisticated data placement and error correction algorithms deliver
 high levels of storage reliability, availability, serviceability,
 and performance. GPFS Native
 RAID provides
 a variation of the GPFS network
 shared disk (NSD) called a virtual disk, or vdisk. Standard
 NSD clients transparently access the vdisk NSDs of a file system using
 the conventional NSD protocol.

 The features of GPFS Native
 RAID include:

 	Software RAID
 [image: Start of change] GPFS Native
 RAID, which
 runs on standard Serial Attached SCSI (SAS) disks in a dual-ported
 JBOD array, does not require external RAID storage controllers or
 other custom hardware RAID acceleration. [image: End of change]

 	Declustering
 GPFS Native
 RAID distributes
 client data, redundancy information, and spare space uniformly across
 all disks of a JBOD. This [image: Start of change] approach reduces the rebuild (disk failure
 recovery process) overhead and improves application performance [image: End of change] compared
 to conventional RAID.

 	[image: Start of change]Pdisk-group fault tolerance
 In addition to
 declustering data across disks, GPFS Native
 RAID can, starting
 with GPFS 4.1, place data and
 parity information to protect against groups of disks that, based
 on characteristics of a disk enclosure and system, could possibly
 fail together due to a common fault. The data placement algorithm
 ensures that even if all members of a disk group fail, the error correction
 codes will still be capable of recovering erased data.

 [image: End of change]

 	Checksum
 An end-to-end data integrity check, using checksums
 and version numbers, is maintained between the disk surface and NSD
 clients. The checksum algorithm uses version numbers to detect silent
 data corruption and lost disk writes.

 	Data redundancy
 GPFS Native
 RAID supports
 highly reliable 2-fault-tolerant and 3-fault-tolerant Reed-Solomon
 based parity codes and 3-way and 4-way replication.

 	Large cache
 A large cache improves read and write performance,
 particularly for small I/O operations.

 	Arbitrarily-sized disk arrays
 The number of disks is
 not restricted to a multiple of the RAID redundancy code width, which
 allows flexibility in the number of disks in the RAID array.

 	Multiple redundancy schemes
 One disk array can support
 vdisks with different redundancy schemes, for example Reed-Solomon
 and replication codes.

 	Disk hospital
 A disk hospital asynchronously diagnoses
 faulty disks and paths, and requests replacement of disks by using
 past health records.

 	Automatic recovery
 Seamlessly and automatically recovers
 from primary server failure.

 	Disk scrubbing
 A disk scrubber automatically detects
 and repairs latent sector errors in the background.

 	Familiar interface
 Standard GPFS command syntax is used for all configuration
 commands; including, maintaining and replacing failed disks.

 	Flexible hardware configuration
 Support of JBOD enclosures
 with multiple disks physically mounted together on removable carriers.

 	[image: Start of change]Journaling
 For improved performance and recovery
 after a node failure, internal configuration and small-write data
 are journaled to solid-state disks (SSDs) in the JBOD or to non-volatile
 random-access memory (NVRAM) that is internal to the GPFS Native
 RAID servers.

 [image: End of change]

 Parent topic: GPFS Native RAID (GNR)

 GPFS Native
 RAID features

 This section introduces three key features of GPFS Native
 RAID and
 how they work: data redundancy using RAID codes, end-to-end checksums,
 and declustering.

 	RAID codes

 	End-to-end checksum

 	Declustered RAID

 Parent topic: GPFS Native RAID (GNR)

 RAID codes

 GPFS Native
 RAID
 corrects for disk failures and other storage faults automatically
 by reconstructing the unreadable data using the available data redundancy
 of a Reed-Solomon code or N-way replication. GPFS Native
 RAID uses the
 reconstructed data to fulfill client operations, and in the case of
 disk failure, to rebuild the data onto spare space. GPFS Native
 RAID supports
 2- and 3-fault-tolerant Reed-Solomon codes and 3-way and 4-way replication,
 which respectively detect and correct up to two or three concurrent
 faults[bookmark: fnsrc_1]1.
 The redundancy code layouts that GPFS Native
 RAID supports,
 called tracks, are illustrated in Figure 1.

 [image: Redundancy codes supported by GPFS Native RAID.]

Figure 12. Redundancy codes supported by GPFS Native
 RAID. GPFS Native
 RAID supports
 2- and 3-fault-tolerant Reed-Solomon codes, which partition a GPFS block into eight data strips
 and two or three parity strips. The N-way replication
 codes duplicate the GPFS block
 on N - 1 replica strips.

 Depending on the configured RAID code, GPFS Native
 RAID creates
 redundancy information automatically. Using a Reed-Solomon code, GPFS Native
 RAID divides
 a GPFS block of user data equally
 into eight data strips and generates two or three redundant parity
 strips. This results in a stripe or track width of 10 or 11 strips
 and storage efficiency of 80% or 73%, respectively (excluding user-configurable
 spare space for rebuild operations).

 Using N-way replication, a GPFS data block is replicated simply N −
 1 times, in effect implementing 1 + 2 and 1 + 3 redundancy codes,
 with the strip size equal to the GPFS block
 size. Thus, for every block/strip that is written to the disks, N replicas
 of that block/strip are also written. This results in a track width
 of three or four strips and storage efficiency of 33% or 25%, respectively.

 Parent topic: GPFS Native RAID features

 [bookmark: fntarg_1]1 An ƒ-fault-tolerant Reed-Solomon code or a (1 + ƒ)-way
 replication can survive the concurrent failure of ƒ disks
 or read faults. Also, if there are s equivalent
 spare disks in the array, an ƒ-fault-tolerant array can survive
 the sequential failure of ƒ + s disks
 where disk failures occur between successful rebuild operations.

 End-to-end checksum

 Most implementations of RAID codes implicitly assume that disks
 reliably detect and report faults, hard-read errors, and other integrity
 problems. However, studies have shown that disks do not report some
 read faults and occasionally fail to write data, while actually claiming
 to have written the data. These errors are often referred to as silent
 errors, phantom-writes, dropped-writes, and off-track writes. To
 cover for these shortcomings, GPFS Native
 RAID implements
 an end-to-end checksum that can detect silent data corruption caused
 by either disks or other system components that transport or manipulate
 the data.

 When an NSD client is writing data, a checksum
 of 8 bytes is calculated and appended to the data before it is
 transported over the network to the GPFS Native
 RAID server.
 On reception, GPFS Native
 RAID calculates
 and verifies the checksum. Then, GPFS Native
 RAID stores
 the data, a checksum, and version number to disk and logs the version
 number in its metadata for future verification during read.

 When GPFS Native
 RAID reads
 disks to satisfy a client read operation, it compares the disk checksum
 against the disk data and the disk checksum version number against
 what is stored in its metadata. If the checksums and version numbers
 match, GPFS Native
 RAID sends
 the data along with a checksum to the NSD client. If the checksum
 or version numbers are invalid, GPFS Native
 RAID reconstructs
 the data using parity or replication and returns the reconstructed
 data and a newly generated checksum to the client. Thus, both silent
 disk read errors and lost or missing disk writes are detected and
 corrected.

 Parent topic: GPFS Native RAID features

 Declustered RAID

 Compared to conventional RAID, GPFS Native
 RAID implements
 a sophisticated data and spare space disk layout scheme that allows
 for arbitrarily sized disk arrays while also reducing the overhead
 to clients when recovering from disk failures. To accomplish this, GPFS Native
 RAID uniformly
 spreads or declusters user data, redundancy information, and
 spare space across all the disks of a declustered array. Figure 1 compares a conventional
 RAID layout versus an equivalent declustered array.

 [image: Conventional RAID versus declustered RAID layouts.]

Figure 13. Conventional RAID versus declustered
 RAID layouts. This figure is an example of how GPFS Native
 RAID improves
 client performance during rebuild operations by utilizing the throughput
 of all disks in the declustered array. This is illustrated here by
 comparing a conventional RAID of three arrays versus a declustered
 array, both using 7 disks. A conventional 1-fault-tolerant 1 + 1 replicated
 RAID array in the lower left is shown with three arrays of two disks
 each (data and replica strips) and a spare disk for rebuilding. To
 decluster this array, the disks are divided into seven tracks, two
 strips per array, as shown in the upper left. The strips from each
 group are then combinatorially spread across all seven disk positions,
 for a total of 21 virtual tracks, per the upper right. The strips
 of each disk position for every track are then arbitrarily allocated
 onto the disks of the declustered array of the lower right (in this
 case, by vertically sliding down and compacting the strips from above).
 The spare strips are uniformly inserted, one per disk.

 As illustrated in Figure 2, a declustered
 array can significantly shorten the time required to recover from
 a disk failure, which lowers the rebuild overhead for client applications.
 When a disk fails, erased data is rebuilt using all the operational
 disks in the declustered array, the bandwidth of which is greater
 than that of the fewer disks of a conventional RAID group. Furthermore,
 if an additional disk fault occurs during a rebuild, the number of
 impacted tracks requiring repair is markedly less than the previous
 failure and less than the constant rebuild overhead of a conventional
 array.

 The decrease in declustered rebuild impact and client overhead
 can be a factor of three to four times less than a conventional RAID.
 Because GPFS stripes client
 data across all the storage nodes of a cluster, file system performance
 becomes less dependent upon the speed of any single rebuilding storage
 array.

 [image: Lower rebuild overhead in conventional RAID versus declustered RAID.]

Figure 14. Lower rebuild overhead in conventional
 RAID versus declustered RAID. When a single disk fails
 in the 1-fault-tolerant 1 + 1 conventional array on the left, the
 redundant disk is read and copied onto the spare disk, which requires
 a throughput of 7 strip I/O operations. When a disk fails in the
 declustered array, all replica strips of the six impacted tracks are
 read from the surviving six disks and then written to six spare strips,
 for a throughput of 2 strip I/O operations. The bar chart illustrates
 disk read and write I/O throughput during the rebuild operations.

 Parent topic: GPFS Native RAID features

 Disk configurations

 This section describes recovery group and declustered array configurations.

 	Recovery groups

 	Declustered arrays

 Parent topic: GPFS Native RAID (GNR)

 Recovery groups

 GPFS Native
 RAID divides
 disks into recovery groups where each is physically connected
 to two servers: primary and backup. All accesses to any of the disks
 of a recovery group are made through the active server of the recovery
 group, either the primary or backup.

 Building on the inherent NSD failover capabilities of GPFS, when a GPFS Native
 RAID server
 stops operating because of a hardware fault, software fault, or normal
 shutdown, the backup GPFS Native
 RAID server
 seamlessly takes over control of the associated disks of its recovery
 groups.

 Typically, a JBOD array is divided into two recovery groups controlled
 by different primary GPFS Native
 RAID servers.
 If the primary server of a recovery group fails, control automatically
 switches over to its backup server. Within a typical JBOD, the primary
 server for a recovery group is the backup server for the other recovery
 group.

 Figure 1 illustrates
 the ring configuration where GPFS Native
 RAID servers
 and storage JBODs alternate around a loop. A particular GPFS Native
 RAID server
 is connected to two adjacent storage JBODs and vice versa. The ratio
 of GPFS Native
 RAID server
 to storage JBODs is thus one-to-one. Load on servers increases by
 50% when a server fails.

 [image: GPFS Native RAID server and recovery groups in a ring configuration.]

Figure 15. GPFS Native
 RAID server
 and recovery groups in a ring configuration. A recovery
 group is illustrated as the dashed-line enclosed group of disks within
 a storage JBOD. Server N is the primary controller
 of the first recovery group in JBOD N (and backup
 for its second recovery group), and the primary controller of the
 second recovery group in JBOD N + 1 (and backup
 for its first recovery group). As shown, when server 2 fails, control
 of the first recovery group in JBOD 2 is taken over by its backup
 server 1, and control of the second recovery group in JBOD 3 is taken
 over by its backup server 3. During the failure of server 2, the load
 on backup server 1 and 3 increases by 50% from two to three recovery
 groups.

 For small configurations, Figure 2 illustrates
 a setup with two GPFS Native
 RAID servers
 connected to one storage JBOD. For handling server failures, this
 configuration can be less efficient for large clusters because it
 requires 2 × N servers each capable of serving two recovery
 groups, where N is the number of JBOD arrays. Conversely, the
 ring configuration requires 1 × N servers each capable
 of serving three recovery groups.

 [image: Minimal configuration of two GPFS Native RAID servers and one storage JBOD.]

Figure 16. Minimal configuration of two GPFS Native
 RAID servers
 and one storage JBOD. GPFS Native
 RAID server
 1 is the primary controller for the first recovery group and backup
 for the second recovery group. GPFS Native
 RAID server
 2 is the primary controller for the second recovery group and backup
 for the first recovery group. As shown, when server 1 fails, control
 of the first recovery group is taken over by its backup server 2.
 During the failure of server 1, the load on backup server 2 increases
 by 100% from one to two recovery groups.

 Parent topic: Disk configurations

 Declustered arrays

 A declustered array is a subset of the physical disks (pdisks)
 in a recovery group across which data, redundancy information, and
 spare space are declustered. The number of disks in a declustered
 array is determined by the RAID code-width of the vdisks that will
 be housed in the declustered array. For more information, see Virtual disks. There can
 be one or more declustered arrays per recovery group. Figure 1 illustrates
 a storage JBOD with two recovery groups, each with four declustered
 arrays.

 A declustered array can hold one or more vdisks. Since redundancy
 codes are associated with vdisks, a declustered array can simultaneously
 contain both Reed-Solomon and replicated vdisks.

 If the storage JBOD supports multiple disks physically mounted
 together on removable carriers, removal of a carrier temporarily disables
 access to all the disks in the carrier. Thus, pdisks on the same carrier
 should not be in the same declustered array, as vdisk redundancy protection
 would be weakened upon carrier removal.

 Declustered arrays are normally created at recovery group creation
 time but new ones can be created or existing ones grown by adding
 pdisks at a later time.

 [image: Example of declustered arrays and recovery groups in storage JBOD.]

Figure 17. Example of declustered arrays and
 recovery groups in storage JBOD. This figure shows a storage
 JBOD with two recovery groups, each recovery group with four declustered
 arrays, and each declustered array with five disks.

 Parent topic: Disk configurations

 Virtual and physical disks

 A virtual disk (vdisk) is a type of NSD, implemented by GPFS Native
 RAID across
 all the physical disks (pdisks) of a declustered array. Multiple
 vdisks can be defined within a declustered array, typically Reed-Solomon
 vdisks for GPFS user data and
 replicated vdisks for GPFS metadata.

 	Virtual disks

 	Physical disks

 	Solid-state disks

 Parent topic: GPFS Native RAID (GNR)

 Virtual disks

 Whether a vdisk of a particular capacity can be created in a declustered
 array depends on its redundancy code, the number of pdisks and equivalent
 spare capacity in the array, and other small GPFS Native
 RAID overhead
 factors. The mmcrvdisk command can automatically
 configure a vdisk of the largest possible size given a redundancy
 code and configured spare space of the declustered array.

 In general, the number of pdisks in a declustered array cannot
 be less than the widest redundancy code of a vdisk plus the equivalent
 spare disk capacity of a declustered array. For example, a vdisk
 using the 11-strip-wide 8 + 3p Reed-Solomon
 code requires at least 13 pdisks in a declustered array with the equivalent
 spare space capacity of two disks. A vdisk using the 3-way replication
 code requires at least five pdisks in a declustered array with the
 equivalent spare capacity of two disks.

 Vdisks are partitioned into virtual tracks, which are the functional
 equivalent of a GPFS block.
 All vdisk attributes are fixed at creation and cannot be subsequently
 altered.

 Parent topic: Virtual and physical disks

 Physical disks

 A pdisk is used by GPFS Native
 RAID to store
 both user data and GPFS Native
 RAID internal
 configuration data.

 A pdisk is either a conventional rotating magnetic-media disk (HDD)
 or a solid-state disk (SSD). All pdisks in a declustered array must
 have the same capacity.

 It is assumed that pdisks are dual ported. This configuration
 means one or more paths are connected to the primary GPFS Native
 RAID server
 and one or more paths are connected to the backup server. There are
 typically two redundant paths between a GPFS Native
 RAID server
 and connected JBOD pdisks.

 Parent topic: Virtual and physical disks

 Solid-state disks

 GPFS Native
 RAID assumes
 several solid-state disks (SSDs) in each recovery group in order to
 redundantly log changes to its internal configuration and fast-write
 data in non-volatile memory, which is accessible from either the primary
 or backup GPFS Native
 RAID servers
 after server failure. A typical GPFS Native
 RAID log vdisk
 might be configured as 3-way replication over a dedicated declustered
 array of four SSDs per recovery group. [image: Start of change]A typical GSS
 setup primarily uses NVRAM to log this data, with only a single SSD
 per recovery group as backup for the NVRAM in case of failure. [image: End of change]

 Parent topic: Virtual and physical disks

 [image: Start of change]GNR with
 pdisk-group fault tolerance

 Starting with GPFS 4.1, GPFS Native
 RAID (GNR) has a revised
 placement algorithm for distributing strips of the redundancy code.
 The revision can allow survival of larger units of concurrent disk
 failures than what was possible in previous versions of GNR. The placement
 algorithm is aware of the hardware groupings of disks that are present
 in the system and attempts to segregate individual strips of a redundancy
 code stripe across as many groups as possible.

 For example, if the hardware configuration includes four disk
 enclosures and a vdisk has been created with four-way replication,
 each strip of the vdisk's four-way stripe can be placed on a separate
 enclosure. Furthermore, if a complete enclosure (potentially many
 tens or hundreds of disks) were to fail, the surviving redundancy
 code strips on other enclosures would ensure no data loss. This revised
 placement is significantly different from the placement exhibited
 in previous versions of GNR, which made
 no attempt to segregate strips across hardware groupings of disks
 and thus could have placed all four redundancy code strips within
 one enclosure. The loss of that one enclosure would cause the data
 to be unavailable.

 GPFS Native
 RAID uses
 redundancy codes that are user selected for user data and system selected
 for configuration data. The selected redundancy code, available disk
 space, and current disk hardware configuration all play a role with
 regard to which types of failures can be survived. GNR selects a minimum
 of five-way replication for its internal configuration data and requires
 a certain amount of physical disk space to be available for describing
 the system. GNR also
 discovers the disk hardware groups automatically and uses this discovery
 in a periodic rebalance of the redundancy code strips. If the disk
 hardware configuration changes (if a new disk enclosure is added to
 the recovery group, for example), GNR recognizes
 the change automatically and performs a rebalancing operation automatically
 in the background. Additionally, a rebuild operation in the event
 of hardware failure is also cognizant of the hardware groupings,
 so failed redundancy code strips are rebuilt in a manner that is aware
 of the current disk hardware grouping.

 	Pdisk-group fault tolerance: an example

 Parent topic: GPFS Native RAID (GNR)

[image: End of change]
 [image: Start of change][image: Start of change]Pdisk[image: End of change]-group fault tolerance: an example

 Every data stripe (including user data and system configuration data) within the GNR system is protected through a distinct form of redundancy.
 Each of these data stripes has a set of disks within which they constrain their strip placement.
 Each stripe of the data (for which there are many stripes in each whole) has individual strips that serve in the
 redundancy code protection of the object's data. The placement of these strips has been distributed across a set of
 pdisks residing within a set of drawers. These drawers reside within a set of enclosures.

 Figure 1
 shows a sample stripe placement for a vdisk that was using a RAID redundancy code of 4WayReplication
 (that is, four duplicate copies of each data strip). The [image: Start of change]pdisk[image: End of change]-group fault-tolerant placement has chosen to place the
 four strips of the stripe across four drawers in the two enclosures available to this recovery group.

 [image: Start of changeStrips across JBODEnd of change enclosures]

Figure 18. [image: Start of change]Strips across JBOD[image: End of change] enclosures

 By segregating each individual strip across as wide a set of disk groups as possible,
 GNR ensures that the loss
 of any set of disk groups up to fault tolerance of the RAID redundancy code is survivable.

 Figure 2
 shows an example of the same configuration after the loss of a full enclosure and one drawer from the second enclosure.

 [image: Start of changeStrips across JBODEnd of change enclosures after failure]

Figure 19. [image: Start of change]Strips across JBOD[image: End of change] enclosures after failure

 In this example, the [image: Start of change]pdisk[image: End of change]-group fault-tolerant placement of individual strips across multiple enclosures and multiple drawers
 has ensured that at least one of the four duplicate copies has survived the multiple disk failures that occurred when an
 enclosure and a separate drawer failed.

 Parent topic: GNR with pdisk-group fault tolerance

[image: End of change]

 Disk hospital

 The disk hospital is a key feature of GPFS Native
 RAID that
 asynchronously diagnoses errors and faults in the storage subsystem. GPFS Native
 RAID times
 out an individual pdisk I/O operation after about ten seconds, thereby
 limiting the impact from a faulty pdisk on a client I/O operation.
 When a pdisk I/O operation results in a timeout, an I/O error, or
 a checksum mismatch, the suspect pdisk is immediately admitted into
 the disk hospital. When a pdisk is first admitted, the hospital determines
 whether the error was caused by the pdisk itself or by the paths to
 it. While the hospital diagnoses the error, GPFS Native
 RAID, if
 possible, uses vdisk redundancy codes to reconstruct lost or erased
 strips for I/O operations that would otherwise have used the suspect
 pdisk.

 	Health metrics

 	Pdisk discovery

 	Disk replacement recording and reporting

 Parent topic: GPFS Native RAID (GNR)

 Health metrics

 The disk hospital maintains the following internal health assessment
 metrics for each pdisk. When one of these metrics exceeds the threshold,
 the pdisk is marked for replacement according to the disk maintenance
 replacement policy for the declustered array.

 	relativePerformance

 	Characterizes response times. Values greater than one indicate
 that the disk is performing above average speed; values less than
 one indicate that the disk is performing below average speed. Values
 within a range of 0.800 to 1.250 are considered normal. Examples of
 typical values are: 0.932, 0.978, 1.039, and 1.095 If the relativePerformance of
 a disk falls below a particular threshold (the default setting is
 0.667), the hospital adds "slow" to the pdisk state, and the
 disk is prepared for replacement.

 	dataBadness

 	Characterizes media errors (hard errors) and checksum errors.

 The disk hospital logs selected Self-Monitoring, Analysis and Reporting
 Technology (SMART) data, including the number of internal sector remapping
 events for each pdisk.

 Parent topic: Disk hospital

 Pdisk discovery

 GPFS Native
 RAID discovers
 all connected pdisks when it starts up, and then regularly schedules
 a process that will rediscover a pdisk that becomes
 newly accessible to the GPFS Native
 RAID server.
 This allows pdisks to be physically connected or connection problems
 to be repaired without restarting the GPFS Native
 RAID server.

 Parent topic: Disk hospital

 Disk replacement recording and reporting

 The disk hospital keeps track of disks that require replacement
 according to the disk replacement policy of the declustered array,
 and it can be configured to report the need for replacement in a variety
 of ways. It records and reports the FRU number and physical hardware
 location of failed disks to help guide service personnel to the correct
 location with replacement disks.

 [image: Start of change] If the storage JBOD supports multiple disks that are
 mounted on a removable carrier, such as the Power 775, disk replacement requires the hospital
 to suspend other disks in the same carrier temporarily. On the Power 775 storage JBOD, the disk
 carriers are also not removable until GPFS Native
 RAID actuates
 a solenoid-controlled latch, in order to guard against human error. [image: End of change]

 [image: Start of change] In response to administrative commands, the hospital
 quiesces the appropriate disk (or multiple disks on a carrier), releases
 the carrier latch solenoid (if necessary), and turns on identify lights
 to guide replacement. After one or more disks are replaced and the
 disk or carrier is re-inserted, the hospital, in response to administrative
 commands, verifies that the repair has taken place and adds any new
 disks to the declustered array automatically, which causes GPFS Native
 RAID to rebalance
 the tracks and spare space across all the disks of the declustered
 array. If service personnel fail to re-insert the disk or carrier
 within a reasonable period, the hospital declares the disks missing
 and starts rebuilding the affected data. [image: End of change]

 Parent topic: Disk hospital

 Managing GPFS Native
 RAID

 This section describes, in more detail, the characteristics
 and behavior of these GPFS Native
 RAID entities:
 recovery groups, pdisks, declustered arrays, and vdisks.
 Overall GPFS Native
 RAID management,
 [image: Start of change]pdisk-group fault tolerance,[image: End of change]
 and disk maintenance are also described.

 	Recovery groups

 	Pdisks

 	Declustered arrays

 	Vdisks

 	Upgrading to GNR with pdisk-group fault tolerance

 	Determining pdisk-group fault-tolerance

 	Maintenance

 	Component configuration in the GPFS Storage Server

 The function described in this topic is only
 available with the IBM System x GPFS Storage Server.

 	Overall management of GPFS Native RAID

 Parent topic: GPFS Native RAID (GNR)

 Recovery groups

 A recovery group is the fundamental organizing structure
 employed by GPFS Native
 RAID.
 A recovery group is conceptually the internal GPFS equivalent of a hardware disk controller.
 Within a recovery group, individual JBOD disks are defined as pdisks and
 assigned to declustered arrays. Each pdisk belongs to exactly
 one declustered array within one recovery group. Within a declustered
 array of pdisks, vdisks are defined. The vdisks are the equivalent
 of the RAID LUNs for a hardware disk controller. One or two GPFS cluster nodes must be defined
 as the servers for a recovery group, and these servers must have direct
 hardware connections to the JBOD disks in the recovery group. Two
 servers are recommended for high availability server failover, but
 only one server will actively manage the recovery group at any given
 time. One server is the preferred and primary server, and the
 other server, if defined, is the backup server.

 Multiple recovery groups can be defined, and a GPFS cluster node can be the primary or backup
 server for more than one recovery group. The name of a recovery group
 must be unique within a GPFS cluster.

 	Recovery group server parameters

 	Recovery group creation

 	Recovery group server failover

 Parent topic: Managing GPFS Native RAID

 Recovery group server parameters

 To enable a GPFS cluster
 node as a recovery group server, it must have the mmchconfig configuration
 parameter nsdRAIDTracks set to a nonzero
 value, and the GPFS daemon must
 be restarted on the node. The nsdRAIDTracks parameter
 defines the maximum number of vdisk track descriptors that the server
 can have in memory at a given time. The volume of actual vdisk data
 that the server can cache in memory is governed by the size of the GPFS pagepool on the server and
 the value of the nsdRAIDBufferPoolSizePct configuration
 parameter. The nsdRAIDBufferPoolSizePct parameter
 defaults to 50% of the pagepool on the server. A recovery group server
 should be configured with a substantial amount of pagepool, on the
 order of tens of gigabytes. A recovery group server becomes an NSD
 server after NSDs are defined on the vdisks in the recovery group,
 so the nsdBufSpace parameter also applies.
 The default for nsdBufSpace is 30% of the
 pagepool, and it can be decreased to its minimum value of 10% because
 the vdisk data buffer pool is used directly to serve the vdisk NSDs.

 The vdisk track descriptors, as governed by nsdRAIDTracks,
 include such information as the RAID code, track number, and status.
 The descriptors also contain pointers to vdisk data buffers in the GPFS pagepool, as governed by nsdRAIDBufferPoolSizePct.
 It is these buffers that hold the actual vdisk data and redundancy
 information.

 For more information on how to set the nsdRAIDTracks and nsdRAIDBufferPoolSizePct parameters,
 see Planning considerations for GPFS Native RAID.

 For more information on the nsdRAIDTracks, nsdRAIDBufferPoolSizePct,
 and nsdBufSpace parameters, see the mmchconfig command
 in the GPFS:
 Administration and Programming Reference.

 Parent topic: Recovery groups

 Recovery group creation

 Recovery groups are created using the mmcrrecoverygroup command,
 which takes the following arguments:

 	The name of the recovery group to create.

 	The name of a stanza file describing the declustered arrays and
 pdisks within the recovery group.

 	The names of the GPFS cluster
 nodes that will be the primary and, if specified, backup servers for
 the recovery group.

 When a recovery group is created, the GPFS daemon
 must be running with the nsdRAIDTracks configuration
 parameter in effect on the specified servers.

 For more information see the mmcrrecoverygroup command
 in the GPFS:
 Administration and Programming Reference.

 Parent topic: Recovery groups

 Recovery group server failover

 When, as is recommended, a recovery group is assigned two servers,
 one server is the preferred and primary server for the recovery
 group and the other server is the backup server. Only one server
 can serve the recovery group at any given time; this server is known
 as the active recovery group server. The server that is not
 currently serving the recovery group is the standby server.
 If the active recovery group server is unable to serve a recovery
 group, it will relinquish control of the recovery group and pass it
 to the standby server, if available. The failover from the active
 to the standby server should be transparent to any GPFS file system using the vdisk NSDs in the
 recovery group. There will be a pause in access to the file system
 data in the vdisk NSDs of the recovery group while the recovery operation
 takes place on the new server. This server failover recovery operation
 involves the new server opening the component disks of the recovery
 group and playing back any logged RAID transactions.

 The active server for a recovery group can be changed by the GPFS administrator using the mmchrecoverygroup command.
 This command can also be used to change the primary and backup servers
 for a recovery group. For more information, see the mmchrecoverygroup command
 in the GPFS:
 Administration and Programming Reference.

 Parent topic: Recovery groups

 Pdisks

 The GPFS Native
 RAID pdisk is
 an abstraction of a physical disk. A pdisk corresponds to exactly
 one physical disk, and belongs to exactly one declustered array within
 exactly one recovery group. Before discussing how declustered arrays
 collect pdisks into groups, it will be useful to describe the characteristics
 of pdisks.

 A recovery group can contain a maximum of 512 pdisks. A declustered
 array within a recovery group can contain a maximum of [image: Start of change]256[image: End of change] pdisks.
 The name of a pdisk must be unique within a recovery group; that is,
 two recovery groups can each contain a pdisk named disk10,
 but a recovery group cannot contain two pdisks named disk10,
 even if they are in different declustered arrays.

 A pdisk is usually created using the mmcrrecoverygroup command,
 whereby it is assigned to a declustered array within a newly created
 recovery group. In unusual situations, pdisks can also be created
 and assigned to a declustered array of an existing recovery group
 by using the mmaddpdisk command.

 To create a pdisk, a stanza must be supplied to the mmcrrecoverygroup or mmaddpdisk commands
 specifying the pdisk name, the declustered array name to which it
 is assigned, and a block device special file name for the entire physical
 disk as it is configured by the operating system on the active recovery
 group server. A sample pdisk creation stanza follows: %pdisk: pdiskName=c073d1
 device=/dev/hdisk192
 da=DA1
 [image: Start of change]nPathActive=2
 nPathTotal=4[image: End of change]

 [image: Start of change] Other stanza parameters might be present.
 For more information about pdisk stanza parameters, see Pdisk stanza format. [image: End of change] 		

 The device name for a pdisk must refer to the entirety of a single
 physical disk; pdisks should not be created using virtualized or software-based
 disks (for example, logical volumes, disk partitions, logical units
 from other RAID controllers, or network-attached disks). [image: Start of change] The
 exception to this rule are non-volatile RAM (NVRAM) volumes used for
 the log tip vdisk, which is described in Log vdisks. [image: End of change] For a pdisk to
 be created successfully, the physical disk must be present and functional
 at the specified device name on the active server. The physical disk
 must also be present on the standby recovery group server, if one
 is configured (note that the physical disk block device special name
 on the standby server will almost certainly be different, and will
 automatically be discovered by GPFS).

 The attributes of a pdisk include the physical disk's unique worldwide
 name (WWN), its field replaceable unit (FRU) code, and its physical
 location code. Pdisk attributes can be displayed using the mmlspdisk command;
 of particular interest here are the pdisk device paths and
 the pdisk states.

 Pdisks that have failed and have been marked for replacement by
 the disk hospital are replaced using the mmchcarrier command.
 In unusual situations, pdisks can be added or deleted using the mmaddpdisk or mmdelpdisk commands.
 When deleted, either through replacement or the mmdelpdisk command,
 the pdisk abstraction will only cease to exist when all of the data
 it contained has been rebuilt onto spare space (even though the physical
 disk might have been removed from the system).

 Pdisks are normally under the control of GPFS Native
 RAID and the
 disk hospital. In some situations, however, the mmchpdisk command
 can be used to manipulate pdisks directly. For example, if a pdisk
 has to be removed temporarily to allow for hardware maintenance on
 other parts of the system, you can use the mmchpdisk --begin-service-drain command
 to drain the data before removing the pdisk. After bringing the pdisk
 back online, you can use the mmchpdisk --end-service-drain command
 to return the drained data to the pdisk.
 Note: This process requires
 that there be sufficient spare space in the declustered array for
 the data that is to be drained. If the available spare space is insufficient,
 it can be increased with the mmchrecoverygroup command.

 	Pdisk paths

 	Pdisk stanza format

 	Pdisk states

 Parent topic: Managing GPFS Native RAID

 Pdisk paths

 To the operating system, physical disks are made visible as block
 devices with device special file names, such as [image: Start of change]
 such as /dev/sdbc (on Linux) or /dev/hdisk32 (on AIX). [image: End of change] [image: Start of change]Most pdisks
 that GPFS Native
 RAID
 uses are located in JBOD arrays, except for the NVRAM pdisk that is
 used for the log tip vdisk. [image: End of change] To achieve high availability and
 throughput, the physical disks of a JBOD array are connected to each
 server by multiple (usually two) interfaces in a configuration known
 as multipath (or dualpath). When two operating system
 block devices are visible for each physical disk, GPFS Native
 RAID refers
 to them as the paths to the pdisk.

 In normal operation, the paths to individual pdisks are discovered
 by GPFS Native
 RAID automatically.
 There are only two instances when a pdisk must be referred to by its
 explicit block device path name: during recovery group creation using
 the mmcrrecoverygroup command, and when
 adding new pdisks to an existing recovery group with the mmaddpdisk command.
 In both of these cases, only one of the block device path names as
 seen on the active server needs to be specified; any other paths on
 the active and standby servers will be discovered automatically. [image: Start of change]For each pdisk, the nPathActive and nPathTotal stanza
 parameters can be used to specify the expected number of paths to
 that pdisk, from the active server and from all servers. This allows
 the disk hospital to verify that all expected paths are present and
 functioning. [image: End of change]

 The operating system may have the ability to internally merge multiple
 paths to a physical disk into a single block device. When GPFS Native
 RAID is in use,
 the operating system multipath merge function must be disabled because GPFS Native
 RAID itself
 manages the individual paths to the disk. For more information, see Example scenario: Configuring GPFS Native RAID recovery groups.

 Parent topic: Pdisks

 [image: Start of change]Pdisk stanza format[image: End of change]

 Pdisk stanzas [image: Start of change]have three mandatory parameters and
 five optional parameters,[image: End of change] and they look like this:
 %pdisk: pdiskName=PdiskName
 device=BlockDeviceName
 da=DeclusteredArrayName
 [image: Start of change][nPathActive=ExpectedNumberActivePaths][image: End of change]
 [image: Start of change][nPathTotal=ExpectedNumberTotalPaths][image: End of change]
 [image: Start of change][rotationRate=HardwareRotationRate][image: End of change]
 [image: Start of change][fruNumber=FieldReplaceableUnitNumber][image: End of change]
 [image: Start of change][location=PdiskLocation][image: End of change]

 where:

 	pdiskName=PdiskName

 	Specifies the name of a pdisk.

 	device=BlockDeviceName

 	Specifies the name of a block device. The value provided for BlockDeviceName must
 refer to the block device as configured by the operating system on
 the primary recovery group server or have the node name prefixed to
 the device block name.
 Sample values for BlockDeviceName are
 [image: Start of change] /dev/sdbc and //nodename/dev/sdbc (on Linux), and hdisk32, /dev/hdisk32 and //nodename/dev/hdisk32 (on AIX). [image: End of change]

 Only one BlockDeviceName needs
 to be used, even if the device uses multipath and has multiple device
 names.

 	da=DeclusteredArrayName

 	Specifies the DeclusteredArrayName in
 the pdisk stanza, which implicitly creates the declustered array with
 default parameters.

 	[image: Start of change]nPathActive=ExpectedNumberActivePaths[image: End of change]

 	[image: Start of change]Specifies the expected number of paths for the connection from
 the active server to this pdisk. If this parameter is specified,
 the mmlsrecoverygroup and mmlspdisk commands
 will display warnings if the number of paths does not match the
 expected number for a pdisk that should be functioning normally.
 If this parameter is not specified, the default is 0, which means
 "do not issue such warnings".
 Sample values are 2 for all pdisks
 that are located in the IBM Power 775 Disk Enclosure or
 a GSS disk enclosure and 1 for the NVRAM pdisk that is used for
 the log tip vdisk.

 	[image: End of change]

 	[image: Start of change]nPathTotal=ExpectedNumberTotalPaths[image: End of change]

 	[image: Start of change]Specifies the expected number of paths for the connection from
 all active and backup servers to this pdisk. If this parameter is
 specified, the mmlsrecoverygroup and mmlspdisk commands
 will display warnings if the number of paths does not match the
 expected number, for a pdisk that should be functioning normally.
 If this parameter is not specified, the default is 0, which means
 "do not issue such warnings".
 Sample values are 4 for
 all pdisks located in the IBM Power 775 Disk Enclosure or
 a GSS disk enclosure and 1 for the NVRAM pdisk used for the log
 tip vdisk.

 	[image: End of change]

 	[image: Start of change]rotationRate=HardwareRotationRate[image: End of change]

 	[image: Start of change]Specifies the hardware type of the pdisk: NVRAM, SSD, or a rotating
 HDD. The only valid values are the string NVRAM, the string SSD, or
 a number between 1025 and 65535 (inclusive) indicating the rotation
 rate in revolutions per minute for HDDs. For all pdisks that are
 used in the IBM Power 775 Disk Enclosure or a GSS disk enclosure,
 there is no need to specify this parameter, as the hardware type and
 rotation rate will be determined from the hardware automatically.
 This parameter should only be specified for the NVRAM pdisk on the
 GSS. The default is to rely on the hardware to identify itself, or
 leave the hardware type and rotation rate unknown if the hardware
 does not have the ability to identify itself.
 A sample value is
 the string NVRAM for the NVRAM pdisk used for the log tip vdisk.

 	[image: End of change]

 	[image: Start of change]fruNumber=FieldReplaceableUnitNumber[image: End of change]

 	[image: Start of change]Specifies the unit number for the field replaceable
 unit that is needed to repair this pdisk if it fails. For all pdisks
 used in the IBM Power 775 Disk Enclosure or a GSS disk enclosure,
 there is no need to specify this parameter, as it is automatically
 determined from the hardware. For the NVRAM pdisk used in the log
 tip vdisk, the user can enter a string here, which will be displayed
 to service personnel when replacement of that pdisk is performed.
 However, setting this value for the NVRAM pdisk is not required, as
 the service replacement procedure for that pdisk is specific to that
 particular type of hardware. The default is to rely on the hardware
 to identify itself, or to leave the FRU number unknown if the hardware
 does not have the ability to identify itself.[image: End of change]

 	[image: Start of change]location=PdiskLocation[image: End of change]

 	[image: Start of change]Specifies the physical location of this pdisk. For all pdisks
 used in the IBM Power 775 Disk Enclosure or a GSS disk enclosure,
 there is no need to specify this parameter, as it automatically determined
 from the hardware. For the NVRAM pdisk used in the log tip vdisk,
 the user can enter a string here, which will be displayed in the output
 of mmlspdisk. The default is to rely on the location reported by
 the hardware, or leave the location unknown.
 A sample value is
 SV21314035-5-1, which describes a pdisk in enclosure serial number
 SV21314035, drawer 5, slot 1.

 	[image: End of change]

 Parent topic: Pdisks

 Pdisk states

 GPFS Native
 RAID maintains
 its view of a pdisk and its corresponding physical disk by means of
 a pdisk state. The pdisk state consists of multiple keyword
 flags, which may be displayed using the mmlsrecoverygroup or mmlspdisk commands.
 The pdisk state flags indicate [image: Start of change]in detail [image: End of change] how GPFS Native
 RAID is currently
 using or managing a disk. [image: Start of change]The state of a pdisk is also
 summarized in its user condition, as described at the end of
 this section. [image: End of change]

 In normal circumstances, the state of the vast majority of pdisks
 will be represented by the sole keyword ok.
 This means that GPFS Native
 RAID considers
 the pdisk to be healthy: the recovery group server is able to communicate
 with the disk, the disk is functioning normally, and the disk can
 be used to store data. The diagnosing flag
 will be present in the pdisk state when the GPFS Native
 RAID disk hospital
 suspects, or attempts to correct, a problem. If GPFS Native
 RAID is unable
 to communicate with a disk, the pdisk state will include the keyword missing.
 If a missing disk becomes reconnected
 and functions properly, its state will change back to ok.
 The readonly flag means that a disk has
 indicated that it can no longer safely write data. A disk can also
 be marked by the disk hospital as failing,
 perhaps due to an excessive number of media or checksum errors. When
 the disk hospital concludes that a disk is no longer operating effectively,
 it will declare the disk to be dead.
 If the number of [image: Start of change] non-functioning (dead, missing,
 failing, or slow) [image: End of change] pdisks
 reaches or exceeds the replacement threshold of their declustered
 array, the disk hospital will add the flag replace to
 the pdisk state, which indicates that physical disk replacement should
 be performed as soon as possible.

 When the state of a pdisk indicates that it can no longer behave
 reliably, GPFS Native
 RAID will
 rebuild the pdisk's data onto spare space on the other pdisks in the
 same declustered array. This is called draining the pdisk.
 That a pdisk is draining or has been drained will be indicated by
 a keyword in the pdisk state flags. The flag systemDrain means
 that GPFS Native
 RAID has
 decided to rebuild the data from the pdisk; the flag adminDrain means
 that the GPFS administrator
 issued the mmdelpdisk command to delete
 the pdisk.

 GPFS Native
 RAID stores
 both user (GPFS file system)
 data and its own internal recovery group data and vdisk configuration
 data on pdisks. Additional pdisk state flags indicate when these data
 elements are not present on a pdisk. When a pdisk starts draining, GPFS Native
 RAID first replicates
 the recovery group data and vdisk configuration data onto other pdisks.
 When this completes, the flags noRGD (no
 recovery group data) and noVCD (no vdisk
 configuration data) are added to the pdisk state flags. When the slower
 process of removing all user data completes, the noData flag
 will be added to the pdisk state.

 To summarize, the vast majority of pdisks will be in the ok state
 during normal operation. The ok state
 indicates that the disk is reachable, functioning, not draining, and
 that the disk contains user data and GPFS Native
 RAID recovery
 group and vdisk configuration information. A more complex example
 of a pdisk state is dead/systemDrain/noRGD/noVCD/noData for
 a single pdisk that has failed. This set of pdisk state flags indicates
 that the pdisk was declared dead by the system, was marked to be drained,
 and that all of its data (recovery group, vdisk configuration, and
 user) has been successfully rebuilt onto the spare space on other
 pdisks.

 In addition to those discussed here, there are some transient pdisk
 states that have little impact on normal operations. Table 1 lists the complete
 set of states.

 Table 38. Pdisk
 states

 	State

 	Description

 	ok

 	The disk is functioning normally.

 	dead

 	The disk failed.

 	missing

 	GPFS Native
 RAID is unable
 to communicate with the disk.

 	diagnosing

 	The disk is temporarily unusable while its status
 is determined by the disk hospital.

 	suspended

 	The disk is temporarily unusable as part of
 a service procedure.

 	readonly

 	The disk is no longer writeable.

 	failing

 	The disk is not healthy but not dead.

 	slow

 	The disk's performance is far below expectations.

 	systemDrain

 	The disk is faulty, so data and configuration
 data must be drained.

 	adminDrain

 	An administrator requested that this pdisk be
 deleted.

 	serviceDrain

 	The disk is being drained to be taken temporarily
 out of service.

 	noRGD

 	The recovery group data was drained from the
 disk.

 	noVCD

 	All vdisk configuration data was drained from
 the disk.

 	noData

 	All vdisk user data was drained from the disk.

 	undrainable

 	There is not enough spare space in the declustered
 array to [image: Start of change] completely [image: End of change] drain this disk.

 	replace

 	Replacement of the disk was requested.

 	noPath

 	There was no functioning path found to this
 disk.

 	PTOW

 	The disk is temporarily unusable because of
 a pending timed-out write.

 	init

 	The pdisk object is being initialized or removed.

 	formatting

 	Initial configuration data is being written
 to the disk.

 [image: Start of change] The complete state of a pdisk is described by a set
 of the states that are listed in Table 1. For pdisks that are
 not functioning correctly, this set can contain many individual states.
 For simplicity, the pdisk state is summarized into the user condition of
 a pdisk, which is also displayed by the mmlsrecoverygroup and mmlspdisk commands.
 The possible user conditions are:

 	normal

 	The pdisk is operating normally; its state will usually be
 ok, and it can be used to store
 RGD, VCD, or data, as needed. The pdisk might also be
 in a transient state such as diagnosing or suspended,
 but it is expected to return to normal operation soon.

 	degraded

 	The pdisk is operating, but it has hardware or connectivity
 issues, for example, fewer paths than are expected. The
 issues are not serious enough for the disk to be taken
 out of service or to be drained.

 	draining

 	The disk is being taken out of service and anything stored on
 it is being drained.

 	replaceable

 	The disk has completely failed, or it has been taken out of
 service and has been completely drained. It can be replaced.

 [image: End of change]

 Parent topic: Pdisks

 Declustered arrays

 Declustered arrays are disjoint subsets of the pdisks in a recovery
 group. Vdisks are created within declustered arrays, and vdisk tracks
 are declustered across all of an array's pdisks. A recovery group
 may contain up to 16 declustered arrays. A declustered array can contain
 up to [image: Start of change]256[image: End of change] pdisks (but the total number of pdisks
 in all declustered arrays within a recovery group cannot exceed 512).
 A pdisk may belong to only one declustered array. The name of a declustered
 array must be unique within a recovery group; that is, two recovery
 groups may each contain a declustered array named DA3,
 but a recovery group cannot contain two declustered arrays named DA3.
 The pdisks within a declustered array must all be of the same size
 and should all have similar performance characteristics.

 A declustered array is usually created together with its member
 pdisks and its containing recovery group through the use of the mmchrecoverygroup command.
 A declustered array may also be created using the mmaddpdisk command
 to add pdisks to a declustered array that does not yet exist in a
 recovery group. A declustered array may be deleted by deleting its
 last member pdisk, or by deleting the recovery group in which it resides.
 Any vdisk NSDs and vdisks within the declustered array must already
 have been deleted. There are no explicit commands to create or delete
 declustered arrays.

 [image: Start of change] The main purpose of a declustered array is to segregate
 pdisks of similar performance characteristics and similar use. Because
 vdisks are contained within a single declustered array, mixing pdisks
 of varying performance within a declustered array would not use the
 disks optimally. In a typical GPFS Native
 RAID system, the first declustered array contains SSD pdisks that
 are used for the log vdisk, or the log backup vdisk if configured.
 If the system is configured to use a log tip vdisk (see Log vdisks), another declustered
 array contains NVRAM pdisks for that vdisk. Vdisks that are GPFS NSDs are then contained in
 one or more declustered arrays using high-capacity HDDs or SSDs. [image: End of change]

 [image: Start of change] A secondary purpose of declustered arrays is to
 partition disks that share a common point of failure or unavailability,
 such as removable carriers that hold multiple disks. This comes into
 play when one considers that removing a multi-disk carrier [image: End of change] to
 perform disk replacement also temporarily removes some good disks,
 perhaps a number in excess of the fault tolerance of the vdisk NSDs.
 This would cause temporary suspension of file system activity until
 the disks are restored. To avoid this, each disk position in a removable
 carrier should be used to define a separate declustered array, such
 that disk position one defines DA1, disk
 position two defines DA2, and so on.
 Then when a disk carrier is removed, each declustered array will suffer
 the loss of just one disk, which is within the fault tolerance of
 any GPFS Native
 RAID vdisk
 NSD.

 	Declustered array parameters

 	Declustered array size

 	Data spare space and VCD spares

 	Increasing VCD spares

 When new recovery groups are created, the mkrginput script sets recommended values for VCD spares.

 	Declustered array free space

 	Pdisk free space

 Parent topic: Managing GPFS Native RAID

 Declustered array parameters

 Declustered arrays have [image: Start of change]four[image: End of change] parameters that
 [image: Start of change]can be set using stanza parameters when creating a
 declustered array, and[image: End of change] can be changed using the mmchrecoverygroup command
 with the --declustered-array option. These
 are:

 	[image: Start of change]dataSpares [image: End of change]

 	The number of disks' worth of equivalent spare space used for
 rebuilding vdisk data if pdisks fail. This defaults to one for arrays
 with nine or fewer pdisks, and two for arrays with 10 or more pdisks.

 	[image: Start of change]vcdSpares [image: End of change]

 	[image: Start of change]The number of disks that can be unavailable while the GPFS Native RAID server continues
 to function with full replication of vdisk configuration data (VCD).
 This value defaults to the number of data spares. [image: Start of change]
 To enable pdisk-group fault tolerance, this parameter is typically
 set to a larger value during initial system configuration (half of
 the number of pdisks in the declustered array + 1, for example). [image: End of change]
 [image: End of change]

 	[image: Start of change]replaceThreshold [image: End of change]

 	The number of disks that must fail before the declustered array
 is marked as needing to have disks replaced. The default is the
 number of data spares.

 	[image: Start of change]scrubDuration [image: End of change]

 	The number of days over which all the vdisks in the declustered
 array are scrubbed for errors. The default is 14 days.

 Parent topic: Declustered arrays

 Declustered array size

 GPFS Native
 RAID distinguishes
 between large and small declustered arrays. A declustered array is
 considered large if, at the time of its creation, [image: Start of change]the
 number of its pdisks is at least the setting of the vcdSpares parameter
 + 9. When using the default values for the vcdSpares and dataSpares
 parameters, this means that a declustered array is considered large
 if it contains at least 11 pdisks. [image: End of change] All other declustered arrays
 are considered small. At least one declustered array in each
 recovery group must be large, because only large declustered arrays
 have enough pdisks to safely store an adequate number of replicas
 of the GPFS Native
 RAID configuration
 data for the recovery group.

 Because the narrowest RAID code that GPFS Native
 RAID supports [image: Start of change]for user data[image: End of change] is 3-way replication, the smallest possible
 declustered array contains four pdisks, including the minimum required
 equivalent spare space of one disk. The RAID code width of the intended
 vdisk NSDs and the amount of equivalent spare space also affect declustered
 array size; if Reed-Solomon 8 + 3p vdisks,
 which have a code width of 11, are required, and two disks of equivalent
 spare space is also required, the declustered array must have at least
 13 member pdisks. [image: Start of change]Declustered arrays that contain only log vdisks can be smaller than these limits. [image: End of change]

 Parent topic: Declustered arrays

 [image: Start of change]Data spare space and VCD spares[image: End of change]

 While operating with a failed pdisk in a declustered array, GPFS Native
 RAID continues
 to serve file system I/O requests by using redundancy information
 on other pdisks to reconstruct data that cannot be read, and by marking
 data that cannot be written to the failed pdisk as stale. Meanwhile,
 to restore full redundancy and fault tolerance, the data on the failed
 pdisk is rebuilt onto [image: Start of change]data[image: End of change] spare space,
 reserved unused portions of the declustered array that are declustered
 over all of the member pdisks. The failed disk is thereby drained of
 its data by copying it to the [image: Start of change]data[image: End of change] spare space.

 The amount of [image: Start of change]data[image: End of change] spare space in a declustered
 array is set at creation time and can be changed later. The [image: Start of change]data[image: End of change] spare
 space is expressed in whole units equivalent to the capacity of a
 member pdisk of the declustered array, but is spread among all of
 the member pdisks. There are no dedicated spare pdisks. This implies
 that a number of pdisks equal to the specified [image: Start of change]data[image: End of change] spare
 space could fail, and the full redundancy of all of the data in the
 declustered array can be restored through a rebuild operation. [image: Start of change] If the user chooses to not fill the space in the declustered
 array with vdisks, and wants to use the unallocated space as extra
 data spare space, the user can increase the setting of the dataSpares parameter
 to the desired level of resilience against pdisk failures. [image: End of change]

 At a minimum, each declustered array [image: Start of change] normally
 requires data spare space that is equivalent to the size of one member
 pdisk. The exceptions, which have zero data spares and zero VCD spares,
 are declustered arrays that consist of the following: [image: End of change] [image: Start of change]
 	Non-volatile RAM disks used for a log tip vdisk

 	SSDs used for a log tip backup vdisk.

[image: End of change]
 Because large declustered arrays have a greater probability
 of disk failure, the default amount of [image: Start of change]data[image: End of change] spare
 space depends on the size of the declustered array. A declustered
 array with nine or fewer pdisks defaults to having one disk of equivalent [image: Start of change]data[image: End of change] spare space. A declustered array with 10 or more
 disks defaults to having two disks of equivalent [image: Start of change]data[image: End of change] spare
 space. These defaults can be overridden, especially at declustered
 array creation. However, if at a later point too much of the declustered
 array is already allocated for use by vdisks, it may not be possible
 to increase the amount of [image: Start of change]data[image: End of change] spare space.

 [image: Start of change] GPFS Native RAID vdisk
 configuration data (VCD) is stored more redundantly than vdisk
 content, typically 5-way replicated. When a pdisk fails, this configuration
 data is rebuilt at the highest priority, onto functioning pdisks.
 The redundancy of configuration data always has to be maintained,
 and GPFS Native RAID will not
 serve a declustered array that does not have sufficient pdisks to
 store all configuration data at full redundancy. The declustered
 array parameter vcdSpares determines
 how many pdisks can fail and have full VCD redundancy restored, by
 reserving room on each pdisk for vdisk configuration data. When
 using [image: Start of change]p[image: End of change]disk-group fault tolerance, the value of vcdSpares should
 be set higher than the value of the dataSpares parameter
 to account for the expected failure of hardware failure domains. [image: End of change]

 Parent topic: Declustered arrays

 [image: Start of change]Increasing VCD spares

 When new recovery groups are created, the mkrginput script sets recommended values for VCD spares.

 To increase the VCD spares for existing recovery groups, use the mmchrecoverygroup command.
 See
 GPFS:
 Administration and Programming Reference for more information.

 Parent topic: Declustered arrays

[image: End of change]

 Declustered array free space

 The declustered array free space reported by the mmlsrecoverygroup command
 reflects the space available for creating vdisks. Spare space is
 not included in this value since it is not available for creating
 new vdisks.

 Parent topic: Declustered arrays

 Pdisk free space

 The pdisk free space reported by the mmlsrecoverygroup command
 reflects the actual number of unused data partitions on the disk.
 This includes spare space, so if a pdisk fails, these values will
 decrease as data is moved to the spare space.

 Parent topic: Declustered arrays

 Vdisks

 Vdisks are created across the pdisks within a declustered array.
 Each recovery group requires a special log home vdisk to function
 (along with other log-type vdisks, as appropriate for specific environments);
 see Log vdisks. All other
 vdisks are created for use as GPFS file
 system NSDs.

 A recovery group can contain at most 64 [image: Start of change]vdisks.[image: End of change] Vdisks
 can be allocated arbitrarily among declustered arrays. Vdisks are
 created with the mmcrvdisk command. The mmdelvdisk command
 destroys vdisks and all their contained data.

 When creating a vdisk, you must specify the RAID code, block size,
 vdisk size, and a name that is unique within the recovery group and
 the GPFS cluster. There are
 no adjustable parameters available for vdisks.

 	RAID code

 	Block size

 	Vdisk size

 	Log vdisks

 	The relationship between vdisks and NSDs

 	Vdisk states

 Parent topic: Managing GPFS Native RAID

 RAID code

 The type, performance, and space efficiency of the RAID codes used
 for vdisks, discussed in RAID codes,
 should be considered when choosing the RAID code for a particular
 set of user data. GPFS storage
 pools and policy-based data placement can be used to ensure data is
 stored with appropriate RAID codes.

 Parent topic: Vdisks

 Block size

 The vdisk block size must equal the GPFS file
 system block size of the storage pool where the vdisk is assigned.
 For replication codes, the supported block sizes are 256 KiB, 512
 KiB, 1 MiB and 2 MiB. For Reed-Solomon codes, they are 1 MiB, 2 MiB,
 4 MiB, 8 MiB and 16 MiB. See Planning considerations for GPFS Native RAID for
 an overview of vdisk configuration considerations.

 Parent topic: Vdisks

 Vdisk size

 [image: Start of change]The[image: End of change] maximum vdisk size is the
 total space available on the pdisks in the declustered array, taking
 into account the overhead of the RAID code, minus spare space, minus
 vdisk configuration data, and minus a small amount of space reserved
 as a buffer for write operations. GPFS Native
 RAID will
 round up the requested vdisk size as required. When creating a vdisk,
 the user can specify to use all remaining space in the declustered
 array for that vdisk.

 Parent topic: Vdisks

 Log vdisks

 [image: Start of change]GPFS Native
 RAID uses log vdisks to store such internal information as event log
 entries, updates to vdisk configuration data, and certain data write
 operations quickly. There are four types of log vdisks, as follows.
 Among them, they can be created and destroyed in any order. [image: End of change]

 	log home vdisk

 	Every recovery group requires one log home vdisk to function.
 The log home vdisk must be created before any other [image: Start of change]non-log[image: End of change] vdisks
 in the recovery group, and it can only be deleted after all other [image: Start of change]non-log[image: End of change] vdisks in the recovery group have been deleted.
 The log home vdisk is divided into four sublogs: long-term event log,
 short-term event log, metadata log, and fast-write log to log small
 write operations.

 	log tip vdisk

 	The log tip vdisk (appropriate for certain environments, but not
 required for all) is a vdisk to which log records are initially written,
 then migrated to the log home vdisk. The intent is to use a small,
 high-performance [image: Start of change]NVRAM[image: End of change] device for the log tip,
 and a larger vdisk on conventional spinning disks for the log home
 vdisk. The fast writes to the log tip hide the latency of the spinning
 disks used for the main body of the log.

 	log tip backup vdisk

 	The log tip backup vdisk (appropriate for certain environments,
 but not required for all) is used as an additional replica of the
 log tip vdisk when the log tip vdisk is two-way replicated on nonvolatile
 RAM disks. Ideally, the log tip backup vdisk provides a level of performance
 between that of NVRAM disks and that of spinning disks.

 	log reserved vdisk

 	Log reserved vdisks are optional vdisks that are used when the
 log home disk is not allocated in its own declustered array. Log reserved
 vdisks have the same size as the log home vdisk and are used to equalize
 the space consumption on the data declustered arrays, but they are
 otherwise unused.

 Typical configurations

 The
 following are descriptions of typical vdisk configurations in various
 recovery group environments:

 	Power 775 configuration

 	In this configuration, the log home vdisk is allocated on a declustered
 array made up of four SSDs. Only three-way and four-way replication
 codes are supported for the log home vdisk. In the typical system
 with four SSDs and with spare space equal to the size of one disk,
 the three-way replication code would be used for the log home vdisk

 	GPFS Storage Server with
 no non-volatile RAM disks

 	In this configuration, a three-way replicated log tip vdisk is
 allocated on a declustered array made up of three SSDs. A four-way
 replicated log home vdisk is allocated in the first declustered array
 of HDDs.

 	GPFS Storage Server with
 non-volatile RAM disks

 	In this configuration, a two-way replicated log tip vdisk is allocated
 on [image: Start of change]NVRAM[image: End of change] disks, one from each of the servers.

 A log tip backup vdisk is allocated on a declustered array
 of one or more SSDs. This provides an additional copy of the log
 tip data when one of the NVRAM disks is unavailable. If only one SSD
 is used, then the log tip backup uses a raid code of Unreplicated.

 A
 four-way replicated log home vdisk is allocated in the first declustered
 array of HDDs. A four-way replicated log reserved vdisk for each of
 the data declustered arrays that do not contain the log home vdisk.

 	[image: Start of change]GPFS Storage Server with
 non-volatile RAM disks using SSDs for data [image: End of change]

 	[image: Start of change] In this configuration, a two-way replicated log tip vdisk is
 allocated on non-volatile RAM disks, one from each of the servers.
 All
 SSDs for a recovery group form a single declustered array, containing
 the log home vdisk and user data vdisks. No log tip backup disk
 is used.

 [image: End of change]

 Parent topic: Vdisks

 The relationship between vdisks and NSDs

 After creating a vdisk with the mmcrvdisk command,
 NSDs are created from the vdisks by using the mmcrnsd command.
 The relationship between vdisks and NSDs is described as follows:

 	GPFS file systems are built
 from vdisk NSDs in the same way as they are built from any other NSDs.

 	While an NSD exists for a vdisk, that vdisk cannot be deleted.

 	A node cannot serve both vdisk-based NSDs and non-vdisk-based
 NSDs.

 	A file system cannot support both vdisk-based NSDs and non-vdisk-based
 NSDs.

 	Vdisk NSDs should not be used as tiebreaker disks.

 Parent topic: Vdisks

 Vdisk states

 GPFS Native Raid reports
 vdisk states, which are displayed using the mmlsvdisk command
 and also on the mmlsrecoverygroup command
 if the -L option is used. Vdisks are normally
 in the ok state, which indicates that the
 vdisk is fully functional with full redundancy. When a pdisk failure
 affects a specific vdisk, the vdisk state will be reported as degraded
 until the affected tracks have been rebuilt onto spare space.

 When enough pdisks have failed that the specific vdisk has no redundancy
 left, the vdisk state will be reported as critical until
 the critically affected tracks have been rebuilt onto spare space.
 If the system uses up all the available spare space while a vdisk
 is in the degraded or critical state, the state will be followed by (need
 spare), which indicates that rebuild activity is stalled,
 and will resume once the failed pdisks have been replaced.

 Table 39. Vdisk states.

 	State

 	Description

 	ok

 	The vdisk is functioning normally.

 	m/n -degraded

 	The vdisk is currently running in degraded mode:

 	m

 	is the number of pdisks that are draining

 	n

 	is the fault-tolerance of the vdisk.

 	critical

 	The vdisk is currently running in degraded mode
 and can tolerate no more pdisk losses.

 	(need spare)

 	Rebuild will resume when more spare space is
 available; applies to degraded and critical states.

 Parent topic: Vdisks

 [image: Start of change]Upgrading to GNR with pdisk-group fault tolerance

 When installing GPFS Native
 RAID 4.1 on
 recovery groups that were created with a previous version of GNR, the system
 performs a rebalancing operation that is automatically aware
 of the current disk hardware grouping. The system moves to a state
 where redundancy code strips are segregated across the groups. However,
 the full features of these new placements cannot be realized until
 you upgrade all servers of the recovery group to the latest software
 levels and then run this command: mmchrecoverygroup RecoveryGroupName --version LATEST

 Running the mmchrecoverygroup command
 with the --version option allows the system
 to record new data with the system's recovery group descriptor. Once this step has been performed, you cannot revert to
 previous software levels. New fault tolerance output will be displayed
 when you run this command: mmlsrecoverygroup RecoveryGroupName -L

 After GNR with
 pdisk-group fault tolerance is installed, allow the system to complete
 its initial rebalancing operation before determining the system's
 new fault tolerance.

 Parent topic: Managing GPFS Native RAID

[image: End of change]
 [image: Start of change]Determining pdisk-group fault-tolerance

 After upgrading to GNR with pdisk-group
 fault tolerance, you can obtain a synopsis of the current layout for
 user and system data by running this command: mmlsrecoverygroup RecoveryGroupName -L

 The output of this command includes a
 synopsis for the following:

 	configuration data rebuild space

 	configuration data recovery group descriptor layout

 	configuration data system index layout

 	user data vdisk layout

 Note: The actual and maximum pdisk-group fault-tolerance
 values are point-in-time calculations based on the available disk
 space and current disk hardware configuration. These values could
 change whenever a rebuild or rebalance operation occurs.

 Here is some sample output: config data declustered array VCD spares actual rebuild spare space remarks
------------------ ------------------ ------------- --------------------------------- ----------------
rebuild space da0 2 1 enclosure limited by VCD spares

config data max disk group fault tolerance actual disk group fault tolerance remarks
------------------ --------------------------------- --------------------------------- ----------------
rg descriptor 1 enclosure + 1 pdisk 1 enclosure + 1 pdisk
system index 2 enclosure 1 enclosure limited by rebuild space

vdisk max disk group fault tolerance actual disk group fault tolerance remarks
------------------ --------------------------------- --------------------------------- ----------------
rg00log 2 enclosure 1 enclosure limited by rebuild space
rg00meta 3 enclosure 1 enclosure limited by rebuild space
rg00data 1 enclosure 1 enclosure

 This sample output from the mmlsrecoverygroup RecoveryGroupName -L command
 includes:

 	a config data section with a rebuild
 space entry, which shows the available rebuild space that
 can be used to restore redundancy of the configuration data after
 disk failure

 	a config data section with:

 	an rg descriptor entry, which shows the recovery
 group descriptor layout

 	a system index entry, which shows the system
 index layout

 	a vdisk section, which shows a set of user-defined
 vdisk layouts.

 This sample output lists the exact type of failure we would have
 survived in the actual disk group fault tolerance column: vdisk max disk group fault tolerance actual disk group fault tolerance remarks
 ------------------ --------------------------------- --------------------------------- ----------------
 .
 .
 .
 rg00data 1 enclosure 1 enclosure

 For the rg00data vdisk, the output shows
 that we could survive one enclosure failure in the actual
 disk group fault tolerance column.

 Note that for some vdisks in the sample output, there is a difference
 in maximum versus actual disk group fault tolerance: vdisk max disk group fault tolerance actual disk group fault tolerance remarks
 ------------------ --------------------------------- --------------------------------- ----------------
 .
 .
 .
 rg00meta 3 enclosure 1 enclosure limited by rebuild space

 This example indicates that even though the rg00meta vdisk
 has a layout that ensures its data is protected from three enclosure
 failures, as shown in the max disk group fault tolerance column,
 its actual disk group fault tolerance is one enclosure and it is
 being limited by rebuild space dependency. Effectively, the configuration
 data rebuild space is not sufficient and is limiting the disk group
 fault tolerance of its vdisk dependent.

 In cases where the actual disk group fault tolerance is less than
 the maximum disk group fault tolerance, it is best to examine the
 dependency change that is shown in the remarks column.
 For this example, you would examine the rebuild space entry
 under the config data section: config data declustered array VCD spares actual rebuild spare space remarks
 ------------------ ------------------ ------------- --------------------------------- ----------------
 rebuild space da0 2 1 enclosure limited by VCD spares

 This section indicates that we are being limited by the VCD spares.
 It is possible to increase the VCD spares and thus increase the actual
 rebuild spare space. If the rebuild space increases above 1 enclosure,
 it would no longer be the limiting dependency factor for the rg00meta vdisk.
 See Increasing VCD spares for
 more information.

 Note that the initial allocation during vdisk creation and subsequent
 redistribution of strips of the redundancy code in the event of failure
 or disk group changes is a dynamic operation. As such, it must work
 within the space available to it during the operation. The goals
 of this operation are always to minimize unnecessary movement, while
 at the same time balancing fault tolerance for all user and configuration
 data. Because of the vagaries of available space during initial
 allocation versus redistribution and because of the wide possible
 range of vdisk redundancy codes within the system, an initial fault
 tolerance state might not be repeatable after disk group faults and
 rebuilds occur.

 Parent topic: Managing GPFS Native RAID

[image: End of change]

 Maintenance

 Very large disk systems, with thousands or tens of thousands of
 disks and servers, will likely experience a variety of failures during
 normal operation. To maintain system productivity, the vast majority
 of these failures must be handled automatically without loss of data,
 without temporary loss of access to the data, and with minimal impact
 on the performance of the system. Some failures require human intervention,
 such as replacing failed components with spare parts or correcting
 faults that cannot be corrected by automated processes.

 	Disk diagnosis

 	Background tasks

 	Server failover

 	Data checksums

 	Disk replacement

 	Other hardware service

 Parent topic: Managing GPFS Native RAID

 Disk diagnosis

 The disk hospital was introduced in Disk hospital.

 When an individual disk I/O operation (read or write) encounters
 an error, GPFS Native
 RAID completes
 the NSD client request by reconstructing the data (for a read) or
 by marking the unwritten data as stale and relying on successfully
 written parity or replica strips (for a write), and starts the disk
 hospital to diagnose the disk. While the disk hospital is diagnosing,
 the affected disk will not be used for serving NSD client requests.

 Similarly, if an I/O operation does not complete in a reasonable
 time period, it is timed out, and the client request is treated just
 like an I/O error. Again, the disk hospital will diagnose what went
 wrong. If the timed-out operation is a disk write, the disk remains
 temporarily unusable until a pending timed-out write (PTOW)
 completes.

 The disk hospital then determines the exact nature of the problem.
 If the cause of the error was an actual media error on the disk,
 the disk hospital marks the offending area on disk as temporarily
 unusable, and overwrites it with the reconstructed data. This cures
 the media error on a typical HDD by relocating the data to spare sectors
 reserved within that HDD.

 If the disk reports that it can no longer write data, the disk
 is marked as readonly. This can happen
 when no spare sectors are available for relocating in HDDs, or the
 flash memory write endurance in SSDs was reached. Similarly, if a
 disk reports that it cannot function at all, for example not spin
 up, the disk hospital marks the disk as dead.

 The disk hospital also maintains various forms of disk badness,
 which measure accumulated errors from the disk, [image: Start of change]
 and of relative performance, which compare the performance
 of this disk to other disks in the same declustered array. [image: End of change] If
 the badness level is high, the disk can be marked dead.
 For less severe cases, the disk can be marked failing.

 Finally, the GPFS Native
 RAID server
 might lose communication with a disk. This can either be caused by
 an actual failure of an individual disk, or by a fault in the disk
 interconnect network. In this case, the disk is marked as missing. [image: Start of change] If the relative performance of the disk drops below 66%
 of the other disks for an extended period, the disk will be declared
 slow. [image: End of change]

 If a disk would have to be marked dead, missing, [image: Start of change] or readonly,[image: End of change] and the
 problem affects individual disks only (not a large set of disks),
 the disk hospital tries to recover the disk. If the disk reports that
 it is not started, the disk hospital attempts to start the disk. If nothing else helps, the disk hospital [image: Start of change]power-cycles
 the disk (assuming the JBOD hardware supports that),[image: End of change] and then
 waits for the disk to return online.

 Before actually reporting an individual disk as missing,
 the disk hospital starts a search for that disk by polling all disk
 interfaces to locate the disk. Only after that fast poll fails is
 the disk actually declared missing.

 If a large set of disks has faults, the GPFS Native
 RAID server
 can continue to serve read and write requests, provided that the number
 of failed disks does not exceed the fault tolerance of either the
 RAID code for the vdisk or the GPFS Native
 RAID [image: Start of change] vdisk [image: End of change] configuration
 data. When any disk fails, the server begins rebuilding its data onto
 spare space. If the failure is not considered critical, rebuilding
 is throttled when user workload is present. This ensures that the
 performance impact to user workload is minimal. A failure might be
 considered critical if a vdisk has no remaining redundancy information,
 for example three disk faults for 4-way replication and 8 + 3p or two
 disk faults for 3-way replication and 8 + 2p. During
 a critical failure, critical rebuilding will run as fast as possible
 because the vdisk is in imminent danger of data loss, even if that
 impacts the user workload. Because the data is declustered, or spread
 out over many disks, and all disks in the declustered array participate
 in rebuilding, a vdisk will remain in critical rebuild only for short
 periods of time ([image: Start of change]several[image: End of change] minutes for a typical
 system). A double or triple fault is extremely rare, so the performance
 impact of critical rebuild is minimized.

 In a multiple fault scenario, the server might not have enough
 disks to fulfill a request. More specifically, such a scenario occurs
 if the number of unavailable disks exceeds the fault tolerance of
 the RAID code. If some of the disks are only temporarily unavailable,
 and are expected back online soon, the server will stall the client
 I/O and wait for the disk to return to service. Disks can be temporarily
 unavailable for any of the following reasons:

 	The disk hospital is diagnosing an I/O error.

 	A timed-out write operation is pending.

 	A user intentionally suspended the
 disk, perhaps it is on a carrier with another failed disk that has
 been removed for service.

 If too many disks become unavailable for the primary server to
 proceed, it will fail over. In other words, the whole recovery group
 is moved to the backup server. If the disks are not reachable from
 the backup server either, then all vdisks in that recovery group become
 unavailable until connectivity is restored.

 A vdisk will suffer data loss when the number of permanently failed
 disks exceeds the vdisk fault tolerance. This data loss is reported
 to NSD clients when the data is accessed.

 Parent topic: Maintenance

 Background tasks

 While GPFS Native
 RAID primarily
 performs NSD client read and write operations in the foreground, it
 also performs several long-running maintenance tasks in the background,
 which are referred to as background tasks. The background task
 that is currently in progress for each declustered array is reported
 in the long-form output of the mmlsrecoverygroup command. Table 1 describes the long-running background
 tasks.

 Table 40. Background tasks

 	Task

 	Description

 	repair-RGD/VCD

 	Repairing the internal recovery group data and
 vdisk configuration data from the failed disk onto the other disks
 in the declustered array.

 	rebuild-critical

 	Rebuilding virtual tracks that cannot tolerate
 any more disk failures.

 	rebuild-1r

 	Rebuilding virtual tracks that can tolerate
 only one more disk failure.

 	rebuild-2r

 	Rebuilding virtual tracks that can tolerate
 two more disk failures.

 	rebuild-offline

 	Rebuilding virtual tracks where failures exceeded
 the fault tolerance.

 	rebalance

 	Rebalancing the spare space in the declustered
 array for either a missing pdisk that
 was discovered again, or a new pdisk that was added to an existing
 array.

 	scrub

 	Scrubbing vdisks to detect any
 silent disk corruption or latent sector errors by reading the entire
 virtual track, performing checksum verification, and performing consistency
 checks of the data and its redundancy information. Any correctable
 errors found are fixed.

 Parent topic: Maintenance

 Server failover

 If the primary GPFS Native
 RAID server
 loses connectivity to a sufficient number of disks, the recovery group
 attempts to fail over to the backup server. If the backup server
 is also unable to connect, the recovery group becomes unavailable
 until connectivity is restored. If the backup server
 had taken over, it will relinquish the recovery group to the primary
 server when it becomes available again.

 Parent topic: Maintenance

 Data checksums

 GPFS Native
 RAID stores
 checksums of the data and redundancy information on all disks for
 each vdisk. Whenever data is read from disk or received from
 an NSD client, checksums are verified. If the checksum
 verification on a data transfer to or from an NSD client fails, the
 data is retransmitted. If the checksum verification fails for data
 read from disk, the error is treated similarly to a media error:

 	The data is reconstructed from redundant data on other disks.

 	The data on disk is rewritten with reconstructed good data.

 	The disk badness is adjusted to reflect the silent read error.

 Parent topic: Maintenance

 Disk replacement

 When one disk fails, the system will rebuild the data that was
 on the failed disk onto spare space and continue to operate normally,
 but at slightly reduced performance because the same workload is shared
 among fewer disks. With the default setting of two spare disks for
 each large declustered array, failure of a single disk would typically
 not be a sufficient reason for maintenance.

 When several disks fail, the system continues to operate even if
 there is no more spare space. The next disk failure would make the
 system unable to maintain the redundancy the user requested during
 vdisk creation. At this point, a service request is sent to a maintenance
 management application that requests replacement of the failed disks
 and specifies the disk FRU numbers and locations.

 In general, disk maintenance is requested when the number of failed
 disks in a declustered array reaches the disk replacement threshold.
 By default, that threshold is identical to the number of spare disks.
 For a more conservative disk replacement policy, the threshold can
 be set to smaller values using the mmchrecoverygroup command.

 Disk maintenance is performed using the mmchcarrier command
 with the --release option, which: [image: Start of change]
 	Suspends any functioning disks on the carrier if the multi-disk
 carrier is shared with the disk that is being replaced.

 	If possible, powers down the disk to be replaced or
 all of the disks on that carrier.

 	Turns on indicators on the disk enclosure and disk or carrier
 to help locate and identify the disk that needs to be replaced.

 	If necessary, unlocks the carrier for disk replacement.

[image: End of change]
 After the disk is replaced and the carrier reinserted, another mmchcarrier command
 with the --replace option powers on the
 disks.

 Parent topic: Maintenance

 Other hardware service

 While GPFS Native
 RAID can
 easily tolerate a single disk fault with no significant impact, and
 failures of up to three disks with various levels of impact on performance
 and data availability, it still relies on the vast majority of all
 disks being functional and reachable from the server. If a major
 equipment malfunction prevents both the primary and backup server
 from accessing more than that number of disks, or if those disks are
 actually destroyed, all vdisks in the recovery group will become either
 unavailable or suffer permanent data loss. As GPFS Native
 RAID cannot
 recover from such catastrophic problems, it also does not attempt
 to diagnose them or orchestrate their maintenance.

 In the case that a GPFS Native
 RAID server
 becomes permanently disabled, a manual failover procedure exists that
 requires recabling to an alternate server (see the mmchrecoverygroup command
 in the GPFS:
 Administration and Programming Reference).
 If both the primary and backup GPFS Native
 RAID servers
 for a recovery group fail, the recovery group is unavailable until
 one of the servers is repaired.

 Parent topic: Maintenance

 Component configuration in the GPFS Storage
 Server

 The function described in this topic is only
 available with the IBM System x GPFS Storage Server.

 GPFS uses component information
 in the cluster configuration data to perform configuration and validation
 tasks. For example, when a disk needs to be replaced, the system reports
 the rack location of the enclosure containing the disk along with
 a description of the disk's slot within the enclosure.

 A component in this context refers to some resource, usually hardware,
 that is part of the GPFS cluster;
 for example, rack or storage
 enclosure. Each component has an associated component
 specification that is identified by its part number. You can use the mmlscompspec command
 to see the defined component specifications.

 You will normally configure components when deploying a cluster
 or when adding new hardware to a cluster. The cluster must exist before
 you can run any of the component-related commands. The basic configuration
 steps are as follows:

 	Add components to the configuration using mmdiscovercomp and mmaddcomp.

 	Define the location of storage enclosures and servers using mmchcomploc.

 	Set the two-digit ID visible on the back of some storage enclosures
 using mmsyncdisplayid.

 	Update the component names and other attributes using mmchcomp.

 The following commands use or change the cluster's component configuration:

 	mmaddcomp

 	Adds new components

 	mmchcomp

 	Change component attributes

 	mmchcomploc

 	Change component locations

 	mmdelcomp

 	Delete components

 	mmdiscovercomp

 	Discover components and add them to the configuration

 	mmlscomp

 	List components.

 	mmlscomploc

 	List component locations

 	mmlscompspec

 	List component specifications

 	mmsyncdisplayid

 	Synchronize enclosure display IDs with the cluster configuration

 The options that these commands support are documented in the Commands
 section of the GPFS:
 Administration and Programming Reference.
 Most commands allow you to make a single change using command-line
 arguments. They also support stanza file input for making any number
 of changes with a single command.

 	Adding components to the cluster’s configuration

 The function described in this topic is only
 available with the IBM System x GPFS Storage Server.

 	Defining component locations

 The function described in this topic is only
 available with the IBM System x GPFS Storage Server.

 	Synchronizing display IDs

 The function described in this topic is only
 available with the IBM System x GPFS Storage Server.

 	Updating component attributes

 The function described in this topic is only
 available with the IBM System x GPFS Storage Server.

 Parent topic: Managing GPFS Native RAID

 Adding components to the cluster’s configuration

 The function described in this topic is only
 available with the IBM System x GPFS Storage Server.

 Note: Sample output in this topic may not match the output produced
 on your system.

 This section discusses how to add components to the cluster's configuration.
 Before adding any components, you may want to view the available component
 specifications. To do so, you can use mmlscompspec,
 which will list the defined component specifications, identified by
 part number.

 $ mmlscompspec

 Rack Specifications

Part Number Height Description
----------- ------ --
1410HEA 42 Intelligent Cluster 42U 1200mm Deep Expansion Rack
1410HPA 42 Intelligent Cluster 42U 1200mm Deep Primary Rack

 Server Specifications

Part Number Height Description
----------- ------ -------------------
7915AC1 2 IBM System x3650 M4

 Storage Enclosure Specifications

Part Number Height Description Vendor ID Product ID Drive Slots Has Display ID
----------- ------ --------------------------- --------- ---------- ----------- --------------
181880E 4 DCS3700 Expansion Enclosure IBM DCS3700 60 1

 If this was the first component command run on the cluster, you
 will see some initialization messages before the command output. The
 list of component specifications will be short since it only includes
 supported GSS hardware.

 You can use mmdiscovercomp to define
 some of the cluster's components. This command finds supported storage
 enclosures attached to any of the cluster nodes and adds them to the
 cluster's configuration. (In your version of GPFS, mmdiscovercomp may
 find additional component types.) The output below resembles a cluster
 that includes two GSS 24 units.

 $ mmdiscovercomp all
Adding enclosure: serial number = SV12345001; vendor ID = IBM; product ID = DCS3700
Adding enclosure: serial number = SV12345007; vendor ID = IBM; product ID = DCS3700
Adding enclosure: serial number = SV12345003; vendor ID = IBM; product ID = DCS3700
Adding enclosure: serial number = SV12345005; vendor ID = IBM; product ID = DCS3700
Adding enclosure: serial number = SV12345004; vendor ID = IBM; product ID = DCS3700
Adding enclosure: serial number = SV12345002; vendor ID = IBM; product ID = DCS3700
Adding enclosure: serial number = SV12345008; vendor ID = IBM; product ID = DCS3700
Adding enclosure: serial number = SV12345006; vendor ID = IBM; product ID = DCS3700

Storage Enclosures

Status Comp ID Component Type Part Number Serial Number Name Display ID
------ ------- ---------------- ----------- ------------- ------------------ ----------
new 1 storageEnclosure 181880E SV12345001 181880E-SV12345001 00
new 2 storageEnclosure 181880E SV12345007 181880E-SV12345007 00
new 3 storageEnclosure 181880E SV12345003 181880E-SV12345003 00
new 4 storageEnclosure 181880E SV12345005 181880E-SV12345005 00
new 5 storageEnclosure 181880E SV12345004 181880E-SV12345004 00
new 6 storageEnclosure 181880E SV12345002 181880E-SV12345002 00
new 7 storageEnclosure 181880E SV12345008 181880E-SV12345008 00
new 8 storageEnclosure 181880E SV12345006 181880E-SV12345006 00

 In this example, mmdiscovercomp found
 eight storage enclosures that were not already in the cluster configuration.
 Notice that each component gets a default name. Below we will discuss
 how you can change the name to some identifier that is more suitable
 for your environment. You may run mmdiscovercomp a
 second time, in which case it should not find any new components.

 Note: The serial numbers used by GPFS to
 identify 181880E storage enclosures do not match the product serial
 numbers shown on the outside of the enclosure. You may want to record
 this visible serial number as part of the enclosure's name. For instance,
 you could rename an enclosure to G1E3-SX98760044,
 which would stand for GSS 1 (G1), enclosure 3 (E3), with product
 serial number SX98760044. For details about how to change the name
 of a component using the mmchcomp command,
 see Updating component attributes.

 The other essential components are racks to hold the storage enclosures.
 Use the mmlscompspec command to see the
 available rack part numbers, then use the mmaddcomp command
 to define the racks. This example shows defining an "Intelligent Cluster 42U 1200mm
 Deep Primary Rack" and giving it the name R01C01.

 $ mmaddcomp 1410HPA --name R01C01
$ mmlscomp

 Rack Components

Comp ID Part Number Serial Number Name
------- ----------- ------------- ------
 9 1410HPA R01C01

 Storage Enclosure Components

Comp ID Part Number Serial Number Name Display ID
------- ----------- ------------- ------------------ ----------
 1 181880E SV12345001 181880E-SV12345001
 2 181880E SV12345007 181880E-SV12345007
 3 181880E SV12345003 181880E-SV12345003
 4 181880E SV12345005 181880E-SV12345005
 5 181880E SV12345004 181880E-SV12345004
 6 181880E SV12345002 181880E-SV12345002
 7 181880E SV12345008 181880E-SV12345008
 8 181880E SV12345006 181880E-SV12345006

 Parent topic: Component configuration in the GPFS Storage Server

 Defining component locations

 The function described in this topic is only
 available with the IBM System x GPFS Storage Server.

 Note: Sample output in this topic may not match the output produced
 on your system.

 You use the mmchcomploc command to place
 a component in a rack or change its location. This example puts the
 storage enclosure SV12345003 in rack R01C01 at U location 13.

 $ mmchcomploc SV12345003 R01C01 13
$ mmlscomploc
Component Location
------------------ ------------------
181880E-SV12345003 Rack R01C01 U13-16

 The first argument, which identifies the component, can be either
 the component ID, serial number, or name. The second argument is the
 rack (container) and the third argument is the U position in the rack.

 Changing one component at a time can be slow because each change
 is propagated to all nodes in the cluster. You may want to use a stanza
 file to make multiple changes with a single command. The following
 example uses a stanza file to position the remaining enclosures:

 $ cat comploc.stanza
%compLoc: compId=SV12345007 containerId=R01C01 position=1
%compLoc: compId=SV12345005 containerId=R01C01 position=5
%compLoc: compId=SV12345003 containerId=R01C01 position=13
%compLoc: compId=SV12345008 containerId=R01C01 position=17
%compLoc: compId=SV12345001 containerId=R01C01 position=21
%compLoc: compId=SV12345002 containerId=R01C01 position=25
%compLoc: compId=SV12345006 containerId=R01C01 position=33
%compLoc: compId=SV12345004 containerId=R01C01 position=37

$ mmchcomploc -F comploc.stanza
$ mmlscomploc
Component Location
------------------ ------------------
181880E-SV12345007 Rack R01C01 U01-04
181880E-SV12345005 Rack R01C01 U05-08
181880E-SV12345003 Rack R01C01 U13-16
181880E-SV12345008 Rack R01C01 U17-20
181880E-SV12345001 Rack R01C01 U21-24
181880E-SV12345002 Rack R01C01 U25-28
181880E-SV12345006 Rack R01C01 U33-36
181880E-SV12345004 Rack R01C01 U37-40

 Parent topic: Component configuration in the GPFS Storage Server

 Synchronizing display IDs

 The function described in this topic is only
 available with the IBM System x GPFS Storage Server.

 Note: Sample output in this topic may not match the output produced
 on your system.

 The GSS disk enclosures have a two-digit display on their ESMs.
 This display is visible from the back of the enclosure. When configured
 correctly, the two-digit display will be the same as the U location
 of the enclosure within its rack. mmsyncdisplayid sets
 the display on the ESMs to match the locations of the enclosure as
 defined by the component configuration. Here is an example:

 $ mmsyncdisplayid all
$ mmlscomp --type storageenclosure

 Storage Enclosure Components

Comp ID Part Number Serial Number Name Display ID
------- ----------- ------------- ------------------ ----------
 1 181880E SV12345001 181880E-SV12345001 21
 2 181880E SV12345007 181880E-SV12345007 01
 3 181880E SV12345003 181880E-SV12345003 13
 4 181880E SV12345005 181880E-SV12345005 05
 5 181880E SV12345004 181880E-SV12345004 37
 6 181880E SV12345002 181880E-SV12345002 25
 7 181880E SV12345008 181880E-SV12345008 17
 8 181880E SV12345006 181880E-SV12345006 33

 With the display ID set on the actual hardware, you should now
 verify that the locations defined in the cluster's configuration actually
 match the enclosure's position in its rack. If you find that the enclosures
 are not numbered 01, 05, 13, … starting from the bottom of the
 rack, then use the mmchcomploc command to
 correct the configuration. Then rerun mmsyncdisplayid and
 recheck the hardware.

 Parent topic: Component configuration in the GPFS Storage Server

 Updating component attributes

 The function described in this topic is only
 available with the IBM System x GPFS Storage Server.

 Note: Sample output in this topic may not match the output produced
 on your system.

 You can change some component attributes such as the name or serial
 number. This example updates the name of the third enclosure so that
 it includes the product serial number as recommended:

 $ mmchcomp 3 --name G1E3-SX98760044
$ mmlscomp --type storageenclosure

 Storage Enclosure Components

Comp ID Part Number Serial Number Name Display ID
------- ----------- ------------- ------------------ ----------
 1 181880E SV12345001 181880E-SV12345001 21
 2 181880E SV12345007 181880E-SV12345007 01
 3 181880E SV12345003 G1E3-SX98760044 13
 4 181880E SV12345005 181880E-SV12345005 05
 5 181880E SV12345004 181880E-SV12345004 37
 6 181880E SV12345002 181880E-SV12345002 25
 7 181880E SV12345008 181880E-SV12345008 17
 8 181880E SV12345006 181880E-SV12345006 33

 The mmchcomp Component argument
 may be either the component ID, the component serial number, or the
 component name. This example uses the component ID (the value 3).

 Changing one component at a time can be slow, so you can use a
 stanza file to make multiple changes with a single command. As an
 aid, mmlscomp can list components in stanza
 format. You can capture this output into a file, edit the file to
 make the desired updates, then use the stanza file as input to mmchcomp.
 The following example uses this procedure to rename the remaining
 enclosures:

 $ mmlscomp --format stanza > rename.stanza
$ cat rename.stanza
%comp:
 compId=9
 compType=rack
 partNumber=1410HEA

%comp:
 compId=1
 compType=storageEnclosure
 displayId=21
 name='181880E-SV12345001'
 partNumber=181880E
 serialNumber=SV12345001

%comp:
 compId=2
 compType=storageEnclosure
 displayId=1
 name='181880E-SV12345007'
 partNumber=181880E
 serialNumber=SV12345007

%comp:
 compId=3
 compType=storageEnclosure
 displayId=13
 name='G1E3-SX98760044'
 partNumber=181880E
 serialNumber=SV12345003

...

 Edit rename.stanza to define new enclosure
 names, then apply the changes using mmchcomp.

 $ vi rename.stanza
$ cat rename.stanza
%comp:
 compId=9
 compType=rack
 name=R01C01
 partNumber=1410HEA

%comp:
 compId=1
 compType=storageEnclosure
 displayId=21
 name='G1E5-SX98760048'
 partNumber=181880E
 serialNumber=SV12345001

%comp:
 compId=2
 compType=storageEnclosure
 displayId=1
 name='G1E1-SX98760044'
 partNumber=181880E
 serialNumber=SV12345007

%comp:
 compId=3
 compType=storageEnclosure
 displayId=13
 name='G1E3-SX98760041'
 partNumber=181880E
 serialNumber=SV12345003

...

$ mmchcomp -F comp.stanza
$ mmlscomp --sort name

 Rack Components

Comp ID Part Number Serial Number Name
------- ----------- ------------- ------
 9 1410HEA R01C01

 Storage Enclosure Components

Comp ID Part Number Serial Number Name Display ID
------- ----------- ------------- ------------------ ----------
 2 181880E SV12345007 G1E1-SX98760044 01
 4 181880E SV12345005 G1E2-SX98760049 05
 3 181880E SV12345003 G1E3-SX98760041 13
 7 181880E SV12345008 G1E4-SX98760036 17
 1 181880E SV12345001 G1E5-SX98760048 21
 6 181880E SV12345002 G1E6-SX98760050 25
 8 181880E SV12345006 G1E7-SX98760039 33
 5 181880E SV12345004 G1E8-SX98760052 37

 Parent topic: Component configuration in the GPFS Storage Server

 Overall management of GPFS Native
 RAID

 This section summarizes how to plan and monitor
 a GPFS Native
 RAID system.
 For an example of setting up a GPFS Native
 RAID system,
 see GPFS Native RAID setup and disk replacement on the IBM Power 775 Disk Enclosure.

 	Planning considerations for GPFS Native RAID

 	Monitoring GPFS Native RAID

 	GPFS Native RAID callbacks

 	GNR events in syslog

 Parent topic: Managing GPFS Native RAID

 Planning considerations for GPFS Native
 RAID

 Planning a GPFS Native
 RAID implementation
 requires consideration of the nature of the JBOD arrays being used,
 the required redundancy protection and usable disk capacity, the required
 spare capacity and maintenance strategy, and the ultimate GPFS file system configuration. This section
 is a set of best-practice recommendations for using GPFS Native
 RAID.

 	Assign a primary and backup server to each recovery group.
 Each
 JBOD array should be connected to two servers to protect against server
 failure. Each server should also have two independent paths to each
 physical disk to protect against path failure and provide higher throughput
 to the individual disks.

 Define multiple recovery groups on
 a JBOD array, if the architecture suggests it, and use mutually reinforcing
 primary and backup servers to spread the processing evenly across
 the servers and the JBOD array.

 Recovery group server nodes
 can be designated GPFS quorum
 or manager nodes, but they should otherwise be dedicated to GPFS Native
 RAID and not
 run application workload.

 	Configure recovery group servers with a large vdisk track cache
 and a large pagepool.
 The nsdRAIDTracks configuration
 parameter tells GPFS Native
 RAID how
 many vdisk track descriptors, not including the actual track data,
 to cache in memory.

 In general, a large number of vdisk track
 descriptors should be cached. The nsdRAIDTracks value
 for the recovery group servers should be 10000 - 60000. If the expected
 vdisk NSD access pattern is random across all defined vdisks and within
 individual vdisks, a larger value for nsdRAIDTracks might
 be warranted. If the expected access pattern is sequential, a smaller
 value can be sufficient.

 The amount of actual vdisk data (including
 user data, parity, and checksums) that can be cached depends on the
 size of the GPFS pagepool on
 the recovery group servers and the percentage of pagepool reserved
 for GPFS Native
 RAID.
 The nsdRAIDBufferPoolSizePct parameter specifies
 what percentage of the pagepool should be used for vdisk data. The
 default is 50%, but it can be set as high as 90% or as low as 10%.
 Because a recovery group server is also an NSD server and the vdisk
 buffer pool also acts as the NSD buffer pool, the configuration parameter nsdBufSpace should
 be reduced to its minimum value of 10%.

 As an example, to have
 a recovery group server cache 20000 vdisk track descriptors (nsdRAIDTracks),
 where the data size of each track is 4 MiB, using 80% (nsdRAIDBufferPoolSizePct)
 of the pagepool, an approximate pagepool size of 20000 * 4 MiB * (100/80) ≈
 100000 MiB ≈ 98 GiB would be required. It is not necessary
 to configure the pagepool to cache all the data for every cached vdisk
 track descriptor, but this example calculation can provide some guidance
 in determining appropriate values for nsdRAIDTracks and nsdRAIDBufferPoolSizePct.

 	Define each recovery group with at least one large declustered
 array.
 A large declustered array contains enough pdisks to store
 the required redundancy of GPFS Native
 RAID vdisk configuration
 data. This is defined as at least nine pdisks plus the effective spare
 capacity. A minimum spare capacity equivalent to two pdisks is strongly
 recommended in each large declustered array. The code width of the
 vdisks must also be considered. The effective number of non-spare
 pdisks must be at least as great as the largest vdisk code width.
 A declustered array with two effective spares where 11 is the largest
 code width (8 + 3p Reed-Solomon
 vdisks) must contain at least 13 pdisks. A declustered array with
 two effective spares where 10 is the largest code width (8 + 2p Reed-Solomon
 vdisks) must contain at least 12 pdisks.

 	[image: Start of change]Define the log vdisks based on the type of configuration.
 See
 "Typical configurations" under Log vdisks
 and GPFS Native RAID setup and maintenance on the IBM System x GPFS Storage Server (GSS) for log
 vdisk considerations.

 [image: End of change]

 	Determine the declustered array maintenance strategy.
 Disks
 will fail and need replacement, so a general strategy of deferred
 maintenance can be used. For example, failed pdisks in a declustered
 array are only replaced when the spare capacity of the declustered
 array is exhausted. This is implemented with the replacement threshold
 for the declustered array set equal to the effective spare capacity.
 This strategy is useful in installations with a large number of recovery
 groups where disk replacement might be scheduled on a weekly basis.
 Smaller installations can have GPFS Native
 RAID require
 disk replacement as disks fail, which means the declustered array
 replacement threshold can be set to one.

 	Choose the vdisk RAID codes based on GPFS file
 system usage.
 The choice of vdisk RAID codes depends on the level
 of redundancy protection required versus the amount of actual space
 required for user data, and the ultimate intended use of the vdisk
 NSDs in a GPFS file system.

 Reed-Solomon
 vdisks are more space efficient. An 8 + 3p vdisk uses
 approximately 27% of actual disk space for redundancy protection and
 73% for user data. An 8 + 2p vdisk uses
 20% for redundancy and 80% for user data. Reed-Solomon vdisks perform
 best when writing whole tracks (the GPFS block
 size) at once. When partial tracks of a Reed-Solomon vdisk are written,
 parity recalculation must occur.

 Replicated vdisks are less
 space efficient. A vdisk with 3-way replication uses approximately
 67% of actual disk space for redundancy protection and 33% for user
 data. A vdisk with 4-way replication uses 75% of actual disk space
 for redundancy and 25% for user data. The advantage of vdisks with N-way
 replication is that small or partial write operations can complete
 faster.

 For file system applications where write performance
 must be optimized, the preceding considerations make replicated vdisks
 most suitable for use as GPFS file
 system metadataOnly NSDs, and Reed-Solomon
 vdisks most suitable for use as GPFS file
 system dataOnly NSDs. The volume of GPFS file system metadata is usually
 small (1% - 3%) relative to file system data, so the impact of the
 space inefficiency of a replicated RAID code is minimized. The file
 system metadata is typically written in small chunks, which takes
 advantage of the faster small and partial write operations of the
 replicated RAID code. Applications are often tuned to write file system
 user data in whole multiples of the file system block size, which
 works to the strengths of the Reed-Solomon RAID codes both in terms
 of space efficiency and speed.

 When segregating vdisk NSDs for
 file system metadataOnly and dataOnly disk
 usage, the metadataOnly replicated vdisks
 can be created with a smaller block size and assigned to the GPFS file system storage pool. The dataOnly Reed-Solomon
 vdisks can be created with a larger block size and assigned to GPFS file system data storage pools.
 When using multiple storage pools, a GPFS placement
 policy must be installed to direct file system data to non-system
 storage pools.

 When write performance optimization is not important,
 it is acceptable to use Reed-Solomon vdisks as dataAndMetadata NSDs
 for better space efficiency.

 When assigning the failure groups
 to vdisk NSDs in a GPFS file
 system, the JBOD array should be considered the common point of failure.
 All vdisks within all recovery groups in a given JBOD array should
 be assigned the same failure group number.

 Parent topic: Overall management of GPFS Native RAID

 Monitoring GPFS Native
 RAID

 To monitor GPFS Native
 RAID during
 normal operation, use the mmlsrecoverygroup, mmlspdisk,
 and mmpmon commands. Pay particular attention
 to the GPFS Native
 RAID event
 log, which is visible using the mmlsrecoverygroupevents command.

 Consider using GPFS Native
 RAID user exits
 to notify an automated system management tool if critical events,
 such as disk failures, occur during normal operation. For more information,
 see the mmaddcallback command in the GPFS:
 Administration and Programming Reference.

 If disk maintenance is indicated, use the mmchcarrier command
 to release the failed disk, replace the failed drive, and use the mmchcarrier command
 again to inform GPFS Native
 RAID that
 the failed disk has been replaced.

 For information about using the mmpmon command
 to display vdisk I/O statistics, see Displaying vdisk I/O statistics.

 Parent topic: Overall management of GPFS Native RAID

 GPFS Native
 RAID callbacks

 GPFS Native
 RAID introduces
 12 new GPFS callbacks for events
 that can occur during recovery group operations. These callbacks can
 be installed by the system administrator using the mmaddcallback command.

 The callbacks are provided primarily as a method for system administrators
 to take notice when important GPFS Native
 RAID events
 occur. For example, a GPFS administrator
 can use the pdReplacePdisk callback to send
 an e-mail to notify system operators that the replacement threshold
 for a declustered array was reached and that pdisks must be replaced.
 Similarly, the preRGTakeover callback can
 be used to inform system administrators of a possible server failover.

 As notification methods, no real processing should occur in the
 callback scripts. GPFS Native
 RAID callbacks
 should not be installed for synchronous execution; the default of
 asynchronous callback execution should be used in all cases. Synchronous
 or complicated processing within a callback might delay GPFS daemon execution pathways and cause unexpected
 and undesired results, including loss of file system availability.

 Table 1 lists the callbacks
 and their corresponding parameters available through the mmaddcallback command:

 Table 41. GPFS Native
 RAID callbacks
 and parameters

 	Callbacks

 	Parameters

 	preRGTakeover

 	myNode, rgName, rgErr, rgCount, rgReason

 	postRGTakeover

 	myNode, rgName, rgErr, rgCount, rgReason

 	preRGRelinquish

 	myNode, rgName, rgErr, rgCount, rgReason

 	postRGRelinquish

 	myNode, rgName, rgErr, rgCount, rgReason

 	rgOpenFailed

 	myNode, rgName, rgErr, rgReason

 	rgPanic

 	myNode, rgName, rgErr, rgReason

 	pdFailed

 	myNode, rgName, daName, pdName, pdLocation, pdFru, pdWwn, pdState

 	pdRecovered

 	myNode, rgName, daName, pdName, pdLocation, pdFru, pdWwn

 	pdReplacePdisk

 	myNode, rgName, daName, pdName, pdLocation, pdFru, pdWwn, pdState, pdPriority

 	pdPathDown

 	myNode, rgName, daName, pdName, pdPath, pdLocation, pdFru, pdWwn

 	daRebuildFailed

 	myNode, rgName, daName, daRemainingRedundancy

 	nsdCksumMismatch

 	myNode, ckRole, ckOtherNode, ckNSD, ckReason, ckStartSector, ckDataLen, ckErrorCountClient, ckErrorCountServer, ckErrorCountNSD, ckReportingInterval

 All GPFS Native
 RAID callbacks
 are local, which means that the event triggering the callback occurs
 only on the involved node or nodes, in the case of nsdCksumMismatch,
 rather than on every node in the GPFS cluster.
 The nodes where GPFS Native
 RAID callbacks
 should be installed are, by definition, the recovery group server
 nodes. An exception is the case of nsdCksumMismatch,
 where it makes sense to install the callback on GPFS client nodes as well as recovery group
 servers.

 [image: Start of change] A sample callback script, /usr/lpp/mmfs/samples/gnrcallback.sh,
 is available to demonstrate how callbacks can be used to log events
 or email an administrator when GNR events occur. [image: End of change]

 [image: Start of change] Logged events would look something like: Fri Feb 28 10:22:17 EST 2014: mmfsd: [W] event=pdFailed node=c45f01n01-ib0.gpfs.net rgName=BB1RGL daName=DA1 pdName=e4d5s03 pdLocation=SV13306129-5-3 pdFru=46W6911 pdWwn=naa.
5000C50055D4D437 pdState=dead/systemDrain
Fri Feb 28 10:22:39 EST 2014: mmfsd: [I] event=pdRecovered node=c45f01n01-ib0.gpfs.net rgName=BB1RGL daName=DA1 pdName=e4d5s03 pdLocation=SV13306129-5-3 pdFru=46W6911 pdWwn=n
aa.5000C50055D4D437 pdState=UNDEFINED
Fri Feb 28 10:23:59 EST 2014: mmfsd: [E] event=rgPanic node=c45f01n01-ib0.gpfs.net rgName=BB1RGL rgErr=756 rgReason=missing_pdisk_causes_unavailability
Fri Feb 28 10:24:00 EST 2014: mmfsd: [I] event=postRGRelinquish node=c45f01n01-ib0.gpfs.net rgName=BB1RGL rgErr=0 rgReason=unable_to_continue_serving
Fri Feb 28 10:24:00 EST 2014: mmfsd: [I] event=postRGRelinquish node=c45f01n01-ib0.gpfs.net rgName=_ALL_ rgErr=0 rgReason=unable_to_continue_serving
Fri Feb 28 10:35:06 EST 2014: mmfsd: [I] event=postRGTakeover node=c45f01n01-ib0.gpfs.net rgName=BB1RGL rgErr=0 rgReason=retry_takeover
Fri Feb 28 10:35:06 EST 2014: mmfsd: [I] event=postRGTakeover node=c45f01n01-ib0.gpfs.net rgName=_ALL_ rgErr=0 rgReason=none

 An email notification would look something like: > mail
Heirloom Mail version 12.4 7/29/08. Type ? for help.
"/var/spool/mail/root": 7 messages 7 new
>N 1 root Fri Feb 28 10:22 18/817 "[W] pdFailed"
 N 2 root Fri Feb 28 10:22 18/816 "[I] pdRecovered"
 N 3 root Fri Feb 28 10:23 18/752 "[E] rgPanic"
 N 4 root Fri Feb 28 10:24 18/759 "[I] postRGRelinquish"
 N 5 root Fri Feb 28 10:24 18/758 "[I] postRGRelinquish"
 N 6 root Fri Feb 28 10:35 18/743 "[I] postRGTakeover"
 N 7 root Fri Feb 28 10:35 18/732 "[I} postRGTakeover"

From root@c45f01n01.localdomain Wed Mar 5 12:27:04 2014
Return-Path: <root@c45f01n01.localdomain>
X-Original-To: root
Delivered-To: root@c45f01n01.localdomain
Date: Wed, 05 Mar 2014 12:27:04 -0500
To: root@c45f01n01.localdomain
Subject: [W] pdFailed
User-Agent: Heirloom mailx 12.4 7/29/08
Content-Type: text/plain; charset=us-ascii
From: root@c45f01n01.localdomain (root)
Status: R

Wed Mar 5 12:27:04 EST 2014: mmfsd: [W] event=pdFailed node=c45f01n01-ib0.gpfs.net rgName=BB1RGL daName=DA1 pdName=e4d5s03
pdLocation=SV13306129-5-3 pdFru=46W6911 pdWwn=naa.50 00C50055D4D437 pdState=dead/systemDrain

 [image: End of change]

 For more information about GPFS Native
 RAID callbacks,
 see the GPFS:
 Administration and Programming Reference
 topic "mmaddcallback command".

 Parent topic: Overall management of GPFS Native RAID

 [image: Start of change]GNR events
 in syslog

 If the linux syslog facility is enabled,
 GPFS Native
 RAID will
 log GNR events
 to the syslog. This can be controlled using the GPFS Native
 RAID systemLogLevel configuration
 variable. By default, all informational messages and higher-level
 error messages are logged.

 Log events would look something like this: Feb 27 15:43:20 c45f01n01 mmfsd: Error=MMFS_PDISK_FAILED, ID=0x157E5F74, Tag=1024872: Pdisk Failed: Location=SV13306129-5-3, FRU=46W6911, WWID=5000c50055d4d437, RecoveryGrou
p=BB1RGL, DeclusteredArray=DA1, Pdisk=e4d5s03, PdiskState=dead/systemDrain
Feb 27 15:48:10 c45f01n01 mmfsd: Error=MMFS_PDISK_RECOVERED, ID=0x5DCF6F0A, Tag=1024873: Pdisk Recovered: Location=SV13306129-5-3, FRU=46W6911, WWID=5000c50055d4d437, Recove
ryGroup=BB1RGL, DeclusteredArray=DA1, Pdisk=e4d5s03

 Parent topic: Overall management of GPFS Native RAID

[image: End of change]

 GPFS Native
 RAID setup
 and disk replacement on the IBM Power 775
 Disk Enclosure

 	Example scenario: Configuring GPFS Native RAID recovery groups

 This topic provides a detailed example of
 configuring GPFS Native
 RAID using
 the JBOD SAS disks on the Power 775
 Disk Enclosure. The
 example considers one fully populated Power 775
 Disk Enclosure cabled
 to two recovery group servers, and shows how the architecture of the Power 775
 Disk Enclosure determines
 the structure of the recovery groups. Throughout this topic, it may
 be helpful to have Power 775
 Disk Enclosure documentation
 at hand.

 	Example scenario: Replacing failed disks in a Power 775 Disk Enclosure recovery group

 The scenario presented here shows how to detect and replace
 failed disks in a recovery group built on a Power 775
 Disk Enclosure.

 Parent topic: GPFS Native RAID (GNR)

 Example scenario: Configuring GPFS Native
 RAID recovery
 groups

 This topic provides a detailed example of
 configuring GPFS Native
 RAID using
 the JBOD SAS disks on the Power 775
 Disk Enclosure. The
 example considers one fully populated Power 775
 Disk Enclosure cabled
 to two recovery group servers, and shows how the architecture of the Power 775
 Disk Enclosure determines
 the structure of the recovery groups. Throughout this topic, it may
 be helpful to have Power 775
 Disk Enclosure documentation
 at hand.

 	Preparing recovery group servers

 	Creating recovery groups on a Power 775 Disk Enclosure

 Parent topic: GPFS Native RAID setup and disk replacement on the IBM Power 775 Disk Enclosure

 Preparing recovery group servers

 Disk enclosure and HBA cabling

 The Power 775
 Disk Enclosure should be
 cabled to the intended recovery group servers according to the Power 775
 Disk Enclosure hardware
 installation instructions. The fully populated Power 775
 Disk Enclosure consists
 of 8 STORs of 48 disks, for a total of 384 JBOD disks. Each STOR provides
 redundant left and right port cards for host server HBA connections
 (STOR is short for physical storage group, meaning the part
 of the disk enclosure controlled by a pair of port cards). To ensure
 proper multi-pathing and redundancy, each recovery group server must
 be connected to each port card using different HBAs. For example,
 STOR 1 has port cards P1-C4 and P1-C5. Server 1 may be connected to
 P1-C4 using HBA hba1 and to P1-C5 using HBA hba2;
 similarly for server 2 and its respective HBAs hba1 and hba2.

 GPFS Native
 RAID provides
 system administration tools for verifying the correct connectivity
 of the Power 775
 Disk Enclosure,
 which will be seen later during the operating system preparation.

 When
 the port cards of the Power 775
 Disk Enclosure have been
 cabled to the appropriate HBAs of the two recovery group servers,
 the Power 775
 Disk Enclosure should
 be powered on and the recovery group servers should be rebooted.

 Initial operating system verification

 Preparation
 then continues with the operating system, which must be either AIX 7.1 or Red Hat Enterprise Linux 6.1, and which must be
 the
 same on both recovery group servers. It is not necessary to do a complete
 verification of the Power 775
 Disk Enclosure connectivity
 at this point. Logging in to the servers to perform a quick check
 that at least some disks have been detected and configured by the
 operating system will suffice. The operating system device configuration
 should be examined for the Power 775
 Disk Enclosure VPD enclosure
 type, which is 78AD.001.

 One way to quickly verify that AIX has configured devices with
 enclosure type 78AD.001 for the Power 775
 Disk Enclosure is:

 # lsdev -t ses -F 'name physloc parent' | grep 78AD.001

 The
 output should include lines resembling the following:

 ses12 U78AD.001.000DE37-P1-C4 sas3

 This
 is the SAS expander device on port card P1-C4 of the Power 775
 Disk Enclosure with serial
 number 000DE37, together with the SAS protocol device driver sas3 under
 which it has been configured. To see what disks have been detected
 by the SAS protocol driver, use:

 # lsdev -p sas3

 The output should include all the disks and port
 card expanders that successfully configured under the sas3 SAS
 protocol driver (which corresponds to the HBA device mpt2sas3).

 If AIX has not configured any port
 card expanders of enclosure type 78AD.001, the hardware installation
 of the server HBAs and the Power 775
 Disk Enclosure must be
 reexamined and corrected.

 One way to quickly verify that Red
 Hat Enterprise Linux has configured
 devices with enclosure type 78AD.001 for the Power 775
 Disk Enclosure is:

 # grep 78AD.001 /proc/scsi/scsi

 The output should include lines resembling the
 following:

 Vendor: IBM Model: 78AD-001 Rev: 0150

Further examination of the /proc/scsi/scsi file should reveal contents similar to:
Host: scsi7 Channel: 00 Id: 394 Lun: 00
 Vendor: IBM Model: ST9600204SS Rev: 631C
 Type: Direct-Access ANSI SCSI revision: 06
Host: scsi7 Channel: 00 Id: 395 Lun: 00
 Vendor: IBM Model: 78AD-001 Rev: 0150
 Type: Enclosure ANSI SCSI revision: 04

 The above indicates that a Power 775
 Disk Enclosure port card
 SAS expander and a disk drive have been configured on SCSI host bus
 7 (the HBA corresponding to scsi7).

 As
 with AIX, if Linux has not configured any port card expanders
 of enclosure type 78AD.001, the hardware installation of the server
 HBAs and the Power 775
 Disk Enclosure must
 be reexamined and corrected.

 Disabling operating system multi-pathing

 Once
 it has been verified that at least some of the Power 775
 Disk Enclosure has been
 configured by the operating system, the next step is to disable any
 operating system multi-pathing. Since GPFS Native
 RAID performs
 its own disk multi-pathing, AIX MPIO
 (Multiple Path I/O) and Linux DMM
 (Device Mapper Multipath) must be disabled as appropriate.

 To
 disable AIX MPIO for SAS disks,
 use:

 # manage_disk_drivers -d SAS_SCSD -o AIX_non_MPIO

 To disable Linux DMM,
 use:

 # chkconfig --del multipathd

 Note: This blanket disabling of operating system
 multi-pathing is appropriate because a Power 775
 Disk Enclosure installation
 provides the only available disk devices to the recovery group servers.
 Once operating system multi-pathing has been disabled, the recovery
 group servers should be rebooted.

 Operating system device attributes

 For
 best performance, the operating system disk device driver should be
 configured to allow GPFS Native
 RAID I/O operations
 to be made with one disk access, rather than being fragmented. Under AIX this is controlled by the max_transfer attribute
 of the HBAs and disk devices. Under Red Hat Enterprise Linux, this is controlled by the disk block
 device max_sectors_kb attribute.

 The
 disk I/O size performed by GPFS Native
 RAID depends
 on the strip size of the RAID code of the vdisk NSD. This in turn
 is related to the vdisk track size and its corresponding GPFS file system block size. The operating system
 I/O size should be equal to or greater than the largest strip size
 of the planned vdisk NSDs.

 Because GPFS Native
 RAID stores
 checksums with each strip, strips have an additional 4 KiB or 8 KiB
 than might be expected just from the user data (strips containing
 2 MiB of user data have an additional 8 KiB; all smaller strips have
 an additional 4 KiB). The strip size for a replicated vdisk RAID code
 is equal to the vdisk track size plus the size of the checksum. The
 strip size for a Reed-Solomon vdisk RAID code is equal to one-eighth
 of the vdisk track size plus the size of the checksum.

 The
 default max_transfer value of 1 MiB under AIX is suitable for GPFS Native
 RAID vdisk strip
 sizes under 1 MiB.

 The default max_sectors_kb value
 of 512 KiB sectors under Red Hat Enterprise Linux is suitable for GPFS Native
 RAID vdisk strip
 sizes under 512 KiB.

 However, for vdisk strip sizes greater
 than 1 MiB under AIX or greater
 than 512 KiB under Linux, the
 operating system disk device driver I/O size should be increased for
 best performance.

 The following table indicates the relationship
 between file system NSD block size, vdisk track size, vdisk RAID code,
 vdisk strip size, and the non-default operating system I/O size for
 all permitted GPFS Native
 RAID vdisks.
 The AIX max_transfer attribute
 is specified in hexadecimal, and the only allowable values greater
 than the 1 MiB default are 0x200000 (2 MiB) and 0x400000 (4 MiB). Linux max_sectors_kb is
 specified as the desired I/O size in KiB.

 NSD block size, vdisk track size, vdisk RAID code, vdisk strip
 size, and non-default operating system I/O size for permitted GPFS Native
 RAID vdisks

 	NSD block size

 	vdisk track size

 	vdisk RAID code

 	RAID code strip size

 	AIX max_transfer

 	Linux max_sectors_kb

 	256 KiB

 	256 KiB

 	 3- or 4-way replication

 	260 KiB

 	default

 	260

 	512 KiB

 	512 KiB

 	3- or 4-way replication

 	516 KiB

 	default

 	516

 	1 MiB

 	1 MiB

 	3- or 4-way replication

 	1028 KiB

 	0x200000

 	1028

 	2 MiB

 	2 MiB

 	3- or 4-way replication

 	2056 KiB

 	0x400000

 	2056

 	512 KiB

 	512 KiB

 	8 + 2p or 8 + 3p

 	68 KiB

 	default

 	default

 	1 MiB

 	1 MiB

 	8 + 2p or 8 + 3p

 	132 KiB

 	default

 	default

 	2 MiB

 	2 MiB

 	8 + 2p or 8 + 3p

 	260 KiB

 	default

 	260

 	4 MiB

 	4 MiB

 	8 + 2p or 8 + 3p

 	516 KiB

 	default

 	516

 	8 MiB

 	8 MiB

 	8 + 2p or 8 + 3p

 	1028 KiB

 	0x200000

 	1028

 	16 MiB

 	16 MiB

 	8 + 2p or 8 + 3p

 	2056 KiB

 	0x400000

 	2056

 If the largest strip size of all the vdisk NSDs planned
 for a GPFS Native
 RAID installation
 exceeds the operating system default I/O size, the operating system
 I/O size should be changed.

 	AIX

 	Under AIX, this involves
 changing the HBA and disk device max_transfer size.
 For an HBA to accommodate an increased max_transfer size,
 the max_commands for the HBA will also need
 to be decreased. With a 0x400000 max_transfer size,
 the four-port HBA requires a max_commands value
 of 124 and the two-port HBA requires a max_commands value
 of 248.
 To change the max_transfer attribute
 to 4 MiB for the HBA mpt2sas0 under AIX, use the following command:

 # chdev -P -l mpt2sas0 -a max_transfer=0x400000

 To
 change the max_commands value to 124 for
 the four-port HBA mpt2sas0 (AIX device type 001072001410f60), use the following
 command:

 # chdev -P -l mpt2sas0 -a max_commands=124

 To
 change the max_commands value to 248 for
 the two-port HBA mpt2sas0 (AIX device type 001072001410ea0), use the following
 command:

 # chdev -P -l mpt2sas0 -a max_commands=248

 Repeat
 the previous commands for each HBA.

 Changing the hdisk max_transfer attribute
 requires changing its default value for AIX device
 type nonmpioscsd disks. It is not sufficient to change the max_transfer for
 individual hdisks, because performing disk replacement deletes and
 recreates hdisk objects.

 To change the default hdisk max_transfer attribute
 for type nonmpioscsd hdisks, use the following command:

 # chdef -a max_transfer=0x400000 -c disk -s sas -t nonmpioscsd

 The
 new max_transfer and max_commands values
 will not take effect until AIX reconfigures
 the HBAs and hdisks. This can be done either by rebooting the recovery
 group server, or by deconfiguring (but not removing) and then reconfiguring
 the affected HBAs. The max_transfer and max_commands attribute
 are recorded in the CuAt ODM class and will persist across reboots.

 	Linux

 	Under Linux, the max_sectors_kb I/O
 size is reset to the default each time a disk block device is configured.
 This means that upon reboot and upon adding or replacing disks, a
 desired nondefault I/O size must be explicitly set. Since max_sectors_kb is
 dynamically reconfigurable, GPFS Native
 RAID manages this setting under Linux.
 The
 value of max_sectors_kb under Linux is set on all the disks in a recovery
 group when GPFS Native RAID
 begins serving the recovery group, and on disks that are configured
 as part of GPFS Native RAID
 disk replacement.

 The default max_sectors_kb set
 by GPFS Native RAID is 4096,
 which is large enough for any of the strip sizes listed in Table 1. It can be changed
 to exactly match the largest strip size in use by GPFS Native RAID by setting the GPFS nsdRAIDBlockDeviceMaxSectorsKB configuration
 parameter.

 To set the max_sectors_kb value
 used by GPFS Native RAID to
 2056, use the following command:

 # mmchconfig nsdRAIDBlockDeviceMaxSectorsKB=2056

 The
 new value will take effect the next time GPFS is
 started. To have the new value take effect immediately, append the -i option
 to the above command.

 For optimal performance, additional device attributes
 may need to be changed (for example, the HBA and block device command
 queue depths); consult the operating system documentation for the
 device attributes.

 Verifying that a Power 775
 Disk Enclosure is configured
 correctly

 Once a superficial inspection indicates that the Power 775
 Disk Enclosure has been
 configured on the recovery group servers, and especially once operating
 system multi-pathing has been disabled, it is necessary to perform
 a thorough discovery of the disk topology on each server.

 To
 proceed, GPFS must be installed
 on the recovery group servers, and they should be members of the same GPFS cluster. Consult the GPFS:
 Administration and Programming Reference for instructions
 for creating a GPFS cluster.

 GPFS Native
 RAID provides
 tools in /usr/lpp/mmfs/samples/vdisk for collecting
 and collating information on any attached Power 775
 Disk Enclosure and for
 verifying that the detected topology is correct. The mmgetpdisktopology command
 examines the operating system's list of connected devices and produces
 a colon-delimited database with a line for each discovered Power 775
 Disk Enclosure physical
 disk, port card expander device, and HBA. mmgetpdisktopology should
 be run on each of the two intended recovery group server nodes, and
 the results examined to verify that the disk enclosure hardware and
 software configuration is as expected. An additional tool called topsummary concisely
 summarizes the output of the mmgetpdisktopology command.

 Create
 a directory in which to work, and then capture the output of the mmgetpdisktopology command
 from each of the two intended recovery group server nodes:

 # mkdir p7ihde
cd p7ihde
[image: Start of change]# ssh server1 /usr/lpp/mmfs/bin/mmgetpdisktopology > server1.top
ssh server2 /usr/lpp/mmfs/bin/mmgetpdisktopology > server2.top[image: End of change]

 Then view the summary for each of the nodes (server1 example
 shown):

 # /usr/lpp/mmfs/samples/vdisk/topsummary server1.top
P7IH-DE enclosures found: DE00022
Enclosure DE00022:
Enclosure DE00022 STOR P1-C4/P1-C5 sees both portcards: P1-C4 P1-C5
Portcard P1-C4: ses0[0150]/mpt2sas0/24 diskset "37993" ses1[0150]/mpt2sas0/24 diskset "18793"
Portcard P1-C5: ses4[0150]/mpt2sas1/24 diskset "37993" ses5[0150]/mpt2sas1/24 diskset "18793"
Enclosure DE00022 STOR P1-C4/P1-C5 sees 48 disks
Enclosure DE00022 STOR P1-C12/P1-C13 sees both portcards: P1-C12 P1-C13
Portcard P1-C12: ses8[0150]/mpt2sas2/24 diskset "40657" ses9[0150]/mpt2sas2/24 diskset "44382"
Portcard P1-C13: ses12[0150]/mpt2sas3/24 diskset "40657" ses13[0150]/mpt2sas3/24 diskset "44382"
Enclosure DE00022 STOR P1-C12/P1-C13 sees 48 disks
Enclosure DE00022 STOR P1-C20/P1-C21 sees both portcards: P1-C20 P1-C21
Portcard P1-C20: ses16[0150]/mpt2sas4/24 diskset "04091" ses17[0150]/mpt2sas4/24 diskset "31579"
Portcard P1-C21: ses20[0150]/mpt2sas5/24 diskset "04091" ses21[0150]/mpt2sas5/24 diskset "31579"
Enclosure DE00022 STOR P1-C20/P1-C21 sees 48 disks
Enclosure DE00022 STOR P1-C28/P1-C29 sees both portcards: P1-C28 P1-C29
Portcard P1-C28: ses24[0150]/mpt2sas6/24 diskset "64504" ses25[0150]/mpt2sas6/24 diskset "62361"
Portcard P1-C29: ses28[0150]/mpt2sas7/24 diskset "64504" ses29[0150]/mpt2sas7/24 diskset "62361"
Enclosure DE00022 STOR P1-C28/P1-C29 sees 48 disks
Enclosure DE00022 STOR P1-C60/P1-C61 sees both portcards: P1-C60 P1-C61
Portcard P1-C60: ses30[0150]/mpt2sas7/24 diskset "10913" ses31[0150]/mpt2sas7/24 diskset "52799"
Portcard P1-C61: ses26[0150]/mpt2sas6/24 diskset "10913" ses27[0150]/mpt2sas6/24 diskset "52799"
Enclosure DE00022 STOR P1-C60/P1-C61 sees 48 disks
Enclosure DE00022 STOR P1-C68/P1-C69 sees both portcards: P1-C68 P1-C69
Portcard P1-C68: ses22[0150]/mpt2sas5/24 diskset "50112" ses23[0150]/mpt2sas5/24 diskset "63400"
Portcard P1-C69: ses18[0150]/mpt2sas4/24 diskset "50112" ses19[0150]/mpt2sas4/24 diskset "63400"
Enclosure DE00022 STOR P1-C68/P1-C69 sees 48 disks
Enclosure DE00022 STOR P1-C76/P1-C77 sees both portcards: P1-C76 P1-C77
Portcard P1-C76: ses14[0150]/mpt2sas3/23 diskset "45948" ses15[0150]/mpt2sas3/24 diskset "50856"
Portcard P1-C77: ses10[0150]/mpt2sas2/24 diskset "37258" ses11[0150]/mpt2sas2/24 diskset "50856"
Enclosure DE00022 STOR P1-C76/P1-C77 sees 48 disks
Enclosure DE00022 STOR P1-C84/P1-C85 sees both portcards: P1-C84 P1-C85
Portcard P1-C84: ses6[0150]/mpt2sas1/24 diskset "13325" ses7[0150]/mpt2sas1/24 diskset "10443"
Portcard P1-C85: ses2[0150]/mpt2sas0/24 diskset "13325" ses3[0150]/mpt2sas0/24 diskset "10443"
Enclosure DE00022 STOR P1-C84/P1-C85 sees 48 disks
Carrier location P1-C79-D4 appears only on the portcard P1-C77 path
Enclosure DE00022 sees 384 disks

mpt2sas7[1005470001] U78A9.001.9998884-P1-C1 DE00022 STOR 4 P1-C29 (ses28 ses29) STOR 5 P1-C60 (ses30 ses31)
mpt2sas6[1005470001] U78A9.001.9998884-P1-C3 DE00022 STOR 4 P1-C28 (ses24 ses25) STOR 5 P1-C61 (ses26 ses27)
mpt2sas5[1005470001] U78A9.001.9998884-P1-C5 DE00022 STOR 3 P1-C21 (ses20 ses22) STOR 6 P1-C68 (ses21 ses23)
mpt2sas4[1005470001] U78A9.001.9998884-P1-C7 DE00022 STOR 3 P1-C20 (ses16 ses17) STOR 6 P1-C69 (ses18 ses19)
mpt2sas3[1005470001] U78A9.001.9998884-P1-C9 DE00022 STOR 2 P1-C13 (ses12 ses13) STOR 7 P1-C76 (ses14 ses15)
mpt2sas2[1005470001] U78A9.001.9998884-P1-C11 DE00022 STOR 2 P1-C12 (ses8 ses9) STOR 7 P1-C77 (ses10 ses11)
mpt2sas1[1005470001] U78A9.001.9998884-P1-C13 DE00022 STOR 1 P1-C5 (ses4 ses5) STOR 8 P1-C84 (ses6 ses7)
mpt2sas0[1005470001] U78A9.001.9998884-P1-C15 DE00022 STOR 1 P1-C4 (ses0 ses1) STOR 8 P1-C85 (ses2 ses3)

 In
 the preceding output, the Power 775
 Disk Enclosure with serial
 number DE00022 is discovered, together with its eight individual STORs
 and the component port cards, port card expanders (with their firmware
 levels in brackets), and physical disks. One minor discrepancy is
 noted: The physical disk in location P1-C79-D4 is only seen over one
 of the two expected HBA paths. This can also be seen in the output
 for the STOR with port cards P1-C76 and P1-C77:

 Enclosure DE00022 STOR P1-C76/P1-C77 sees both portcards: P1-C76 P1-C77
Portcard P1-C76: ses14[0150]/mpt2sas3/23 diskset "45948" ses15[0150]/mpt2sas3/24 diskset "50856"
Portcard P1-C77: ses10[0150]/mpt2sas2/24 diskset "37258" ses11[0150]/mpt2sas2/24 diskset "50856"
Enclosure DE00022 STOR P1-C76/P1-C77 sees 48 disks

 Here
 the connection through port card P1-C76 sees just 23 disks on the
 expander ses14 and all 24 disks on the expander ses15,
 while the connection through port card P1-C77 sees all 24 disks on
 each of the expanders ses10 and ses11.
 The "disksets" that are reached over the expanders are identified
 by a checksum of the unique SCSI WWNs of the physical disks that are
 present; equal disksets represent the same collection of physical
 disks.

 The preceding discrepancy can either be corrected or
 ignored, as it is probably due to a poorly seated or defective port
 on the physical disk. The disk is still present on the other port.

 If
 other discrepancies are noted (for example, physical disks that are
 expected but do not show up at all, or SSDs or HDDs in the wrong locations),
 they should be corrected before proceeding.

 The HBAs (firmware
 levels in brackets) are also listed with their slot location codes
 to show the cabling pattern. Each HBA sees two STORs, and each STOR
 is seen by two different HBAs, which provides the multiple paths and
 redundancy required by a correct Power 775
 Disk Enclosure installation.

 This
 output can be compared to the hardware cabling specification to verify
 that the disk enclosure is connected correctly.

 The server2.top topology
 database should also be examined with the topsummary sample
 script and verified to be correct.

 Once the Power 775
 Disk Enclosure topologies
 are verified to be correct on both intended recovery group server
 nodes, the recommended recovery group configuration can be created
 using GPFS Native
 RAID commands.

 Parent topic: Example scenario: Configuring GPFS Native RAID recovery groups

 Creating recovery groups on a Power 775
 Disk Enclosure

 Configuring GPFS nodes
 to be recovery group servers

Before
 a GPFS node can create and serve
 recovery groups, it must be configured with a vdisk track cache. This
 is accomplished by setting the nsdRAIDTracks configuration
 parameter.

 nsdRAIDTracks is the GPFS configuration parameter essential
 to define a GPFS cluster node
 as a recovery group server. It specifies the number of vdisk tracks
 of which the attributes will be held in memory by the GPFS daemon on the recovery group server.

 The
 actual contents of the vdisk tracks, the user data and the checksums,
 are stored in the standard GPFS pagepool.
 Therefore, the size of the GPFS pagepool
 configured on a recovery group server should be considerable, on the
 order of tens of gigabytes. The amount of pagepool dedicated to hold
 vdisk track data is governed by the nsdRAIDBufferPoolSizePct parameter,
 which defaults to 50%. In practice, a recovery group server will not
 need to use the GPFS pagepool
 for any significant amount of standard file caching, and the nsdRAIDBufferPoolSizePct value
 can be increased to 80%. Also applicable, since a recovery group server
 is by definition an NSD server, is the nsdBufSpace parameter,
 which defaults to 30% of pagepool. Since the vdisk buffer pool doubles
 as the NSD buffer spool, the nsdBufSpace parameter
 should be decreased to its minimum of 10%. Together these values leave
 only 10% of the pagepool for application program file cache, but this
 should not be a problem as a recovery group server should not be running
 application programs.

 In this example, the recovery group servers
 will be configured to cache the information on 16384 vdisk tracks
 and to have 64 GiB of pagepool, of which 80% will be used for vdisk
 data. Once the configuration changes are made, the servers will need
 to be restarted.

 # mmchconfig nsdRAIDTracks=16384,nsdRAIDBufferPoolSizePct=80,nsdBufSpace=10,pagepool=64G -N server1,server2
mmshutdown -N server1,server2
mmstartup -N server1,server2

 Defining the recovery group layout
The definition
 of recovery groups on a Power 775
 Disk Enclosure is dictated
 by the architecture and cabling of the disk enclosure. Two servers
 sharing a Power 775
 Disk Enclosure implies
 two recovery groups; one is served by one node and one by the other,
 and each server acts as the other's backup. Half the disks in each
 STOR should belong to one recovery group, and half to the other. One
 recovery group will therefore be defined on the disks and carriers
 in the top halves of the eight STORs, and one on the bottom halves.
 Since the disks in a STOR are placed four to a removable carrier,
 thereby having a common point of failure, each disk in a carrier should
 belong to one of four different declustered arrays. Should a carrier
 fail or be removed, then each declustered array will only suffer the
 loss of one disk. There are four SSDs distributed among the top set
 of carriers, and four in the bottom set of carriers. These groups
 of four SSDs will make up the vdisk log declustered arrays in their
 respective halves.

 GPFS Native
 RAID provides
 a tool that understands the layout of the Power 775
 Disk Enclosure and will
 automatically generate the mmcrrecoverygroup stanza
 files for creating the top and bottom recovery groups. /usr/lpp/mmfs/samples/vdisk/mkp7rginput,
 when supplied with output of the mmgetpdisktopology command,
 will create recovery group stanza files for the top and bottom halves
 of each Power 775
 Disk Enclosure found
 in the topology.

 Each recovery group server, though it may
 see the same functional disk enclosure topology, will almost certainly
 differ in the particulars of which disk device names (e.g., /dev/rhdisk77 on AIX or /dev/sdax on Linux) refer to which physical
 disks in what disk enclosure location.

 There are two possibilities
 then for creating the recovery group stanza files and the recovery
 groups themselves:

 	Alternative 1:

 	Generate the recovery group stanza files and create the recovery
 groups from the perspective of just one of the servers as if that
 server were to be primary for both recovery groups, and then use the mmchrecoverygroup command
 to swap the primary and backup servers for one of the recovery groups

 	Alternative 2:

 	Generate the recovery group stanza files for each server's primary
 recovery group using the primary server's topology file.

 This example will show both alternatives.

 	Creating the recovery groups, alternative 1

 	To create the recovery group input stanza files from the perspective
 of server1, run: # /usr/lpp/mmfs/samples/vdisk/mkp7rginput server1.top

 This
 will create two files for each disk enclosure present in the server1 topology;
 in this case, DE00022TOP.server1 for the top
 half of disk enclosure DE00022 and DE00022BOT.server2 for
 the bottom half. (An extra file, DEXXXXXbad,
 may be created if any discrepancies are present in the topology; if
 such a file is created by mkp7rginput, it
 should be examined and the discrepancies corrected.)

 The recovery
 group stanza files will follow the recommended best practice for the Power 775
 Disk Enclosure of defining
 in each half of the disk enclosure a separate declustered array of
 4 SSDs for recovery group transaction logging, and four file system
 data declustered arrays using the regular HDDs according to which
 of the four disk enclosure carrier slots each HDD resides in.

 The
 defaults are accepted for other recovery group declustered array parameters
 such as scrub duration, spare space, and disk replacement policy.

 The
 stanza file will look something like this:

 # head DE00022TOP.server1
%pdisk: pdiskName=c081d1
 device=/dev/hdisk10
 da=DA1
 [image: Start of change]nPathActive=2
 nPathTotal=4[image: End of change]
%pdisk: pdiskName=c065d1
 device=/dev/hdisk211
 da=DA1
 [image: Start of change]nPathActive=2
 nPathTotal=4[image: End of change]
%pdisk: pdiskName=c066d1
 device=/dev/hdisk259
 da=DA1
 [image: Start of change]nPathActive=2
 nPathTotal=4[image: End of change]

 All the pdisk stanzas for declustered array DA1 will
 be listed first, followed by those for DA2, DA3, DA4,
 and the LOG declustered array. The pdisk names
 will indicate the carrier and disk location in which the physical
 disk resides. Notice that only one block device path to the disk is
 given; the second path will be discovered automatically soon after
 the recovery group is created.

 Now that the DE00022TOP.server1 and DE00022BOT.server1 stanza
 files have been created from the perspective of recovery group server
 node server1, these two recovery groups can be
 created using two separate invocations of the mmcrrecoverygroup command:

 # mmcrrecoverygroup DE00022TOP -F DE00022TOP.server1 --servers server1,server2
mmcrrecoverygroup: Propagating the cluster configuration data to all
 affected nodes. This is an asynchronous process.

mmcrrecoverygroup DE00022BOT -F DE00022BOT.server1 --servers server1,server2
mmcrrecoverygroup: Propagating the cluster configuration data to all
 affected nodes. This is an asynchronous process.

 Note that both recovery groups were created with server1 as
 primary and server2 as backup. It is now necessary
 to swap the primary and backup servers for DE00022BOT using
 the mmchrecoverygroup command: # mmchrecoverygroup DE00022BOT --servers server2,server1
mmchrecoverygroup: Propagating the cluster configuration data to all
 affected nodes. This is an asynchronous process.

 GPFS Native
 RAID will
 automatically discover the appropriate disk devices on server2.

 	Creating the recovery groups, alternative 2

 	To create the recovery groups from the start with the intended
 primary and backup servers, the stanza files from both server topologies
 will need to be created.
 To create the server1 recovery
 group input stanza files, run:

 # /usr/lpp/mmfs/samples/vdisk/mkp7rginput server1.top

 To create the server2 recovery
 group input stanza files, run:

 # /usr/lpp/mmfs/samples/vdisk/mkp7rginput server2.top

 These two commands will result in four stanza files: DE00022TOP.server1, DE00022BOT.server1, DE00022TOP.server2,
 and DE00022BOT.server2. (As in alternative 1,
 if any files named DEXXXXXbad are created, they
 should be examined and the errors within should be corrected.)

 The DE00022TOP recovery
 group must then be created using server1 as the
 primary and the DE00022TOP.server1 stanza file.
 The DE00022BOT recovery group must be created
 using server2 as the primary and the DE00022BOT.server2 stanza
 file.

 # mmcrrecoverygroup DE00022TOP -F DE00022TOP.server1 --servers server1,server2
mmcrrecoverygroup: Propagating the cluster configuration data to all
 affected nodes. This is an asynchronous process.

mmcrrecoverygroup DE00022BOT -F DE00022BOT.server2 --servers server2,server1
mmcrrecoverygroup: Propagating the cluster configuration data to all
 affected nodes. This is an asynchronous process.

 Because each recovery group was created using the
 intended primary server and the stanza file for that server, it is
 not necessary to swap the primary and backup servers.

 Verifying recovery group creation
Use the mmlsrecoverygroup command
 to verify that each recovery group was created:

 # mmlsrecoverygroup DE00022TOP -L

 declustered
 recovery group arrays vdisks pdisks
 ----------------- ----------- ------ ------
 DE00022TOP 5 0 192

 declustered needs replace scrub background activity
 array service vdisks pdisks spares threshold free space duration task progress priority
 ----------- ------- ------ ------ ------ --------- ---------- -------- -------------------------
 DA1 no 0 47 2 2 24 TiB 14 days inactive 0% low
 DA2 no 0 47 2 2 24 TiB 14 days inactive 0% low
 DA3 no 0 47 2 2 24 TiB 14 days inactive 0% low
 DA4 no 0 47 2 2 24 TiB 14 days inactive 0% low
 LOG no 0 4 1 1 558 GiB 14 days inactive 0% low

 declustered
 vdisk RAID code array vdisk size remarks
 ------------------ ------------------ ----------- ---------- -------

 active recovery group server servers
 --- -------
 server1 server1,server2

mmlsrecoverygroup DE00022BOT -L

 declustered
 recovery group arrays vdisks pdisks
 ----------------- ----------- ------ ------
 DE00022BOT 5 0 192

 declustered needs replace scrub background activity
 array service vdisks pdisks spares threshold free space duration task progress priority
 ----------- ------- ------ ------ ------ --------- ---------- -------- -------------------------
 DA1 no 0 47 2 2 24 TiB 14 days inactive 0% low
 DA2 no 0 47 2 2 24 TiB 14 days inactive 0% low
 DA3 no 0 47 2 2 24 TiB 14 days inactive 0% low
 DA4 no 0 47 2 2 24 TiB 14 days inactive 0% low
 LOG no 0 4 1 1 558 GiB 14 days inactive 0% low

 declustered
 vdisk RAID code array vdisk size remarks
 ------------------ ------------------ ----------- ---------- -------

 active recovery group server servers
 --- -------
 server1 server2,server1

 Notice that the vdisk sections of the newly created
 recovery groups are empty; the next step is to create the vdisks.

 Defining and creating the vdisks
Once
 the recovery groups are created and being served by their respective
 servers, it is time to create the vdisks using the mmcrvdisk command.

 Each
 recovery group requires a single log vdisk for recording RAID updates
 and diagnostic information. This is internal to the recovery group,
 cannot be used for user data, and should be the only vdisk in the LOG declustered
 array. The log vdisks in this example use 3-way replication in order
 to fit in the LOG declustered array, which contains
 4 SSDs and spare space equivalent to one disk.

 Data vdisks
 are required to be defined in the four data declustered arrays for
 use as file system NSDs. In this example, each of the declustered
 arrays for file system data is divided into two vdisks with different
 characteristics: one using 4-way replication and a 1 MiB block size
 and a total vdisk size of 250 GiB suitable for file system metadata,
 and one using Reed-Solomon 8 + 3p encoding
 and an 16 MiB block size suitable for file system data. The vdisk
 size is omitted for the Reed-Solomon vdisks, meaning that they will
 default to use the remaining non-spare space in the declustered array
 (for this to work, any vdisks with specified total sizes must of course
 be defined first).

 The possibilities for the vdisk creation
 stanza file are quite great, depending on the number and type of vdisk
 NSDs required for the number and type of file systems desired, so
 the vdisk stanza file will need to be created by hand, possibly following
 a template.

 In this example, a single stanza file, mmcrvdisk.DE00022ALL,
 is used. The single file contains the specifications for all the vdisks
 in both the DE00022TOP and DE00022BOT recovery
 groups. Here is what the example stanza file for use with mmcrvdisk should
 look like:

 # cat mmcrvdisk.DE00022ALL
%vdisk: vdiskName=DE00022TOPLOG
 rg=DE00022TOP
 da=LOG
 blocksize=1m
 size=4g
 raidCode=3WayReplication
 diskUsage=vdiskLog
%vdisk: vdiskName=DE00022BOTLOG
 rg=DE00022BOT
 da=LOG
 blocksize=1m
 size=4g
 raidCode=3WayReplication
 diskUsage=vdiskLog
%vdisk: vdiskName=DE00022TOPDA1META
 rg=DE00022TOP
 da=DA1
 blocksize=1m
 size=250g
 raidCode=4WayReplication
 diskUsage=metadataOnly
 failureGroup=22
 pool=system
%vdisk: vdiskName=DE00022TOPDA1DATA
 rg=DE00022TOP
 da=DA1
 blocksize=16m
 raidCode=8+3p
 diskUsage=dataOnly
 failureGroup=22
 pool=data
%vdisk: vdiskName=DE00022BOTDA1META
 rg=DE00022BOT
 da=DA1
 blocksize=1m
 size=250g
 raidCode=4WayReplication
 diskUsage=metadataOnly
 failureGroup=22
 pool=system
%vdisk: vdiskName=DE00022BOTDA1DATA
 rg=DE00022BOT
 da=DA1
 blocksize=16m
 raidCode=8+3p
 diskUsage=dataOnly
 failureGroup=22
 pool=data
[DA2, DA3, DA4 vdisks omitted.]

 Notice how the file system metadata vdisks are
 flagged for eventual file system usage as metadataOnly and
 for placement in the system storage pool, and
 the file system data vdisks are flagged for eventual dataOnly usage
 in the data storage pool. (After the file system
 is created, a policy will be required to allocate file system data
 to the correct storage pools; see Creating the GPFS file system.)

 Importantly,
 also notice that block sizes for the file system metadata and file
 system data vdisks must be specified at this time, may not later be
 changed, and must match the block sizes supplied to the eventual mmcrfs command.

 Notice
 also that the eventual failureGroup=22 value
 for the NSDs on the file system vdisks is the same for vdisks in both
 the DE00022TOP and DE00022BOT recovery
 groups. This is because the recovery groups, although they have different
 servers, still share a common point of failure in the disk enclosure DE00022,
 and GPFS should be informed
 of this through a distinct failure group designation for each disk
 enclosure. It is up to the GPFS system
 administrator to decide upon the failure group numbers for each Power 775
 Disk Enclosure in the GPFS cluster.

 To create the
 vdisks specified in the mmcrvdisk.DE00022ALL file,
 use the following mmcrvdisk command:

 # mmcrvdisk -F mmcrvdisk.DE00022ALL
mmcrvdisk: [I] Processing vdisk DE00022TOPLOG
mmcrvdisk: [I] Processing vdisk DE00022BOTLOG
mmcrvdisk: [I] Processing vdisk DE00022TOPDA1META
mmcrvdisk: [I] Processing vdisk DE00022TOPDA1DATA
mmcrvdisk: [I] Processing vdisk DE00022TOPDA2META
mmcrvdisk: [I] Processing vdisk DE00022TOPDA2DATA
mmcrvdisk: [I] Processing vdisk DE00022TOPDA3META
mmcrvdisk: [I] Processing vdisk DE00022TOPDA3DATA
mmcrvdisk: [I] Processing vdisk DE00022TOPDA4META
mmcrvdisk: [I] Processing vdisk DE00022TOPDA4DATA
mmcrvdisk: [I] Processing vdisk DE00022BOTDA1META
mmcrvdisk: [I] Processing vdisk DE00022BOTDA1DATA
mmcrvdisk: [I] Processing vdisk DE00022BOTDA2META
mmcrvdisk: [I] Processing vdisk DE00022BOTDA2DATA
mmcrvdisk: [I] Processing vdisk DE00022BOTDA3META
mmcrvdisk: [I] Processing vdisk DE00022BOTDA3DATA
mmcrvdisk: [I] Processing vdisk DE00022BOTDA4META
mmcrvdisk: [I] Processing vdisk DE00022BOTDA4DATA
mmcrvdisk: Propagating the cluster configuration data to all
 affected nodes. This is an asynchronous process.

 Creation of the vdisks may be verified through
 the mmlsvdisk command (the mmlsrecoverygroup command
 may also be used):

 # mmlsvdisk
 declustered block size
 vdisk name RAID code recovery group array in KiB remarks
 ------------------ --------------- ------------------ ----------- ---------- -------
 DE00022BOTDA1DATA 8+3p DE00022BOT DA1 16384
 DE00022BOTDA1META 4WayReplication DE00022BOT DA1 1024
 DE00022BOTDA2DATA 8+3p DE00022BOT DA2 16384
 DE00022BOTDA2META 4WayReplication DE00022BOT DA2 1024
 DE00022BOTDA3DATA 8+3p DE00022BOT DA3 16384
 DE00022BOTDA3META 4WayReplication DE00022BOT DA3 1024
 DE00022BOTDA4DATA 8+3p DE00022BOT DA4 16384
 DE00022BOTDA4META 4WayReplication DE00022BOT DA4 1024
 DE00022BOTLOG 3WayReplication DE00022BOT LOG 1024 log
 DE00022TOPDA1DATA 8+3p DE00022TOP DA1 16384
 DE00022TOPDA1META 4WayReplication DE00022TOP DA1 1024
 DE00022TOPDA2DATA 8+3p DE00022TOP DA2 16384
 DE00022TOPDA2META 4WayReplication DE00022TOP DA2 1024
 DE00022TOPDA3DATA 8+3p DE00022TOP DA3 16384
 DE00022TOPDA3META 4WayReplication DE00022TOP DA3 1024
 DE00022TOPDA4DATA 8+3p DE00022TOP DA4 16384
 DE00022TOPDA4META 4WayReplication DE00022TOP DA4 1024
 DE00022TOPLOG 3WayReplication DE00022TOP LOG 1024 log

 Creating NSDs from vdisks
The mmcrvdisk command
 rewrites the input file so that it is ready to be passed to the mmcrnsd command
 that creates the NSDs from which GPFS builds
 file systems. To create the vdisk NSDs, run the mmcrnsd command
 on the rewritten mmcrvdisk stanza file:

 # mmcrnsd -F mmcrvdisk.DE00022ALL
mmcrnsd: Processing disk DE00022TOPDA1META
mmcrnsd: Processing disk DE00022TOPDA1DATA
mmcrnsd: Processing disk DE00022TOPDA2META
mmcrnsd: Processing disk DE00022TOPDA2DATA
mmcrnsd: Processing disk DE00022TOPDA3META
mmcrnsd: Processing disk DE00022TOPDA3DATA
mmcrnsd: Processing disk DE00022TOPDA4META
mmcrnsd: Processing disk DE00022TOPDA4DATA
mmcrnsd: Processing disk DE00022BOTDA1META
mmcrnsd: Processing disk DE00022BOTDA1DATA
mmcrnsd: Processing disk DE00022BOTDA2META
mmcrnsd: Processing disk DE00022BOTDA2DATA
mmcrnsd: Processing disk DE00022BOTDA3META
mmcrnsd: Processing disk DE00022BOTDA3DATA
mmcrnsd: Processing disk DE00022BOTDA4META
mmcrnsd: Processing disk DE00022BOTDA4DATA
mmcrnsd: Propagating the cluster configuration data to all
 affected nodes. This is an asynchronous process.

 Notice how the recovery group log vdisks are omitted
 from NSD processing.

 The mmcrnsd command
 then once again rewrites the stanza file in preparation for use as
 input to the mmcrfs command.

 Creating the GPFS file
 system

 Run the mmcrfs command
 to create the file system:

 # mmcrfs gpfs -F mmcrvdisk.DE00022ALL -B 16m --metadata-block-size 1m -T /gpfs -A no

The following disks of gpfs will be formatted on node c250f09c01ap05.ppd.pok.ibm.com:
 DE00022TOPDA1META: size 262163456 KB
 DE00022TOPDA1DATA: size 8395522048 KB
 DE00022TOPDA2META: size 262163456 KB
 DE00022TOPDA2DATA: size 8395522048 KB
 DE00022TOPDA3META: size 262163456 KB
 DE00022TOPDA3DATA: size 8395522048 KB
 DE00022TOPDA4META: size 262163456 KB
 DE00022TOPDA4DATA: size 8395522048 KB
 DE00022BOTDA1META: size 262163456 KB
 DE00022BOTDA1DATA: size 8395522048 KB
 DE00022BOTDA2META: size 262163456 KB
 DE00022BOTDA2DATA: size 8395522048 KB
 DE00022BOTDA3META: size 262163456 KB
 DE00022BOTDA3DATA: size 8395522048 KB
 DE00022BOTDA4META: size 262163456 KB
 DE00022BOTDA4DATA: size 8395522048 KB
Formatting file system ...
Disks up to size 2.5 TB can be added to storage pool 'system'.
Disks up to size 79 TB can be added to storage pool 'data'.
Creating Inode File
Creating Allocation Maps
Clearing Inode Allocation Map
Clearing Block Allocation Map
Formatting Allocation Map for storage pool 'system'
Formatting Allocation Map for storage pool 'data'
Completed creation of file system /dev/gpfs.
mmcrfs: Propagating the cluster configuration data to all
 affected nodes. This is an asynchronous process.

 Notice how the 16 MiB data block size is specified
 with the traditional -B parameter and the
 1 MiB metadata block size is specified with the --metadata-block-size parameter.
 Since a file system with different metadata and data block sizes requires
 the use of multiple GPFS storage
 pools, a file system placement policy is needed to direct user file
 data to the data storage pool. In this example, the file placement
 policy is very simple:

 # cat policy
rule 'default' set pool 'data'

 The policy must then be installed in the file
 system using the mmchpolicy command:

 # mmchpolicy gpfs policy -I yes
Validated policy `policy': parsed 1 Placement Rules, 0 Restore Rules, 0 Migrate/Delete/Exclude Rules,
 0 List Rules, 0 External Pool/List Rules
Policy `policy' installed and broadcast to all nodes.

 If
 a policy is not placed in a file system with multiple storage pools,
 attempts to place data into files will return ENOSPC as
 if the file system were full.

 This file system, built on a Power 775
 Disk Enclosure using two
 recovery groups, two recovery group servers, eight file system metadata
 vdisk NSDs and eight file system data vdisk NSDs, may now be mounted
 and placed into service:

 # mmmount gpfs -a

 Parent topic: Example scenario: Configuring GPFS Native RAID recovery groups

 Example scenario: Replacing failed disks in a Power 775
 Disk Enclosure recovery
 group

 The scenario presented here shows how to detect and replace
 failed disks in a recovery group built on a Power 775
 Disk Enclosure.

 Detecting failed disks in your enclosure

 Assume a fully populated Power 775
 Disk Enclosure (serial
 number 000DE37) on which the following two recovery groups are defined:

 	000DE37TOP containing the disks in the top
 set of carriers

 	000DE37BOT containing the disks in the bottom
 set of carriers

 Each recovery group contains the following:

 	one log declustered array (LOG)

 	four data declustered arrays (DA1, DA2, DA3, DA4)

 The data declustered arrays are defined according to Power 775
 Disk Enclosure best practice
 as follows:

 	47 pdisks per data declustered array

 	each member pdisk from the same carrier slot

 	default disk replacement threshold value set to 2

 The replacement threshold of 2 means that GPFS Native
 RAID will only
 require disk replacement when two or more disks have failed in the
 declustered array; otherwise, rebuilding onto spare space or reconstruction
 from redundancy will be used to supply affected data.

 This configuration
 can be seen in the output of mmlsrecoverygroup for
 the recovery groups, shown here for 000DE37TOP:# mmlsrecoverygroup 000DE37TOP -L

 declustered
 recovery group arrays vdisks pdisks
 ----------------- ----------- ------ ------
 000DE37TOP 5 9 192

 declustered needs replace scrub background activity
 array service vdisks pdisks spares threshold free space duration task progress priority
 ----------- ------- ------ ------ ------ --------- ---------- -------- -------------------------
 DA1 no 2 47 2 2 3072 MiB 14 days scrub 63% low
 DA2 no 2 47 2 2 3072 MiB 14 days scrub 19% low
 DA3 yes 2 47 2 2 0 B 14 days rebuild-2r 48% low
 DA4 no 2 47 2 2 3072 MiB 14 days scrub 33% low
 LOG no 1 4 1 1 546 GiB 14 days scrub 87% low

 declustered
 vdisk RAID code array vdisk size remarks
 ------------------ ------------------ ----------- ---------- -------
 000DE37TOPLOG 3WayReplication LOG 4144 MiB log
 000DE37TOPDA1META 4WayReplication DA1 250 GiB
 000DE37TOPDA1DATA 8+3p DA1 17 TiB
 000DE37TOPDA2META 4WayReplication DA2 250 GiB
 000DE37TOPDA2DATA 8+3p DA2 17 TiB
 000DE37TOPDA3META 4WayReplication DA3 250 GiB
 000DE37TOPDA3DATA 8+3p DA3 17 TiB
 000DE37TOPDA4META 4WayReplication DA4 250 GiB
 000DE37TOPDA4DATA 8+3p DA4 17 TiB

 active recovery group server servers
 --- -------
 server1 server1,server2

 The indication that disk replacement is called
 for in this recovery group is the value of yes in
 the needs service column for declustered
 array DA3.

 The fact that DA3 (the
 declustered array on the disks in carrier slot 3) is undergoing rebuild
 of its RAID tracks that can tolerate two strip failures is by itself
 not an indication that disk replacement is required; it merely indicates
 that data from a failed disk is being rebuilt onto spare space. Only
 if the replacement threshold has been met will disks be marked for
 replacement and the declustered array marked as needing service.

 GPFS Native
 RAID provides
 several indications that disk replacement is required:

 	entries in the AIX error
 report or the Linux syslog

 	the GPFS pdReplacePdisk callback,
 which can be configured to run an administrator-supplied script at
 the moment a pdisk is marked for replacement

 	the POWER7 cluster event
 notification TEAL agent, which can be configured to send disk replacement
 notices when they occur to the POWER7 cluster
 EMS

 	the output from the following commands, which may be performed
 from the command line on any GPFS cluster
 node (see the examples that follow):

 	mmlsrecoverygroup with the -L flag
 shows yes in the needs
 service column

 	mmlsrecoverygroup with the -L and --pdisk flags;
 this shows the states of all pdisks, which may be examined for the replace pdisk
 state

 	mmlspdisk with the --replace flag,
 which lists only those pdisks that are marked for replacement

 Note: Because the output of mmlsrecoverygroup
 -L --pdisk for a fully-populated disk enclosure is very
 long, this example shows only some of the pdisks (but includes those
 marked for replacement).

 # mmlsrecoverygroup 000DE37TOP -L --pdisk

 declustered
 recovery group arrays vdisks pdisks
 ----------------- ----------- ------ ------
 000DE37TOP 5 9 192

 declustered needs replace scrub background activity
 array service vdisks pdisks spares threshold free space duration task progress priority
 ----------- ------- ------ ------ ------ --------- ---------- -------- -------------------------
 DA1 no 2 47 2 2 3072 MiB 14 days scrub 63% low
 DA2 no 2 47 2 2 3072 MiB 14 days scrub 19% low
 DA3 yes 2 47 2 2 0 B 14 days rebuild-2r 68% low
 DA4 no 2 47 2 2 3072 MiB 14 days scrub 34% low
 LOG no 1 4 1 1 546 GiB 14 days scrub 87% low

 [image: Start of change]n. active, declustered user state,
pdisk total paths array free space condition remarks
----------------- ----------- ----------- ---------- ----------- -------
[...]
c014d1 2, 4 DA1 62 GiB normal ok
c014d2 2, 4 DA2 279 GiB normal ok
c014d3 0, 0 DA3 279 GiB replaceable dead/systemDrain/noRGD/noVCD/replace
c014d4 2, 4 DA4 12 GiB normal ok
[...]
c018d1 2, 4 DA1 24 GiB normal ok
c018d2 2, 4 DA2 24 GiB normal ok
c018d3 2, 4 DA3 558 GiB replaceable dead/systemDrain/noRGD/noVCD/noData/replace
c018d4 2, 4 DA4 12 GiB normal ok[image: End of change]
[...]

 The preceding output shows that the following pdisks
 are marked for replacement:

 	c014d3 in DA3

 	c018d3 [image: Start of change]in[image: End of change] DA3

 The naming convention used during recovery group creation
 indicates that these are the disks in slot 3 of carriers 14 and 18.
 To confirm the physical locations of the failed disks, use the mmlspdisk command
 to list information about those pdisks in declustered array DA3 of
 recovery group 000DE37TOP that are marked for
 replacement:

 # mmlspdisk 000DE37TOP --declustered-array DA3 --replace
pdisk:
 replacementPriority = 1.00
 name = "c014d3"
 device = "/dev/rhdisk158,/dev/rhdisk62"
 recoveryGroup = "000DE37TOP"
 declusteredArray = "DA3"
 state = "dead/systemDrain/noRGD/noVCD/replace"
 [image: Start of change].
 .
 .[image: End of change]
pdisk:
 replacementPriority = 1.00
 name = "c018d3"
 device = "/dev/rhdisk630,/dev/rhdisk726"
 recoveryGroup = "000DE37TOP"
 declusteredArray = "DA3"
 state = "dead/systemDrain/noRGD/noVCD/noData/replace"
 [image: Start of change].
 .
 .[image: End of change]

 The preceding location code attributes confirm
 the pdisk naming convention:

 	Disk	

 	Location code	

 	Interpretation

 	pdisk c014d3	

 	78AD.001.000DE37-C14-D3	

 	Disk 3 in carrier 14 in the disk enclosure identified
 by enclosure type 78AD.001 and serial number 000DE37

 	pdisk c018d3	

 	78AD.001.000DE37-C18-D3	

 	Disk 3 in carrier 18 in the disk enclosure identified
 by enclosure type 78AD.001 and serial number 000DE37

 Replacing the failed disks in a Power 775
 Disk Enclosure recovery
 group

 Note: In this example, it is assumed that two new disks
 with the appropriate Field Replaceable Unit (FRU) code, as indicated
 by the fru attribute (74Y4936 in
 this case), have been obtained as replacements for the failed pdisks c014d3 and c018d3.

 Replacing
 each disk is a three-step process:

 	Using the mmchcarrier command with the --release flag
 to suspend use of the other disks in the carrier and to release the
 carrier.

 	Removing the carrier and replacing the failed disk within with
 a new one.

 	Using the mmchcarrier command with the --replace flag
 to resume use of the suspended disks and to begin use of the new disk.

 GPFS Native
 RAID assigns
 a priority to pdisk replacement. Disks with smaller values for the replacementPriority attribute
 should be replaced first. In this example, the only failed disks are
 in DA3 and both have the same replacementPriority.

 Disk c014d3 is
 chosen to be replaced first.

 	To release carrier 14 in disk enclosure 000DE37:
 # mmchcarrier 000DE37TOP --release --pdisk c014d3
 [I] Suspending pdisk c014d1 of RG 000DE37TOP in location 78AD.001.000DE37-C14-D1.
 [I] Suspending pdisk c014d2 of RG 000DE37TOP in location 78AD.001.000DE37-C14-D2.
 [I] Suspending pdisk c014d3 of RG 000DE37TOP in location 78AD.001.000DE37-C14-D3.
 [I] Suspending pdisk c014d4 of RG 000DE37TOP in location 78AD.001.000DE37-C14-D4.
 [I] Carrier released.

 - Remove carrier.
 - Replace disk in location 78AD.001.000DE37-C14-D3 with FRU 74Y4936.
 - Reinsert carrier.
 - Issue the following command:

 mmchcarrier 000DE37TOP --replace --pdisk 'c014d3'

 Repair timer is running. Perform the above within 5 minutes
 to avoid pdisks being reported as missing.

 GPFS Native
 RAID issues
 instructions as to the physical actions that must be taken. Note that
 disks may be suspended only so long before they are declared missing;
 therefore the mechanical process of physically performing disk replacement
 must be accomplished promptly.

 Use of the other three disks
 in carrier 14 has been suspended, and carrier 14 is unlocked. The
 identify lights for carrier 14 and for disk 3 are on.

 	Carrier 14 should be unlatched and removed. The failed disk 3,
 as indicated by the internal identify light, should be removed, and
 the new disk with FRU 74Y4936 should be inserted
 in its place. Carrier 14 should then be reinserted and the latch closed.

 	To finish the replacement of pdisk c014d3:
 # mmchcarrier 000DE37TOP --replace --pdisk c014d3
[I] The following pdisks will be formatted on node server1:
 /dev/rhdisk354
[I] Pdisk c014d3 of RG 000DE37TOP successfully replaced.
[I] Resuming pdisk c014d1 of RG 000DE37TOP.
[I] Resuming pdisk c014d2 of RG 000DE37TOP.
[I] Resuming pdisk c014d3#162 of RG 000DE37TOP.
[I] Resuming pdisk c014d4 of RG 000DE37TOP.
[I] Carrier resumed.

 When the mmchcarrier --replace command
 returns successfully, GPFS Native
 RAID has resumed
 use of the other 3 disks. The failed pdisk may remain in a temporary
 form (indicated here by the name c014d3#162)
 until all data from it has been rebuilt, at which point it is finally
 deleted. The new replacement disk, which has assumed the name c014d3,
 will have RAID tracks rebuilt and rebalanced onto it. Notice that
 only one block device name is mentioned as being formatted as a pdisk;
 the second path will be discovered in the background.

 This
 can be confirmed with mmlsrecoverygroup -L --pdisk:

 # mmlsrecoverygroup 000DE37TOP -L --pdisk

 declustered
 recovery group arrays vdisks pdisks
 ----------------- ----------- ------ ------
 000DE37TOP 5 9 193

 declustered needs replace scrub background activity
 array service vdisks pdisks spares threshold free space duration task progress priority
 ----------- ------- ------ ------ ------ --------- ---------- -------- -------------------------
 DA1 no 2 47 2 2 3072 MiB 14 days scrub 63% low
 DA2 no 2 47 2 2 3072 MiB 14 days scrub 19% low
 DA3 yes 2 48 2 2 0 B 14 days rebuild-2r 89% low
 DA4 no 2 47 2 2 3072 MiB 14 days scrub 34% low
 LOG no 1 4 1 1 546 GiB 14 days scrub 87% low

 [image: Start of change]n. active, declustered user state,
pdisk total paths array free space condition remarks
----------------- ----------- ----------- ---------- ----------- -------
[...]
c014d1 2, 4 DA1 23 GiB normal ok
c014d2 2, 4 DA2 23 GiB normal ok
c014d3 2, 4 DA3 550 GiB normal ok
c014d3#162 0, 0 DA3 543 GiB replaceable dead/adminDrain/noRGD/noVCD/noPath
c014d4 2, 4 DA4 23 GiB normal ok
[...]
c018d1 2, 4 DA1 24 GiB normal ok
c018d2 2, 4 DA2 24 GiB normal ok
c018d3 0, 0 DA3 558 GiB replaceable dead/systemDrain/noRGD/noVCD/noData/replace
c018d4 2, 4 DA4 23 GiB normal ok[image: End of change]
[...]

 Notice that the temporary pdisk c014d3#162 is
 counted in the total number of pdisks in declustered array DA3 and
 in the recovery group, until it is finally drained and deleted.

 Notice
 also that pdisk c018d3 is still marked for replacement,
 and that DA3 still needs service. This is because GPFS Native
 RAID replacement
 policy expects all failed disks in the declustered array to be replaced
 once the replacement threshold is reached. The replace state
 on a pdisk is not removed when the total number of failed disks goes
 under the threshold.

 Pdisk c018d3 is replaced
 following the same process.

 	Release carrier 18 in disk enclosure 000DE37:
 # mmchcarrier 000DE37TOP --release --pdisk c018d3
 [I] Suspending pdisk c018d1 of RG 000DE37TOP in location 78AD.001.000DE37-C18-D1.
 [I] Suspending pdisk c018d2 of RG 000DE37TOP in location 78AD.001.000DE37-C18-D2.
 [I] Suspending pdisk c018d3 of RG 000DE37TOP in location 78AD.001.000DE37-C18-D3.
 [I] Suspending pdisk c018d4 of RG 000DE37TOP in location 78AD.001.000DE37-C18-D4.
 [I] Carrier released.

 - Remove carrier.
 - Replace disk in location 78AD.001.000DE37-C18-D3 with FRU 74Y4936.
 - Reinsert carrier.
 - Issue the following command:

 mmchcarrier 000DE37TOP --replace --pdisk 'c018d3'

 Repair timer is running. Perform the above within 5 minutes
 to avoid pdisks being reported as missing.

 	Unlatch and remove carrier 18, remove and replace failed disk
 3, reinsert carrier 18, and close the latch.

 	To finish the replacement of pdisk c018d3:
 # mmchcarrier 000DE37TOP --replace --pdisk c018d3

 [I] The following pdisks will be formatted on node server1:
 /dev/rhdisk674
 [I] Pdisk c018d3 of RG 000DE37TOP successfully replaced.
 [I] Resuming pdisk c018d1 of RG 000DE37TOP.
 [I] Resuming pdisk c018d2 of RG 000DE37TOP.
 [I] Resuming pdisk c018d3#166 of RG 000DE37TOP.
 [I] Resuming pdisk c018d4 of RG 000DE37TOP.
 [I] Carrier resumed.

 Running mmlsrecoverygroup again
 will confirm the second replacement: # mmlsrecoverygroup 000DE37TOP -L --pdisk

 declustered
 recovery group arrays vdisks pdisks
 ----------------- ----------- ------ ------
 000DE37TOP 5 9 192

 declustered needs replace scrub background activity
 array service vdisks pdisks spares threshold free space duration task progress priority
 ----------- ------- ------ ------ ------ --------- ---------- -------- -------------------------
 DA1 no 2 47 2 2 3072 MiB 14 days scrub 64% low
 DA2 no 2 47 2 2 3072 MiB 14 days scrub 22% low
 DA3 no 2 47 2 2 2048 MiB 14 days rebalance 12% low
 DA4 no 2 47 2 2 3072 MiB 14 days scrub 36% low
 LOG no 1 4 1 1 546 GiB 14 days scrub 89% low

 [image: Start of change]n. active, declustered user state,
pdisk total paths array free space condition remarks
----------------- ----------- ----------- ---------- ----------- -------
 [...]
 c014d1 2, 4 DA1 23 GiB normal ok
 c014d2 2, 4 DA2 23 GiB normal ok
 c014d3 2, 4 DA3 271 GiB normal ok
 c014d4 2, 4 DA4 23 GiB normal ok
 [...]
 c018d1 2, 4 DA1 24 GiB normal ok
 c018d2 2, 4 DA2 24 GiB normal ok
 c018d3 2, 4 DA3 542 GiB normal ok
 c018d4 2, 4 DA4 23 GiB normal ok[image: End of change]
 [...]

 Notice that both temporary pdisks have been deleted.
 This is because c014d3#162 has finished draining,
 and because pdisk c018d3#166 had, before it was
 replaced, already been completely drained (as evidenced by the noData flag).
 Declustered array DA3 no longer needs service
 and once again contains 47 pdisks, and the recovery group once again
 contains 192 pdisks.

 Parent topic: GPFS Native RAID setup and disk replacement on the IBM Power 775 Disk Enclosure

 GPFS Native
 RAID setup
 and maintenance on the IBM System x GPFS Storage Server (GSS)

 The functions described in these topics are only available with
 the IBM System x GPFS Storage Server (GSS).

 	Updating firmware on enclosures and drives

 After creating a GPFS cluster,
 you can configure the GSS.

 	Example scenario: Configuring GPFS Native RAID recovery groups on the GSS

 This topic provides a detailed example of configuring GPFS Native
 RAID on a GSS
 building block. The example considers one GSS-24 building block, consisting
 of two recovery group servers cabled to four DCS3700 JBOD disk enclosures,
 and shows how recovery groups are defined on the disk enclosures.
 Throughout this topic, it may be helpful to have IBM System x GPFS Storage Server (GSS) documentation
 at hand.

 	Example scenario: Replacing failed disks in a GSS recovery group

 The scenario presented here shows how to detect and replace
 failed disks in a recovery group built on a GSS building block.

 	Example scenario: Replacing failed GSS storage enclosure components

 The scenario presented here shows how to detect and replace
 failed storage enclosure components in a GSS building block.

 	Example scenario: Replacing a failed GSS storage enclosure drawer

 The scenario presented here shows how to use the chdrawer sample
 script as a service aid in replacing a GSS enclosure drawer while GPFS is active.

 	Example scenario: Replacing a failed GSS storage enclosure

 The scenario presented here shows how to replace a failed
 GSS storage enclosure.

 	Example scenario: Checking the health of a GSS configuration

 The scenario presented here shows how to use the gnrhealthcheck sample
 script to check the general health of a GSS configuration.

 Parent topic: GPFS Native RAID (GNR)

 Updating firmware on enclosures and drives

 After creating a GPFS cluster,
 you can configure the GSS.

 The configuration process requires that you upgrade the enclosure
 and drive firmware.

 Note: Before upgrading the enclosure and drive firmware, ensure that
 the gpfs.gss.firmware rpm has been installed
 on all GSS servers. gpfs.gss.firmware is a standard
 rpm that can be installed using the rpm command.
 It contains the latest updates of the following types of supported
 firmware for a GSS configuration:

 	System BIOS updates

 	Adapter firmware

 	Enclosure firmware

 	Driver firmware

 	Firmware loading tools

 To upgrade the enclosure firmware, follow these steps:

 	To confirm that the enclosures have appropriate redundancy and
 that firmware updates have been found, issue this command: mmchfirmware --type storage-enclosure -N Node[,Node...] --dry-run

 	To load the firmware, issue this command:
 Note: If the existing
 firmware levels are less than 0375 (as shown by the mmlsfirmware
 --type storage-enclosure command issued in the previous
 step), include the --stop-on-error no option.

 mmchfirmware --type storage-enclosure -N Node[,Node...][--stop-on-error no]

 To upgrade the drive firmware, follow these steps:

 	To confirm that the drives can be updated, issue this command:mmchfirmware --type drive -N Node[,Node...] --dry-run

 	To load the firmware, issue this command: mmchfirmware --type drive -N Node[,Node...]

 Parent topic: GPFS Native RAID setup and maintenance on the IBM System x GPFS Storage Server (GSS)

 Example scenario: Configuring GPFS Native
 RAID recovery
 groups on the GSS

 This topic provides a detailed example of configuring GPFS Native
 RAID on a GSS
 building block. The example considers one GSS-24 building block, consisting
 of two recovery group servers cabled to four DCS3700 JBOD disk enclosures,
 and shows how recovery groups are defined on the disk enclosures.
 Throughout this topic, it may be helpful to have IBM System x GPFS Storage Server (GSS) documentation
 at hand.

 	Preparing GSS recovery group servers

 	Creating recovery groups on the IBM System x GPFS Storage Server (GSS)

 	Differences in GSS 1.5 and 2.0 with LogTip NVRAM partitions

 	Differences in GSS 2.0 with 24-disk enclosures

 GSS 2.0 provides support for 24-disk JBOD disk enclosures
 with 2U rack compartment height. The primary difference from building
 blocks with 60-disk 4U disk enclosures is that 2U disk enclosure
 building blocks only have one data declustered array (DA1).

 Parent topic: GPFS Native RAID setup and maintenance on the IBM System x GPFS Storage Server (GSS)

 Preparing GSS recovery group servers

 Disk enclosure and HBA cabling

 The GSS-24 DCS3700 JBOD disk enclosures should
 be cabled to the intended recovery group servers according to the IBM System x GPFS Storage Server (GSS) hardware
 installation instructions. The GSS-24 building block contains four
 disk enclosures. Each disk enclosure contains five disk drawers. In
 each disk enclosure, drawers 2, 3, and 4 contain 12 HDDs. In disk
 enclosures 1 through 3, drawers 1 and 5 have one SSD and 11 HDDs.
 In disk enclosure 4 (and, in the case of GSS-26, 5 and 6), drawers
 1 and 5 have 11 HDDs and 1 empty slot. In total, a GSS-24 building
 block has 4 enclosures, 20 drawers, 232 HDDs, 6 SSDs, and 2 empty
 slots. (For comparison, a GSS-26 building block has 6 enclosures,
 30 drawers, 348 HDDs, 6 SSDs, and 6 empty slots.) Each disk enclosure
 provides redundant A and B ESM port connections for host server HBA
 connections. To ensure proper multi-pathing and redundancy, each recovery
 group server must be connected to each of the A and B ESMs using different
 HBAs. The IBM System x GPFS Storage Server (GSS) hardware
 installation documentation describes precisely which HBA ports must
 be connected to which disk enclosure ESM ports.

 GPFS Native
 RAID provides
 system administration tools for verifying the correct connectivity
 of GSS-24 and GSS-26 disk enclosures, which will be seen later during
 the operating system preparation.

 When the ESM ports of the
 GSS-24 disk enclosures have been cabled to the appropriate HBAs of
 the two recovery group servers, the disk enclosures should be powered
 on and the recovery group servers should be rebooted.

 Verifying that the GSS-24 building block is configured
 correctly

 Preparation then continues at the operating system
 level on the recovery group servers, which must be installed with
 the Red Hat Enterprise Linux 6.3
 distribution provided with the GSS. Once the cabling has been performed
 and the servers have been rebooted, it is necessary to perform a thorough
 discovery of the disk topology on each server.

 To proceed, GPFS must be installed on the recovery
 group servers, but they need not yet be added to a GPFS cluster. Consult the GPFS:
 Concepts, Planning, and Installation Guide for instructions
 about installing GPFS.

 GPFS Native
 RAID provides
 tools in /usr/lpp/mmfs/samples/vdisk for collecting
 and collating information on any attached GSS-24 disk enclosures and
 for verifying that the detected topology is correct. The mmgetpdisktopology command
 examines the list of connected devices for the operating system and
 produces a colon-delimited database with a line for each discovered
 GSS-24 physical disk, disk enclosure ESM expander device, and HBA. mmgetpdisktopology should
 be run on each of the two intended recovery group server nodes, and
 the results examined to verify that the disk enclosure hardware and
 software configuration is as expected. An additional tool called topsummary concisely
 summarizes the output of the mmgetpdisktopology command.

 Create
 a directory in which to work, and then capture the output of the mmgetpdisktopology command
 from each of the two intended recovery group server nodes:

 # mkdir gss-24
cd gss-24
[image: Start of change]# ssh server1 /usr/lpp/mmfs/bin/mmgetpdisktopology > server1.top
ssh server2 /usr/lpp/mmfs/bin/mmgetpdisktopology > server2.top[image: End of change]

 Then view the summary for each of the nodes; the following
 example is for server1:

 # /usr/lpp/mmfs/samples/vdisk/topsummary server1.top
DCS3700 enclosures found: SV21311179 SV21313978 SV21314035 SV21419522
Enclosure SV21314035 (number 1):
Enclosure SV21314035 ESM A sg243[0363][scsi8 port 4] ESM B sg62[0363][scsi7 port 4]
Enclosure SV21314035 Drawer 1 ESM sg243 12 disks diskset "11082" ESM sg62 12 disks diskset "11082"
Enclosure SV21314035 Drawer 2 ESM sg243 12 disks diskset "16380" ESM sg62 12 disks diskset "16380"
Enclosure SV21314035 Drawer 3 ESM sg243 12 disks diskset "11864" ESM sg62 12 disks diskset "11864"
Enclosure SV21314035 Drawer 4 ESM sg243 12 disks diskset "31717" ESM sg62 12 disks diskset "31717"
Enclosure SV21314035 Drawer 5 ESM sg243 12 disks diskset "11824" ESM sg62 12 disks diskset "11824"
Enclosure SV21314035 sees 60 disks
Enclosure SV21419522 (number 2):
Enclosure SV21419522 ESM A sg63[0363][scsi7 port 3] ESM B sg426[0363][scsi9 port 4]
Enclosure SV21419522 Drawer 1 ESM sg63 12 disks diskset "60508" ESM sg426 12 disks diskset "60508"
Enclosure SV21419522 Drawer 2 ESM sg63 12 disks diskset "29045" ESM sg426 12 disks diskset "29045"
Enclosure SV21419522 Drawer 3 ESM sg63 12 disks diskset "08276" ESM sg426 12 disks diskset "08276"
Enclosure SV21419522 Drawer 4 ESM sg63 12 disks diskset "28750" ESM sg426 12 disks diskset "28750"
Enclosure SV21419522 Drawer 5 ESM sg63 12 disks diskset "34265" ESM sg426 12 disks diskset "34265"
Enclosure SV21419522 sees 60 disks
Enclosure SV21313978 (number 3):
Enclosure SV21313978 ESM A sg365[0363][scsi9 port 3] ESM B sg244[0363][scsi8 port 3]
Enclosure SV21313978 Drawer 1 ESM sg365 12 disks diskset "36679" ESM sg244 12 disks diskset "36679"
Enclosure SV21313978 Drawer 2 ESM sg365 12 disks diskset "18808" ESM sg244 12 disks diskset "18808"
Enclosure SV21313978 Drawer 3 ESM sg365 12 disks diskset "55525" ESM sg244 12 disks diskset "55525"
Enclosure SV21313978 Drawer 4 ESM sg365 12 disks diskset "51485" ESM sg244 12 disks diskset "51485"
Enclosure SV21313978 Drawer 5 ESM sg365 12 disks diskset "24274" ESM sg244 12 disks diskset "24274"
Enclosure SV21313978 sees 60 disks
Enclosure SV21311179 (number 4):
Enclosure SV21311179 ESM A sg184[0363][scsi8 port 2] ESM B sg3[0363][scsi7 port 2]
Enclosure SV21311179 Drawer 1 ESM sg184 11 disks diskset "59007" ESM sg3 11 disks diskset "59007"
Enclosure SV21311179 Drawer 2 ESM sg184 12 disks diskset "01848" ESM sg3 12 disks diskset "01848"
Enclosure SV21311179 Drawer 3 ESM sg184 12 disks diskset "49359" ESM sg3 12 disks diskset "49359"
Enclosure SV21311179 Drawer 4 ESM sg184 12 disks diskset "62742" ESM sg3 12 disks diskset "62742"
Enclosure SV21311179 Drawer 5 ESM sg184 11 disks diskset "62485" ESM sg3 11 disks diskset "62485"
Enclosure SV21311179 sees 58 disks
DCS3700 configuration: 4 enclosures, 6 SSDs, 2 empty slots, 238 disks total
scsi7[14.00.01.00] 0000:11:00.0 [P2 SV21311179 ESM B (sg3)] [P3 SV21419522 ESM A (sg63)] [P4 SV21314035 ESM B (sg62)]
scsi8[14.00.01.00] 0000:8b:00.0 [P2 SV21311179 ESM A (sg184)] [P3 SV21313978 ESM B (sg244)] [P4 SV21314035 ESM A (sg243)]
scsi9[14.00.01.00] 0000:90:00.0 [P3 SV21313978 ESM A (sg365)] [P4 SV21419522 ESM B (sg426)]

 This
 output shows a correctly cabled and populated GSS-24 installation.
 Four disk enclosures with serial numbers SV21311179, SV21313978, SV21314035,
 and SV21419522 are found cabled in the correct
 order and with the correct numbers of disks.

 The section for
 each enclosure begins with the enclosure number as determined by the
 cabling, followed by which ESM and HBA ports provide connectivity
 to the enclosure; the following line indicates that /dev/sg184 is
 the SCSI/SES expander device representing the enclosure’s A
 ESM, which is at firmware level 0363 and is connected to port 2 of
 the HBA that the operating system configured as SCSI host 8:

 Enclosure SV21311179 ESM A sg184[0363][scsi8 port 2] ESM B sg3[0363][scsi7 port 2]

 Each
 drawer of an enclosure is represented by a line indicating how many
 disks are seen over each ESM and a "diskset" checksum of the
 disk WWNs, which is used to verify that each ESM connection sees the
 same set of disks over different device paths.

 If the cabling
 were incorrect in any way, one or more of the enclosures would indicate "number
 undetermined," and the following message would be printed:

 Unable to determine enclosure order; check the HBA to enclosure cabling.

 If
 any slots are unexpectedly empty or contain the wrong type of disk,
 the topsummary output will include additional
 messages such as these:

 Location SV21311179-2-10 appears only on the sg184 path
Location SV21313978-1-3 appears empty but should have an SSD
Location SV21311179-5-12 has an HDD but should be empty

 The
 HBAs are also listed (firmware levels in brackets) with their bus
 addresses and port connections. For example, [P2 SV21311179
 ESM B (sg3)] indicates that HBA port 2 is connected to ESM
 B of enclosure SV21311179; ESM B is represented
 by the /dev/sg3 SCSI/SES expander device. The
 HBA bus addresses and port connections are standard in a GSS building
 block and are used by topsummary to validate
 the correctness of the cabling.

 If the cabling is called out
 as incorrect and the enclosure order cannot be determined, or if other
 discrepancies are noted (for example, physical disks that are expected
 but do not show up at all, or SSDs or HDDs in the wrong locations),
 corrections should be made and verified before proceeding. This would
 probably involve shutting down the servers and the disk enclosures
 and fixing the cabling and disk placement.

 The server2.top topology
 database should also be examined with the topsummary sample
 script and verified to be correct. It should also be verified to have
 found the same enclosures with the same serial numbers and in the
 same order. One way to do this is to run the following commands and
 verify that they give exactly the same output:

 # /usr/lpp/mmfs/samples/vdisk/topsummary server1.top | grep number
/usr/lpp/mmfs/samples/vdisk/topsummary server2.top | grep number

 Once
 the GSS-24 disk enclosure topologies are verified to be correct on
 both intended recovery group server nodes, it is highly recommended
 that the disk enclosures be entered into the GPFS Native RAID component database. This allows
 the system administrator to provide a meaningful name for each component
 and to record each of their physical rack locations in a manner intended
 to make maintenance actions easier.

 To proceed (either to populate
 the GPFS Native
 RAID component
 database or to create recovery groups), the recovery group servers
 must now be members of the same GPFS cluster.
 Consult the GPFS:
 Administration and Programming Reference
 for instructions for creating a GPFS cluster.

 Once
 the intended recovery group servers are added to a GPFS cluster, the component database can be
 updated to identify the equipment rack and the U compartments in which
 the disk enclosures reside.

 In this scenario, a GSS-24 building
 block will occupy an Intelligent
 Cluster 42U Primary Rack. Using the component database, the four
 disk enclosures and the rack in which they reside may be given meaningful
 names and associated with each other.

 To create the component
 database entry for an Intelligent
 Cluster 42U Primary Rack, which has part number 1410HPA,
 and to give it the descriptive name BB1, use
 the mmaddcomp command:

 # mmaddcomp 1410HPA --name BB1

 Do
 the same for each of the four disk enclosures as identified by the topsummary command.
 In this example, the enclosures were identified according to the cabling
 in this order:

 # /usr/lpp/mmfs/samples/vdisk/topsummary server1.top | grep number
Enclosure SV21314035 (number 1):
Enclosure SV21419522 (number 2):
Enclosure SV21313978 (number 3):
Enclosure SV21311179 (number 4):

 Suppose this is GSS-24
 building block 1, and the desired descriptive names for the disk enclosures
 are BB1ENC1, BB1ENC2, BB1ENC3,
 and BB1ENC4. To define these to the component
 database, use the disk enclosure part number 181880E as
 follows:

 # mmaddcomp 181880E --serial-number SV21314035 --name BB1ENC1
mmaddcomp 181880E --serial-number SV21419522 --name BB1ENC2
mmaddcomp 181880E --serial-number SV21313978 --name BB1ENC3
mmaddcomp 181880E --serial-number SV21311179 --name BB1ENC4

 You
 may also use the mmdiscovercomp command
 in place of mmaddcomp, then use mmchcomp to
 assign descriptive names to the enclosures.

 At this point, the
 building block rack and disk enclosures can be listed from component
 database using the mmlscomp command:

 # mmlscomp
Rack Components
Comp ID Part Number Serial Number Name
------- ----------- ------------- ------
 1 1410HPA BB1

Storage Enclosure Components

Comp ID Part Number Serial Number Name Display ID
------- ----------- ------------- ------- ----------
 2 181880E SV21314035 BB1ENC1
 3 181880E SV21419522 BB1ENC2
 4 181880E SV21313978 BB1ENC3
 5 181880E SV21311179 BB1ENC4

 Each of the
 defined components has an ID. The location of the enclosures can be
 defined according to the four U compartments they occupy in the rack.
 To do this, use the mmchcomploc command
 to specify the component IDs of the enclosures, the rack that contains
 them, and the starting U compartment (position) within the rack. The
 syntax of the mmchcomploc command is:

 mmchcomploc Component
Container Position

 To
 define enclosure BB1ENC1 as occupying U compartments
 1 through 4 in rack BB1, use this command:

 # mmchcomploc BB1ENC1 BB1 1

 Suppose BB1ENC2, BB1ENC3,
 and BB1ENC4 have starting U compartments 5, 13,
 and 17, respectively, in rack BB1. Use the following
 commands to define these relationships:

 # mmchcomploc BB1ENC2 BB1 5
mmchcomploc BB1ENC3 BB1 13
mmchcomploc BB1ENC4 BB1 17

 The defined component locations
 can be listed with the mmlscomploc command:

 # mmlscomploc
Component Location
--------- ------------------
BB1ENC1 Rack BB1 U01-04
BB1ENC2 Rack BB1 U05-08
BB1ENC3 Rack BB1 U13-16
BB1ENC4 Rack BB1 U17-20

 (U compartments 9 - 10 and
 11 - 12 are presumably occupied by the recovery group servers. They
 are omitted here as extraneous to this set of examples. They may be
 named and defined if desired by using component part number 7915AC1 with
 the mmaddcomp command, and then using their
 component IDs and starting U compartments with the mmchcomploc command,
 as was done with the disk enclosures.)

 With the above component
 names and locations having been entered into the GPFS Native
 RAID component
 database, a common maintenance action such as replacing a disk will
 be able to supply meaningful direction to the user in locating the
 equipment in a crowded machine room.

 Parent topic: Example scenario: Configuring GPFS Native RAID recovery groups on the GSS

 Creating recovery groups on the IBM System x GPFS Storage Server (GSS)

 Configuring GPFS nodes
 to be recovery group servers

 Having verified the disk enclosure connectivity
 of the GSS-24 building block, and having optionally also created a
 component database to associate names and machine room locations with
 the storage hardware, GPFS Native
 RAID must be
 enabled on the intended recovery group servers.

 To proceed,
 the recovery group servers must be members of the same GPFS cluster. If this has not already been done
 in preparing a GPFS Native
 RAID component
 database, consult the GPFS:
 Administration and Programming Reference for instructions
 for adding nodes to or creating a GPFS cluster.

 Before
 a GPFS node can create and serve
 recovery groups, it must be configured with a vdisk track cache. This
 is accomplished by setting the nsdRAIDTracks configuration
 parameter.

 nsdRAIDTracks is the GPFS configuration parameter essential
 to define a GPFS cluster node
 as a recovery group server. It specifies the number of vdisk tracks
 of which the attributes will be held in memory by the GPFS daemon on the recovery group server.

 The
 actual contents of the vdisk tracks, the user data and the checksums,
 are stored during runtime in the standard GPFS pagepool. Therefore, the size of the GPFS pagepool configured on a recovery
 group server should be considerable, on the order of tens of gigabytes.
 The amount of pagepool dedicated to hold vdisk track data is governed
 by the nsdRAIDBufferPoolSizePct parameter,
 which defaults to 50%. In practice, a recovery group server will not
 need to use the GPFS pagepool
 for any significant amount of standard file caching, and the nsdRAIDBufferPoolSizePct value
 can be increased to 80%. This implies that the prefetchPct pagepool
 parameter can be reduced to as little as 5%. Since a recovery group
 server is also an NSD server, the vdisk buffer pool doubles as the
 NSD buffer pool. To achieve good NSD server performance, a large number
 of dedicated NSD service threads should be configured by setting nsdMinWorkerThreads and nsdMaxWorkerThreads to
 the same value, on the order of a few thousand.

 In this example,
 the recovery group servers will be configured to cache the information
 on 131072 vdisk tracks and to have 38 GiB of pagepool, of which 80%
 will be used for vdisk data and 5% for application file caching. The
 servers are also configured to have 3072 NSD service threads. Once
 the configuration changes are made, the servers will need to be restarted.

 # mmchconfig nsdRAIDTracks=131072,nsdRAIDBufferPoolSizePct=80,prefetchPct=5,pagepool=38G -N server1,server2
mmchconfig nsdMinWorkerThreads=3072,nsdMaxWorkerThreads=3072 -N server1,server2
mmshutdown -N server1,server2
mmstartup -N server1,server2

 Defining the recovery group layout
The definition
 of recovery groups on a GSS-24 building block is accomplished by dividing
 the drawers of the enclosures into left and right halves. The sharing
 of GSS-24 disk enclosures by two servers implies two recovery groups;
 one is served by one node and one by the other, and each server acts
 as the other's backup. Half the disks in each enclosure and drawer
 should belong to one recovery group, and half to the other. One recovery
 group will therefore be defined on the disks in the left half of each
 drawer, slots 1 though 6, and one on the disks in the right half of
 each drawer, slots 7 through 12. The three SSDs in drawer 1 slot 3
 of the first three enclosures will make up the vdisk log declustered
 array for the left recovery group, and the three SSDs in drawer 5
 slot 12 of the first three enclosures will make up the vdisk log declustered
 array of the right recovery group. The remaining 116 HDDs are divided
 into two vdisk data declustered arrays of 58 disks.

 GPFS Native
 RAID provides
 a tool that understands the layout of GSS building blocks and will
 automatically generate the mmcrrecoverygroup stanza
 files for creating the left and right recovery groups. /usr/lpp/mmfs/samples/vdisk/mkrginput,
 when supplied with output of the mmgetpdisktopology command,
 will create recovery group stanza files for the left and right sets
 of disks as described in the previous paragraph.

 Each recovery
 group server, though it may see the same functional disk enclosure
 topology, will almost certainly differ in the particulars of which
 disk device names (for example, /dev/sdax) refer
 to which physical disks in what disk enclosure location.

 There
 are therefore two possibilities for creating the recovery group stanza
 files and the recovery groups themselves:

 	Alternative 1:

 	 Generate the recovery group stanza files and create the recovery
 groups from the perspective of just one of the servers as if that
 server were to be primary for both recovery groups, and then use the mmchrecoverygroup command
 to swap the primary and backup servers for one of the recovery groups

 	Alternative 2:

 	Generate the recovery group stanza files for each server's primary
 recovery group using the primary server's topology file.

 The following example shows both alternatives.

 	Creating the recovery groups, alternative 1

 	To create the recovery group input stanza files from the perspective
 of server1, run:# /usr/lpp/mmfs/samples/vdisk/mkrginput server1.top

 This
 will create two files, one for the left set of disks and one for the
 right set of disks found in the server1 topology.
 The files will be named after the serial number of the enclosure determined
 to be first in the topology, but each will contain disks from all
 four enclosures. In this case, the resulting stanza files will be SV21314035L.server1 for
 the left half and SV21314035R.server1 for the
 right half.

 The recovery group stanza files will follow the
 recommended best practice for a GSS-24 building block of defining
 in each half a separate declustered array of three SSDs for recovery
 group transaction logging, and two file system data declustered arrays
 using the regular HDDs. One of the data declustered arrays will contain
 the disks from the left or right halves of enclosures 1 and 2, and
 the other will contain the disks from the left or right halves of
 enclosures 3 and 4. The vdisk log declustered array will be named LOG,
 and data declustered arrays will be named DA1 and DA2.

 Except
 for the LOG declustered array, the defaults are
 accepted for recovery group declustered array parameters such as scrub
 duration, spare space, and disk replacement policy. For the LOG declustered
 array, the spare space will be defined to be 0. This will permit the
 log vdisk to later be created with three-way replication, which is
 a two-fault tolerant RAID code.

 The stanza file will look something
 like this:

 # head -14 SV21314035L.server1
%da: daName=LOG
 spares=0
%pdisk: pdiskName=e1d1s03log
 device=/dev/sdbk
 da=LOG
 [image: Start of change]nPathActive=2
 nPathTotal=4[image: End of change]
%pdisk: pdiskName=e2d1s03log
 device=/dev/sdbw
 da=LOG
 [image: Start of change]nPathActive=2
 nPathTotal=4[image: End of change]
%pdisk: pdiskName=e3d1s03log
 device=/dev/sdis
 da=LOG
 [image: Start of change]nPathActive=2
 nPathTotal=4[image: End of change]

 All the pdisk stanzas for declustered array LOG will
 be listed first, followed by those for DA1 and DA2.
 The pdisk names will indicate the enclosure number, the drawer number,
 and the slot within the drawer in which the physical disk resides.
 The names of the pdisks in the LOG declustered
 array will have "log" appended to make them stand out. Notice
 that only one block device path to the disk is given; the second path
 will be discovered automatically by GPFS Native
 RAID soon after
 the recovery group is created.

 If, as was recommended, the GPFS Native
 RAID component
 database was used to provide meaningful names for the GSS-24 building
 block components, the names of the recovery groups should be chosen
 to follow that convention. In this example, the building block rack
 was named BB1 and the enclosures were named BB1ENC1 through BB1ENC4.
 It would make sense then to name the left and right recovery groups BB1RGL and BB1RGR.
 Other conventions are of course possible.

 With the left and
 right recovery group stanza files both created from the disk device
 perspective of server node server1, these two
 recovery groups can be created using two separate invocations of the mmcrrecoverygroup command:

 # mmcrrecoverygroup BB1RGL -F SV21314035L.server1 --servers server1,server2
mmcrrecoverygroup: Propagating the cluster configuration data to all
affected nodes. This is an asynchronous process.
mmcrrecoverygroup BB1RGR -F SV21314035R.server1 --servers server1,server2
mmcrrecoverygroup: Propagating the cluster configuration data to all
affected nodes. This is an asynchronous process.

 Note
 that both recovery groups were created with server1 as
 primary and server2 as backup. It is now necessary
 to swap the primary and backup servers for BB1RGR using
 the mmchrecoverygroup command:

 # mmchrecoverygroup BB1RGR --servers server2,server1
mmchrecoverygroup: Propagating the cluster configuration data to all
affected nodes. This is an asynchronous process.

 GPFS Native
 RAID will automatically
 discover the appropriate disk devices on server2.

 	Creating the recovery groups, alternative 2

 	
 To create the recovery groups from the start with the intended
 primary and backup servers, the stanza files from both server topologies
 will need to be created.

 To create the server1 recovery
 group input stanza files, run:

 # /usr/lpp/mmfs/samples/vdisk/mkrginput server1.top

 To
 create the server2 recovery group input stanza files, run:

 # /usr/lpp/mmfs/samples/vdisk/mkrginput server2.top

 These
 two commands will result in four stanza files: SV21314035L.server1, SV21314035R.server1, SV21314035L.server2,
 and SV21314035R.server2.

 The BB1RGL recovery
 group must then be created using server1 as the
 primary and the SV21314035L.server1 stanza file.
 The BB1RGR recovery group must be created using server2 as
 the primary and the SV21314035R.server2 stanza
 file.

 # mmcrrecoverygroup BB1RGL -F SV21314035L.server1 --servers server1,server2
mmcrrecoverygroup: Propagating the cluster configuration data to all
affected nodes. This is an asynchronous process.
mmcrrecoverygroup BB1RGR -F SV21314035R.server2 --servers server2,server1
mmcrrecoverygroup: Propagating the cluster configuration data to all
affected nodes. This is an asynchronous process.

 Since
 each recovery group was created using the intended primary server
 and the stanza file for that server, it is not necessary to swap the
 primary and backup servers.

 Verifying recovery group creation
Use the mmlsrecoverygroup command
 to verify that each recovery group was created:

 # mmlsrecoverygroup BB1RGL -L

 declustered
recovery group arrays vdisks pdisks
----------------- ----------- ------ ------
BB1RGL 3 0 119
declustered needs replace scrub background activity
array service vdisks pdisks spares threshold free space duration task progress priority
----------- ------- ------ ------ ------ --------- ---------- -------- -------------------------
LOG no 0 3 0 1 558 GiB 14 days inactive 0% low
DA1 no 0 58 2 2 101 TiB 14 days inactive 0% low
DA2 no 0 58 2 2 101 TiB 14 days inactive 0% low

 declustered checksum
vdisk RAID code array vdisk size block size granularity remarks
------------------ ------------------ ----------- ---------- ---------- ----------- -------

active recovery group server servers
--- -------
server1 server1,server2

mmlsrecoverygroup BB1RGR -L
 declustered
recovery group arrays vdisks pdisks
----------------- ----------- ------ ------
BB1RGR 3 0 119
declustered needs replace scrub background activity
array service vdisks pdisks spares threshold free space duration task progress priority
----------- ------- ------ ------ ------ --------- ---------- -------- -------------------------
LOG no 0 3 0 1 558 GiB 14 days inactive 0% low
DA1 no 0 58 2 2 101 TiB 14 days inactive 0% low
DA2 no 0 58 2 2 101 TiB 14 days inactive 0% low

 declustered checksum
vdisk RAID code array vdisk size block size granularity remarks
------------------ ------------------ ----------- ---------- ---------- ----------- -------

active recovery group server servers
--- -------
server1 server2,server1

 Notice
 that the vdisk sections of the newly created recovery groups are empty;
 the next step is to create the vdisks.

 Defining and creating the vdisks
Once
 the recovery groups are created and being served by their respective
 servers, it is time to create the vdisks using the mmcrvdisk command.

 Each
 recovery group requires a single log vdisk for recording RAID updates
 and diagnostic information. This is internal to the recovery group,
 cannot be used for user data, and should be the only vdisk in the LOG declustered
 array. The log vdisks use three-way replication in order to be fully
 two-fault tolerant in the LOG declustered array,
 which contains three SSDs and no spare space.

 Data vdisks are
 required to be defined in the two data declustered arrays for use
 as file system NSDs. In this example, each of the declustered arrays
 for file system data is divided into two vdisks with different characteristics:

 	one using 4-way replication and a 1 MiB block size and a total
 vdisk size of 1024 GiB suitable for file system metadata

 	one using Reed-Solomon 8 + 3p encoding and an 16 MiB block size
 suitable for file system data

 The vdisk size is omitted for the Reed-Solomon vdisks, meaning
 that they will default to use the remaining non-spare space in the
 declustered array (for this to work, any vdisks with specified total
 sizes must of course be defined first).

 The possibilities for
 the vdisk creation stanza file are quite great, depending on the number
 and type of vdisk NSDs required for the number and type of file systems
 desired, so the vdisk stanza file will need to be created by hand,
 possibly following a template. The example vdisk stanza file that
 is supplied in /usr/lpp/mmfs/samples/vdisk/vdisk.stanza
 may be used for this purpose and adapted to specific file system requirements.

 For
 GSS, it is suggested that each recovery group use the option of defining
 a log tip vdisk together with the mandatory log home vdisk. These
 vdisks record RAID updates and diagnostic information, are internal
 to each recovery group, and cannot be used for user data. The log
 tip vdisk is a fast staging area for RAID updates. When a log tip
 vdisk is used, it must be the only vdisk in the LOG declustered array,
 and must be the first vdisk defined in each recovery group. When log
 tip is used, the log home vdisk must be the second vdisk defined in
 each recovery group, and should be placed in the first data declustered
 array (in this example, DA1). Any additional
 data declustered arrays may not contain log vdisks. As a staging area,
 the log tip vdisk is relatively small in size at 128 MiB.

 In
 this example, a single stanza file, mmcrvdisk.BB1,
 is used. The single file contains the specifications for all the vdisks
 in both the BB1RGL and BB1RGR recovery groups. Here is what the example
 stanza file for use with mmcrvdisk should
 look like:

 # cat mmcrvdisk.BB1
%vdisk: vdiskName=BB1RGLLOGTIP
 rg=BB1RGL
 da=LOG
 blocksize=1m
 size=128m
 raidCode=3WayReplication
 diskUsage=vdiskLogTip
%vdisk: vdiskName=BB1RGRLOGTIP
 rg=BB1RGR
 da=LOG
 blocksize=1m
 size=128m
 raidCode=3WayReplication
 diskUsage=vdiskLogTip
%vdisk: vdiskName=BB1RGLLOGHOME
 rg=BB1RGL
 da=DA1
 blocksize=1m
 size=40g
 raidCode=4WayReplication
 diskUsage=vdiskLog
%vdisk: vdiskName=BB1RGRLOGHOME
 rg=BB1RGR
 da=DA1
 blocksize=1m
 size=40g
 raidCode=4WayReplication
 diskUsage=vdiskLog
%vdisk: vdiskName=BB1RGLMETA1
 rg=BB1RGL
 da=DA1
 blocksize=1m
 size=256g
 raidCode=4WayReplication
 diskUsage=metadataOnly
 failureGroup=1
 pool=system
%vdisk: vdiskName=BB1RGRMETA1
 rg=BB1RGR
 da=DA1
 blocksize=1m
 size=256g
 raidCode=4WayReplication
 diskUsage=metadataOnly
 failureGroup=1
 pool=system
%vdisk: vdiskName=BB1RGLDATA1
 rg=BB1RGL
 da=DA1
 blocksize=16m
 size=8192g
 raidCode=8+3p
 diskUsage=dataOnly
 failureGroup=1
 pool=data
%vdisk: vdiskName=BB1RGRDATA1
 rg=BB1RGR
 da=DA1
 blocksize=16m
 size=8192g
 raidCode=8+3p
 diskUsage=dataOnly
 failureGroup=1
 pool=data
[DA2 vdisks omitted.]

 Notice how the file system metadata
 vdisks are flagged for eventual file system usage as metadataOnly and
 for placement in the system storage pool, and the file system data
 vdisks are flagged for eventual dataOnly usage
 in the data storage pool. (After the file system is created, a policy
 will be required to allocate file system data to the correct storage
 pools; see Creating the GPFS file system.)

 Importantly,
 also notice that block sizes for the file system metadata and file
 system data vdisks must be specified at this time, may not later be
 changed, and must match the block sizes supplied to the eventual mmcrfs command.

 Notice
 also that the eventual failureGroup=1 value
 for the NSDs on the file system vdisks is the same for vdisks in both
 the BB1RGL and BB1RGR recovery
 groups. This is because the recovery groups, although they have different
 servers, still share a common point of failure in the four GSS-24
 disk enclosures, and GPFS should
 be informed of this through a distinct failure group designation for
 each disk enclosure. It is up to the GPFS system
 administrator to decide upon the failure group numbers for each GSS
 building block in the GPFS cluster.
 In this example, the failure group number 1 has been chosen to match
 the example building block number.

 To create the vdisks specified
 in the mmcrvdisk.BB1 file, use the following mmcrvdisk command:

 # mmcrvdisk -F mmcrvdisk.BB1
mmcrvdisk: [I] Processing vdisk BB1RGLLOGTIP
mmcrvdisk: [I] Processing vdisk BB1RGRLOGTIP
mmcrvdisk: [I] Processing vdisk BB1RGLLOGHOME
mmcrvdisk: [I] Processing vdisk BB1RGRLOGHOME
mmcrvdisk: [I] Processing vdisk BB1RGLMETA1
mmcrvdisk: [I] Processing vdisk BB1RGRMETA1
mmcrvdisk: [I] Processing vdisk BB1RGLDATA1
mmcrvdisk: [I] Processing vdisk BB1RGRDATA1
mmcrvdisk: [I] Processing vdisk BB1RGLMETA2
mmcrvdisk: [I] Processing vdisk BB1RGRMETA2
mmcrvdisk: [I] Processing vdisk BB1RGLDATA2
mmcrvdisk: [I] Processing vdisk BB1RGRDATA2
mmcrvdisk: Propagating the cluster configuration data to all
 affected nodes. This is an asynchronous process.

 Creation
 of the vdisks may be verified through the mmlsvdisk command
 (the mmlsrecoverygroup command may also
 be used):

 # mmlsvdisk
 declustered block size
 vdisk name RAID code recovery group array in KiB remarks
 ------------------ --------------- ------------------ ----------- ---------- -------
 BB1RGLDATA1 8+3p BB1RGL DA1 16384
 BB1RGLDATA2 8+3p BB1RGL DA2 16384
 BB1RGLLOGHOME 4WayReplication BB1RGL DA1 1024 log
 BB1RGLLOGTIP 3WayReplication BB1RGL LOG 1024 logTip
 BB1RGLMETA1 4WayReplication BB1RGL DA1 1024
 BB1RGLMETA2 4WayReplication BB1RGL DA2 1024
 BB1RGRDATA1 8+3p BB1RGR DA1 16384
 BB1RGRDATA2 8+3p BB1RGR DA2 16384
 BB1RGRLOGHOME 4WayReplication BB1RGR DA1 1024 log
 BB1RGRLOGTIP 3WayReplication BB1RGR LOG 1024 logTip
 BB1RGRMETA1 4WayReplication BB1RGR DA1 1024
 BB1RGRMETA2 4WayReplication BB1RGR DA2 1024

 Creating NSDs from vdisks
The mmcrvdisk command
 rewrites the input file so that it is ready to be passed to the mmcrnsd command
 that creates the NSDs from which GPFS builds
 file systems. To create the vdisk NSDs, run the mmcrnsd command
 on the rewritten mmcrvdisk stanza file:

 # mmcrnsd -F mmcrvdisk.BB1
mmcrnsd: Processing disk BB1RGLMETA1
mmcrnsd: Processing disk BB1RGRMETA1
mmcrnsd: Processing disk BB1RGLDATA1
mmcrnsd: Processing disk BB1RGRDATA1
mmcrnsd: Processing disk BB1RGLMETA2
mmcrnsd: Processing disk BB1RGRMETA2
mmcrnsd: Processing disk BB1RGLDATA2
mmcrnsd: Processing disk BB1RGRDATA2
mmcrnsd: Propagating the cluster configuration data to all
affected nodes. This is an asynchronous process.

 Notice
 how the recovery group log vdisks are omitted from NSD processing.

 The mmcrnsd command
 then once again rewrites the stanza file in preparation for use as
 input to the mmcrfs command.

 Creating the GPFS file system

 Run the mmcrfs command
 to create the file system:

 # mmcrfs gpfsbb1 -F mmcrvdisk.BB1 -B 16m --metadata-block-size 1m -T /gpfsbb1 -n 256
The following disks of gpfsbb1 will be formatted on node server1:
 BB1RGLMETA1: size 269213696 KB
 BB1RGRMETA1: size 269213696 KB
 BB1RGLDATA1: size 8593965056 KB
 BB1RGRDATA1: size 8593965056 KB
 BB1RGLMETA2: size 269213696 KB
 BB1RGRMETA2: size 269213696 KB
 BB1RGLDATA2: size 8593965056 KB
 BB1RGRDATA2: size 8593965056 KB
Formatting file system ...
Disks up to size 3.3 TB can be added to storage pool system.
Disks up to size 82 TB can be added to storage pool data.
Creating Inode File
Creating Allocation Maps
Creating Log Files
Clearing Inode Allocation Map
Clearing Block Allocation Map
Formatting Allocation Map for storage pool system
98 % complete on Sun Nov 18 13:27:00 2012
100 % complete on Sun Nov 18 13:27:00 2012
Formatting Allocation Map for storage pool data
85 % complete on Sun Nov 18 13:27:06 2012
100 % complete on Sun Nov 18 13:27:06 2012
Completed creation of file system /dev/gpfsbb1.
mmcrfs: Propagating the cluster configuration data to all
affected nodes. This is an asynchronous process.

 (The -n 256 parameter specifies
 that the allocation maps should account for 256 nodes mounting the
 file system. This is an example only and should be adjusted to actual
 cluster expectations.)

 Notice how the 16 MiB data block size
 is specified with the traditional -B parameter
 and the 1 MiB metadata block size is specified with the --metadata-block-size parameter.
 Since a file system with different metadata and data block sizes requires
 the use of multiple GPFS storage
 pools, a file system placement policy is needed to direct user file
 data to the data storage pool. In this example, the file placement
 policy is very simple:

 # cat policy
rule 'default' set pool 'data'

 The policy must then
 be installed in the file system using the mmchpolicy command:

 # mmchpolicy gpfsbb1 policy -I yes
Validated policy `policy': parsed 1 Placement Rules, 0 Restore Rules, 0 Migrate/Delete/Exclude Rules,
 0 List Rules, 0 External Pool/List Rules
Policy `policy' installed and broadcast to all nodes.

 If
 a policy is not placed in a file system with multiple storage pools,
 attempts to place data into files will return ENOSPC as
 if the file system were full.

 This file system, built on a GSS-24
 building block using two recovery groups, two recovery group servers,
 four file system metadata vdisk NSDs and four file system data vdisk
 NSDs, may now be mounted and placed into service:

 # mmmount gpfsbb1 -a

 Parent topic: Example scenario: Configuring GPFS Native RAID recovery groups on the GSS

 Differences in GSS 1.5 [image: Start of change]and 2.0[image: End of change] with LogTip
 NVRAM partitions

 Disk enclosure and HBA cabling

 GSS 1.5 [image: Start of change]and 2.0[image: End of change] servers
 are configured with six small (2000 MiB) disk partitions on the mirrored
 boot disk. These disk partitions are write-back storage for very fast
 NVRAM cache in the server HBAs. On each server in a GSS building block,
 two of these NVRAM write-back partitions are used for the log tip
 declustered array for GNR RAID updates. (Event logs are only written
 to the log home vdisk on spinning disks, not the log tip vdisk.)

 The mmgetpdisktopology command
 acquires information about NVRAM partitions on the server on which
 it is run. The topsummary command reports
 the existence of NVRAM partitions in the mmgetpdisktopology output.

 For
 example, in the following output, the line "GSS configuration" indicates
 that there are six NVRAM partitions in this server topology. This
 is the expected output for a GSS 1.5 [image: Start of change]or 2.0[image: End of change] server
 in a GSS building block.

 # ssh server1 /usr/lpp/mmfs/bin/mmgetpdisktopology > server1.top
/usr/lpp/mmfs/samples/vdisk/topsummary server1.top
GSS enclosures found: SV21311179 SV21313978 SV21314035 SV21419522
Enclosure SV21314035 (number 1):
Enclosure SV21314035 ESM A sg248[0393][scsi8 port 4] ESM B sg67[0393][scsi7 port 4]
Enclosure SV21314035 Drawer 1 ESM sg248 12 disks diskset "13336" ESM sg67 12 disks diskset "13336"
Enclosure SV21314035 Drawer 2 ESM sg248 12 disks diskset "30460" ESM sg67 12 disks diskset "30460"
Enclosure SV21314035 Drawer 3 ESM sg248 12 disks diskset "55034" ESM sg67 12 disks diskset "55034"
Enclosure SV21314035 Drawer 4 ESM sg248 12 disks diskset "26111" ESM sg67 12 disks diskset "26111"
Enclosure SV21314035 Drawer 5 ESM sg248 12 disks diskset "34371" ESM sg67 12 disks diskset "34371"
Enclosure SV21314035 sees 60 disks

 Enclosure SV21419522 (number 2):
Enclosure SV21419522 ESM A sg68[0393][scsi7 port 3] ESM B sg431[0393][scsi9 port 4]
Enclosure SV21419522 Drawer 1 ESM sg68 12 disks diskset "05350" ESM sg431 12 disks diskset "05350"
Enclosure SV21419522 Drawer 2 ESM sg68 12 disks diskset "29524" ESM sg431 12 disks diskset "29524"
Enclosure SV21419522 Drawer 3 ESM sg68 12 disks diskset "12828" ESM sg431 12 disks diskset "12828"
Enclosure SV21419522 Drawer 4 ESM sg68 12 disks diskset "52289" ESM sg431 12 disks diskset "52289"
Enclosure SV21419522 Drawer 5 ESM sg68 12 disks diskset "57634" ESM sg431 12 disks diskset "57634"
Enclosure SV21419522 sees 60 disks

 Enclosure SV21313978 (number 3):
Enclosure SV21313978 ESM A sg370[0393][scsi9 port 3] ESM B sg249[0393][scsi8 port 3]
Enclosure SV21313978 Drawer 1 ESM sg370 12 disks diskset "09002" ESM sg249 12 disks diskset "09002"
Enclosure SV21313978 Drawer 2 ESM sg370 12 disks diskset "27263" ESM sg249 12 disks diskset "27263"
Enclosure SV21313978 Drawer 3 ESM sg370 12 disks diskset "14213" ESM sg249 12 disks diskset "14213"
Enclosure SV21313978 Drawer 4 ESM sg370 12 disks diskset "36478" ESM sg249 12 disks diskset "36478"
Enclosure SV21313978 Drawer 5 ESM sg370 12 disks diskset "31136" ESM sg249 12 disks diskset "31136"
Enclosure SV21313978 sees 60 disks

 Enclosure SV21311179 (number 4):
Enclosure SV21311179 ESM A sg189[0393][scsi8 port 2] ESM B sg8[0393][scsi7 port 2]
Enclosure SV21311179 Drawer 1 ESM sg189 11 disks diskset "18272" ESM sg8 11 disks diskset "18272"
Enclosure SV21311179 Drawer 2 ESM sg189 12 disks diskset "61983" ESM sg8 12 disks diskset "61983"
Enclosure SV21311179 Drawer 3 ESM sg189 12 disks diskset "36150" ESM sg8 12 disks diskset "36150"
Enclosure SV21311179 Drawer 4 ESM sg189 12 disks diskset "62228" ESM sg8 12 disks diskset "62228"
Enclosure SV21311179 Drawer 5 ESM sg189 11 disks diskset "05314" ESM sg8 11 disks diskset "05314"
Enclosure SV21311179 sees 58 disks

GSS configuration: 4 enclosures, 6 SSDs, 2 empty slots, 238 disks total, 6 NVRAM partitions

scsi7[15.00.00.00] 0000:11:00.0 [P2 SV21311179 ESM B (sg8)] [P3 SV21419522 ESM A (sg68)]
 [P4 SV21314035 ESM B (sg67)]
scsi8[15.00.00.00] 0000:8b:00.0 [P2 SV21311179 ESM A (sg189)] [P3 SV21313978 ESM B (sg249)]
 [P4 SV21314035 ESM A (sg248)]
scsi9[15.00.00.00] 0000:90:00.0 [P3 SV21313978 ESM A (sg370)] [P4 SV21419522 ESM B (sg431)]

 Defining the recovery group layout

 The left and right recovery groups in a GSS building
 block without server NVRAM partitions contain a LOG declustered array
 built on SSDs and two (GSS-24) or three (GSS-26) data declustered
 arrays (DA1, DA2, and DA3)
 built on HDDs.

 In a GSS 1.5 [image: Start of change]or 2.0[image: End of change] building
 block with server NVRAM partitions, there will be an NVR declustered
 array built on NVRAM partitions, an SSD declustered
 array built on SSDs, and two or three data declustered arrays (DA1, DA2,
 and DA3) built on HDDs.

 This introduces a new
 method of storing GNR RAID updates and diagnostics that is both faster
 and has increased redundancy, and a new set of vdisks for GNR internal
 logging.

 The log tip vdisk will now reside in the faster NVR declustered
 array.

 The SSD declustered array will hold a new log backup
 vdisk.

 The log home vdisk will reside in the first data declustered
 array (DA1).

 A new vdisk of type "log reserved"
 will be placed in the second and third data declustered arrays. This
 will be the same size as the log home vdisk, with the intent of making
 all the data declustered arrays have the same amount of usable space
 for file system vdisks. (The log reserved vdisks may in the future
 be used to store additional internal GNR data.)

 The NVR declustered
 array will contain two pdisks. These will be a write-back NVRAM partition
 from each server, one of which is accessed over the network (rather
 than through a common SAS fabric).

 Because the NVR pdisks
 are local to each server, recovery groups can no longer be created
 from the isolated perspective of a single server. The stanza file
 used to create a recovery group must contain information about the
 local NVRAM partitions on each of the two servers in a GSS 1.5 [image: Start of change]or 2.0[image: End of change] building block. The syntax of the mkrginput command
 has been extended to accept two topology files, one from each server
 in the building block.

 To create the recovery group creation
 stanza files for the left and right recovery groups in a GSS 1.5 [image: Start of change]or 2.0[image: End of change] building block, provide the names of the topology
 files for both servers to the mkrginput command:# /usr/lpp/mmfs/samples/vdisk/mkrginput server1.top server2.top

 This
 will create two stanza files, one for the left recovery group and
 one for the right. The files will be named after the serial number
 of the first numbered enclosure in the building block, with an added
 'L' or 'R' and a .stanza suffix:# ls *.stanza
SV21314035L.stanza SV21314035R.stanza

 The left
 and right recovery groups must now be created by specifying both servers,
 using one server as primary for the left and backup for the right,
 and the other as primary for the right and backup for the left:# mmcrrecoverygroup BB1RGL -F SV21314035L.stanza --servers server1,server2
mmcrrecoverygroup: Propagating the cluster configuration data to all
 affected nodes. This is an asynchronous process.
mmcrrecoverygroup BB1RGR -F SV21314035R.stanza --servers server2,server1
mmcrrecoverygroup: Propagating the cluster configuration data to all
 affected nodes. This is an asynchronous process.

 Verifying recovery group creation

 The mmlsrecoverygroup command
 can now be used to show the NVR, SSD, and data declustered arrays:

 # mmlsrecoverygroup BB1RGL -L

 declustered
 recovery group arrays vdisks pdisks format version
 ----------------- ----------- ------ ------ --------------
 BB1RGL 4 0 121 3.5.0.13

 declustered needs replace scrub background activity
 array service vdisks pdisks spares threshold free space duration task progress priority
 ----------- ------- ------ ------ ------ --------- ---------- -------- -------------------------
 SSD no 0 3 0 1 558 GiB 14 days repair-RGD/VCD 10% low
 NVR no 0 2 0 1 3744 MiB 14 days repair-RGD/VCD 10% low
 DA1 no 0 58 2 2 101 TiB 14 days repair-RGD/VCD 10% low
 DA2 no 0 58 2 2 101 TiB 14 days repair-RGD/VCD 10% low

 declustered checksum
 vdisk RAID code array vdisk size block size granularity state remarks
 ------------------ ------------------ ----------- ---------- ---------- ----------- ----- -------

 active recovery group server servers
 --- -------
 server1 server1,server2

mmlsrecoverygroup BB1RGR -L

 declustered
 recovery group arrays vdisks pdisks format version
 ----------------- ----------- ------ ------ --------------
 BB1RGR 4 0 121 3.5.0.13

 declustered needs replace scrub background activity
 array service vdisks pdisks spares threshold free space duration task progress priority
 ----------- ------- ------ ------ ------ --------- ---------- -------- -------------------------
 SSD no 0 3 0 1 558 GiB 14 days repair-RGD/VCD 10% low
 NVR no 0 2 0 1 3744 MiB 14 days repair-RGD/VCD 10% low
 DA1 no 0 58 2 2 101 TiB 14 days repair-RGD/VCD 10% low
 DA2 no 0 58 2 2 101 TiB 14 days repair-RGD/VCD 10% low

 declustered checksum
 vdisk RAID code array vdisk size block size granularity state remarks
 ------------------ ------------------ ----------- ---------- ---------- ----------- ----- -------

 active recovery group server servers
 --- -------
 server2 server2,server1

 Defining and creating the vdisks

 Each of the left and right recovery
 groups will now require:

 	A log tip vdisk (type vdiskLogTip) in the NVR declustered
 array

 	A log tip backup vdisk (type vdiskLogTipBackup)
 in the SSD declustered array

 	A log home vdisk (type vdiskLog) in the DA1 declustered
 array

 	A log reserved vdisk (type vdiskLogReserved in
 the DA2 declustered array (and in the DA3 declustered
 array, in the case of GSS-26)

 These will all need to be specified in a vdisk creation
 stanza file. The vdisk creation example for GSS without NVRAM partitions
 combined the GNR log vdisks and the file system vdisks in the same
 stanza file. In the case of GSS 1.5 [image: Start of change]and 2.0[image: End of change] with
 NVRAM partitions, it will be simpler to perform vdisk creation in
 two steps with two separate stanza files, one for the log vdisks and
 one for the file system vdisks.

 The log vdisk creation file
 for a GSS-24 building block with NVRAM partitions will look like this:

 # cat mmcrvdisklog.BB1
%vdisk:
 vdiskName=BB1RGLLOGTIP
 rg=BB1RGL
 daName=NVR
 blocksize=2m
 size=48m
 raidCode=2WayReplication
 diskUsage=vdiskLogTip

%vdisk:
 vdiskName=BB1RGLLOGTIPBACKUP
 rg=BB1RGL
 daName=SSD
 blocksize=2m
 size=48m
 raidCode=3WayReplication
 diskUsage=vdiskLogTipBackup

%vdisk:
 vdiskName=BB1RGLLOGHOME
 rg=BB1RGL
 daName=DA1
 blocksize=2m
 size=20g
 raidCode=4WayReplication
 diskUsage=vdiskLog
 longTermEventLogSize=4m
 shortTermEventLogSize=4m
 fastWriteLogPct=90

%vdisk:
 vdiskName=BB1RGLDA2RESERVED
 rg=BB1RGL
 daName=DA2
 blocksize=2m
 size=20g
 raidCode=4WayReplication
 diskUsage=vdiskLogReserved

%vdisk:
 vdiskName=BB1RGRLOGTIP
 rg=BB1RGR
 daName=NVR
 blocksize=2m
 size=48m
 raidCode=2WayReplication
 diskUsage=vdiskLogTip

%vdisk:
 vdiskName=BB1RGRLOGTIPBACKUP
 rg=BB1RGR
 daName=SSD
 blocksize=2m
 size=48m
 raidCode=3WayReplication
 diskUsage=vdiskLogTipBackup

%vdisk:
 vdiskName=BB1RGRLOGHOME
 rg=BB1RGR
 daName=DA1
 blocksize=2m
 size=20g
 raidCode=4WayReplication
 diskUsage=vdiskLog
 longTermEventLogSize=4m
 shortTermEventLogSize=4m
 fastWriteLogPct=90

%vdisk:
 vdiskName=BB1RGRDA2RESERVED
 rg=BB1RGR
 daName=DA2
 blocksize=2m
 size=20g
 raidCode=4WayReplication
 diskUsage=vdiskLogReserved

 The parameters chosen for size, blocksize, raidCode, fastWriteLogPct,
 and the event log sizes are standard and have been carefully calculated,
 and they should not be changed. The only difference in the vdisk log
 stanza files between two building blocks will be in the recovery group
 and vdisk names. (In the case of a GSS-26 building block with NVRAM
 partitions, there will be an additional vdiskLogReserved for DA3,
 with parameters otherwise identical to the DA2 log
 reserved vdisk.)

 The log vdisks for the sample GSS 1.5 [image: Start of change]or 2.0[image: End of change] building block BB1 can now
 be created using the mmcrvdisk command:

 # mmcrvdisk -F mmcrvdisklog.BB1
mmcrvdisk: [I] Processing vdisk BB1RGLLOGTIP
mmcrvdisk: [I] Processing vdisk BB1RGLLOGTIPBACKUP
mmcrvdisk: [I] Processing vdisk BB1RGLLOGHOME
mmcrvdisk: [I] Processing vdisk BB1RGLDA2RESERVED
mmcrvdisk: [I] Processing vdisk BB1RGRLOGTIP
mmcrvdisk: [I] Processing vdisk BB1RGRLOGTIPBACKUP
mmcrvdisk: [I] Processing vdisk BB1RGRLOGHOME
mmcrvdisk: [I] Processing vdisk BB1RGRDA2RESERVED
mmcrvdisk: Propagating the cluster configuration data to all
 affected nodes. This is an asynchronous process.

 Creation
 of the GSS 1.5 [image: Start of change]and 2.0[image: End of change] log vdisks can be verified
 using the mmlsvdisk and mmlsrecoverygroup commands:

 # mmlsvdisk
 declustered block size
 vdisk name RAID code recovery group array in KiB remarks
 ------------------ --------------- ------------------ ----------- ---------- -------
 BB1RGLDA2RESERVED 4WayReplication BB1RGL DA2 2048 logRsvd
 BB1RGLLOGHOME 4WayReplication BB1RGL DA1 2048 log
 BB1RGLLOGTIP 2WayReplication BB1RGL NVR 2048 logTip
 BB1RGLLOGTIPBACKUP 3WayReplication BB1RGL SSD 2048 logTipBackup
 BB1RGRDA2RESERVED 4WayReplication BB1RGR DA2 2048 logRsvd
 BB1RGRLOGHOME 4WayReplication BB1RGR DA1 2048 log
 BB1RGRLOGTIP 2WayReplication BB1RGR NVR 2048 logTip
 BB1RGRLOGTIPBACKUP 3WayReplication BB1RGR SSD 2048 logTipBackup

mmlsrecoverygroup BB1RGL -L

 declustered
 recovery group arrays vdisks pdisks format version
 ----------------- ----------- ------ ------ --------------
 BB1RGL 4 4 121 3.5.0.13

 declustered needs replace scrub background activity
 array service vdisks pdisks spares threshold free space duration task progress priority
 ----------- ------- ------ ------ ------ --------- ---------- -------- -------------------------
 SSD no 1 3 0 1 558 GiB 14 days scrub 4% low
 NVR no 1 2 0 1 3648 MiB 14 days scrub 4% low
 DA1 no 1 58 2 2 101 TiB 14 days scrub 0% low
 DA2 no 1 58 2 2 101 TiB 14 days scrub 0% low

 declustered checksum
 vdisk RAID code array vdisk size block size granularity state remarks
 ------------------ ------------------ ----------- ---------- ---------- ----------- ----- -------
 BB1RGLLOGTIP 2WayReplication NVR 48 MiB 2 MiB 512 ok logTip
 BB1RGLLOGTIPBACKUP 3WayReplication SSD 48 MiB 2 MiB 512 ok logTipBackup
 BB1RGLLOGHOME 4WayReplication DA1 20 GiB 2 MiB 512 ok log
 BB1RGLDA2RESERVED 4WayReplication DA2 20 GiB 2 MiB 512 ok logRsvd

 active recovery group server servers
 --- -------
 server1 server1,server2

mmlsrecoverygroup BB1RGR -L

 declustered
 recovery group arrays vdisks pdisks format version
 ----------------- ----------- ------ ------ --------------
 BB1RGR 4 4 121 3.5.0.13

 declustered needs replace scrub background activity
 array service vdisks pdisks spares threshold free space duration task progress priority
 ----------- ------- ------ ------ ------ --------- ---------- -------- -------------------------
 SSD no 1 3 0 1 558 GiB 14 days scrub 4% low
 NVR no 1 2 0 1 3648 MiB 14 days scrub 4% low
 DA1 no 1 58 2 2 101 TiB 14 days scrub 1% low
 DA2 no 1 58 2 2 101 TiB 14 days scrub 1% low

 declustered checksum
 vdisk RAID code array vdisk size block size granularity state remarks
 ------------------ ------------------ ----------- ---------- ---------- ----------- ----- -------
 BB1RGRLOGTIP 2WayReplication NVR 48 MiB 2 MiB 512 ok logTip
 BB1RGRLOGTIPBACKUP 3WayReplication SSD 48 MiB 2 MiB 512 ok logTipBackup
 BB1RGRLOGHOME 4WayReplication DA1 20 GiB 2 MiB 512 ok log
 BB1RGRDA2RESERVED 4WayReplication DA2 20 GiB 2 MiB 512 ok logRsvd

 active recovery group server servers
 --- -------
 server2 server2,server1

 The
 creation of file system vdisks, NSDs, and of a file system can now
 proceed just as in the example for GSS without NVRAM partitions, by
 omitting the log vdisks from the stanza file and including only the
 desired file system vdisks.

 Parent topic: Example scenario: Configuring GPFS Native RAID recovery groups on the GSS

 [image: Start of change]Differences in GSS 2.0 with 24-disk enclosures

 GSS 2.0 provides support for 24-disk JBOD disk enclosures
 with 2U rack compartment height. The primary difference from building
 blocks with 60-disk 4U disk enclosures is that 2U disk enclosure
 building blocks only have one data declustered array (DA1).

 GSS 2.0 building blocks made up of 2U enclosures are supported
 in these configurations:

 	One enclosure with 24 SSDs

 	Two enclosures, each with 24 SSDs

 	Four enclosures, each with 24 SSDs

 	Two enclosures, one with two SSDs and 22 HDDs, the other with
 24 HDDs

 	Four enclosures, one with two SSDs and 22 HDDs, the others with
 24 HDDs

 	Six enclosures, one with two SSDs and 22 HDDs, the others with
 24 HDDs

 In the case of all-SSD building blocks, there is no separate SSD
 declustered array for the log tip backup vdisk. In this case, SSDs
 are also being used for user data and instead make up the DA1 data
 declustered array, where the log tip backup vdisk, log home vdisk,
 and filesystem NSD vdisks reside.

 For GSS 2.0, mmgetpdisktopology and topsummary
 support the verification of 2U enclosure disk cabling.

 This example demonstrates acquiring and displaying the 2U enclosure
 disk topology for a four-enclosure HDD building block: # ssh server1 /usr/lpp/mmfs/bin/mmgetpdisktopology > server1.top
/usr/lpp/mmfs/samples/vdisk/topsummary server1.top
GSS enclosures found: SX32502659 SX32901810 SX33100377 SX33204662
Enclosure SX33204662 (number 1):
Enclosure SX33204662 ESM A sg149[0393][scsi3 port 2] ESM B sg74[0393][scsi1 port 2]
Enclosure SX33204662 ESM sg149 24 disks diskset "65012" ESM sg74 24 disks diskset "65012"
Enclosure SX33204662 sees 24 disks (2 SSDs, 22 HDDs)

Enclosure SX32901810 (number 2):
Enclosure SX32901810 ESM A sg49[0393][scsi1 port 1] ESM B sg199[0393][scsi5 port 2]
Enclosure SX32901810 ESM sg49 24 disks diskset "52828" ESM sg199 24 disks diskset "52828"
Enclosure SX32901810 sees 24 disks (0 SSDs, 24 HDDs)

Enclosure SX33100377 (number 3):
Enclosure SX33100377 ESM A sg174[0393][scsi5 port 1] ESM B sg124[0393][scsi3 port 1]
Enclosure SX33100377 ESM sg174 24 disks diskset "20060" ESM sg124 24 disks diskset "20060"
Enclosure SX33100377 sees 24 disks (0 SSDs, 24 HDDs)

Enclosure SX32502659 (number 4):
Enclosure SX32502659 ESM A sg99[0393][scsi2 port 2] ESM B sg24[0393][scsi0 port 2]
Enclosure SX32502659 ESM sg99 24 disks diskset "03429" ESM sg24 24 disks diskset "03429"
Enclosure SX32502659 sees 24 disks (0 SSDs, 24 HDDs)

GSS configuration: 4 enclosures, 2 SSDs, 0 empty slots, 96 disks total, 6 NVRAM partitions

scsi0[14.00.01.00] 0000:13:00.0 [P2 SX32502659 ESM B (sg24)]
scsi1[14.00.01.00] 0000:15:00.0 [P1 SX32901810 ESM A (sg49)] [P2 SX33204662 ESM B (sg74)]
scsi2[14.00.01.00] 0000:8d:00.0 [P2 SX32502659 ESM A (sg99)]
scsi3[14.00.01.00] 0000:8f:00.0 [P1 SX33100377 ESM B (sg124)] [P2 SX33204662 ESM A (sg149)]
scsi4[15.00.00.00] 0000:92:00.0
scsi5[15.00.00.00] 0000:94:00.0 [P1 SX33100377 ESM A (sg174)] [P2 SX32901810 ESM B (sg199)]

 [image: Start of change]The per-enclosure summaries indicate that these are
 HDD enclosures. [image: End of change]

 For GSS 2.0, mkrginput supports 2U disk
 enclosures. As in GSS 1.5 with NVRAM, the topology files for both
 servers are required and both servers must be supplied to mmcrrecoverygroup for
 initial recovery group creation.

 For 2U-enclosure SSD building blocks, each of the left and right
 recovery groups have NVR and DA1 declustered
 arrays. NVR contains the log tip vdisk and DA1 contains
 the log tip backup, log home, and user vdisks.

 For 2U-enclosure HDD building blocks, each recovery group has NVR,
 SSD, and DA1 declustered arrays. NVR contains
 the log tip vdisk, SSD contains the log tip backup
 vdisk, and DA1 contains the log home and user vdisks.

 Because there is only one data declustered array in a 2U enclosure
 recovery group, log reserved vdisks are not required.

 Here is an example of the output of mmlsrecoverygroup for
 the left recovery group of a GSS 2.0 HDD building block made up of
 four 2U enclosures: # mmlsrecoverygroup BB1L -L --pdisk

 declustered
 recovery group arrays vdisks pdisks format version
 ----------------- ----------- ------ ------ --------------
 BB1L 3 7 50 4.1.0.1

 declustered needs replace scrub background activity
 array service vdisks pdisks spares threshold free space duration task progress priority
 ----------- ------- ------ ------ ------ --------- ---------- -------- -------------------------
 SSD no 1 1 0,0 1 186 GiB 14 days scrub 41% low
 NVR no 1 2 0,0 1 3648 MiB 14 days scrub 41% low
 DA1 no 5 47 2,26 2 7220 GiB 14 days scrub 40% low

 n. active, declustered user state,
 pdisk total paths array free space condition remarks
 ----------------- ----------- ----------- ---------- ----------- -------
 e1s01ssd 2, 4 SSD 186 GiB normal ok
 e1s02 2, 4 DA1 189 GiB normal ok
 e1s03 2, 4 DA1 189 GiB normal ok
 e1s04 2, 4 DA1 189 GiB normal ok
 e1s05 2, 4 DA1 189 GiB normal ok
 e1s06 2, 4 DA1 197 GiB normal ok
 e1s07 2, 4 DA1 189 GiB normal ok
 e1s08 2, 4 DA1 190 GiB normal ok
 e1s09 2, 4 DA1 189 GiB normal ok
 e1s10 2, 4 DA1 189 GiB normal ok
 e1s11 2, 4 DA1 189 GiB normal ok
 e1s12 2, 4 DA1 190 GiB normal ok
 e2s01 2, 4 DA1 192 GiB normal ok
 e2s02 2, 4 DA1 191 GiB normal ok
 e2s03 2, 4 DA1 190 GiB normal ok
 e2s04 2, 4 DA1 189 GiB normal ok
 e2s05 2, 4 DA1 189 GiB normal ok
 e2s06 2, 4 DA1 189 GiB normal ok
 e2s07 2, 4 DA1 188 GiB normal ok
 e2s08 2, 4 DA1 189 GiB normal ok
 e2s09 2, 4 DA1 189 GiB normal ok
 e2s10 2, 4 DA1 189 GiB normal ok
 e2s11 2, 4 DA1 188 GiB normal ok
 e2s12 2, 4 DA1 188 GiB normal ok
 e3s01 2, 4 DA1 189 GiB normal ok
 e3s02 2, 4 DA1 188 GiB normal ok
 e3s03 2, 4 DA1 189 GiB normal ok
 e3s04 2, 4 DA1 189 GiB normal ok
 e3s05 2, 4 DA1 188 GiB normal ok
 e3s06 2, 4 DA1 188 GiB normal ok
 e3s07 2, 4 DA1 189 GiB normal ok
 e3s08 2, 4 DA1 189 GiB normal ok
 e3s09 2, 4 DA1 188 GiB normal ok
 e3s10 2, 4 DA1 188 GiB normal ok
 e3s11 2, 4 DA1 188 GiB normal ok
 e3s12 2, 4 DA1 188 GiB normal ok
 e4s01 2, 4 DA1 188 GiB normal ok
 e4s02 2, 4 DA1 188 GiB normal ok
 e4s03 2, 4 DA1 189 GiB normal ok
 e4s04 2, 4 DA1 189 GiB normal ok
 e4s05 2, 4 DA1 189 GiB normal ok
 e4s06 2, 4 DA1 188 GiB normal ok
 e4s07 2, 4 DA1 189 GiB normal ok
 e4s08 2, 4 DA1 189 GiB normal ok
 e4s09 2, 4 DA1 189 GiB normal ok
 e4s10 2, 4 DA1 189 GiB normal ok
 e4s11 2, 4 DA1 188 GiB normal ok
 e4s12 2, 4 DA1 188 GiB normal ok
 n1s01 1, 1 NVR 1824 MiB normal ok
 n2s01 1, 1 NVR 1824 MiB normal ok

 declustered checksum
 vdisk RAID code array vdisk size block size granularity state remarks
 ------------------ ------------------ ----------- ---------- ---------- ----------- ----- -------
 BB1LLOGTIP 2WayReplication NVR 48 MiB 2 MiB 512 ok logTip
 BB1LLOGTIPBACKUP Unreplicated SSD 48 MiB 2 MiB 512 ok logTipBackup
 BB1LLOGHOME 4WayReplication DA1 20 GiB 2 MiB 512 ok log
 BB1L4WAY1 4WayReplication DA1 256 GiB 256 KiB 32 KiB ok
 BB1L4WAY2 4WayReplication DA1 256 GiB 256 KiB 32 KiB ok
 BB1L83PD1 8+3p DA1 10 TiB 16 MiB 32 KiB ok
 BB1L83PD2 8+3p DA1 10 TiB 16 MiB 32 KiB ok

 config data declustered array VCD spares actual rebuild spare space remarks
 ------------------ ------------------ ------------- --------------------------------- ----------------
 rebuild space DA1 26 30 pdisk

 config data max disk group fault tolerance actual disk group fault tolerance remarks
 ------------------ --------------------------------- --------------------------------- ----------------
 rg descriptor 1 enclosure + 1 pdisk 1 enclosure + 1 pdisk limiting fault tolerance
 system index 2 enclosure 1 enclosure + 1 pdisk limited by rg descriptor

 vdisk max disk group fault tolerance actual disk group fault tolerance remarks
 ------------------ --------------------------------- --------------------------------- ----------------
 BB1LLOGTIP 1 pdisk 1 pdisk
 BB1LLOGTIPBACKUP 0 pdisk 0 pdisk
 BB1LLOGHOME 3 enclosure 1 enclosure + 1 pdisk limited by rg descriptor
 BB1L4WAY1 3 enclosure 1 enclosure + 1 pdisk limited by rg descriptor
 BB1L4WAY2 3 enclosure 1 enclosure + 1 pdisk limited by rg descriptor
 BB1L83PD1 1 enclosure 1 enclosure
 BB1L83PD2 1 enclosure 1 enclosure

 active recovery group server servers
 --- -------
 server1 server1,server2

 Parent topic: Example scenario: Configuring GPFS Native RAID recovery groups on the GSS

[image: End of change]

 Example scenario: Replacing failed disks in a GSS recovery
 group

 The scenario presented here shows how to detect and replace
 failed disks in a recovery group built on a GSS building block.

 Note: When replacing a failed disk, the mmchcarrier command
 will attempt to install the latest firmware on the [image: Start of change]replacement[image: End of change] disk
 by invoking the sample callback script /usr/lpp/mmfs/samples/vdisk/tspreparenewpdiskforuse (if
 present). To use this callback script, copy it to /usr/lpp/mmfs/bin/tspreparenewpdiskforuse and
 make it executable.

 Detecting failed disks in your GSS enclosure

 Assume a GSS-24 building block
 on which the following two recovery groups are defined:

 	BB1RGL, containing the disks in the left
 side of each drawer

 	BB1RGR, containing the disks in the right
 side of each drawer

 Each recovery group contains the following:

 	one log declustered array (LOG)

 	two data declustered arrays (DA1, DA2)

 The data declustered arrays are defined according to GSS-24
 best practice as follows:

 	58 pdisks per data declustered array

 	default disk replacement threshold value set to 2

 The replacement threshold of 2 means that GPFS Native RAID will only require disk replacement
 when two or more disks have failed in the declustered array; otherwise,
 rebuilding onto spare space or reconstruction from redundancy will
 be used to supply affected data. This configuration can be seen in
 the output of mmlsrecoverygroup for the
 recovery groups, shown here for BB1RGL:# mmlsrecoverygroup BB1RGL -L

 declustered
 recovery group arrays vdisks pdisks
 ----------------- ----------- ------ ------
 BB1RGL 3 5 119

 declustered needs replace scrub background activity
 array service vdisks pdisks spares threshold free space duration task progress priority
 ----------- ------- ------ ------ ------ --------- ---------- -------- -------------------------
 LOG no 1 3 0 1 534 GiB 14 days scrub 1% low
 DA1 yes 2 58 2 2 0 B 14 days rebuild-1r 4% low
 DA2 no 2 58 2 2 1024 MiB 14 days scrub 27% low

 declustered checksum
 vdisk RAID code array vdisk size block size granularity remarks
 ------------------ ------------------ ----------- ---------- ---------- ----------- -------
 BB1RGLLOG 3WayReplication LOG 8192 MiB 256 KiB 512 log
 BB1RGLMETA1 4WayReplication DA1 1024 GiB 1 MiB 32 KiB
 BB1RGLDATA1 8+3p DA1 70 TiB 16 MiB 32 KiB
 BB1RGLMETA2 4WayReplication DA2 1024 GiB 1 MiB 32 KiB
 BB1RGLDATA2 8+3p DA2 70 TiB 16 MiB 32 KiB

 active recovery group server servers
 --- -------
 server1 server1,server2

 The
 indication that disk replacement is called for in this recovery group
 is the value of yes in
 the needs service column for declustered array DA1.

 The
 fact that DA1 is undergoing rebuild of its RAID
 tracks that can tolerate one strip failure is by itself not an indication
 that disk replacement is required; it merely indicates that data from
 a failed disk is being rebuilt onto spare space. Only if the replacement
 threshold has been met will disks be marked for replacement and the
 declustered array marked as needing service.

 GPFS Native RAID provides several indications
 that disk replacement is required:

 	entries in the Linux syslog

 	the GPFS pdReplacePdisk callback,
 which can be configured to run an administrator-supplied script at
 the moment a pdisk is marked for replacement

 	the output from the following commands, which may be performed
 from the command line on any GPFS cluster
 node (see the examples that follow):

 	mmlsrecoverygroup with the -L flag
 shows yes in the needs
 service column

 	mmlsrecoverygroup with the -L and --pdisk flags;
 this shows the states of all pdisks, which may be examined for the
 replace pdisk state

 	mmlspdisk with the --replace flag,
 which lists only those pdisks that are marked for replacement

 Note: Because the output of mmlsrecoverygroup
 -L --pdisk is very long, this example shows only some
 of the pdisks (but includes those marked for replacement).

 # mmlsrecoverygroup BB1RGL -L --pdisk

 declustered
 recovery group arrays vdisks pdisks
 ----------------- ----------- ------ ------
 BB1RGL 3 5 119

 declustered needs replace scrub background activity
 array service vdisks pdisks spares threshold free space duration task progress priority
 ----------- ------- ------ ------ ------ --------- ---------- -------- -------------------------
 LOG no 1 3 0 1 534 GiB 14 days scrub 1% low
 DA1 yes 2 58 2 2 0 B 14 days rebuild-1r 4% low
 DA2 no 2 58 2 2 1024 MiB 14 days scrub 27% low

 [image: Start of change]n. active, declustered user state,
pdisk total paths array free space condition remarks
----------------- ----------- ----------- ---------- ----------- -------
 [...]
 e1d4s06 2, 4 DA1 62 GiB normal ok
 e1d5s01 0, 0 DA1 70 GiB replaceable slow/noPath/systemDrain/noRGD/noVCD/replace
 e1d5s02 2, 4 DA1 64 GiB normal ok
 e1d5s03 2, 4 DA1 63 GiB normal ok
 e1d5s04 0, 0 DA1 64 GiB replaceable failing/noPath/systemDrain/noRGD/noVCD/replace
 e1d5s05 2, 4 DA1 63 GiB normal ok[image: End of change]
 [...]

 The preceding output shows that the following
 pdisks are marked for replacement:

 	e1d5s01 in DA1

 	e1d5s04 in DA1

 The naming convention used during recovery group creation
 indicates that these are the disks in Enclosure 1 Drawer 5 Slot 1
 and Enclosure 1 Drawer 5 Slot 4. To confirm the physical locations
 of the failed disks, use the mmlspdisk command
 to list information about those pdisks in declustered array DA1 of
 recovery group BB1RGL that are marked for replacement:

 # mmlspdisk BB1RGL --declustered-array DA1 --replace
pdisk:
 replacementPriority = 0.98
 name = "e1d5s01"
 device = ""
 recoveryGroup = "BB1RGL"
 declusteredArray = "DA1"
 state = "slow/noPath/systemDrain/noRGD/noVCD/replace"
 [image: Start of change].
 .
 .[image: End of change]
pdisk:
 replacementPriority = 0.98
 name = "e1d5s04"
 device = ""
 recoveryGroup = "BB1RGL"
 declusteredArray = "DA1"
 state = "failing/noPath/systemDrain/noRGD/noVCD/replace"
 [image: Start of change].
 .
 .[image: End of change]

 The physical locations of the failed disks are confirmed
 to be consistent with the pdisk naming convention and with the GPFS Native RAID component database:

 --
Disk			 Location		 User Location
--
pdisk e1d5s01		SV21314035-5-1		Rack BB1 U01-04, Enclosure BB1ENC1 Drawer 5 Slot 1
--
pdisk e1d5s04		SV21314035-5-4		Rack BB1 U01-04, Enclosure BB1ENC1 Drawer 5 Slot 4
--

 This
 shows how the component database provides an easier-to-use location
 reference for the affected physical disks. The pdisk name e1d5s01 signifies
 very simply "Enclosure 1 Drawer 5 Slot 1." The location additionally
 provides the serial number of enclosure 1, SV21314035,
 with the drawer and slot number. But the user location that has been
 defined in the component database can be used to precisely locate
 the disk in a given equipment rack and a named disk enclosure: This
 is the disk enclosure labelled "BB1ENC1," found
 in compartments U01 - U04 of
 the rack labelled "BB1," and the disk is
 in drawer 5, slot 1 of that enclosure.

 The relationship between
 the enclosure serial number and the user location can be seen with
 the mmlscomp command:

 # mmlscomp --serial-number SV21314035

 Storage Enclosure Components

Comp ID Part Number Serial Number Name Display ID
------- ----------- ------------- ------- ----------
 2 181880E SV21314035 BB1ENC1

 Replacing failed disks in a GSS-24 recovery group

 Note: In
 this example, it is assumed that two new disks with the appropriate
 Field Replaceable Unit (FRU) code, as indicated by the fru attribute
 (90Y8597 in this case), have been obtained as
 replacements for the failed pdisks e1d5s01 and e1d5s04.

 Replacing
 each disk is a three-step process:

 	Using the mmchcarrier command with the --release flag
 to inform GPFS to locate the
 disk, suspend it, and allow it to be removed.

 	Locating and removing the failed disk and replacing it with a
 new one.

 	Using the mmchcarrier command with the --replace flag
 to begin use of the new disk.

 GPFS Native RAID
 assigns a priority to pdisk replacement. Disks with smaller values
 for the replacementPriority attribute should
 be replaced first. In this example, the only failed disks are in DA1 and
 both have the same replacementPriority.

 Disk e1d5s01 is
 chosen to be replaced first.

 	To release pdisk e1d5s01 in recovery group BB1RGL:# mmchcarrier BB1RGL --release --pdisk e1d5s01
[I] Suspending pdisk e1d5s01 of RG BB1RGL in location SV21314035-5-1.
[I] Location SV21314035-5-1 is Rack BB1 U01-04, Enclosure BB1ENC1 Drawer 5 Slot 1.
[I] Carrier released.

 - Remove carrier.
 - Replace disk in location SV21314035-5-1 with FRU 90Y8597.
 - Reinsert carrier.
 - Issue the following command:

 mmchcarrier BB1RGL --replace --pdisk 'e1d5s01'

 Repair timer is running. Perform the above within 5 minutes
 to avoid pdisks being reported as missing.

 GPFS Native RAID issues instructions
 as to the physical actions that must be taken, and repeats the user-defined
 location to assist in finding the disk. As disk replacement in a GSS-24
 building block affects only the disk being replaced, the five-minute
 warning serves mostly as a reminder to act promptly.

 	To allow the enclosure BB1ENC1 with serial
 number SV21314035 to be located and identified, GPFS Native RAID will turn on the
 enclosure’s amber "service required" LED. The enclosure’s
 bezel should be removed. This will reveal that the amber "service
 required" and blue "service allowed" LEDs for drawer 5 have
 been turned on.
 Drawer 5 should then be unlatched and pulled open.
 The disk in slot 1 will be seen to have its amber and blue LEDs turned
 on.

 Unlatch and pull up the handle for the identified disk in
 slot 1. Lift the failed disk out and set it aside. The drive LEDs
 will turn off when the slot is empty. A new disk with FRU 90Y8597 should
 be lowered in place and have its handle pushed down and latched.

 Since
 the second disk replacement in this example is also in drawer 5 of
 the same enclosure, leave the drawer open and the enclosure bezel
 off. If the next replacement were in a different drawer, the drawer
 would be closed; and if the next replacement were in a different enclosure,
 the enclosure bezel would be replaced.

 	To finish the replacement of pdisk e1d5s01:# mmchcarrier BB1RGL --replace --pdisk e1d5s01
[I] The following pdisks will be formatted on node server1:
 /dev/sdmi
[I] Pdisk e1d5s01 of RG BB1RGL successfully replaced.
[I] Resuming pdisk e1d5s01#026 of RG BB1RGL.
[I] Carrier resumed.

 When the mmchcarrier
 --replace command returns successfully, GPFS Native RAID will begin rebuilding and rebalancing
 RAID strips onto the new disk, which has assumed the pdisk name e1d5s01.
 The failed pdisk may remain in a temporary form (indicated here by
 the name e1d5s01#026) until all data from it
 has been rebuilt, at which point it is finally deleted. Notice that
 only one block device name is mentioned as being formatted as a pdisk;
 the second path will be discovered in the background.

 Disk e1d5s04 will
 still be marked for replacement, and DA1 of BBRGL will
 still need service. This is because GPFS Native
 RAID replacement policy expects all failed disks in the declustered
 array to be replaced once the replacement threshold is reached.

 Pdisk e1d5s04 is then replaced following
 the same process.

 	Release pdisk e1d5s04 in recovery group BB1RGL:# mmchcarrier BB1RGL --release --pdisk e1d5s04
[I] Suspending pdisk e1d5s04 of RG BB1RGL in location SV21314035-5-4.
[I] Location SV21314035-5-4 is Rack BB1 U01-04, Enclosure BB1ENC1 Drawer 5 Slot 4.
[I] Carrier released.

 - Remove carrier.
 - Replace disk in location SV21314035-5-4 with FRU 90Y8597.
 - Reinsert carrier.
 - Issue the following command:

 mmchcarrier BB1RGL --replace --pdisk 'e1d5s04'

 Repair timer is running. Perform the above within 5 minutes
 to avoid pdisks being reported as missing.

 	Find the enclosure and drawer, unlatch and remove the disk in
 slot 4, place a new disk in slot 4, push in the drawer, and replace
 the enclosure bezel.

 	To finish the replacement of pdisk e1d5s04:# mmchcarrier BB1RGL --replace --pdisk e1d5s04
[I] The following pdisks will be formatted on node server1:
 /dev/sdfd
[I] Pdisk e1d5s04 of RG BB1RGL successfully replaced.
[I] Resuming pdisk e1d5s04#029 of RG BB1RGL.
[I] Carrier resumed.

 The disk replacements may be confirmed with mmlsrecoverygroup
 -L --pdisk:

 # mmlsrecoverygroup BB1RGL -L --pdisk

 declustered
 recovery group arrays vdisks pdisks
 ----------------- ----------- ------ ------
 BB1RGL 3 5 121

 declustered needs replace scrub background activity
 array service vdisks pdisks spares threshold free space duration task progress priority
 ----------- ------- ------ ------ ------ --------- ---------- -------- -------------------------
 LOG no 1 3 0 1 534 GiB 14 days scrub 1% low
 DA1 no 2 60 2 2 3647 GiB 14 days rebuild-1r 4% low
 DA2 no 2 58 2 2 1024 MiB 14 days scrub 27% low

 [image: Start of change]n. active, declustered user state,
pdisk total paths array free space condition remarks
----------------- ----------- ----------- ---------- ----------- -------
[...]
e1d4s06 2, 4 DA1 62 GiB normal ok
e1d5s01 2, 4 DA1 1843 GiB normal ok
e1d5s01#026 0, 0 DA1 70 GiB draining slow/noPath/systemDrain/adminDrain/noRGD/noVCD
e1d5s02 2, 4 DA1 64 GiB normal ok
e1d5s03 2, 4 DA1 63 GiB normal ok
e1d5s04 2, 4 DA1 1853 GiB normal ok
e1d5s04#029 0, 0 DA1 64 GiB draining failing/noPath/systemDrain/adminDrain/noRGD/noVCD
e1d5s05 2, 4 DA1 62 GiB normal ok[image: End of change]
[...]

 Notice that the temporary pdisks (e1d5s01#026 and e1d5s04#029)
 representing the now-removed physical disks are counted toward the
 total number of pdisks in the recovery group BB1RGL and
 the declustered array DA1. They will exist until
 RAID rebuild completes the reconstruction of the data that they carried
 onto other disks (including their replacements). When rebuild completes,
 the temporary pdisks will disappear, and the number of disks in DA1 will
 once again be 58, and the number of disks in BBRGL will
 once again be 119.

 Parent topic: GPFS Native RAID setup and maintenance on the IBM System x GPFS Storage Server (GSS)

 Example scenario: Replacing failed GSS storage enclosure components

 The scenario presented here shows how to detect and replace
 failed storage enclosure components in a GSS building block.

 Detecting failed storage enclosure components

 The mmlsenclosure command
 can be used to show you which enclosures need service along with the
 specific component. A best practice is to run this command each day
 to check for failures. # mmlsenclosure all -L --not-ok

 needs nodes
 serial number service
 ------------- ------- ------
 SV21313971 yes c45f02n01-ib0.gpfs.net

 component type serial number component id failed value unit properties
 -------------- ------------- ------------ ------ ----- ---- ----------
 fan SV21313971 1_BOT_LEFT yes RPM FAILED

 This indicates that enclosure SV21313971 has
 a failed fan. Refer to IBM System x GPFS Storage Server: Installation, User's, and
 Maintenance Guide.

 Once
 you are ready to replace the failed component, use the mmchenclosure command
 to identify whether it is safe to complete the repair action or whether GPFS needs to be shut down first: # mmchenclosure SV21313971 --component fan --component-id 1_BOT_LEFT

mmenclosure: Proceed with the replace operation.

 The
 fan can now be replaced.

 Special note about detecting failed enclosure components

 In
 the following example, only the enclosure itself is being called out
 as having failed; the specific component that has actually failed
 is not identified. This typically means that there are drive "Service
 Action Required (Fault)" LEDs that have been turned on in the drawers.
 In such a situation, the mmlspdisk all --not-ok command
 can be used to check for dead or failing disks. mmlsenclosure all -L --not-ok

 needs nodes
 serial number service
 ------------- ------- ------
 SV13306129 yes c45f01n01-ib0.gpfs.net

 component type serial number component id failed value unit properties
 -------------- ------------- ------------ ------ ----- ---- ----------
 enclosure SV13306129 ONLY yes NOT_IDENTIFYING,FAILED

 Parent topic: GPFS Native RAID setup and maintenance on the IBM System x GPFS Storage Server (GSS)

 Example scenario: Replacing a failed GSS storage enclosure
 drawer

 The scenario presented here shows how to use the chdrawer sample
 script as a service aid in replacing a GSS enclosure drawer while GPFS is active.

 The chdrawer sample script is
 intended to be used in GSS-26 configurations where the declustered
 arrays have been laid out across all the drawers so that removing
 a drawer affects only two disks in each declustered array.
 Notes:

 	In this layout, follow these recommendations:

 	Run 8+3p or 4-way mirroring only

 	Always have two spares per declustered array.

 You can use 8+2p or 3-way mirroring, but this means that once
 the drawer is removed, every declustered array will be running in
 critical mode. Therefore, one more sector error or disk failure will
 result in data being unavailable or worse.

 	A drawer can be replaced in a GSS-24 configuration laid out such
 that removing a drawer affects three disks in each declustered array,
 but only in the case where the vdisks were using 8+3p or 4-way
 mirroring.

 The syntax of the chdrawer sample
 script is:chdrawer EnclosureSerialNumber DrawerNumber
 {--release [--force-release] | --replace [--force-replace]} [--dry-run]

 where:

 	EnclosureSerialNumber

 	Specifies the enclosure serial number, as displayed by mmlsenclosure.

 	DrawerNumber

 	Specifies the drawer number to be replaced. Drawers are numbered
 from top to bottom in an enclosure.

 	--release

 	Prepares the drawer for disk replacement by draining all the pdisks.

 	--replace

 	Resumes all the pdisks once the drawer has been replaced (with
 all the former pdisks in their corresponding slots).

 	--dry-run

 	Runs the command without actually changing the pdisk states; checks
 whether there is enough redundancy to safely replace the drawer on
 a live system.

 	--force-release

 	Forces the --release option. Changes
 the pdisk states to serviceDrain despite warnings.

 	--force-replace

 	Forces the --replace option. Ends the
 service drain state despite warnings.

 To replace drawer 3 in
 enclosure SV21106537, follow these steps:

 	Start the release sequence using the following command:/usr/lpp/mmfs/samples/vdisk/chdrawer SV21106537 3 --release

 The
 command performs the following actions:

 	Discovers all the pdisks that are in the drawer.

 	Checks that each declustered array has two spares.

 	Checks that there are no other disks down that might prevent a
 successful rebuild.

 	Places the pdisks in serviceDrain state,
 which will drain all the data from the affected pdisks.

 	Waits until all the data is drained.

 	Record the location of the drives and label them, as you will
 later need to replace them in the corresponding slots of the new drawer.

 	Disconnect the drawer, repair it, and put it back in. (See IBM System x GPFS Storage Server: Installation, User's, and
 Maintenance Guide for physical
 replacement instructions.)

 	Complete the replacement sequence using the following command:/usr/lpp/mmfs/samples/vdisk/chdrawer SV21106537 3 --replace

 The command performs the following actions:

 	Verifies that the expected number of pdisks have been found.

 	Removes the serviceDrain state, which will
 start rebalancing data back onto the pdisks.

 Parent topic: GPFS Native RAID setup and maintenance on the IBM System x GPFS Storage Server (GSS)

 Example scenario: Replacing a failed GSS storage enclosure

 The scenario presented here shows how to replace a failed
 GSS storage enclosure.

 To replace a failed storage enclosure, follow these steps:

 	Shut down GPFS across the
 cluster by issuing the following command: mmshutdown -a

 	Record the drawer and slot locations of the drives and label them,
 as you will need to move them to the corresponding slots of the new
 drawers of the new enclosure.

 	Remove the SAS connections in the rear of the enclosure.

 	Remove the enclosure.

 	Install the new enclosure.

 	Transfer the disks to the new drawers of the new enclosure, referring
 to the information saved in step 2.

 	Connect the SAS connections in the rear of the new enclosure.

 	Power up the enclosure.

 	Verify the SAS topology on the servers to ensure that all drives
 from the new storage enclosure are present.

 	Update the necessary firmware on the new storage enclosure as
 needed.

 	Startup GPFS across the
 cluster mmstartup -a

 Parent topic: GPFS Native RAID setup and maintenance on the IBM System x GPFS Storage Server (GSS)

 Example scenario: Checking the health of a GSS configuration

 The scenario presented here shows how to use the gnrhealthcheck sample
 script to check the general health of a GSS configuration.

 The syntax of the gnrhealthcheck sample
 script is: gnrhealthcheck [--topology] [--enclosure] [--rg] [--pdisk]
 [--perf-dd] [--local]

 where:

 	--topology

 	Checks the operating system topology. Runs mmgetpdisktopology and topsummary to
 look for cabling and path issues.

 	--enclosure

 	Checks enclosures. Runs mmlsenclosure to
 look for failures.

 	--rg

 	Checks recovery groups. Runs mmlsrecoverygroup to
 check whether all recovery groups are active and whether the active
 server is the primary server. Also checks for any recovery groups
 that need service.

 	--pdisk

 	Checks pdisks. Runs mmlspdisk to check
 that each pdisk has two paths.

 	--perf-dd

 	Checks basic performance of disks. Runs a dd read to each potential
 GNR disk drive for a GB and reports basic performance stats. Reads
 are done six disks at a time. These statistics will only be meaningful
 if run on an idle system. Available on Linux only.

 	--local

 	Runs tests only on the invoking node.

 The default is to check everything except --perf-dd arguments
 on all NSD server nodes.

 Output return codes:

 	0

 	No problems were found.

 	1

 	Problems were found, and information was displayed.
 Note: The
 default is to display to stdout. There may be a large amount of data,
 so it is recommended that you pipe the output to a file.

 Examples

 	To run a health check on the local server nodes and place output
 in /tmp/gnrhealthcheck.out, issue the following
 command: gnrhealthcheck --local | tee /tmp/gnrhealthcheck.out

 In
 this example all checks are successful.The system displays information
 similar to this: ##
Beginning topology checks.
##
Topology checks successful.

##
Beginning enclosure checks.
##
Enclosure checks successful.

##
Beginning recovery group checks.
##
Recovery group checks successful.

##
Beginning pdisk checks.
##

Pdisk group checks successful.

 	To run a health check on the local server nodes and place output
 in /tmp/gnrhealthcheck.out, issue the following
 command: gnrhealthcheck --local | tee /tmp/gnrhealthcheck.out

 In
 this example, there are numerous issues to be investigated.The
 system displays information similar to this: ##
Beginning topology checks.
##
Found topology problems on node c45f01n01-ib0.gpfs.net

DCS3700 enclosures found: 0123456789AB SV11812206 SV12616296 SV13306129
Enclosure 0123456789AB (number 1):
Enclosure 0123456789AB ESM A sg244[0379][scsi8 port 4] ESM B sg4[0379][scsi7 port 4]
Enclosure 0123456789AB Drawer 1 ESM sg244 12 disks diskset "19968" ESM sg4 12 disks diskset "19968"
Enclosure 0123456789AB Drawer 2 ESM sg244 12 disks diskset "11294" ESM sg4 12 disks diskset "11294"
Enclosure 0123456789AB Drawer 3 ESM sg244 12 disks diskset "60155" ESM sg4 12 disks diskset "60155"
Enclosure 0123456789AB Drawer 4 ESM sg244 12 disks diskset "03345" ESM sg4 12 disks diskset "03345"
Enclosure 0123456789AB Drawer 5 ESM sg244 11 disks diskset "33625" ESM sg4 11 disks diskset "33625"
Enclosure 0123456789AB sees 59 disks

Enclosure SV12616296 (number 2):
Enclosure SV12616296 ESM A sg63[0379][scsi7 port 3] ESM B sg3[0379][scsi9 port 4]
Enclosure SV12616296 Drawer 1 ESM sg63 11 disks diskset "51519" ESM sg3 11 disks diskset "51519"
Enclosure SV12616296 Drawer 2 ESM sg63 12 disks diskset "36246" ESM sg3 12 disks diskset "36246"
Enclosure SV12616296 Drawer 3 ESM sg63 12 disks diskset "53750" ESM sg3 12 disks diskset "53750"
Enclosure SV12616296 Drawer 4 ESM sg63 12 disks diskset "07471" ESM sg3 12 disks diskset "07471"
Enclosure SV12616296 Drawer 5 ESM sg63 11 disks diskset "16033" ESM sg3 11 disks diskset "16033"
Enclosure SV12616296 sees 58 disks

Enclosure SV11812206 (number 3):
Enclosure SV11812206 ESM A sg66[0379][scsi9 port 3] ESM B sg6[0379][scsi8 port 3]
Enclosure SV11812206 Drawer 1 ESM sg66 11 disks diskset "23334" ESM sg6 11 disks diskset "23334"
Enclosure SV11812206 Drawer 2 ESM sg66 12 disks diskset "16332" ESM sg6 12 disks diskset "16332"
Enclosure SV11812206 Drawer 3 ESM sg66 12 disks diskset "52806" ESM sg6 12 disks diskset "52806"
Enclosure SV11812206 Drawer 4 ESM sg66 12 disks diskset "28492" ESM sg6 12 disks diskset "28492"
Enclosure SV11812206 Drawer 5 ESM sg66 11 disks diskset "24964" ESM sg6 11 disks diskset "24964"
Enclosure SV11812206 sees 58 disks

Enclosure SV13306129 (number 4):
Enclosure SV13306129 ESM A sg64[0379][scsi8 port 2] ESM B sg353[0379][scsi7 port 2]
Enclosure SV13306129 Drawer 1 ESM sg64 11 disks diskset "47887" ESM sg353 11 disks diskset "47887"
Enclosure SV13306129 Drawer 2 ESM sg64 12 disks diskset "53906" ESM sg353 12 disks diskset "53906"
Enclosure SV13306129 Drawer 3 ESM sg64 12 disks diskset "35322" ESM sg353 12 disks diskset "35322"
Enclosure SV13306129 Drawer 4 ESM sg64 12 disks diskset "37055" ESM sg353 12 disks diskset "37055"
Enclosure SV13306129 Drawer 5 ESM sg64 11 disks diskset "16025" ESM sg353 11 disks diskset "16025"
Enclosure SV13306129 sees 58 disks

DCS3700 configuration: 4 enclosures, 1 SSD, 7 empty slots, 233 disks total
Location 0123456789AB-5-12 appears empty but should have an SSD
Location SV12616296-1-3 appears empty but should have an SSD
Location SV12616296-5-12 appears empty but should have an SSD
Location SV11812206-1-3 appears empty but should have an SSD
Location SV11812206-5-12 appears empty but should have an SSD

scsi7[07.00.00.00] 0000:11:00.0 [P2 SV13306129 ESM B (sg353)] [P3 SV12616296 ESM A (sg63)] [P4 0123456789AB ESM B (sg4)]
scsi8[07.00.00.00] 0000:8b:00.0 [P2 SV13306129 ESM A (sg64)] [P3 SV11812206 ESM B (sg6)] [P4 0123456789AB ESM A (sg244)]
scsi9[07.00.00.00] 0000:90:00.0 [P3 SV11812206 ESM A (sg66)] [P4 SV12616296 ESM B (sg3)]

##
Beginning enclosure checks.
##
Enclosure checks successful.

##
Beginning recovery group checks.
##
Found recovery group BB1RGR, primary server is not the active server.

##
Beginning pdisk checks.
##
Found recovery group BB1RGL pdisk e4d5s06 has 0 paths.

 Parent topic: GPFS Native RAID setup and maintenance on the IBM System x GPFS Storage Server (GSS)

 Active file management

 Active file management (AFM) is a scalable, high-performance,
 file system caching layer integrated with the GPFS cluster file system. AFM allows you to
 create associations from a local GPFS cluster
 to a remote cluster or storage, and to define the location and flow
 of file data to automate the management of the data. This allows you
 to implement a single namespace view across sites around the world.

 Note: This feature is available
 with GPFS Standard
 Edition or
 higher.

 AFM masks wide-area network latencies and outages by using GPFS to cache massive data sets,
 allowing data access and modifications even when remote storage cluster
 is unavailable. In addition, AFM performs updates to the remote cluster
 asynchronously, which allows applications to continue operating while
 not being constrained by limited outgoing network bandwidth.

 The AFM implementation leverages the inherent scalability of GPFS to provide a multinode, consistent
 cache of data located at a home cluster. By integrating with the file
 system, AFM provides a POSIX-compliant interface, making the cache
 completely transparent to applications. AFM is easy to deploy, as
 it relies on open standards for high-performance file serving and
 does not require any proprietary hardware or software to be installed
 at the home cluster.

 By using NFSv3 or GPFS protocol
 to cache data, AFM can improve network performance to any home cluster.

 	Active file management architecture

 	Caching modes

 	File system caching and synchronization

 	Components of a cluster that is running AFM

 	Global namespace

 	Cache eviction

 	Disconnected operation

 	Expiration

 	Cache states

 	Failure and recovery

 	Steps to deal with an IW cache fileset disaster

 	Prefetching

 	Peer snapshots

 	Viewing snapshots at home

 	Failover of cache filesets

 AFM filesets continue to function independent of the home,
 in the event of home failures. The AFM filesets serve the cache applications
 with cached data. When a new home replaces the failed home, the administrator
 should run the mmafmctl Device failover
 -j Fileset command to let the cache point
 to the new home. The home is expected to be empty when this command
 is run.

 	Partial file caching

 	[image: Start of change]AFM encryption support[image: End of change]

 	Parallel I/O

 	Disabling AFM

 	Hierarchical storage management and AFM

 	mmbackup and AFM

 	AFM-based NFS migration

 	Restrictions in active file management

 In AFM, certain file attributes are maintained locally
 in the cache and separately in the home site; they are not transmitted
 to the other side.

 	Home cluster errors

 	Administrative actions

 This section describes the administrative actions associated
 with AFM.

 	Tuning active file management home communications

 Active file management architecture

 AFM uses a home-and-cache model in which a single home provides
 the primary storage of data, and exported data is cached in a local GPFS file system.

 	Home

 	Home can be an NFS export from a remote cluster. The export point
 can be a local file system in the remote cluster or a GPFS file system or a GPFS fileset in the remote cluster. AFM uses
 a proprietary protocol over NFS.
 In addition, AFM is supported
 when a remote file system is mounted on the cache cluster using GPFS protocol. Native GPFS protocol utilizes remote file system
 mount
 based over a multicluster configuration to function as the AFM target.
 This requires that a multicluster setup exist between the home and
 cache before AFM can use the home cluster’s file system mount
 on the remote cluster for AFM operations.

 Architecturally,
 AFM works with any file system at the home cluster; however, ACLs,
 extended attributes, and sparse files are only supported when the
 home file system is GPFS, irrespective
 of whether NFS or GPFS target
 is used. The mmafmconfig command should
 be run on the home cluster to enable this support.

 	Cache

 	The
 container used to cache home data is a GPFS fileset.
 Each AFM-enabled fileset has a single home cluster associated with
 it (represented by the hostname of the home server).
 Each cache
 fileset in a cluster is served by one of the nodes designated as gateway
 in the cluster. The gateway node mapped to serve a fileset is called
 the metadata server (MDS) of the fileset. The MDS acts as the owner
 for the fileset. All other nodes in the cluster, including other gateways,
 become application nodes for the fileset. A fileset can have multiple
 application nodes (which service application data requests). All other
 gateway nodes can be configured to help the MDS in fetching data to
 and from the home cluster. See the Parallel I/O section of the guide.

 The
 split between application and gateway nodes is conceptual, and any
 node in the cache cluster can function as both a gateway node and
 an application node based on its configuration. The gateway nodes
 can be viewed as the edge of the cache cluster that can communicate
 with the home cluster, while the application nodes interface with
 the application. Gateway and application nodes communicate with each
 other via internal RPC requests.

 AFM is supported on AIX and Linux nodes. Only Linux nodes can be assigned as gateway nodes.

 Any cluster can be a home cluster, a cache cluster, or both. In
 typical usage, a home would be in one GPFS cluster
 and a cache would be defined in another, but this is not required.
 In fact, a cluster can be a home for one fileset and can be a cache
 for another fileset; and multiple AFM-enabled filesets may be defined
 in one cache, each caching from a different home cluster. This provides
 great flexibility in how you can leverage the caching behavior.

 A cache can request data by reading a file or by pre-fetching the
 data. Any time a file is read, if the file data is not yet in the
 cache or is not up to date, the data is copied from the home into
 the cache.

 Multiple cache filesets can read data from a single home. In single-writer
 mode, only one cache can write data to a single home. In independent-writer
 (IW) mode, multiple caches can write to a single home, as long as
 each cache writes to different files. In case multiple caches write
 to same file, the sequence of updates is nondeterministic.

 AFM filesets can cache extended attributes and ACLs. In order to
 enable this functionality, the home needs to issue the mmafmconfig command.

 Notes:

 	AFM uses certain internal directories, such as the following,
 which should not be altered or removed:

 	.afm at home

 	.ptrash (see Failover of cache filesets

 	.pconflicts in cache (see Failover of cache filesets)

 	User IDs and group IDs should be managed the same way across cache
 and home.

 Parent topic: Active file management

 Caching modes

 The following table shows the AFM caching modes that are available
 to control the flow of data:

 Table 42. AFM modes

 	Mode

 	Description

 	Local-update (LU)

 	Cached data (data from home) is read-only.
 The difference from read-only mode is that you can create and modify
 files in the cache fileset. Files that are created or modified in
 the cache are considered local updates. Local updates are never pushed
 back to home. Once a file is modified in the cache, the file is no
 longer compared to the version at home to verify that it is up to
 date.
 Appending to, truncating, or writing to an uncached file
 will fetch the entire file to cache before making the change locally.

 Note: Any
 small change done in the LU fileset directory could cause the fileset
 to be marked as local and lose context with the home. For example,
 running chmod or chown of
 the LU fileset root directory will cause the entire fileset to be
 out of sync with the home.

 	Read-only (RO)

 	Data in the cache is read-only. Creating or
 modifying files in the cache fileset is not allowed.

 	Single-writer (SW)

 	One cache fileset does all the writing. The
 assumption is that all of the other cache filesets associated with
 the same home are configured as read-only or local-update. This mode
 avoids possible write conflicts. There is no explicit enforcement
 of a single-writer mode in GPFS.
 Rather, the administrator needs to guarantee that there are no other
 writeable caches associated with this home and that no writes are
 done at home.
 On single writer filesets, a write at home is not
 allowed. However, if there is a write/corruption at home, inadvertently
 or due to some error situation, it results in a conflicted scenario
 for the single-writer fileset. The administrator-monitored command resync can
 be used to recover home.

 When running resync,
 the administrator should ensure that the fileset is in Active or NeedsResync state.
 Cache can sometimes detect inconsistencies and put the fileset in NeedsResync state.
 This implies that resync would get run automatically
 during the next request to the gateway, and the inconsistencies would
 be resolved. If they are not resolved automatically, they have to
 be manually resolved by running the resync command.

 Appending
 to or truncating a file in SW mode will not fetch the file into cache,
 but will queue it to home.

 	Independent-writer (IW)

 	Allows multiple caches to write to different
 files. There is no locking between clusters. Each cache makes its
 updates to home independently.
 Independent writer mode supports
 transparent synchronization with home. That is, changes in IW cache
 are synchronized with home and vice versa. In case data is updated
 at home, all connected IW caches fetch those changes on demand based
 on the revalidation intervals set.

 Multiple active cache filesets
 point to one home file system or fileset and can modify the data at
 the same time. This mode should only be used by applications running
 in caches that do not require synchronization to properly update the
 data on the home cluster.

 The multiple cache sites do revalidation
 periodically and pull the new data from home.

 This mode is typically
 used to access different files from each IW cache site (for example,
 unique users at each site updating files in their home directory).
 While this mode allows multiple cache clusters to modify the same
 set of files, this should be only done by advanced users. This is
 because there is no locking or ordering between updates; the updates
 are propagated to the home in an asynchronous manner and may be delayed
 due to network disconnections. Therefore, conflicting updates from
 multiple cache sites can cause the data at the home site to be undetermined.

 Appending
 to or truncating a file in IW mode will not fetch the file into cache,
 but will queue it to home.

 Notes:

 	SW and IW cache filesets should not access the same data;
 if they do, serious problems can occur. Only RO, LU, and IW cache
 filesets should access the same home dataset.

 	Resync cannot be used with IW filesets, as multiple cache filesets
 can update the same set of data.

 	Before converting from IW to SW mode, ensure that all the remaining
 IWs are converted to either RO or LU to avoid the risk of home conflicts
 caused by writes from other IWs. When a large number of IW caches
 point to the same home, the number of NFS threads at home may be tuned
 for better efficiency. Also, if the data updates are unique, increasing
 the revalidation timers for the IW caches might reduce the frequency
 of periodic refreshes from home and improve cache performance.

 Parent topic: Active file management

 File system caching and synchronization

 AFM treats all file system operations as either asynchronous
 or synchronous.

 	Asynchronous operations

 	Synchronous operations

 	Update synchronization

 Parent topic: Active file management

 Asynchronous operations

 When an asynchronous operation is used, an application
 can proceed as soon as the request is queued on the gateway node.
 An MDS of a fileset can delay asynchronous operations for the time
 defined by the synchronization lag (for the time defined by the synchronization
 lag; this can be configured using the mmchfileset command).

 Files and directories are refreshed from the home cluster based
 on a validity lag, and file system updates are synchronized to the
 home cluster based on the synchronization lag.

 Within a single cache cluster, application nodes will experience
 POSIX semantics.

 	Data and metadata updates

 	All operations that modify the file system are synchronized to
 the home server at an interval determined by the synchronization lag.
 It is important to note that updates may be sent to the home cluster
 much sooner than the lag if proceeding operations depend on their
 synchronization for correctness.
 AFM sends data from
 cache to home as root. By default, root is not limited by quotas;
 therefore, the fileset quotas at home could be exceeded due to writes
 in cache.

 The asynchronous commands are: write, chmod, chown, create, mkdir, remove, rmdir, rename, link, symlink,
 and attribute updates.

 Parent topic: File system caching and synchronization

 Synchronous operations

 Synchronous operations require an application request to block
 until the operation completes at the home cluster.

 	Read

 	AFM does whole-file caching by default. In general, reading more
 than three blocks of the file will drive AFM to cache the full file
 in the background for performance. To avoid reading large files when
 an application might be "peeking" into the file (for example,
 GUI viewers that read a few bytes to detect file mime type), certain
 file reads at the beginning of the file are handled individually.
 Sequential requests are pipelined between the application and gateway
 nodes to improve performance. This means data can be "streamed" from
 the home cluster to the application at the cache cluster.
 Only files
 that have all blocks read, or the entire file contents fetched, are
 marked as cached. An uncached file cannot be evicted, resynched with
 home, or failed over to a new home. These AFM features are discussed
 in subsequent sections of this guide.

 	File and Directory Information

 	As users traverse the directory tree of the AFM-enabled fileset,
 files and directory attribute information from the home cluster is
 cached in GPFS on-demand. Henceforth,
 commands such as ls or stat will
 continue to work even if the cache is subsequently disconnected from
 the home cluster. If file metadata information changes (via users
 at the home cluster or a different cache cluster), the cache is refreshed
 on demand to reflect new updates to existing files and creation of
 new files and directories. To reduce the number of operations sent
 to the home server, this refresh is done based on the validity lag
 configured. See the afmDirLookupRefreshInterval, afmDirOpenRefreshInterval, afmFileLookupRefreshInterval, afmFileOpenRefreshInterval configuration
 parameters documented in the GPFS:
 Administration and Programming Reference.

 Parent topic: File system caching and synchronization

 Update synchronization

 All modifications to the cached file system will be sent back to
 the home cluster in the following situations:

 	The end of the synchronization lag.

 	If a synchronous command depends on the results of one or more
 updates; it synchronizes all depending commands to the server prior
 to its execution.

 	An explicit flush of all pending updates using the mmafmctl
 flushPending command.

 Parent topic: File system caching and synchronization

 Components of a cluster that is running AFM

 Communication

 Communication for caching
 between GPFS clusters is done
 by one or more gateway nodes. A node can be designated as a gateway
 node by using the mmchnode command. In addition
 to the gateway node designation on the cache cluster, the target path
 on the home server needs to be NFS-exported on any one node in the
 home cluster. This exported path of the home cluster would be used
 in the cache cluster as a target path.

 Active file management
 uses NFSv3 or GPFS protocol
 for communication between clusters. AFM also keeps track of server
 availability and disconnects or reconnects accordingly.

 Caching behavior

 Active file management
 is designed to be efficient on a WAN by minimizing the amount of traffic
 sent over the WAN. To improve efficiency, there are various parameters
 that allow controlling caching behavior; for example, afmFileOpenRefreshInterval defines
 how often an open call checks for file changes at home.

 When
 a file is being read into a cache file, data can be read as soon as
 it arrives in the cache. This means that the entire file does not
 have to be in cache to start reading it.

 A cache is defined
 at the fileset level, so multiple cache filesets can share a single
 file system. This allows you to optimize the performance and space
 usage within existing storage, and it gives you flexibility in how
 you utilize cache relationships.

 You can associate as many caches
 to a home as the bandwidth of the home cluster allows. The cache-to-home
 relationship is one-to-one, and the cache does all the work. You can
 think of AFM as a subscription service. The home is a data feed, and
 one or more caches can “subscribe” to that feed. This
 is what makes AFM very scalable; the GPFS cluster
 does not need to actively manage, as one data set, hundreds of relationships
 and the location on billions of files.

 Gateway behavior

 In a cluster with multiple
 gateway nodes and many AFM caches, AFM uses an improved hashing algorithm
 to elect the MDS for each of the caches. The improved hashing algorithm
 is set by default on a 4.1 cluster. On an upgraded cluster, the old
 hashing algorithm will be effective. To move to the improved algorithm,
 the mmchconfig afmHashVersion=2 command
 must be run after updating to the latest release. This command needs
 a fileset re-link or file system remount to take effect.

 When
 node failures occur on the MDS of a cache, AFM elects a new MDS for
 the cache using the hashing algorithm and runs AFM recovery on the
 newly elected MDS. The new MDS will thereafter take over as owner
 for the cache. When an old MDS returns back after node failure, AFM
 transfers the queues as such from the current MDS to the old MDS.
 A change in MDS due to a node that has changed its gateway designation
 using mmchnode will go through AFM recovery.

 Parent topic: Active file management

 Global namespace

 Home and cache entities can be combined to create a global namespace.
 Any client node in the world can use the same path to connect to the
 data within any of the GPFS clusters
 that are part of the namespace. In such a global namespace, the following
 AFM features can improve application performance at a remote site:

 	When a file is being read into a cache, the data can be read as
 soon as it begins to arrive in the cache.

 	Multiple cache file sets can share a single file system.

 	Data can be transferred between sites in parallel.

 When using GPFS multi-cluster
 as well to mount file systems between clusters, the benefit of using
 AFM is performance with high latency or unreliable networks.

 Figure 1 shows an example
 of a global namespace, implemented using AFM, with three different
 sites. A GPFS client node from
 any site sees all of the data from all of the sites. Each site has
 a single file system. Each site is the home for two of the subdirectories
 and cache filesets pointing to the data originating at the other sites.
 Every node in all three clusters has direct access to the global namespace.

 [image: This figure is explained in the paragraph that precedes it.]

Figure 20. Global namespace implemented using AFM

 Parent topic: Active file management

 Cache eviction

 Cache eviction is enabled by default and is controlled by the afmEnableAutoEviction parameter and setting
 fileset quota. Eviction is enabled by default.

 Cache eviction can also be triggered manually using the mmafmctl
 evict command. There might be a time lag between the
 time that an eviction is triggered and the time that the data is actually
 evicted. Tuning the soft and hard quota limits minimizes application
 failure caused by data being cached at a faster rate than it is being
 evicted. Cache eviction for exceeding the inode limit is not supported.

 See Filesets and quotas.

 Parent topic: Active file management

 Disconnected operation

 With the home cluster across a wide-area network, it is very likely
 that network connectivity will experience frequent intermittent outages
 and occasional long term disruptions. The reasons for these outages
 or disruptions can vary and can include faulty network hardware, routing
 or connection problems to the home cluster, NFS server failure at
 the home cluster, or even failure of the home cluster file system
 itself.

 In the event that one or more gateway nodes determine that the
 home cluster cannot be accessed, all the caches that have a disconnected
 home will go into disconnected mode. The behavior in a disconnected
 setting is slightly different for the two classes of operations. All
 synchronous operations are handled locally. Application requests for
 objects that are not yet in the cache will return an error that the
 object does not exist (or an I/O error). On the other hand, all asynchronous
 operations can still update the cache and return successfully to the
 application. These requests remain queued at the gateway nodes pending
 reconnection. Updates will experience a synchronization lag equal
 to the duration of the disruption in connectivity.

 Appending to or truncating an uncached file in a writer mode (SW
 or IW) sends only the updated contents to home on reconnect. Old contents
 at home are lost.

 Note that since AFM caches file metadata separately from data,
 it is possible that one is able to see the attributes of a file via
 the ls or stat command, but not be able to fetch its contents from
 home, in disconnected mode. In the case of caches based on native GPFS protocol, unavailability of
 the home file system on the cache cluster will put the caches into
 unmounted state. These caches will never enter the disconnected state.

 It is also important to note that if the cache cluster is disconnected
 for an extended period, the number of file system updates may exceed
 the buffering capacity of the gateway nodes. In this situation, all
 changes continue to be "logged" in stable storage. Upon reconnection,
 AFM reads the changes from disk and synchronizes its local updates
 with the home cluster.

 Parent topic: Active file management

 Expiration

 Read-only filesets can be configured to cause cached data to expire
 after the gateway nodes have been in a disconnected state for a specified
 amount of time. This prevents access to stale data, where staleness
 is defined by the amount of time that the WAN cache is out of synchronization
 with data at the home site. Single-writer and local-update filesets
 cannot be configured to expire. The administrator can manually specify
 that the data in the cache is either expired or not expired using
 the mmafmctl expire/unexpire command.

 Caches created using GPFS protocol
 will not go to expired state, even if expiration timeout is set for
 them. They will continue to remain in unmounted state as long as the
 home file system is unavailable.

 Parent topic: Active file management

 Cache states

 An AFM cache can have a different state depending on fileset and
 queue states. The mmafmctl getstate command
 displays the current cache state.

 Possible cache states are the following:

 	Active

 	This state indicates that the cache is active and ready for operations.

 	Dirty

 	This state indicates that there are pending changes in cache that
 are not yet played at home. This state will not hamper user function,
 and the user can continue normal activity on the cache.

 	Disconnected

 	This state can occur only in a cache that is created over NFS
 export. It occurs when the MDS cannot connect to the NFS server at
 home. When parallel I/O is configured, this state shows the connectivity
 between the MDS and the mapped home server, irrespective of other
 gateway nodes. See Parallel I/O for
 more details. To come out of this state to Active state,
 the administrator must correct the errant NFS server or servers on
 the home cluster.

 	Dropped

 	A cache fileset state moves to Dropped when
 there are problems in the cache during recovery or IW failback processes.
 The problems can include the local file system being full, no space
 on the cache, or policy failure during recovery. The administrator
 must rectify the issue and retry recovery or failback. The cache needs
 to be accessed to re-trigger recovery and to reissue the failback;
 it must be manually run using mmafmctl.
 Dropped state
 is also possible under the following conditions:

 	When a cache with active queue operations is forcibly unlinked.
 While all queued operations are being dequeued, the fileset remains
 in dropped state and moves to inactive state when the unlinking is
 complete. There is no administrative action required for this temporary
 dropped state.

 	While AFM internally performs queue transfers from one gateway
 to another to handle gateway node failures. This usually gets rectified
 automatically on the next accessing of the cache.

 	Expired

 	This state can also occur only in a cache that is created over
 NFS export. It occurs when an expiration timeout is set on a fileset.
 All requests in the queue are dropped. To come out of this state to Active state,
 the administrator must correct the errant NFS server or servers on
 the home cluster.

 	FailbackCompleted

 	This state occurs when a failback has successfully completed on
 a cache fileset. The administrator must run mmafmctl failback
 stop to move the cache to Active state.

 	FailbackInProgress

 	This state occurs when a failback process has been initiated on
 a cache fileset and it is in progress. This will move automatically
 to FailbackCompleted once the failback process
 has completed.

 	FailoverInProgress

 	This state shows that the cache is in the middle of a failover
 process. This will move to Active when the
 failover is complete.

 	FlushOnly

 	This state indicates that operations are queued but have not started
 to flush. This is a temporary state and should move to Active when
 a write is initiated.

 	Inactive

 	This state is possible when a fileset has been just created and
 operations have not been initiated on the fileset. This should move
 to Active once operations begin.

 	NeedsFailback

 	This state can occur when a failback initiated on a cache is interrupted
 and is incomplete. Failback will automatically get triggered on the
 fileset, or the administrator can rerun failback.

 	NeedsResync

 	This state occurs when there is some accidental corruption of
 data of a single writer home. The mmafmctl resync command
 needs to be run on the fileset to move it to Active state.

 	QueueOnly

 	A cache fileset is moved to QueueOnly when
 operations at the cache are queued but not yet flushed, since operations
 from recovery, resync, failover are in the process of getting flushed
 to home. This state is temporary and the user can continue normal
 activity.

 	Recovery

 	A cache is said to be in recovery state when it is running the
 recovery or resync process and is in the process of queueing or flushing
 the updates. This state will not hamper normal user function, and
 the state will move to Active once recovery
 or resync is complete.

 	Unmounted:

 	Caches using NFS as transport protocol will go into Unmounted state
 if home NFS is not accessible, or if home exports are not exported
 properly or home export does not exist. The problem with home exports
 must be resolved. After 300 seconds, the cache will retry connecting
 with home and will move to Active state.
 Caches
 using native GPFS protocol as
 target will move to Unmounted state when
 there are problems accessing the local mount of the remote file system.
 To resolve this problem, the remote file system needs to be remounted
 on the local cache cluster.

 A cache fileset can also move
 to Unmounted state when the cache detects
 a change in home, such as accidental deletion of the exported independent
 fileset at home.

 Parent topic: Active file management

 Failure and recovery

 Failures can occur in AFM if either an application node or a gateway
 node fails. Failures are not catastrophic and will not result in the
 loss of data or AFM's ability to update the home cluster with local
 modifications. AFM stores, on disk, all necessary state to "replay" updates
 made to the cache at the home cluster in case the in-memory queue
 at the gateway node is lost due to a node failure or memory pressures.

 Application node failure

 Since application
 nodes are just regular GPFS nodes
 that can also access AFM filesets, failure of one of them is handled
 just like a regular node failure. No special handling is required
 for AFM.

 Gateway node failure

 If there were no updates
 made to any AFM-enabled fileset, then the failure of a gateway node
 is harmless and application nodes will not experience requests delays.
 While in recovery mode, application requests to all AFM-enabled filesets
 are momentarily blocked.

 On the other hand, if pending updates
 for any AFM-enabled fileset exist, e.g., file write or create, then
 the failure of a gateway node puts the entire cache cluster into recovery
 mode.

 In recovery mode, the cache examines the requests in
 cache that have not been sent to home and queues all these pending
 operations on the gateway nodes. AFM collects the pending operations
 by internally running a policy scan on the files in the fileset. AFM
 leverages the policy infrastructure in GPFS to
 use all the nodes mounting the file system. Therefore, the availability
 of all these nodes mounting the file system is required for recovery
 to complete. When this queue is completely played at home, according
 to the synchronization lag, the cache and home become synchronized
 in contents and recovery is said to be completed. The cache goes back
 to Active state.

 Recovery is triggered
 only for single-writer mode or independent-writer mode. Recovery can
 run in parallel on multiple filesets, although only one instance can
 run on a fileset at one time.

 Parent topic: Active file management

 Steps to deal with an IW cache fileset disaster

 In cases where an IW cache is down, either permanently due to disaster
 or temporarily due to maintenance, the applications can be moved to
 the home cluster. The nature of AFM is to push the data asynchronously,
 so the cache might have pending updates that have not been pushed
 to home at the time when the applications are moved. In cases where
 application semantics allow them to move from cache to home with pending
 updates still in cache, it is possible that files at home will change
 along with the pending data in cache.

 Once the cache comes back, the first access will drive the cache
 to push stale data to home. This might result in a stale pending
 update to overwrite the latest data written at home while the cache
 was down. In these cases, the following steps should be followed so
 that latest data is preserved and old or stale data is discarded.
 The data staleness is determined based on file mtime and failover
 time (the time when applications were moved to home, given as input
 to failback command).

 In the case of an unplanned DR, follow these administrative actions:

 	When the cache site is ready to take over again, stop applications
 at the home site.

 	Link the cache site back or bring the gateways up. Do not access
 the fileset directories.

 	Run the following command from the cache site to sync up the latest
 data (specifying the time when the home site became functional and
 including the complete time zone, in case home and cache are in different
 time zones):mmafmctl FileSystem failback -j Fileset --start --failover-time 'TimeIncludingTimezone'

 The failback command resolves any conflicts between pending
 updates in cache at the time of failover with the data changes at
 home. Any new files created at home are fetched on next access to
 those respective files or directories based on the revalidation interval.
 In cases where an application needs to know these new files upfront,
 they can be fetched via mmafmctl prefetch before
 starting applications on cache. When the sync-up is in progress, the
 fileset state is FailbackInProgress.

 Note: If
 failback does not complete or if the fileset moves to NeedFailback state,
 rerun the failback command.

 After failback completes,
 the fileset state moves to FailbackCompleted.

 	After achieving the FailbackCompleted state,
 run this variation of the mmafmctl failback command
 to move the fileset to Active state: mmafmctl FileSystem failback -j Fileset --stop

 The
 cache site is ready for use. All applications can start functioning
 from the cache site.

 This option moves the cache from Read-Only state
 to Active state, where it is ready for use.
 Failback does not pull in uncached data from home, which needs to
 be done explicitly by the administrator using the mmafmctl
 prefetch utility. This can be done before running the
 stop option to ensure that cache has all the latest data from home
 before new changes are made.

 As a result of an unplanned outage, some updates from the cache
 site might be lost. These lost updates will be handled when the cache
 site syncs up with the latest data updates from the home site.

 The cache will identify any dirty data that did not get synced
 up and will do the following:

 	If the file is not modified at the home when the applications
 were connected to the home, the cache will push the change to the
 home so that there is no loss of data.

 	If the file was most recently modified at the home,
 the cache will discard the earlier updates from the cache. The next
 lookup on the cache will update the latest metadata from the home.

 If the conflicted dirty data is a directory, it is moved
 to the .ptrash directory. If the conflicted dirty
 data is a file, it is moved to the .pconflict directory.
 The administrator will have to clean the .pconflict directory
 from time to time, as it will not be cleaned automatically. When IW
 is converted to other modes, the .ptrash and .pconflict directories
 will remain.

 In RO or LU mode when there is a delete conflict with
 a file (that is, a file is removed at home but is still existing in
 cache), the conflict is resolved by removing the file from the cache.
 In SW or IW mode, if such a file is non-dirty, it is moved to .ptrash,
 and if it is dirty, it is moved to .pconflicts.

 Files moved back from .ptrash or .pconflicts are
 treated as local files to the cache fileset and are not queued to
 home. However, if they are copied to the cache, they will be queued
 to home as new files.

 The fileset behaves as a read-only fileset while failback is in
 progress.

 Creating hard links at home or in cache is not recommended when
 IW is used.

 If failback is expected to be used, the home file system must update
 the ctime of the object on a RENAME operation. This is enabled via setCtimeOnFileRename at
 home.

 This can be done using the mmchconfig command
 at home: mmchconfig setCtimeOnFileRename=yes -i

 Parent topic: Active file management

 Prefetching

 Wide Area Network (WAN) caching fetches complete files on demand
 from the home file set to the remote system cache in real time during
 normal operation. The prefetching feature moves files into the cache
 in batch mode so that they are already present in the cache when they
 are accessed by an application. The prefetching of cache before an
 application is started can reduce the network delay when the application
 starts. Prefetching can also be used to proactively manage WAN traffic
 patterns by moving files over the WAN during a period of lower WAN
 usage in anticipation that it might otherwise be accessed during a
 period of higher WAN usage.

 GPFS can prefetch the data
 using the mmafmctl Device prefetch –j FilesetName command
 (which specifies a list of files to prefetch). Note the following
 about prefetching:

 	It can be run in parallel on multiple filesets (although more
 than one prefetching job cannot be run in parallel on a single fileset).

 	If a file is in the process of getting prefetched, it will not
 be evicted.

 	If the MDS of a cache is changed while prefetch is running, prefetch
 will get interrupted and will not reach completion. The next access
 to the fileset will automatically re-trigger the interrupted prefetch
 on the new MDS. For re-triggering prefetch after gateway node failures,
 the list file used when prefetch was initiated must exist in a path
 that is accessible to all gateway nodes. If parallel I/O is configured,
 all gateways will participate in the prefetch process.

 Parent topic: Active file management

 Peer snapshots

 The cache fileset peer snapshot function provides a generic infrastructure
 for obtaining an application-consistent point-in-time copy of data
 in the cache file set that can be integrated with other functions
 to meet specific customer requirements such as backup and recovery.
 The peer snapshot pushes all of the snapshot data in cache to the
 home fileset so that the home data is consistent with cache, then
 takes a snapshot of the corresponding home data. This results in a
 pair of peer snapshots, one each at the cache and home filesets, that
 refer to the same consistent copy.

 Note: If cache is disconnected from the home file set when the cache
 snapshot is created, the cache notes that the peer snapshot on the
 home file set has not been created. When the home file set becomes
 reconnected to cache, the cache attempts to resume the creation of
 the missing peer snapshot at the home file set if conditions permit.
 The mmpsnap command can be used to create
 a peer snapshot.

 The last successful snapshot is saved and can be viewed via mmlssnapshot.
 Multiple outstanding peer snapshots can be queued on the gateway node.
 Peer snapshots should not be deleted via the normal mmdelsnapshot command
 but rather through the mmpsnap command to
 ensure that both the cache and home snapshots are removed. The mmpsnap command
 will work only if the home cluster has executed the mmafmconfig
 enable ExportPath command. mmpsnap can
 be used only in an SW cache; it cannot be used for RO, IW, or LU caches.

 It is not possible to create a peer snapshot when a cache is created
 using GPFS protocol.

 Parent topic: Active file management

 Viewing snapshots at home

 All
 snapshots at home for RO and LU filesets can be viewed in the cache
 by setting the afmShowHomeSnapshot parameter
 to yes. This variable is not applicable
 for SW and IW filesets.

 The home and cache can have different snapshot directories for
 clarity. If the afmShowHomeSnapshot value
 is changed after fileset creation, the change is reflected in cache
 only after the next GPFS recycle
 or file system remount. However, if the value is changed from yes to no at
 any time during the lifetime of a fileset, it will continue to show
 the home snapshots even after GPFS recycle
 or file system remount.

 Parent topic: Active file management

 Failover of cache filesets

 AFM filesets continue to function independent of the home,
 in the event of home failures. The AFM filesets serve the cache applications
 with cached data. When a new home replaces the failed home, the administrator
 should run the mmafmctl Device failover
 -j Fileset command to let the cache point
 to the new home. The home is expected to be empty when this command
 is run.

 If failover is interrupted (for example, due to gateway node failure
 or quorum loss), the next access that requires access to home will
 restart it automatically.

 Caches in SW and IW can be failed over to a new home. Failover
 will fill the new home with the contents from the cache. Both cached
 data and metadata from cache are pushed to the new home. To ensure
 that extended attributes get synced, the new home should have run
 the mmafmconfig command before the failover
 command.

 When there are multiple IW caches, the administrator should choose
 a primary IW cache and fail this over to a new empty home. It is recommended
 that all the other IW caches to the old home be deleted and recreated.
 If another of the IW caches is failed over to the home after failing
 over the primary IW cache, all the stale data in that cache will overwrite
 the objects of the same type and name at home. For this reason, failover
 to a non-empty home is discouraged.

 There are no implications for failover and resync when applied
 to a GPFS target. It is possible
 to change the protocol along with the target using failover. For example,
 a cache using an NFS target bear110:/gpfs/gpfsA/home can
 be switched to a GPFS target
 whose remote file system is mounted at /gpfs/fs1,
 and vice-versa as follows:mmafmctl fs0 failover -j afm-mc1 --new-target gpfs:///gpfs/fs1
mmafmctl fs0 failover -j afm-mc1 --new-target nfs://bear110/gpfs/gpfsA/home

 Note: Each AFM fileset is independently managed and has a one-to-one
 relationship with a target. This allows different protocol backends
 to coexist on separate filesets in the same file system. However,
 AFM does not validate the target for correctness when the fileset
 is created. It is the responsibility of the user to specify a valid
 target; using a GPFS target
 that belongs to the same file system as the AFM fileset may lead to
 undesirable consequences.

 Parent topic: Active file management

 Partial file caching

 Partial file caching fetches only blocks that are accessed, thereby
 utilizing network and local disk space more efficiently. This is useful
 if an application does not need to read the whole file. Partial file
 caching is enabled on a GPFS block
 boundary.

 For sparse files, the percentage for prefetching is calculated
 as the ratio of the size of data blocks allocated in cache and the
 total size of data blocks at home. Holes at the home file are not
 considered in the calculation.

 Partial file caching is controlled by the afmPrefetchThreshold configuration
 attribute. For details, see the mmchfileset command
 description in the GPFS:
 Administration and Programming Reference.

 Prefetch of partially cached files pulls the complete file to the
 cache. Failover of partially cached files pushes only the cached data
 blocks to the new home. Uncached blocks are filled with null bytes.

 Any writes queued on a partially cached file will pull in the whole
 file, even if a prefetch threshold is set on the file.

 Parent topic: Active file management

 [image: Start of change]AFM encryption support

 AFM supports file encryption. Encryption can be applied to AFM-managed
 filesets. AFM home sites, cache sites, or both can be enabled with
 encryption, independently. The data is encrypted while at rest (on
 disk) and is decrypted on the way to the reader/application hosted
 on home and caches; however, AFM communication between home and cache
 is not encrypted.

 For encryption setup, see Encryption.

 Parent topic: Active file management

[image: End of change]

 Parallel I/O

 The gateway acting as the MDS of a cache fileset is the channel
 for communication with the home cluster. To help the MDS exchange
 data with the home cluster for large-size I/Os, a cache cluster can
 be configured to leverage all nodes in the cluster configured as gateways.

 For this function, multiple NFS servers are required at the home
 cluster. In a cache cluster that uses NFS as transport protocol,
 each gateway node in the cache cluster can be mapped to a specific
 NFS server at home. This mapping aids I/O load distribution.

 One or more gateway nodes can be mapped to the same NFS server,
 but one gateway node cannot be mapped to more than one NFS server.
 Mapping defined using mmafmconfig needs
 a GPFS recycle to take effect
 on existing filesets. If there is no mapping specified or if a matching
 failed, parallelism will not be effective.

 On an AFM cluster using native GPFS protocol
 for defining an AFM target, gateway nodes can be mapped to any other
 node in the same cache cluster. In the absence of a mapping definition,
 all gateway nodes will be used for the I/O.

 The following shows an example mapping for NFS target, assuming
 cache gateway servers hs22n18, hs22n19, hs22n20,
 and hs22n21, and home NFS servers js22n01 and js22n02:# mmafmconfig add js22n01 --export-map js22n01/hs22n18,js22n02/hs22n19
mmafmconfig: Command successfully completed
mmafmconfig: Propagating the cluster configuration data to all
 affected nodes. This is an asynchronous process.

mmafmconfig add js22n02 --export-map js22n02/hs22n20,js22n01/hs22n21
mmafmconfig: Command successfully completed
mmafmconfig: Propagating the cluster configuration data to all
 affected nodes. This is an asynchronous process.

 The mmafmconfig command can be used to
 display, delete, or update mappings. New changes in the active mapping
 between gateway nodes and home NFS servers will take effect only after
 fileset re-link or file system remount. Gateway designation can only
 be removed from a node if the node is not participating in an active
 mapping. # mmafmconfig show
Map name: js22n01
Export server map: 192.168.200.12/hs22n19.gpfs.net,192.168.200.11/hs22n18.gpfs.net

Map name: js22n02
Export server map: 192.168.200.11/hs22n20.gpfs.net,192.168.200.12/hs22n21.gpfs.net

 Parallel reads and writes need to be configured separately. Parallel
 reads or writes will be effective for files whose sizes are larger
 than those specified by the respective parallel threshold. The threshold
 can be defined using afmParallelWriteThreshold and afmParallelReadThreshold parameters.
 This will hold good for reads and writes on all types of files except
 reads on sparse files and reads on files with partial file caching
 enabled, which will be served only by the MDS without splitting.

 The MDS of a cache fileset communicates with the each of the participating
 gateway nodes based on their availability. A single I/O request will
 be split into multiple chunks. These chunks will be sent across all
 gateway nodes in parallel. The size of each chunk is configurable
 using the afmParallelWriteChunkSize and afmParallelReadChunkSize parameters.

 The gateway nodes will communicate with their respective NFS servers
 and get a reply. If more than one gateway node is mapped to the same
 NFS server at home, only one among the gateway nodes will be chosen
 to perform a read task. However a write task will be split among all
 the gateway nodes. This is not applicable to caches created using
 native GPFS protocol, which
 will use the mapping specified or all gateway nodes wherever no mapping
 is specified.

 The MDS will process the replies from all gateway nodes. The MDS
 handles all I/O failures from the participating gateway nodes and
 coordinates all the activities until the IO is completed

 Configuration parameters for parallel reads and writes are discussed
 in detail in Tuning active file management home communications.

 Parent topic: Active file management

 Disabling AFM

 An AFM fileset can be converted to a normal independent fileset.
 An independent fileset cannot be converted to an AFM fileset. In scenarios
 where all data from home is destroyed or not available, the AFM fileset
 can be converted to an independent fileset by using the mmchfileset
 -p afmTarget=disable option after unlinking the fileset.
 Thereafter, the fileset will behave like a regular GPFS independent fileset and no requests will
 be queued to home.

 Disabling targets for AFM filesets is intended only for RO or LU
 filesets, not for writer filesets. This feature is useful in NFS migration
 use cases, where AFM can be disabled after migration. Migration is
 discussed in detailed in NFS migration section.

 Parent topic: Active file management

 Hierarchical storage management and AFM

 Hierarchical storage management (HSM) is a data storage technique
 that automatically moves data between high-cost and low-cost storage
 media. AFM does not support migration of files to an IBM Tivoli Storage
 Manager HSM server, and it is not recommended to migrate using HSM
 on AFM filesets. This can be achieved by using the EXCLUDE rule
 on the link directory of AFM filesets. If HSM is used on AFM filesets,
 it will result in recalling data from the AFM home server and not
 from the HSM server.

 Parent topic: Active file management

 mmbackup and AFM

 When the mmbackup command
 is run on a file system that has AFM filesets, only cached data from
 the AFM filesets get backed up; mmbackup will
 not back up uncached data from the AFM filesets.

 Parent topic: Active file management

 [image: Start of change]AFM-based NFS migration

 NFS migration is a process of migrating data from any legacy storage
 appliance to a GPFS cluster
 via NFS protocol. This is useful in the event of upgrading hardware
 or buying a new system where the data from old hardware needs to be
 moved to new hardware. Minimizing application downtime and moving
 data with attributes are key goals of migration.

 The target or new hardware should be running GPFS 4.1 or later. The data source
 should be an NFS v3 export and can be either a GPFS or a non-GPFS source. Any source running
 a version earlier than GPFS 3.4
 is equivalent to a non-GPFS data source. The UID namespace between
 source and target must be maintained.

 Migration can be incremental or progressive, based on how it is
 performed. The old storage appliance can be disconnected once the
 migration is complete.

 Migration does not pull file system–specific parameters
 such as quotas, snapshots, file system–level tuning parameters,
 policies, fileset definitions, encryption keys, and dmapi parameters.
 On a GPFS data source, AFM moves
 all GPFS extended attributes
 and ACLs, and file sparseness is maintained. On a non-GPFS data source
 POSIX permissions or ACLs are migrated, but not the NFS V4/CIFS ACLs,
 non-posix file system attributes, and sparseness.

 AFM migrates data as root, bypassing permission checks. Pre-allocated
 files at the home source are not maintained; that is, only actual
 data blocks are migrated based on file size.

 Migration methods

 The following migration
 methods are available:

 	Incremental migration

 	In this method of migration, the metadata tree and critical data
 required for running applications are populated in the GPFS AFM cluster. While this is completing,
 the applications continue to run in the source cluster. When the GPFS AFM cluster is pre-populated
 as close as possible, applications take a downtime and are moved to
 this cluster.
 Detailed instructions follow:

 	The NFS shares whose data needs to be migrated should
 be identified on the source cluster or legacy NAS storage. All identified
 shares should be exported via NFS.

 	If the source is running GPFS 4.1
 or later, run mmafmconfig enable on each
 of the NFS shares. If the version is GPFS 3.5
 or 3.4, run mmafmhomeconfig enable.

 	An AFM RO fileset should be created at the GPFS AFM cluster for each NFS share. afmAutoEviction should
 be disabled for all the RO filesets, to inadvertently avoid eviction.
 It is advisable to preallocate inodes equal to or greater than the
 inodes present at the source, as that many files are known to exist.
 The maximum number of inodes should also be set accordingly. Parallel
 I/O can be configured between the source NFS servers and the target.
 (See Parallel I/O.)

 	For each of the RO filesets, a list of
 all the files at the source should be created. If the source is GPFS, a simple policy LIST RULE
 can be used to create such a list. This policy can be tuned to eliminate
 types that are not supported by AFM (see Restrictions in active file management).
 If the source is not GPFS, such
 a list can be created using find, ls, -R,
 or any similar tool. It must then be edited by hand to eliminate unsupported
 types.

 	The mmafmctl prefetch command
 with the --metadata-only option should be
 run on each of the RO filesets to populate the directory tree using
 the list file generated for the respective filesets.

 	Run prefetch for each RO fileset using the respective
 list files created previously. Prefetch has to complete on all filesets
 before proceeding.
 Callbacks can be added to indicate when a scheduled
 prefetch task is completed using the afmPrepopEnd event.
 (For details, see the mmaddcallback command
 description in GPFS:
 Administration and Programming Reference.)
 Once a prefetch task completes, migration of the given data is said
 to be complete.

 	Stop applications at the data source.

 	In order to sync up the latest application changes, steps 4 through
 6 should be repeated. The mmafmctl prefetch –metadata-only command
 will sync up any new files or directories created by the application
 after the previous migration.

 	AFM filesets can be converted to SW or IW filesets with a new
 target, or to regular GPFS filesets
 with caching disabled.

 	Migration is complete, and applications can be started
 on the target system. The old system is ready to be decommissioned.

 It is recommended to maintain continuous connectivity between
 two systems when prefetch is running, to avoid prefetch failures.
 Prefetch tasks that fail due to disconnection need to be rerun.

 	Progressive migration

 	This is largely similar to incremental migration.
 The specific steps follow:

 	The NFS shares whose data needs to be migrated should be identified
 on the source cluster or Legacy NAS Storage. All identified shares
 should be exported via NFS.

 	If source is running GPFS 4.1
 or later, run mmafmconfig enable on each
 of the NFS shares. If the version is GPFS 3.5
 or 3.4, run mmafmhomeconfig enable.

 	An AFM LU fileset should be created at the GPFS AFM cluster for each NFS share. afmAutoEviction should
 be disabled for all the LU filesets, to inadvertently avoid eviction.
 It is advisable to preallocate inodes equal to or greater than the
 inodes present at source, as that many files are known to exist. The
 maximum number of inodes should also be set accordingly. Parallel
 I/O can be configured between the source NFS servers and the target.

 	 Applications should be shut down at the source.

 	For each of the LU filesets, a list of all the files
 at the source should be created. If the source is GPFS, a simple policy LIST RULE can be used
 to create such a list. This policy can be tuned to eliminate types
 that are not supported by AFM (see Restrictions in active file management).
 If the source is not GPFS, such
 a list can be created using find, ls, -R,
 or any similar tool. It must then be edited by hand to eliminate unsupported
 types.

 	 The mmafmctl prefetch command with --metadata-only option
 should be run on each of the LU filesets to populate the directory
 tree using the respective list file created above.

 	Applications are started at the target GPFS cluster.

 	While applications are running at the target, the mmafmctl
 prefetch command can be issued to run on each of the
 LU filesets, using the respective list files created in step 5. Prefetch
 must complete on all filesets before proceeding. Callbacks can be
 added to indicate when a scheduled prefetch task is completed using
 the afmPrepopEnd event. (For details, see
 the mmaddcallback command description in GPFS:
 Administration and Programming Reference.) Once
 a prefetch task completes, migration of the given data is said to
 be complete.

 	Migration is complete when prefetch is successful on all the filesets.
 The old system is ready to be decommissioned.

 	The GPFS AFM filesets can
 be converted to regular GPFS filesets
 with caching disabled or can continue as LU filesets. In case the
 filesets continue in LU mode, it is recommended to disable the refresh
 intervals (File Lookup Refresh Interval, File Open Refresh Interval,
 Dir Lookup Refresh Interval and Dir Open Refresh Interval). 	 	
 The
 downtime required is only for moving applications to a new GPFS AFM cluster and for AFM fileset
 conversions at the end of migration. Applications are expected to
 experience some latency during the on-demand pull of data from the
 source.

 Using HSM

 If data is managed by HSM at the
 data source, migration will drive data recall from the tape onto the
 source and then to the target system.

 HSM is not supported for
 AFM filesets. HSM can be used on the target systems if AFM is disabled
 at the completion of migration.

 For more information about AFM
 restrictions, see GPFS FAQ
 in IBM Knowledge Center.

 Parent topic: Active file management

[image: End of change]

 Restrictions in active file management

 In AFM, certain file attributes are maintained locally
 in the cache and separately in the home site; they are not transmitted
 to the other side.

 The file attributes that are maintained this way include
 the following:

 	control attributes

 	direct I/O

 	replication factors

 	fileset quotas

 	storage pool flags

 The same is also true of certain special file types, including
 the following:

 	FIFO

 	socket

 	block device

 	character device

 Snapshots on either side are also not played on the other side.
 To create peer snapshots in single-writer mode, you must use the mmpsnap command.
 Use the snapdir variable for specifying
 the snapshot location because the reserved .snapshots directory
 is the same at both the cache and home systems.

 The following are not supported by AFM:

 	hard links
 The hard links at the home site are not copied as
 hard links to cache. If a hard link is created in cache, that relationship
 is also created at the home site.

 	clones
 The mmclone command is disabled
 from cache. Clones created at home are not displayed as clones in
 the cache system; instead, the cache system displays the clones as
 separate files.

 	append-only or immutability flags
 When a file is appendonly or immutable at
 home, the cache reflects these attributes. Setting a file as immutable from
 cache sets the attribute but does not queue the request to home. Setting
 a file as appendonly is not allowed from
 cache.

 The clone, snapshot, hard link and rename restrictions also apply
 to data that is prefetched from the home site to the cache site.

 The following are other AFM restrictions:

 	When AFM is recovering from a failure, all WAN caching application
 requests are blocked momentarily.

 	It is the responsibility of the customer to ensure replication
 between Lightweight Directory Access Protocol (LDAP) servers used
 by the home and cache system.

 	Data transfer rates are not guaranteed.

 	The cache eviction function requires that quotas are enabled at
 the cache level.

 	AFM does not support file locking across systems. If an application
 locks a cached file at the cache system only the cached file is locked;
 the corresponding file at the home system is not locked by this request.

 	AFM does not support NFS delegation.

 	If a file is renamed at the home site, the file in cache is deleted
 and created again in cache. This results in the file being assigned
 a different inode number at the cache site.

 	[image: Start of change]There is no option to compress AFM data.[image: End of change]

 	Conversion of AFM filesets is supported on unmounted file systems.
 To convert an AFM fileset, the fileset must be unlinked, converted,
 and linked back.

 	Failover is only possible for SW or IW filesets. RO and LU filesets
 cannot be failed over.

 	For AFM caches using native GPFS protocol
 as target, AFM puts a hold on the remote vfsmount point. Hence it
 is not possible to unmount the remote file system until the relevant
 AFM cache is unlinked or local file system is unmounted.

 	Parallel I/O is supported only in Linux-only clusters, and all
 nodes should have the same architecture (x86 or ppc).

 	If home is a mix of architectures (x86 and ppc), then parallel
 I/O will work only for the set of nodes that belong to any one architecture,
 depending on which architecture serves the I/O first.

 	From Linux 2.6 onwards,
 all home NFS exports should mention the FSID value. See the topic
 about "Linux export considerations" in
 the GPFS:
 Administration and Programming Reference.

 	Recovery on a cache fileset that has at any point contained millions
 of inodes will take a long time.

 	Creating an AFM association, using GPFS protocol,
 to the same local file system is not allowed.

 	Fileset snapshot restore is not supported for AFM filesets.

 	[image: Start of change]Linking of a dependent or an independent fileset is
 not allowed inside the inode space of an AFM fileset (in other words,
 linking them under the junction path of an AFM fileset is a restricted
 operation). Note that this restriction is applicable for AFM filesets
 only. [image: End of change]

 Parent topic: Active file management

 Home cluster errors

 When a synchronous command experiences an error (such as reading
 a cached file while disconnected, or permission errors with the home
 cluster), it immediately reports the error back to the user.

 If an asynchronous update (such as a create, write, or attribute
 change) fails due to any reason (for example, EPERM, EROFS, EINVAL,
 or configuration errors), an error message is written to the log,
 and the operation is left on the queue and put into a special state.
 All further operations that depend on the failed operation will not
 execute. These errors are logged in the /var/adm/ras/mmfs.log.latest file
 on the MDS of a fileset or a fileset gateway.

 When this happens, you can look at the error in the log file and
 try to fix the problem. Once the problem is fixed, you can execute
 the mmafmctl resumeRequeued command on the
 gateway node with the failed message. This will put the operation
 back in a normal state and try to execute it to the home cluster.
 If another error occurs, or the problem is still not fixed, the whole
 process starts over again.

 If the process of fixing the error in the cache involves a GPFS restart or gateway reboot,
 then the queue might get dropped. This would put the cache out of
 sync with home, as discussed in Failure and recovery. The gateway
 would go into recovery mode when it comes up again.

 If an abnormal error such as E_STALE is
 received from home for a write operation in IW mode, the cache will
 cause the write to be dropped, with no recourse. An AFM error will
 be logged in this situation, and the file will be pulled in from home
 on the next revalidation. No corrective action needs to be taken by
 the administrator for these errors.

 Parent topic: Active file management

 Administrative actions

 This section describes the administrative actions associated
 with AFM.

 	System setup and requirements

 	Dealing with requeued messages

 Parent topic: Active file management

 System setup and requirements

 Enabling a cache on an existing file system may involve some additional
 steps and possibly tuning.

 Defining gateway nodes

 Gateway nodes are
 needed on the cache sides to be able to communicate to home. An NFS
 client should be available on the gateway nodes, and they need to
 be able to mount the NFS-exported path of the home cluster.

 When
 a gateway node is added to the cluster, it is initially inactive and
 will not be used to communicate with the home cluster. Once the GPFS daemon on the gateway node
 is restarted (or simply started if it was previously down), it is
 activated and is available for AFM functionality.

 Use the mmchnode command
 to define a node as a gateway node. For example, to define node1 as
 a gateway node, run the following command:mmchnode --gateway –N node1

 Adding or removing nodes

 In essence, an
 application node is no different from a node in a standard GPFS file system. Therefore, the
 addition or removal of an application node is the same as the addition
 or removal of a standard GPFS node.

 	Setting up home and cache clusters

 Parent topic: Administrative actions

 Setting up home and cache clusters

 This topic explains how to set up home and cache clusters and enable
 cache cleaning.

 Setting up the home cluster

 When configuring
 a file system on the home cluster for external access, you must complete
 the following steps on all nodes that will be used to export the file
 system:

 	Start the file system.

 	Set NFS export information. Ensure that the following items are
 true:

 	The directory within the file system to be cached is exported
 and is configured with the correct access permissions.

 	Gateway nodes at cache site have access to the exported directory
 (can be mounted using NFS).

 Note: The no_root_squash and sync NFS
 export arguments are critical.
 For single-writer filesets, ensure
 that the file system is exported with rw.
 For read-only filesets, the file system can be exported with either rw or ro.

 	Start NFS services. This will start all necessary NFS programs
 and export the file system.
 Note: If the file system goes down for
 any reason, the exported file system must be re-exported.

 	Enable the exported path at home suitable for AFM, using the following
 command at the home cluster: mmafmconfig enable ExportPath

 See
 the mmafmconfig command description in the GPFS:
 Administration and Programming Reference.

 This is the GPFS startup
 sequence at home to prepare file system gpfsA (Linux):# Start daemons
mmstartup -a

Sample /etc/exports file contents:
/gpfs/gpfsA/ *(fsid=12345,rw,sync,insecure,no_root_squash,nohide,no_wdelay)

Start nfs services
/etc/init.d/nfs start

 Note: If both NFS and GPFS start
 automatically at bootup time, it is very important to ensure that GPFS starts before NFS. This is
 because NFS can only export GPFS if
 it is loaded. If NFS starts before GPFS, exportfs
 -r needs to be executed.

 The home side
 of the relationship is defined at the NFS share level. The home contains
 all of the data available from the NFS mount point. It is a best practice
 to create one or more filesets for export on the home cluster, define
 NFS mount points at each fileset junction, and export each fileset
 individually.

 Setting up a cache cluster

 Before setting
 up a cache cluster, complete the following preparation steps:

 	Determine which nodes of the GPFS cluster
 will be application nodes and which will be gateway nodes.

 	Create an AFM fileset and link it.

 	Configure maxfilestocache to allow queueing
 of a large number of pending requests at gateway nodes.

 Follow these steps to set up the cache cluster:

 	Prior to starting the GPFS daemon
 on the chosen gateway nodes, specify the gateway nodes:mmchnode --gateway -N Node1,Node2,...

 	Ensure that GPFS has been
 started:mmstartup -a

 	Mount the file system:mmmount Device

 	Create an AFM-enabled fileset. There is no special file system
 configuration required to be a cache. The cache relationship is defined
 when you create a fileset by specifying the mmcrfileset -p parameter
 and specifying the required attribute afmTarget and
 the optional afmMode attribute and --inode-space parameter.mmcrfileset Device Fileset -p afmTarget=Home-Exported-Path --inode-space=new
 -p afmMode=single-writer | read-only | local-updates | independent-writer

 	Link the fileset to the file system:mmlinkfileset device fileset -J /gpfs/gpfsA/fs1

 Once the fileset is linked you are ready to start caching data.

 Enabling cache cleaning

 Cache cleaning is
 a feature where file data blocks are deallocated to make room for
 new files when fileset usage exceeds the fileset soft quota. This
 process is of deallocating blocks is called eviction. Note that the
 deallocation of file blocks is not done if file data is dirty and
 is not in sync with home. This feature is enabled only when fileset
 soft quotas are enabled.

 To enable cache cleaning, enable a
 fileset soft quota for the cache file set by specifying the -Q option
 on the mmcrfs or mmchfs commands.
 Cleaning starts when fileset usage reaches the soft quota limit.

 Parent topic: System setup and requirements

 Dealing with requeued messages

 When there is an error in executing a message, AFM
 re-queues the message. AFM tries to execute the message at a later
 point in time, and this continues in a loop until a message gets executed.
 In some cases, the user or administrator can correct the reason for
 the error and then force the message to be executed immediately, without
 waiting for AFM to execute in the next cycle. The mmafmctl
 resumeRequeued command can be used to execute the requeued
 messages in the queue.

 Parent topic: Administrative actions

 Tuning active file management home communications

 Note: For most recent tuning recommendations, see the GPFS FAQ
 in IBM Knowledge Center.

 AFM communication is done using the NFSv3 protocol; for peak performance
 it is a good idea to tune the gateway NFS servers that are hosting
 home exports and the gateway servers supporting cache filesets.

 Most of these tuning parameters require at least the AFM client
 to be restarted. It is always safest to make sure that the NFS server
 is not mounted. You can achieve this by unlinking the AFM filesets
 or stopping GPFS on the gateway
 node.

 There are significant differences between tuning for 1GigE and
 10GigE networks. For 10GbE everything needs to be scaled up, but not
 necessarily by a factor of 10. Many of these settings do not survive
 reboots so they need to be set each time the server is started. The
 TCP buffer tuning is required for 1GigE links with rtt > 0 and for
 all 10GigE links (possibly even in a LAN).

 Tuning on gateway nodes of the cache cluster (NFS
 Client)

 The sunrpc.tcp_slot_table_entries or /proc/sys/sunrpc/tcp_slot_table_entries parameter
 sets the maximum number of (TCP) RPC requests that can be in flight.
 Leave as the default for 1GigE with no round-trip time. You may want
 to increase it beyond 16 if the round-trip time is large. For 10GigE,
 make sure this value is at least 48; possibly even higher depending
 on the round-trip time.

 Tuning required on both the NFS client and the NFS
 server

 You must set TCP values that are appropriate for
 the delay (buffer size = bandwidth * RTT).

 For example, if your
 ping time is 50 ms, and the end-to-end network consists of all 100BT
 Ethernet and OC3 (155 Mbps), the TCP buffers should be the following:

 0.05 sec * 10 MB/sec = 500 KB

 If
 you are connected via a T1 line (1 Mbps) or less, the default buffers
 are fine; but faster networks usually benefit from buffer tuning.

 The
 following parameters can also be used for tuning (note that a 12194304
 buffer size is provided here as an example value for a 1GigE link
 with a delay of 120ms). To set these values, place the following settings
 in a file, then load it with sysctl -p filename.

 The
 following are example values; initial testing may be required to determine
 the best values for a particular system:net.ipv4.tcp_rmem = 12194304 12194304 12194304
net.ipv4.tcp_wmem = 12194304 12194304 12194304
net.ipv4.tcp_mem = 12194304 12194304 12194304
net.core.rmem_max = 12194304
net.core.wmem_max = 12194304
net.core.rmem_default = 12194304
net.core.wmem_default = 12194304
net.core.optmem_max = 12194304
net.core.netdev_max_backlog = 30000
net.ipv4.tcp_no_metrics_save = 1
net.ipv4.tcp_timestamps = 0
net.ipv4.tcp_sack = 1

 Note: For TCP tuning, the sysctl value
 changes will not take effect until a new TCP connection is created
 (which occurs at NFS mount time). Therefore, for TCP changes, it is
 critical that the AFM fileset (and thus the NFS client) is unmounted
 and GPFS is shut down.
 With Red Hat Enterprise Linux 6.1
 and later, both the NFS client and server perform TCP autotuning.
 This means that it will automatically increase the size of the TCP
 buffer within the specified limits (via sysctl).
 If either the client or server TCP limits are too small, the TCP buffer
 will grow as needed for various round-trip time between GPFS clusters. With versions earlier than Red Hat Enterprise Linux 6.1,
 NFS is limited in its ability to tune the TCP connection. Therefore,
 do not use a version earlier than Red Hat Enterprise Linux 6.1
 in the cache cluster.

 Since a GPFS cluster
 may be handling local and remote NFS clients, one strategy is to set
 the GPFS server values at the
 value for the largest expected round-trip time of any NFS client.
 This will ensure that the GPFS server
 can handle clients in various locations. Then on the NFS clients,
 set the TCP buffer values that are appropriate for the SONAS cluster
 that they are accessing.

 For AFM, the gateway node is both
 an NFS server (for standard NFS clients if they exist) and an NFS
 client (for communication with the home cluster). Ensure that the
 TCP values are set appropriately, as values that are either too big
 or too small can negatively impact performance.

 If performance
 continues to be an issue, try increasing the buffer value by at
 most 50%. Any further increase in size will have a negative effect
 on performance.

 NFS server tuning on the home cluster

 	/proc/fs/nfsd/max_block_size

 	Set this to 1MB for improved performance.

 	/proc/fs/nfsd/threads

 	Set to a minimum value of 32, but possibly greater than 128 depending
 on the throughput capacity and round-trip time between the cache and
 home clusters. You might need to experiment to determine the correct
 value.

 	nfsPrefetchStrategy

 	Since AFM uses NFS, ensuring that this is set on the home GPFS cluster is critical. Set it
 to at least 5 to 10.

 Tuning active file management

 The following
 table lists AFM configuration parameters with their default values
 and the commands used to set them initially or change them.
 [image: Start of change]
 Active file management configuration parameters and
 default values

 	AFM configuration parameter

 	Valid values

 	Default value

 	Tunable at cluster level

 	Tunable at fileset level

 	Notes

 	afmAsyncDelay

 	1 through 2147483647

 	15

 	Yes

 	Yes

 	
 This is an optional attribute that is set by default
 when the fileset is created.

 	afmDirLookupRefreshInterval

 	0 through 2147483647

 	60

 	Yes

 	Yes

 	
 This is an optional attribute that is set by default
 when the fileset is created.

 	afmDirOpenRefreshInterval

 	0 through 2147483647

 	60

 	Yes

 	Yes

 	
 This is an optional attribute that is set by default
 when the fileset is created.

 	afmDisconnectTimeout

 	0 through 2147483647, disable

 	60

 	Yes

 	Yes

 	
 This is an optional attribute that is set by default
 when the fileset is created.

 Only mmchconfig can
 be used to change this attribute.

 	afmExpirationTimeout

 	0 through 2147483647, disable

 	300

 	Yes

 	Yes

 	
 This is an optional attribute that is set by default
 when the fileset is created.

 	afmFileLookupRefreshInterval

 	0 through 2147483647

 	30

 	Yes

 	Yes

 	
 This is an optional attribute that is set by default
 when the fileset is created.

 	afmFileOpenRefreshInterval

 	0 through 2147483647

 	30

 	Yes

 	Yes

 	
 This is an optional attribute that is set by default
 when the fileset is created.

 	afmMode

 	read-only | ro, local-updates | lu, single-writer | sw,
 independent-writer | iw

 	read-only | ro

 	Not applicable

 	Not applicable

 	
 This is a required attribute for the mmcrfileset command.

 [image: End of change]

 Active file management settings

 Once the
 NFS values have been set, you can mount and access the AFM filesets.
 The first time the fileset is accessed the AFM NFS client mounts
 the home server or servers. To see these mounts on a gateway node,
 enter the following command:

 cat /proc/mounts

 The
 system displays the mount point and the mount options. If the wsize and rsize values
 are not 1MB, you can adjust the parameters and remount to get the
 correct values.

 Tuning on the cache cluster

 When the GPFS parameter seqDiscardThreshold has
 been set, it affects AFM as follows:

 	If I/O requests are from a node other than the gateway node, there
 is no effect.

 	If the read request is made on the gateway node for an uncached
 file, a higher seqDiscardThreshold value
 results in higher performance. This is because it allows the gateway
 to cache more data, which means that when the data is returned to
 the application, there is a greater chance that it comes out of the
 cache.

 AFM performance tuning parameters at
 cache

 [image: Start of change]The parameters in the following table can
 be used for performance tuning at cache:
 [image: Start of change]
 AFM
 configuration parameters that can be used for performance tuning at
 cache.

 	AFM configuration parameter

 	Valid values

 	Default value

 	Tunable at cluster level

 	Tunable at fileset level

 	afmNumReadThreads

 	1 to 64

 	1

 	Yes

 	No

 	afmNumWriteThreads

 	1 to 64

 	1

 	Yes

 	No

 	afmParallelReadChunkSize

 	0 to 2147483647

 	128

 	Yes

 	Yes

 	afmParallelReadThreshold

 	0 to 2147483647

 	1024

 	Yes

 	Yes

 	afmParallelWriteChunkSize

 	0 to 2147483647

 	128

 	Yes

 	Yes

 	afmParallelWriteThreshold

 	0 to 2147483647

 	1024

 	Yes

 	Yes

 	afmReadSparseThreshold

 	0 to 2147483647

 	128

 	Yes

 	No

 [image: End of change]

 [image: End of change]

 In addition, the following can be used:

 	afmHardMemThreshold

 	Sets the maximum amount of memory that AFM can utilize on each
 gateway node to record changes to the file system. Once this limit
 is reached, the fileset goes into "dropped" state. Exceeding
 the limit can occur if the cache cluster is disconnected for an extended
 period of time or if the connection with the home cluster has low
 bandwidth. The fileset will be brought back to "active" state
 once the fileset goes into connected mode.

 Parent topic: Active file management

 GPFS File Placement Optimizer

 GPFS File Placement
 Optimizer (FPO) is a set of features that allow GPFS to operate efficiently in a system based
 on a shared nothing architecture. It is particularly useful for "big
 data" applications that process massive amounts of data.

 About this task

 Note: [image: Start of change] This feature is available
 with GPFS Standard
 Edition or
 higher.[image: End of change]

 FPO
 makes use of the following entities and policies:

 	Chunks

 	A chunk is a logical grouping of blocks that allows the grouping
 to behave like one large block, particularly useful for applications
 that need high sequential bandwidth. Chunks are specified by a block
 group factor that dictates how many file system blocks are laid out
 sequentially on disk to behave like a large block. Chunks can be specified
 on a storage pool basis or at a file level.

 	On the file level, the block group factor can be specified by
 the --block-group-factor argument of the mmchattr command.
 The range of the block group factor is from 1 to 1024; the default
 value is 1. You can also specify this through the blockGroupFactor argument
 in a storage pool stanza (as input to the mmadddisk or mmcrfs command).

 	The effective large block size is a function of both block group
 factor and block size. For example, setting block size to 1 MB and
 block group factor to 128 will lead to an effective large block size
 of 128 MB.
 See the following command descriptions in the GPFS:
 Administration and Programming Reference:

 	mmadddisk

 	mmchattr

 	mmcrfs

 	Extended failure groups

 	A failure group is defined as a set of disks that share a common
 point of failure that could cause them all to become simultaneously
 unavailable. Traditionally, GPFS failure
 groups have been identified by simple integers. In an FPO-enabled
 environment, a failure group may be specified as not just a single
 number, but as a vector of up to three comma-separated numbers that
 convey topology information that GPFS will
 exploit when making data placement decisions.
 In general, a topology
 vector is a way for the user to specify which disks are closer together
 and which are farther away. In practice, the three elements of the
 failure group topology vector may represent the rack number of a disk,
 a position within the rack, and a node number. For example, the topology
 vector 2,1,0 identifies rack 2, bottom half, first node.

 When
 considering two disks for striping or replica placement purposes,
 it is important to understand the following:

 	Disks that differ in the first of the three numbers are farthest
 apart (as they are in different racks).

 	Disks that have the same first number but differ in the second
 number are closer (as they are in the same rack, but in different
 halves).

 	Disks that differ only in the third number reside in different
 nodes in the same half of the same rack.

 	Only disks that have all three numbers in common reside in the
 same node.

 The data block placement decisions are also affected by
 the level of replication and the value of the writeAffinityDepth parameter.
 For example, when using replication 3, GPFS may
 place two replicas far apart (different racks) to minimize chances
 of losing both. On the other hand, the third replica may be placed
 close to one of the others (same rack, but different half), to reduce
 network traffic between racks when writing the three replicas.

 To
 specify the topology vector that identifies a failure group, you use
 the failureGroup=FailureGroup attribute
 in an NSD stanza (as input to the mmadddisk or mmcrfs command).

 See
 the following command descriptions in the GPFS:
 Administration and Programming Reference:

 	mmadddisk

 	mmcrfs

 	Write affinity depth

 	Write affinity depth is a policy that indicates that the node
 writing data directs the write to its own node for the first copy,
 and to the disks in other nodes for the second and third copy (if
 specified). The policy allows the application to determine the layout
 of a file in the cluster so as to optimize for typical access patterns.
 The write affinity is specified by a depth that indicates how many
 copies are localized (as opposed to wide striped) and can be specified
 at the storage pool or file level.
 To specify write affinity depth,
 you use the writeAffinityDepth attribute
 in a storage pool stanza (as input to the mmadddisk or mmcrfs command)
 or the --write-affinity-depth argument of
 the mmchattr command.

 A write affinity depth of
 0 indicates that each replica is to be striped across the disks in
 a cyclical fashion with the restriction that no two disks are in the
 same failure group. By default, the unit of striping is a block; however,
 if the block group factor is specified in order to exploit chunks,
 the unit of striping is a chunk.

 A write affinity
 depth of 1 indicates that the first copy is written to the writer
 node. The second copy is written to a different rack. The third copy
 is written to the same rack as the second copy, but on a different
 half (which can be composed of several nodes).

 A
 write affinity depth of 2 indicates that the first copy is written
 to the writer node. The second copy is written to the same rack as
 the first copy, but on a different half (which can be composed of
 several nodes). The target node is determined by a hash value on the
 fileset ID of the file, or it is chosen randomly if the file does
 not belong to any fileset. The third copy is striped across the disks
 in a cyclical fashion with the restriction that no two disks are in
 the same failure group.

 This behavior can be
 altered on an individual file basis by utilizing the --write-affinity-failure-group option
 of the mmchattr command.

 Note: Write
 affinity depth of 2 is designed to assign (write) all the files in
 a fileset to the same second-replica node. However, this behavior
 depends on node numbers in the cluster; after a node is added to or
 deleted from a cluster, a different node is selected as the second
 replica for files in a fileset.

 See the description of storage
 pool stanzas that follows. Also, see the following command descriptions
 in the GPFS:
 Administration and Programming Reference:

 	mmadddisk

 	mmchattr

 	mmcrfs

 	Write affinity failure group

 	Write affinity failure group is a policy that indicates the range
 of nodes (in a shared nothing architecture) where replicas of blocks
 in a particular file are to be written. The policy allows the application
 to determine the layout of a file in the cluster so as to optimize
 for typical access patterns.

 	You specify the write affinity failure group through the write-affinity-failure-group WafgValueString attribute
 of the mmchattr command. Failure group topology
 vector ranges specify the nodes, and the specification is repeated
 for each replica of the blocks in a file.

 	For example, the attribute 1,1,1:2;2,1,1:2;2,0,3:4
 indicates that the first replica is on rack 1, rack location 1, nodes
 1 or 2; the second replica is on rack 2, rack location 1, nodes 1
 or 2; and the third replica is on rack 2, rack location 0, nodes 3
 or 4. The default policy is a null specification, which indicates
 that each replica is to be wide striped over all the disks in a cyclical
 fashion such that no two replicas are in the same failure group.
 When
 data in an FPO pool is backed up in a TSM server and then restored,
 the original placement map will be broken unless you set the write
 affinity failure group for each file before backup.

 Note: To change
 the failure group in a write-affinity–enabled storage pool,
 you must use the mmdeldisk and mmadddisk commands;
 you cannot use mmchdisk to change it directly.

 See
 the following command descriptions in the GPFS:
 Administration and Programming Reference:

 	mmadddisk

 	mmchattr

 	mmdeldisk

 	Enabling the FPO features

 	To efficiently support write affinity and the rest of the FPO
 features, GPFS internally requires
 the creation of special allocation map formats. When you create a
 storage pool that is to contain files that make use of FPO features,
 you must specify allowWriteAffinity=yes in
 the storage pool stanza.
 To enable the policy to read replicas from
 local disks, you must also issue the following command:mmchconfig readReplicaPolicy=local

 See
 the description of storage pool stanzas that follows. Also, see the
 following command descriptions in the GPFS:
 Administration and Programming Reference:

 	mmadddisk

 	mmchconfig

 	mmcrfs

 	Storage pool stanzas

 	Storage pool stanzas are used to specify the type of layout
 map and write affinity depth, and to enable write affinity, for each
 storage pool.

 	Storage pool stanzas have the following format:%pool:
 pool=StoragePoolName
 blockSize=BlockSize
 usage={dataOnly | metadataOnly | dataAndMetadata}
 layoutMap={scatter | cluster}
 allowWriteAffinity={yes | no}
 writeAffinityDepth={0 | 1 | 2}
 blockGroupFactor=BlockGroupFactor

 See
 the following command descriptions in the GPFS:
 Administration and Programming Reference:

 	mmadddisk

 	mmcrfs

 	Recovery from disk failure

 	A typical shared nothing cluster is built with nodes that have
 direct-attached disks. Disks are not shared between nodes as in a
 regular GPFS cluster, so if
 the node is inaccessible, its disks are also inaccessible. GPFS provides means for automatic
 recovery from these and similar common disk failure situations.

 	The following command sets up and activates the disk recovery
 features:mmchconfig restripeOnDiskFailure=yes -i

 	Whether a file system is a subject of a recovery attempt is determined
 by the max replication values for the file system. If the mmlsfs
 -M or -R value is greater
 than one, then the recovery code will be executed. The recovery actions
 are asynchronous and GPFS will
 continue its processing while the recovery attempts take place. The
 results from the recovery actions and any errors that are encountered
 will be recorded in the GPFS logs.

 	Two additional parameters are available for fine tuning the recovery
 process: mmchconfig metadataDiskWaitTimeForRecovery=seconds
mmchconfig dataDiskWaitTimeForRecovery=seconds

 	The default value for metadataDiskWaitTimeForRecovery is
 1800 seconds. The default value for dataDiskWaitTimeForRecovery is
 3600 seconds.
 See the following command description in the GPFS:
 Administration and Programming Reference:

 	mmchconfig

 	Distributing data across a cluster

 	FPO pool file placement and AFM

 	Restrictions

 Distributing data across a cluster

 About this task

 There are a few ways to distribute data uniformly across
 a cluster:

 	Import the data through a diskless GPFS client;
 this ensures that the data is distributed evenly across all failure
 groups and all nodes within a failure group.

 	Use a write affinity depth of 0 across the cluster; however, the
 data distribution tends to favor the failure group of the ingest node.

 	Make every GPFS node an
 ingest node and deliver data equally across all ingest nodes; however,
 this strategy is expensive in terms of implementation.

 Ideally, all the failure groups should have an equal
 number of disks with roughly equal capacity. If one failure group
 is much smaller than the rest, it is likely to fill up faster than
 the others, and this will complicate rebalancing actions.

 After
 the initial ingesting of data, the cluster may be unbalanced. In such
 a situation, use the mmrestripefs command
 with the -b option to rebalance the data.

 Parent topic: GPFS File Placement Optimizer

 FPO pool file placement and AFM

 About this task

 For AFM home or cache, an FPO pool file written on the
 local side will be placed according to the write affinity depth and
 write affinity failure group definitions of the local side. When a
 file is synced from home to cache, it follows the same FPO placement
 rule as when written from the gateway node in the cache cluster. When
 a file is synced from cache to home, it follows the same FPO data
 placement rule as when written from the NFS server in the home cluster.

 To
 retain the same file placement at both home and cache, ensure that
 each has the same cluster configuration, and set the write affinity
 failure group for each file.

 Parent topic: GPFS File Placement Optimizer

 Restrictions

 About this task

 The following restrictions apply in an FPO environment:

 	Storage pool properties can be set only when the pool is created
 and cannot be changed later.

 	All disks in an FPO pool must be assigned an explicit failure
 group.

 	All disks in an FPO pool must have exactly one NSD server associated
 with them.

 	All disks in an FPO pool that share an NSD server must belong
 to the same failure group.

 	When replacing a disk in an FPO pool, the old and new disks must
 have the same NSD server.

 	Disks must be removed from the file system before NSD servers
 can be changed.

 There may be additional limitations and restrictions.
 For the latest support information, see the GPFS FAQ
 in IBM Knowledge Center.

 Parent topic: GPFS File Placement Optimizer

 Encryption

 GPFS provides support
 for file encryption that ensures both secure storage and secure deletion
 of data. GPFS manages encryption
 through the use of encryption keys and encryption policies.

 Note: [image: Start of change]GPFS encryption
 is only available with GPFS Advanced
 Edition. The file
 system must be at the latest version for GPFS 4.1.
 Encryption is supported in multicluster environments (provided that
 the remote nodes have their own /var/mmfs/etc/RKM.conf files
 and access to the remote key managers; see Encryption keys) and FPO
 environments.[image: End of change]

 Secure storage uses encryption to make data unreadable to anyone
 who does not possess the necessary encryption keys. The data is encrypted
 while "at rest" (on disk) and is decrypted on the way to the
 reader. Only data, not metadata, is encrypted.

 GPFS encryption can protect
 against attacks targeting the disks (for example, theft or acquisition
 of improperly discarded disks) as well as attacks performed by unprivileged
 users of a GPFS node in a multi-tenant
 cluster (that is, a cluster that stores data belonging to multiple
 administrative entities called tenants). However, it cannot protect
 against deliberate malicious acts by a cluster administrator.

 Secure data deletion leverages encryption and key management to
 guarantee erasure of files beyond the physical and logical limitations
 of normal deletion operations. If data is encrypted, and the master
 key (or keys) required to decrypt it have been deleted from the key
 server, that data is effectively no longer retrievable. See Encryption keys.

 Important: Encryption should not be
 viewed as a substitute for using file permissions to control user
 access.

 	Encryption keys

 	Encryption policies

 	Encryption policy rules

 	Encryption setup requirements

 	Establishing an encryption-enabled environment

 	Secure deletion

 Secure deletion refers to both erasing files from the file
 system and erasing the MEKs that wrapped the FEKs that were used to
 encrypt the files.

 	Encryption and FIPS compliance

 	Encryption and NIST compliance

 	Encryption and backup/restore

 	Encryption and snapshots

 Encryption keys

 GPFS uses the following types of
 encryption keys:

 	master encryption key (MEK)

 	An MEK is used to encrypt file encryption keys.
 MEKs are stored
 in remote key management (RKM) servers and are cached by GPFS components. GPFS receives
 information about the RKM servers in a separate /var/mmfs/etc/RKM.conf configuration
 file. Encryption rules present in the encryption policy define which
 MEKs should be used, and the /var/mmfs/etc/RKM.conf file
 provides a means of accessing those keys. The /var/mmfs/etc/RKM.conf also
 specifies how to access RKMs containing MEKs used to encrypt files
 created under previous encryption policies.

 An MEK is identified
 with a unique Keyname that combines the
 name of the key and the RKM server on which it resides. See Encryption policy rules for Keyname format.

 	file encryption key (FEK)

 	An FEK is used to encrypt sectors of an individual file. It is
 a unique key that is randomly generated when the file is created.
 For protection, it is encrypted (or "wrapped") with one or more
 MEKs and stored in the gpfs.Encryption extended
 attribute of the file.
 A wrapped FEK cannot be decoded without access
 to the MEK (or MEKs) used to wrap it. Therefore, a wrapped FEK is
 useless to an attacker and does not require any special handling at
 object deletion time. If necessary, an FEK can be rewrapped using
 a new set of MEKs to allow for operations like MEK expiration and
 rotation, compromised key removal, and data expiration.

 Note: If
 an encryption policy specifies that an FEK be wrapped multiple times,
 only one of the wrapped-FEK instances needs to be unwrapped for the
 file to be accessible.

 Parent topic: Encryption

 Encryption policies

 GPFS uses encryption policies
 to manage aspects of how file encryption is to be implemented, including
 the following:

 	which files are to be encrypted

 	which algorithm is to be used for the encryption

 	which MEK (or MEKs) are to be used to wrap the FEK of a file

 Encryption policies are configured using the mmchpolicy command
 and are applied at file creation time. When a file is created, encryption
 rules are traversed in order until one of the following occurs:

 	The last rule is reached.

 	The maximum number of SET ENCRYPTION rules
 that can be matched (eight) is reached.

 	An ENCRYPTION EXCLUDE rule is matched.

 If the file matches at least one SET ENCRYPTION rule,
 an FEK is generated and used to encrypt its contents. The FEK is wrapped
 once for each policy it matches, resulting in one or more versions
 of the encrypted FEK being stored in the gpfs.Encryption extended
 attribute of the file.

 Notes:

 	When an encryption policy is changed, the changes apply only to
 the encryption of subsequently created files.

 	Encryption policies are defined on a per–file system basis
 by a system administrator. Once the encryption policies are put in
 place, they may result in files in different filesets or with different
 names being encrypted differently.

 Parent topic: Encryption

 Encryption policy rules

 GPFS provides
 the following rules with which you can specify encryption policies:

 	ENCRYPTION IS

 	This rule is used to specify how a file is to be encrypted and
 how the FEK is to be wrapped.
 The syntax of the ENCRYPTION
 IS rule is:RULE 'RuleName' ENCRYPTION 'EncryptionSpecificationName' IS
 ALGO 'EncParamString'
 COMBINE 'CombineParamString'
 WRAP 'WrapParamString'
 KEYS('Keyname'[, 'Keyname', ...])

 where:
 	ALGO EncParamString

 	specifies the encryption parameter string, which defines the following:

 	encryption algorithm

 	key length

 	mode of operation

 	key derivation function

 The following encryption parameter strings are valid:

 Table 43. Valid EncParamString values.

 	Value

 	Description

 	AES:128:XTS:FEK:HMACSHA512

 	Encrypt the file with AES in XTS mode. The
 FEK is 128 bits long and is preprocessed using HMAC with SHA-512.

 	AES:256:XTS:FEK:HMACSHA512

 	Encrypt the file with AES in XTS mode. The
 FEK is 256 bits long and is preprocessed using HMAC with SHA-512.

 	AES:128:CBC:FEK:HMACSHA512

 	Encrypt the file with AES in CBC mode. The
 FEK is 128 bits long and is preprocessed using HMAC with SHA-512.

 	AES:192:CBC:FEK:HMACSHA512

 	Encrypt the file with AES in CBC mode. The
 FEK is 192 bits long and is preprocessed using HMAC with SHA-512.

 	AES:256:CBC:FEK:HMACSHA512

 	Encrypt the file with AES in CBC mode. The
 FEK is 256 bits long and is preprocessed using HMAC with SHA-512.

 	COMBINE CombineParamString

 	specifies a string that defines the mode to be used to combine
 MEKs specified by the KEY statement.
 The
 following combine parameter string values are valid:

 Table 44. Valid
 combine parameter string values.

 	Value

 	Description

 	XORHMACSHA512

 	Combine MEKs with a round of XOR followed by
 a round of HMAC with SHA-512.

 	XOR

 	Combine MEKs with a round of XOR.

 	WRAP WrapParamString

 	specifies a string that defines the encryption algorithm and the
 wrapping mode to be used to wrap the FEK.
 The following wrapping
 parameter string values are valid:

 Table 45. Valid wrapping parameter
 string values.

 	Value

 	Description

 	AES:KWRAP

 	 Use AES key wrap to wrap the FEK.

 	AES:ECB

 	 Use AES in ECB mode to wrap the FEK.

 	AES:CBCIV

 	 Use AES in CBC-IV mode to wrap the FEK.

 	KEYS ('Keyname'[, 'Keyname',
 ...])

 	specifies one or more keys to be applied. Each Keyname is
 a unique identifier that combines the name of the key and the RKM
 server on which it resides. The format for Keyname is: KeyId:RkmId

 where
 	KeyId

 	represents an internal identifier that uniquely identifies the
 key inside the RKM. Valid characters for KeyId are
 the following: 'A' through 'Z'; 'a' through 'z'; '0' through '9';
 and '-' (hyphen). The minimum length of KeyId is
 one character; the maximum length is 42 characters.

 	RkmId

 	corresponds to the /var/mmfs/etc/RKM.conf entry
 for the RKM that manages the key. Valid characters for RkmId are
 the following: 'A' through 'Z'; 'a' through 'z'; '0' through '9';
 and '_' (underscore). The minimum length of RkmId is
 one character; the maximum length is 21 characters.

 Notes:

 	The maximum number of keys you can specify with the ENCRYPTION
 IS rule is eight.

 	The number of keys that can be used to encrypt a single file is
 permanently limited by the inode size of the file system.

 	You cannot specify the same key more than once in a given ENCRYPTION
 IS rule. Also, do not specify keys with identical values
 in an ENCRYPTION IS rule. Specifying the
 same key or identically-valued keys could result in a security breach
 for your data.

 	SET ENCRYPTION

 	The SET ENCRYPTION rule is similar to
 the SET POOL rule. If more than one such
 rule is present, all SET ENCRYPTION rules
 are considered and the FEK is wrapped once for each of the rules that
 apply (up to the maximum of eight). As mentioned in Encryption keys, if an FEK
 is wrapped multiple times, only one of the wrapped-FEK instances needs
 to be unwrapped for the file to be accessed.

 	If no SET ENCRYPTION rule is applicable
 at create time, the file is not encrypted.
 The syntax of the SET
 ENCRYPTION rule is:RULE 'RuleName' SET ENCRYPTION 'EncryptionSpecificationName'[, 'EncryptionSpecificationName',...]
 [FOR FILESET ('FilesetName'[,'FilesetName']...)]
 [WHERE SqlExpression]

 where:

 	EncryptionSpecificationName

 	is the name of a specification defined by an ENCRYPTION
 IS rule.

 To stop traversing policy rules at a certain
 point and encrypt using only those rules that have matched up to that
 point, use the SET ENCRYPTION EXCLUDE rule: RULE ['RuleName'] SET ENCRYPTION EXCLUDE
 [FOR FILESET ('FilesetName'[,'FilesetName']...)]
 [WHERE SqlExpression]

 Note: [image: Start of change]Encryption policies do not support the ACTION clause.[image: End of change]

 Default encryption parameters

 To
 simplify policy management, GPFS accepts
 the special default value 'DEFAULTNISTSP800131A' as
 the ALGO parameter string.

 For example,
 this policy statement:RULE 'somerule' ENCRYPTION 'somename' IS
 ALGO 'DEFAULTNISTSP800131A'
 KEYS('KEY-2f1f7700-de74-4e55-a9be-bee49c5b3af8:RKMKMIP3')

 corresponds
 to this:[image: Start of change]RULE 'somerule' ENCRYPTION 'somename' IS
 ALGO 'AES:256:XTS:FEK:HMACSHA512'
 COMBINE 'XORHMACSHA512'
 WRAP 'AES:KWRAP'
 KEYS('KEY-2f1f7700-de74-4e55-a9be-bee49c5b3af8:RKMKMIP3')
[image: End of change]

 Note: When
 this special ALGO default value is set as
 the ALGO EncParamString,
 neither COMBINE nor WRAP should
 be specified.

 Example of an encryption policy

 This is an example of an encryption
 policy:RULE 'myEncRule1' ENCRYPTION 'E1' IS
 ALGO 'DEFAULTNISTSP800131A'
 KEYS('1:RKM_1', '2:RKM_2')

RULE 'myEncRule2' ENCRYPTION 'E2' IS
 ALGO 'AES:256:XTS:FEK:HMACSHA512'
 COMBINE 'XOR'
 WRAP 'AES:KWRAP'
 KEYS('3:RKM_1')

RULE 'myEncRule3' ENCRYPTION 'E3' IS
 ALGO 'AES:128:CBC:FEK:HMACSHA512'
 COMBINE 'XORHMACSHA512'
 WRAP 'AES:CBCIV'
 KEYS('4:RKM_2')

RULE 'Do not encrypt files with extension enc4'
 SET ENCRYPTION EXCLUDE
 FOR FILESET('fs1')
 WHERE NAME LIKE '%.enc4'

RULE 'Encrypt files with extension enc1 with rule E1'
 SET ENCRYPTION 'E1'
 FOR FILESET('fs1')
 WHERE NAME LIKE '%.enc1'

RULE 'Encrypt files with extension enc2 with rule E2'
 SET ENCRYPTION 'E2'
 FOR FILESET('fs1')
 WHERE NAME LIKE '%.enc2'

RULE 'Encrypt files with extension enc* with rule E3'
 SET ENCRYPTION 'E3'
 FOR FILESET('fs1')
 WHERE NAME LIKE '%.enc%'

 Note:
 In this
 example encryption policy:

 	
 All files in fileset fs1 are treated as follows:

 	If the extension is equal to enc4, the file is
 not encrypted. This happens because the ENCRYPTION EXCLUDE rule
 is matched first, stopping the traversal of the remaining rules before
 any additional matches can be made.

 	If the extension is equal to enc1, the file is
 encrypted with a 256-bit FEK, using AES in XTS mode; the FEK is preprocessed
 with HMAC with SHA-512, and the FEK is then wrapped twice:

 	once with AES key wrap, with keys 1:RKM_1 and 2:RKM_2 combined
 via one round of XOR followed by one round of HMAC with SHA-512

 	once with AES in CBC-IV mode using key 4:RKM_2

 This happens because both rules E1 and E3 apply,
 since extension enc1 matches both %.enc1 and %.enc%.
 Note that the encryption algorithms specified by rule [image: Start of change]E1[image: End of change], which grant a stronger security than those
 of rule [image: Start of change]E3[image: End of change], are chosen and applied.

 	If the extension is equal to enc2, the file is
 encrypted with a 256-bit FEK, using AES in XTS mode; the FEK is preprocessed
 with HMAC with SHA-512; and the FEK is then wrapped twice:

 	once with AES key wrap using key 3:RKM_1

 	once with AES in CBC-IV mode using key 4:RKM_2

 This happens because both rules E2 and E3 apply,
 since extension enc2 matches both %.enc2 and %.enc%.

 	If the extension is equal to enc3, the file is
 encrypted with a 128-bit FEK, using AES in CBC mode; the FEK is preprocessed
 with HMAC with SHA-512; and the FEK is then wrapped once with AES
 in CBC-IV mode using key 4:RKM_2.
 This happens
 because only rule E3 applies, since extension enc3 only
 matches %.enc%.

 	A GPFS node with access
 to both keys 1:RKM_1 and 2:RKM_2 or
 to key 4:RKM_2 can access a file with extension enc1.

 	A GPFS node with access
 to key 3:RKM_1 or to key 4:RKM_2 can
 access a file with extension enc2.

 	A GPFS node with access
 to key 4:RKM_2 can access a file with extension enc3.

 	No key is required to access a file with extension enc4.

 	A file with extension enc1 is securely deleted
 when either key 1:RKM_1 or 2:RKM_2,
 and key 4:RKM_2 are destroyed in their respective
 RKMs (and their cached copies have been flushed).

 	A file with extension enc2 is securely deleted
 when key 3:RKM_1 and key 4:RKM_2 are
 destroyed in their respective RKMs (and their cached copies have
 been flushed).

 	A file with extension enc3 is securely deleted
 when key 4:RKM_2 is destroyed in its respective
 RKM (and its cached copies have been flushed).

 	Once created, a file may not be encrypted with more MEKs, only
 with different MEKs using the REWRAP rule.

 Rewrapping policies

 Rewrapping policies are used to change
 the way a set of FEKs is encrypted; that is, to change the set of
 MEKs that wrap the FEKs of those files. Rewrapping applies only to
 files that are already encrypted, and the rewrapping operation acts
 only on the gpfs.Encryption EA of the files.
 Rewrapping is done by using the mmapplypolicy command
 to apply a set of policy rules containing one or more CHANGE
 ENCRYPTION KEYS rules. These rules have the
 form:

 RULE 'ruleName' CHANGE ENCRYPTION KEYS FROM 'Keyname_1' to 'Keyname_2'
[FROM POOL 'poolName']
 [FOR FILESET(...)]
 [SHOW(...)]
 [WHERE ...]

 where:

 	Keyname_1 is the unique identifier of
 the MEK to be replaced. (See Encryption policy rules for Keyname format.)

 	Keyname_2 is the unique identifier of
 the new MEK, which will replace the old MEK identified by Keyname_1.

 	The FOR FILESET and WHERE clauses
 narrow down the set of affected files.

 Both Keyname_1 and Keyname_2 are
 listed, and only the files that currently use Keyname_1 will
 have their FEKs rewrapped with Keyname_2.
 Files that do not currently use Keyname_1 are
 not affected by the operation.

 Notes:

 	Only the first matching CHANGE ENCRYPTION KEYS rule
 will be applied to each file. The rule will rewrap each wrapped version
 of the FEK that was encrypted with the MEK in the CHANGE
 ENCRYPTION KEYS rule.

 	The same MEK cannot be used more than once in a particular wrapping
 of the FEK.

 Parent topic: Encryption

 Encryption setup requirements

 Setup requirements for encryption are as follows:

 	GPFS software

 	GPFS 4.1 Advanced Edition
 is required for encryption.

 	GPFS node setup

 	The following are required:

 	operating system image with a running version of mmfsd deployed
 on a set of nodes

 	a GPFS cluster configured
 and up and running

 	file system at the latest version level for GPFS 4.1, with the following:

 	fast external attributes enabled. This is the default for newly-created
 4.1 file systems. However, if the file system was migrated from an
 earlier level, it may be necessary to issue the mmmigratefs FsName --fastea command.

 	4KB inodes (recommended minimum size). The 4KB inode size is recommended
 to accommodate the gpfs.Encryption extended attribute
 that is assigned to each encrypted file at file creation time. This
 extended attribute will contain one or more wrapped FEKs, so it can
 potentially grow quite large. (See Encryption policies.)

 	gpfs.gskit and gpfs.crypto packages
 installed

 	RKM Setup

 	The following are required:

 	RKM server. The only server currently supported is IBM Security
 Key Lifecycle Manager (ISKLM) v2.5.0.1
 or later.
 Note: ISKLM has a complete implementation of the Key Management
 Interoperability Protocol (KMIP) standard of the Organization for
 the Advancement of Structured Information Standards (OASIS). GPFS nodes use the KMIP protocol
 to retrieve keys from ISKLM servers.

 	GPFS nodes with direct network
 access to the RKM server

 	RKM Backends

 	Nodes in the cluster that will be used to perform data access
 (reading and writing files) or participate in administration tasks
 such as snapshot deletion, disk repair, or file system check must
 perform encryption. These nodes must therefore be able to contact
 one or more RKM backends to transparently access keys required by
 the encryption policies.
 The configuration of each RKM backend
 must be described in a /var/mmfs/etc/RKM.conf file
 on each such node. The /var/mmfs/etc/RKM.conf file does not have to be identical; by controlling the contents
 of this file, the cluster administrator can control which client nodes
 have access to which keys. For example, the same RKM server could
 be given two different names in /var/mmfs/etc/RKM.conf stanzas,
 allowing the administrator to partition a set of MEKs hosted on a
 single RKM server into separate subsets of MEKs, which might belong
 to subsets of the nodes of the cluster.

 /var/mmfs/etc/RKM.conf file

 The /var/mmfs/etc/RKM.conf file
 consists of a series of stanzas, each of which uses the following
 syntax:

 # RKM entry
RkmId {
 type = ISKLM # The RKM is an ISKLM
 kmipServerUri = tls://host:port # TLS connection to host on port
 keyStore = /PathToKeyStoreFile # The path to the PKCS#12 file containing server certificate
 # and client public/private keypair
 passphrase = Password # Passphrase protecting the key store file
 clientCertLabel = LabelName # Label of the client key pair to be used among those in the
 # key store file
 tenantName = NameOfTenant # Name of tenant, set in IBM Security Key Lifecycle Manager set-up
 [connectionTimeout = ConnectionTimeout] # Connection timeout, in seconds (default 60 seconds)
 [connectionAttempts = ConnectionAttempts] # Number of connection attempts (default 3)
 [retrySleep = RetrySleepUsec] # Retry sleep time, in microsecsonds
 # (default 100000 = 0.1 seconds)
}

 Notes:

 	Each entry in the /var/mmfs/etc/RKM.conf file
 starts with an RkmId string that identifies
 the RKM. (This is the same string that will later be combined with
 unique KeyId identifiers to specify individual
 keys in encryption policy rules. See Encryption policy rules.)

 	The following limits apply:

 	0 < ConnectionAttempts <= 10

 	0 < RetrySleepUsec <= 10000000
 (in microseconds)

 	0 < ConnectionTimeout <= 120 (in
 seconds)

 	The file size of the /var/mmfs/etc/RKM.conf file
 cannot exceed 1MiB.

 	There is no limit on the number of /var/mmfs/etc/RKM.conf entries
 (as long as the file size does not exceed the file size limit of 1
 MiB).

 	The /var/mmfs/etc/RKM.conf file and the key
 store file are essential for security. It is best practice to store
 them as node-local files.

 Identifying multiple RKM backends in a high-availability
 configuration

 The
 ISKLM supports automated replication across multiple nodes for high-availability
 deployments. To identify multiple RKM backends in a high-availability
 configuration, specify any of the following optional parameters: rkmname3 {
...
 kmipServerUri2 = tls://host:port		 # TLS connection to clone number 1 to host on port
 kmipServerUri3 = tls://host:port		 # TLS connection to clone number 2 to host on port
 kmipServerUri4 = tls://host:port		 # TLS connection to clone number 3 to host on port
 kmipServerUri5 = tls://host:port		 # TLS connection to clone number 4 to host on port
 kmipServerUri6 = tls://host:port		 # TLS connection to clone number 5 to host on port
...
}

 If at least one backup is configured,
 whenever key retrieval from the master fails, GPFS will attempt to fetch the key from each
 backup in turn until it is able to retrieve the desired MEK. Note
 that the addition of the URIs for the clone servers is the only required
 change within GPFS; all other
 configuration parameters (certificates, keys, node and tenant info)
 need not change, as they are also part of the set of information that
 is replicated. The administrator is responsible for creating and maintaining
 any backups.

 Additionally, setting up ISKLM key server clones
 can help gain some performance advantage by distributing MEK retrieval
 requests across the different clones in a round-robin fashion. To
 achieve this, the administrator must specify different orderings of
 the server endpoints on different GPFS nodes
 in the /var/mmfs/etc/RKM.conf file.

 For
 example, if there are two cloned ISKLM servers available (such as tls://keysrv.ibm.com:5696 and tls://keysrv_backup.ibm.com:5696),
 half of the nodes in the cluster can have the following content in /var/mmfs/etc/RKM.conf:...
 kmipServerUri = tls://keysrv.ibm.com:5696
 kmipServerUri2 = tls://keysrv_backup.ibm.com:5696
...

 The other half can use the following:...
 kmipServerUri = tls://keysrv_backup.ibm.com:5696
 kmipServerUri2 = tls://keysrv.ibm.com:5696
...

 Parent topic: Encryption

 Establishing an encryption-enabled environment

 Establishing an encryption-ready environment requires the sequence
 of activities summarized here. This summary covers a basic setup with
 a single encrypted fileset.

 Considerations on FIPS compliance

 To retain
 compliance to FIPS 140-2, do the following:

 	Ensure that the fips configuration parameter
 is turned to on on the ISKLM before generating
 server certificates and MEKs. (See the ISKLM installation guide for
 more information.)

 	Ensure that GPFS is running
 with the FIPS1402mode configuration variable
 set to yes before creating the key
 store file.

 Initial setup by administrator

 During initial
 setup, perform the following steps:

 	Install IBM Security
 Key Lifecycle Manager (ISKLM) version 2.5.0.1 or later.Refer
 to the ISKLM installation guide.

 From the main page of the
 ISKLM web GUI, select Configuration and
 then Key Serving Parameters from the selector
 on the right. Then make sure that the check box next to Keep
 pending client device communication certificates is
 selected.

 	Configure an SSL/KMIP server certificate on ISKLM.(Skip
 this step if you have already configured the SSL/KMIP server certificate).

 	Click Configuration in the menu bar
 at the top, and select SSL/KMIP from the menu on the left.

 	To create a new self-signed certificate, click the Create
 self-signed certificate radio button.

 	Enter the appropriate details for the certificate to be created,
 and click OK.

 	Export the SSL/KMIP server certificate from ISKLM.This
 step is required to obtain a trusted copy of the server certificate.

 	Identify the certificate label for the SSL/KMIP server certificate
 currently in use.

 	Click Advanced Configuration from the
 menu bar at the top, and select Server Certificates from
 the dropdown menu.

 	Select the certificate identified as being "In Use," click Modify,
 and make note of the certificate label.

 	From an administrator console on the ISKLM server, change the
 directory to the bin directory in WAS_HOME:

 	Windows systems: drive:\Program Files (x86)\IBM\WebSphere\AppServer\bin

 	Other systems such as Linux: /opt/IBM/WebSphere/AppServer/bin

 	Type the following:

 	On Windows systems:wsadmin -username SKLMAdmin -password mypwd -lang jython

 	On other systems such as AIX or Linux:./wsadmin.sh -username SKLMAdmin -password mypwd -lang jython

 	Identify the correct UUID of the certificate:

 	First issue the following print command,
 replacing YOUR_LABEL with the certificate
 label obtained in the previous step:print AdminTask.tklmCertList('[-alias YOUR_LABEL]')

 The
 system will respond with output similar to the following: CTGKM0001I Command succeeded.
uuid = CERTIFICATE-7005029a-831d-405f-af30-4bf0177909de
alias = server
key store name = defaultKeyStore
key state = ACTIVE
issuer name = CN=server
subject name = CN=server
creation date = 13/03/2014 16:27:13 Eastern Daylight Time
expiration date = 09/03/2015 07:12:30 Eastern Daylight Time
serial number = 1394363550

 	Reissue the print command, this time
 specifying the UUID identified during the previous step:print AdminTask.tklmCertExport('[-uuid
CERTIFICATE-7005029a-831d-405f-af30-4bf0177909de -format base64 -fileName
/root/srvcert]')

 The certificate will
 be exported in the file specified after -fileName (in
 this example, /root/srvcert).

 	Copy the file into a temporary directory on the GPFS node you wish to configure for encryption
 (for example, to /tmp/srvcert).

 	Create a new GPFS device
 group.
 	From the main page of the ISKLM web GUI, select Advanced
 Configuration and then Device Group from
 the menu bar at the top.

 	On the next page, click the Create button.

 	In the Create Device Group window, select
 the GPFS device family and enter an appropriate
 name (for example, "GPFS_TENANT1"); make note of this name, as it
 will be required later on.

 	Once the device group has been created, the system will prompt
 you to add devices and keys. However, the next steps in this procedure
 will generate keys explicitly, so now just click Close to
 return to the main page.

 	On the main page, select the GPFS tenant
 device group, click Go to..., and select Manage
 keys and devices from the dropdown menu.

 	On the next screen, click Add and select Key from
 the dropdown menu.
 The system prompts you to specify the following:

 	the number of keys to be created

 	the three-letter prefix to be added to their name
 The name
 is the ISKLM internal name and is not used for GPFS encryption.

 Make note of the key UUID (in the example, KEY-326a1906-be46-4983-a63e-29f005fb3a15),
 as it will be required later on.

 	Enable the option Hold new certificate requests pending
 my approval by selecting it from the dropdown menu in
 the lower part of the page.

 	Configure the RKM backend on GPFS.
 	Create a key store containing the server certificate and a new
 key pair and certificate that will be used by the client.

 	To do so, from an administrator console on the GPFS node you wish to be configured with encryption,
 create the subdirectory /var/mmfs/etc/RKMcerts.

 	Issue the following command, replacing cname_test with
 a string identifying the GPFS node
 or the tenant performing encryption, label_test with
 a string that identifies the client certificate in the key store,
 and a_password with a password protecting
 the secret key material in the key store file:mmauth gencert --cname cname_test --label a_label --cert /tmp/srvcert --out
/var/mmfs/etc/RKMcerts/ISKLM.p12 --pwd a_password

 Upon
 success, the new key store is created (for example, in /var/mmfs/etc/RKMcerts/ISKLM.p12).

 Note: [image: Start of change]The created key store must be record locked when the GPFS daemon starts. If the key store
 files are stored on an NFS mount, it is possible for the encryption
 initialization process to hang, due to a bug that affects the way
 NFS handles record locking. If this happens, upgrade your version
 of NFS or store your key store file on a local file system. If an
 upgrade is not possible and no local file system is available, use
 a RAM drive to store the key store files.[image: End of change]

 	Open an editor to create the /var/mmfs/etc/RKM.conf file,
 as follows:ISKLM_srv {
type = ISKLM
kmipServerUri = tls://raclette.zurich.ibm.com:5696
keyStore = /var/mmfs/etc/RKMcerts/ISKLM.p12
passphrase = a_password
clientCertLabel = a_label
tenantName = GPFS_TENANT1
}

 Choose an appropriate name for the RKM backend stanza
 (ISKLM_srv in the example) and ensure that the
 fields are filled in correctly:

 	type

 	Must be set to ISKLM.

 	kmipServerUri

 	Contains the DNS name or IP address of the ISKLM server and the
 KMIP SSL port (you can find the latter in the main page of the ISKLM
 web GUI; 5696 is the default).

 	keyStore

 	Contains the path to the key store file created in the previous
 step.

 	passphrase and clientCertLabel

 	Contain the password and label specified in the command line upon
 creation of the key store.

 	tenantName

 	Contains the name of the device group created in ISKLM.

 	Set up an encryption policy.

 	Create a policy, instructing GPFS to
 encrypt all files in the file system with an FEK and wrap the FEK
 with the MEK created previously; for example:RULE 'p1' SET POOL 'system' # one placement rule is required at all times

RULE 'Encrypt all files in filesystem with rule E1'
 SET ENCRYPTION 'E1'
 WHERE NAME LIKE '%'

RULE 'simpleEncRule' ENCRYPTION 'E1' IS
 ALGO 'DEFAULTNISTSP800131A'
 KEYS('KEY-326a1906-be46-4983-a63e-29f005fb3a15:ISKLM_srv')

 	Create the Keyname string in the policy
 statement as follows:

 	KeyID

 	The key ID copied from the ISKLM web GUI.

 	RkmID

 	The name of the RKM backend stanza in the /var/mmfs/etc/RKM.conf file.

 	After installing the rule with mmchpolicy,
 you need to import the client certificate into ISKLM. To do that,
 attempt the creation of an encrypted file to trigger a KMIP request,
 for example:[root@baden ~]# touch /gpfs0/test
touch: cannot touch `/gpfs0/test': Permission denied
[root@baden ~]# tail -n 2 /var/adm/ras/mmfs.log.latest
Thu Mar 20 14:00:55.029 2014: [E] Unable to open encrypted file: inode 46088,
Fileset fs1, File System gpfs0.
Thu Mar 20 14:00:55.030 2014: [E] Error: key
'KEY-326a1906-be46-4983-a63e-29f005fb3a15:ISKLM_srv' could not be fetched (RKM
reported error -1004).

 The request will initially fail
 because ISKLM does not yet trust the client certificate; however,
 the certificate will be placed in a list of pending certificates.

 	From the main page of the ISKLM web GUI, select Pending
 client device communication certificates.

 	Identify the client certificate and click View.

 	Carefully check that the certificate being imported matches the
 one created in the previous step, then click Accept and
 Trust

 	On the resulting screen, give a name to the certificate, then
 click Accept and Trust.

 	Attempt again the file creation that previously failed to verify
 that the setup is complete:[root@baden ~]# touch /gpfs0/test
[root@baden ~]# mmlsattr -n gpfs.Encryption /gpfs0/test
file name: /gpfs0/test
gpfs.Encryption: "EAGC????f?????????????? ??????w?^??>???????????? ?L4??
_-???V}f???X????,?G?<sH??0?)??M?????)?KEY-326a1906-be46-4983-a63e-29f005fb3a15?
isklmsrv?)?KEY-6aaa3451-6a0c-4f2e-9f30-d443ff2ac7db?RKMKMIP3?"
EncPar 'AES:256:XTS:FEK:HMACSHA512'
 type: wrapped FEK WrpPar 'AES:KWRAP' CmbPar 'XORHMACSHA512'
 KEY-326a1906-be46-4983-a63e-29f005fb3a15:isklmsrv

 All files created from this point on will be encrypted
 with an FEK, which in turn will be wrapped with the chosen MEK.

 Security note: The contents of /var/mmfs/etc/RKM.conf and
 of the key store file (/var/mmfs/etc/RKMcerts/ISKLM.p12 in
 the example) are extremely security-sensitive. Make sure file permissions
 are appropriately set, for example:-rw-------. 1 root root 2446 Mar 20 12:15 /var/mmfs/etc/RKM.conf
drw-------. 2 root root 4096 Mar 20 13:47 /var/mmfs/etc/RKMcerts
-rw-------. 1 root root 3988 Mar 20 13:47 /var/mmfs/etc/RKMcerts/ISKLM.p12

 Also,
 make sure the passphrase is not leaked through other means (for example,
 the shell history). Finally, note that GPFS neither
 manages nor replicates these files, so make sure you take appropriate
 precautions to ensure that they are not lost or corrupted.

 Enabling encryption on other nodes

 If you
 want to replicate the same encryption configuration on another node,
 you can simply replicate the content of /var/mmfs/etc on
 the latter. You may also choose to have different encryption configurations
 on different nodes; to do so, follow the steps described previously.
 Note the following:

 	The content of /var/mmfs/etc/RKM.conf may
 be different across nodes.

 	Different nodes may have different key stores.

 	Installing a new encryption policy removes the previous one; as
 a consequence, all policy statements for the file system must be collected
 into a single file that can then be installed in the file system.

 The scenario described here implies that the ability to
 create, read or write files from a particular node depends on the
 content of /var/mmfs/etc/RKM.conf and on which
 key stores are deployed on that node. For example, within a given
 cluster, read/write operations may succeed on one node and fail on
 another due to the fact that the right key store or /var/mmfs/etc/RKM.conf entry,
 or both, are missing.

 Parent topic: Encryption

 Secure deletion

 Secure deletion refers to both erasing files from the file
 system and erasing the MEKs that wrapped the FEKs that were used to
 encrypt the files.

 Securely deleting files in a fileset

 After files have been removed from a fileset using
 standard file system operations (such as unlink and rm),
 the tenant administrator might decide to securely delete them. For
 example, suppose that until that point, the FEKs of all files in the
 fileset were encrypted with the MEK with key name KEY-old:isklmsrv.
 To cause the secure deletion of all removed files, the administrator
 must perform the following steps:

 	Create a new MEK and note its key name (in this example, KEY-new:isklmsrv).

 	Modify the appropriate encryption policy KEYS statement
 in the encryption policy to encrypt new files with the new MEK (for
 example, KEY-new:isklmsrv) instead of the old
 one (KEY-old:isklmsrv).

 	Create and apply a migration (rewrapping) policy (CHANGE
 ENCRYPTION KEYS) to scan all files, unwrap the wrapped
 FEK entries of files that have been wrapped with the old key (KEY-old:isklmsrv),
 and rewrap them with the new key (KEY-new:isklmsrv);
 this step ensures that the FEKs of existing files will be accessible
 in the future.

 	Remove the old key, KEY-old:isklmsrv. This
 step commits the secure deletion of all files that were previously
 unlinked (and whose FEKs had therefore not been rewrapped with the
 new MEK, KEY-new:isklmsrv).

 	On each node that has ever done I/O to a file encrypted with the
 old key (KEY-old:isklmsrv), run the following
 command: /usr/lpp/mmfs/bin/tsctl encKeyCachePurge 'KEY-old:isklmsrv'

 From this point on, the new key will be used for encryption,
 which will be performed transparently to the application.

 Note: The mmdelfs command
 will not perform any secure deletion of the files in the file
 system to be deleted. mmdelfs only removes
 all the structures for the specified file system. To securely delete
 files, you need to perform the following steps:

 	Identify all MEKs currently used to wrap the FEKs of files in
 the file system to be deleted. If this information is not available
 through other means, obtain it by doing the following:

 	Invoke mmlsattr -n gpfs.Encryption on
 all files of the file system.

 	Parse the resulting output to extract all the distinct key names
 of the MEKs that are used.

 Note: These are the possible ways that an MEK might be in use
 in a file system:

 	The MEK is, or was at some point, specified in an encryption rule
 in the policy set on the file system.

 	An FEK rewrap has been run, rewrapping an FEK with another MEK.

 	Determine whether the identified MEKs were used to wrap FEKs in
 other file systems.
 WARNING: If the same
 MEKs were used to wrap FEKs in other file systems, deleting those
 MEKs will result in irreparable data loss in the other file systems
 where those MEKs are used. Before deleting such MEKs from the key
 servers, you must create one or more new MEKs and rewrap the files
 in the other file systems.

 	After appropriately handling any MEKs that were used to wrap FEKs
 in other file systems (as explained in the warning), delete the identified
 MEKs from their RKMs.

 Secure deletion and encryption key cache purging

 The key servers that store the MEKs know how
 to manage and securely delete keys. After an MEK is gone, all files
 whose FEKs were encrypted with that MEK are no longer accessible.
 Even if the data blocks corresponding to the deleted files are retrieved,
 the contents of the file can no longer be reconstructed, since the
 data cannot be decrypted.

 However, if the MEKs have been cached
 for performance reasons (so that they do not have to be fetched from
 the server each time a file is created or accessed), the MEKs must
 also be purged from the cache to complete the secure deletion.

 You
 can use the following command to purge a given key from the key cache,
 or to clean the entire cache, of an individual node: /usr/lpp/mmfs/bin/tsctl encKeyCachePurge {Key | all}

 where:
 	Key

 	is the key ID, specified with the KeyId:RkmId syntax.

 	all

 	specifies that the entire key cache is to be cleaned.

 The scope of this command is limited to the
 local node and must be run on all nodes that have accessed the MEKs
 you are purging in order to ensure secure deletion.

 Parent topic: Encryption

 Encryption and FIPS compliance

 The FIPS1402mode configuration variable
 controls whether the use of crypto-based security mechanisms (if they
 are to be used at all, per the GPFS administrator)
 is to be provided by software modules that are certified according
 to the requirements and standards described by the Federal Information
 Processing Standards (FIPS) 140 Publication Series. When in FIPS 140-2
 mode, GPFS uses the FIPS 140-2
 approved cryptographic provider(s); IBMJCEFIPS (certificate 376) and/or
 IBMJSSEFIPS (certificate 409) and/or IBM Crypto
 for C (ICC) (certificate 384) for cryptography. The certificates are
 listed on the NIST website.

 The value of FIPS1402mode can be changed
 with the mmchconfig command. The default
 value for this variable is no. With FIPS1402mode=no, Linux nodes will use kernel encryption
 modules for direct I/O. If a cluster is configured with FIPS1402mode=yes, Linux nodes whose kernels are not
 running in FIPS mode will see a performance degradation when using
 direct I/O. The GPFS daemon
 on the node must be restarted in order for the new setting to take
 place.

 Parent topic: Encryption

 Encryption and NIST compliance

 Encryption always uses NIST-compliant mechanisms.

 Parent topic: Encryption

 Encryption and backup/restore

 GPFS will deliver all data
 to mmbackup and other external backup solutions
 in cleartext whether or not the data is encrypted in GPFS. Any backups that are taken will
 not preserve the encryption status or the encrypted content of
 the data. Files that are recreated upon restore will be considered
 for encryption status based on the policy in place on the file system
 at the time of the restore operation.

 Parent topic: Encryption

 Encryption and snapshots

 GPFS preserves the encryption
 status of files when they are copied into global or fileset snapshots.
 Global snapshot restore will restore files precisely as they are in
 the snapshot, including FEKs and MEKs. For details about how fileset
 snapshot restore functions, see the description of the mmrestorefs command
 in the GPFS:
 Administration and Programming Reference.

 Parent topic: Encryption

 Miscellaneous advanced administration topics

 The following topics provide information
 about miscellaneous advanced administration tasks:

 About this task

 	Changing IP addresses and host names

 	Enabling a cluster for IPv6

 	Using multiple token servers

 	Exporting file system definitions between clusters

 	GPFS port usage

 	Changing IP addresses and host names

 GPFS assumes that
 IP addresses and host names remain constant. In the rare event that
 such a change becomes necessary or is inadvertently introduced by
 reinstalling a node with a disk image from a different node for example,
 follow the steps in this topic.

 	Enabling a cluster for IPv6

 For newly created clusters, if any of the specified node
 interfaces on the mmcrcluster command resolves
 to an IPv6 address, the cluster is automatically enabled for IPv6.
 For existing IPv4-based clusters, follow one of the procedures that
 described in this section.

 	Using multiple token servers

 Distributed locking, allowing GPFS to
 maintain a consistent view of the file system, is implemented using
 token-based lock management. Associated with every lockable object
 is a token.

 	Exporting file system definitions between clusters

 You can export a GPFS file
 system definition from one GPFS cluster
 to another.

 	GPFS port usage

 The nodes in a GPFS cluster
 communicate with each other using the TCP/IP protocol. The port number
 used by the main GPFS daemon
 (mmfsd) is controlled with the tscTcpPort configuration
 parameter. The default port number is 1191.

 Changing IP addresses and host names

 GPFS assumes that
 IP addresses and host names remain constant. In the rare event that
 such a change becomes necessary or is inadvertently introduced by
 reinstalling a node with a disk image from a different node for example,
 follow the steps in this topic.

 About this task

 If
 all of the nodes in the cluster are affected and all the conditions
 in step 2 below are met:

 	Use
 the mmshutdown -a command to stop GPFS on all nodes.

 	Using the documented procedures for the operating
 system, add the new host names or IP addressees, but do not remove
 the old ones yet. This can be achieved, for example, by creating
 temporary alias entries in /etc/hosts. Avoid rebooting the
 nodes until the mmchnode command in step
 3 is executed successfully. If any of these conditions cannot be
 met, utilize the alternate procedure described below.

 	Use mmchnode
 --daemon-interface and --admin-interface to
 update the GPFS configuration
 information.
 Note: If CCR is enabled, mmchnode --daemon-interface --admin-interface is
 not allowed.

 	If the IP addresses over which the subnet attribute is defined
 are changed, you need to update your configuration by using the mmchconfig command
 with the subnets attribute.

 	Start GPFS on all nodes with mmstartup
 -a.

 	Remove the unneeded old host names and IP addresses.

 If only a subset of the nodes are affected, it may be
 easier to make the changes using these steps:

 	Before any of the host names or IP addresses are changed:

 	Use
 the mmshutdown command to stop GPFS on all affected nodes.

 	If
 the host names or IP addresses of the primary or secondary GPFS cluster configuration server
 nodes must change, use the mmchcluster command
 to specify another node to serve as the primary or secondary GPFS cluster configuration server.

 	If
 the host names or IP addresses of an NSD server node must change,
 temporarily remove the node from being a server with the mmchnsd command.
 Then, after the node has been added back to the cluster, use the mmchnsd command
 to change the NSDs to their original configuration. Use the mmlsnsd command
 to obtain the NSD server node names.

 	Use
 the mmdelnode command to delete all affected
 nodes from the GPFS cluster.

 	Change the node names and IP addresses using the documented procedures
 for the operating system.

 	If
 the IP addresses over which the subnet attribute is defined are changed,
 you need to update your configuration by using the mmchconfig command
 with the subnets attribute.

 	Issue
 the mmaddnode command to restore the nodes
 to the GPFS cluster.

 	If necessary, use the mmchcluster and mmchnsd commands
 to restore the original configuration and the NSD servers.

 Parent topic: Miscellaneous advanced administration topics

 Enabling a cluster for IPv6

 For newly created clusters, if any of the specified node
 interfaces on the mmcrcluster command resolves
 to an IPv6 address, the cluster is automatically enabled for IPv6.
 For existing IPv4-based clusters, follow one of the procedures that
 described in this section.

 About this task

 If you are performing the procedure during a scheduled
 maintenance window and GPFS can
 be shut down on all of the nodes in the cluster, run the command:mmchconfig enableIPv6=yes

 After
 the command finishes successfully, you can start adding new nodes
 with IPv6 addresses.

 If it is not possible to shut down GPFS on all of the nodes at the
 same time, run the command:mmchconfig enableIPv6=prepare

 The
 next step is to restart GPFS on
 each of the nodes so that they can pick up the new configuration setting.
 This can be done one node at a time when it is convenient. To verify
 that a particular node has been refreshed, run:mmdiag --config | grep enableIPv6

 The
 reported value should be 1.

 Once all of the nodes have been
 recycled in this manner, run the command:mmchconfig enableIPv6=commit

 This
 command will only succeed when all GPFS daemons
 have been refreshed. Once this operation succeeds, you can start adding
 new nodes with IPv6 addresses.

 To convert an existing node from
 an IPv4 to an IPv6 interface, use one of the procedures described
 in Changing IP addresses and host names.

 Parent topic: Miscellaneous advanced administration topics

 Using multiple token servers

 Distributed locking, allowing GPFS to
 maintain a consistent view of the file system, is implemented using
 token-based lock management. Associated with every lockable object
 is a token.

 About this task

 Before
 a lock on an object can be granted to a thread on a particular node,
 the lock manager on that node must obtain a token from the token server.
 The total number of token manager nodes depends on the number of
 manager nodes defined in the cluster.

 When
 a file system is first mounted, the file system manager is the only
 token server for the file system. Once the number of external mounts
 exceeds one, the file system manager appoints all the other manager
 nodes defined in the cluster to share the token server load. Once
 the token state has been distributed, it remains distributed until
 all external mounts have gone away. The only nodes that are eligible
 to become token manager nodes are those designated as manager nodes.

 The
 number of files for which tokens can be retained on a manager node
 is restricted by the values of the maxFilesToCache and maxStatCache configuration
 parameters. Distributing the tokens across multiple token manager
 nodes allows more tokens to be managed or retained concurrently, improving
 performance in situations where many lockable objects are accessed
 concurrently.

 Parent topic: Miscellaneous advanced administration topics

 Exporting file system definitions between clusters

 You can export a GPFS file
 system definition from one GPFS cluster
 to another.

 About this task

 To export file
 system definitions between clusters, follow these steps:

 	Ensure that all disks in all GPFS file
 systems to be migrated are in working order by issuing the mmlsdisk command.
 Verify that the disk status is ready and availability is up. If not,
 correct any problems and reissue the mmlsdisk command
 before continuing.

 	Stop all user activity in the file systems.

 	Follow any local administrative backup procedures to provide for
 protection of your file system data in the event of a failure.

 	Cleanly unmount all affected GPFS file
 systems. Do not use force unmount.

 	Export the GPFS file
 system definitions by issuing the mmexportfs command.
 This command creates the configuration output file ExportDataFile with
 all relevant file system and disk information. Retain this file as
 it is required when issuing the mmimportfs command
 to import your file systems into the new cluster. Depending on whether
 you are exporting a single file system or all of the file systems
 in the cluster, issue: mmexportfs fileSystemName -o ExportDataFile

 or mmexportfs all -o ExportDataFile

 	Ensure that the file system disks from the old GPFS cluster are properly connected, and are
 online and available to be accessed from appropriate nodes of the
 new GPFS cluster.

 	To complete the movement of your file systems to
 the new cluster using the configuration file created in Step 5, issue one of these commands, depending
 on whether you are importing a single file system or all of the file
 systems in the cluster: mmimportfs fileSystemName -i ExportDataFile

 or mmimportfs all -i ExportDataFile

 Parent topic: Miscellaneous advanced administration topics

 GPFS port usage

 The nodes in a GPFS cluster
 communicate with each other using the TCP/IP protocol. The port number
 used by the main GPFS daemon
 (mmfsd) is controlled with the tscTcpPort configuration
 parameter. The default port number is 1191.

 About this task

 You can specify a different port number using the mmchconfig command:mmchconfig tscTcpPort=PortNumber

 When
 the main GPFS daemon (mmfsd)
 is not running on the primary and backup configuration server nodes,
 a separate service (mmsdrserv) is used to provide access to
 the configuration data to the rest of the nodes in the cluster. The
 port number used for this purpose is controlled with the mmsdrservPort parameter.
 By default, mmsdrserv uses the same port number as the one
 assigned to the main GPFS daemon.
 If you change the daemon port number, you must specify the same port
 number for mmsdrserv using the following command:mmchconfig mmsdrservPort=PortNumber

 Do
 not change the mmsdrserv port number to a number different
 from that of the daemon port number.

 Certain commands (mmadddisk, mmchmgr,
 and so on) require an additional socket to be created for the duration
 of the command. The port numbers assigned to these temporary sockets
 are controlled with the tscCmdPortRange configuration parameter.
 If an explicit range is not specified, the port number is dynamically
 assigned by the operating system from the range of ephemeral port
 numbers. If you want to restrict the range of ports used by GPFS commands, use the mmchconfig command:mmchconfig tscCmdPortRange=LowNumber-HighNumber

 In
 a remote cluster setup, if GPFS on
 the remote cluster is configured to use a port number other than the
 default, you have to specify the port number to be used with the mmremotecluster command:mmremotecluster update ClusterName -n tcpPort=PortNumber,Node,Node...

 Table 1 provides GPFS port
 usage information:

 Table 46. GPFS port usage

 	Descriptor

 	Explanation

 	Service provider

 	GPFS

 	Service name

 	
 mmfsd

 mmsdrserv

 	Port number

 	1191
 [image: Start of change]While executing certain
 commands, GPFS may need to create
 additional sockets whose dynamic port numbers are assigned by the
 operating system. Such sockets are used by commands to exchange data
 with GPFS daemons running on
 other nodes. The port numbers that are used correspond to the ephemeral
 ports of the operating system. [image: End of change]

 [image: Start of change]To control which
 ports are used by the commands (so that firewall rules can be written
 to allow incoming traffic only on those ports), you can restrict the
 port range to a specific range by setting the tscCmdPortRange configuration
 variable. [image: End of change]

 	Protocols

 	TCP/IP

 	Source port range

 	The source port range is chosen by the operating
 system on the client side.

 	Is the service name/number pair in the default
 /etc/services file shipped with AIX and Linux distributions?

 	See the GPFS FAQ
 in IBM Knowledge Center.

 	Is the service name/number pair added to /etc/services
 by a product?

 	No

 	Binaries that listen on the ports

 	
 /usr/lpp/mmfs/bin/mmfsd

 /usr/lpp/mmfs/bin/mmsdrserv

 	Can the service be configured to use a different
 port?

 	Yes. To change the main port used by GPFS, use:mmchconfig tscTcpPort=PortNumber

 Note: If
 you change the main port (daemon port) number, you must change the mmsdrserv port
 to the same number.

 To change the mmsdrserv port number
 to match the daemon port number, use:mmchconfig mmsdrservPort=PortNumber

 To change the range of port numbers used for command execution,
 use:mmchconfig tscCmdPortRange=LowNumber-HighNumber

 To specify a port number when connecting to remote clusters,
 use the mmremotecluster command.

 	When is the service required? What depends on
 the service?

 	On the GPFS primary
 and secondary cluster configuration servers, either mmsdrserv or mmfsd needs
 to be running at all times to provide access to GPFS configuration data to the rest of the cluster.
 On other nodes, mmfsd must be running in order to mount a GPFS file system. Depending on
 the GPFS configuration, a node
 either has to be a member of the GPFS cluster
 or possess an authorized SSL key in order to establish a connection.

 	When the daemon starts and its port is already
 in use (for example, another resource has bound to it already), how
 does the daemon behave?

 	The daemon shuts down and tries to start over
 again.
 Most GPFS daemon down
 error messages are in the mmfs.log.previous log for the instance
 that failed. If the daemon restarted, it generates a new mmfs.log.latest log.

 Begin
 problem determination for these errors by examining the operating
 system error log. GPFS records
 file system or disk failures using the error logging facility provided
 by the operating system: syslog facility on Linux and errpt facility on AIX.

 See the GPFS:
 Problem Determination Guide for further
 information.

 	Is there an administrator interface to query
 the daemon and have it report its port number?

 	Yes; run this command:mmlsconfig tscTcpPort

 	Is the service/port registered with the Internet
 Assigned Numbers Authority (IANA)?

 	Yesgpfs 1191/tcp General Parallel File System
gpfs 1191/udp General Parallel File System
Dave Craft <gpfs@ibm.com>
November 2004

 Note: Ports configured for gpfsClusterRemoteShellCommand (for
 example, ssh) and ICMP (ping) also must
 be unblocked in the firewall for GPFS to
 function properly

 Parent topic: Miscellaneous advanced administration topics

 Accessibility features for GPFS

 Accessibility features help users who have a disability, such as
 restricted mobility or limited vision, to use information technology
 products successfully.

 	Accessibility features

 	Keyboard navigation

 	IBM and accessibility

 Accessibility features

 The following list includes the major accessibility features in GPFS:

 	Keyboard-only operation

 	Interfaces that are commonly used by screen readers

 	Keys that are discernible by touch but do not activate just by
 touching them

 	Industry-standard devices for ports and connectors

 	The attachment of alternative input and output devices

 IBM Knowledge Center, and
 its related publications, are accessibility-enabled. The accessibility
 features are described in IBM Knowledge Center.

 Parent topic: Accessibility features for GPFS

 Keyboard navigation

 This product uses standard Microsoft Windows navigation keys.

 Parent topic: Accessibility features for GPFS

 IBM and accessibility

 See the IBM Human Ability
 and Accessibility Center for
 more information about the commitment that IBM has to accessibility.

 Parent topic: Accessibility features for GPFS

 Notices

 This information was developed
 for products and services offered in the U.S.A.

 IBM may not offer
 the products, services, or features discussed in this document in
 other countries. Consult your local IBM representative for information on the products
 and services currently available in your area. Any reference to an IBM product, program,
 or service is not intended to state or imply that only that IBM product, program,
 or service may be used. Any functionally equivalent product, program,
 or service that does not infringe any IBM intellectual property right may be used instead.
 However, it is the user's responsibility to evaluate and verify the
 operation of any non-IBM product, program, or service.

 IBM may
 have patents or pending patent applications covering subject matter
 described in this document. The furnishing of this document does not
 grant you any license to these patents. You can send license inquiries,
 in writing, to:
 IBM Director of Licensing

 IBM Corporation

 North Castle Drive

 Armonk, NY 10504-1785

 U.S.A.

 For license
 inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual
 Property Department in your country or send inquiries, in writing,
 to:
 Intellectual Property Licensing

 Legal and Intellectual Property Law

 IBM Japan Ltd.

 19-21, Nihonbashi-Hakozakicho, Chuo-ku

 Tokyo 103-8510, Japan

 The following paragraph does
 not apply to the United Kingdom or any other country where such provisions
 are inconsistent with local law:

 INTERNATIONAL BUSINESS MACHINES
 CORPORATION PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF
 ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
 THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
 FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express
 or implied warranties in certain transactions, therefore, this statement
 may not apply to you.

 This information could include technical
 inaccuracies or typographical errors. Changes are periodically made
 to the information herein; these changes will be incorporated in new
 editions of the publication. IBM may
 make improvements and/or changes in the product(s) and/or the program(s)
 described in this publication at any time without notice.

 Any
 references in this information to non-IBM Web sites are provided for
 convenience only and do not in any manner serve as an endorsement
 of those Web sites. The materials at those Web sites are not part
 of the materials for this IBM product
 and use of those Web sites is at your own risk.

 IBM may use or distribute any of the information
 you supply in any way it believes appropriate without incurring any
 obligation to you.

 Licensees of this program who wish to have
 information about it for the purpose of enabling: (i) the exchange
 of information between independently created programs and other programs
 (including this one) and (ii) the mutual use of the information which
 has been exchanged, should contact:
 IBM Corporation

 Dept. 30ZA/Building 707

 Mail Station P300

 2455 South Road,

 Poughkeepsie, NY 12601-5400

 U.S.A.

 Such information may be available, subject to
 appropriate terms and conditions, including in some cases, payment
 or a fee.

 The licensed program described in this document and
 all licensed material available for it are provided by IBM under terms of the IBM Customer Agreement, IBM International Program
 License Agreement or
 any equivalent agreement between us.

 Any performance data contained
 herein was determined in a controlled environment. Therefore, the
 results obtained in other operating environments may vary significantly.
 Some measurements may have been made on development-level systems
 and there is no guarantee that these measurements will be the same
 on generally available systems. Furthermore, some measurements may
 have been estimated through extrapolation. Actual results may vary.
 Users of this document should verify the applicable data for their
 specific environment.

 Information concerning non-IBM products
 was obtained from the suppliers of those products, their published
 announcements or other publicly available sources. IBM has not tested those products
 and cannot confirm the accuracy of performance, compatibility or any
 other claims related to non-IBM products. Questions on the capabilities
 of non-IBM products should be addressed to the suppliers of those
 products.

 This information contains examples of data and reports
 used in daily business operations. To illustrate them as completely
 as possible, the examples include the names of individuals, companies,
 brands, and products. All of these names are fictitious and any similarity
 to the names and addresses used by an actual business enterprise is
 entirely coincidental.

 COPYRIGHT LICENSE:

 This information
 contains sample application programs in source language, which illustrate
 programming techniques on various operating platforms. You may copy,
 modify, and distribute these sample programs in any form without payment
 to IBM, for
 the purposes of developing, using, marketing or distributing application
 programs conforming to the application programming interface for the
 operating platform for which the sample programs are written. These
 examples have not been thoroughly tested under all conditions. IBM, therefore,
 cannot guarantee or imply reliability, serviceability, or function
 of these programs. The sample programs are provided "AS IS", without
 warranty of any kind. IBM shall
 not be liable for any damages arising out of your use of the sample
 programs.

 If you are viewing this information softcopy, the
 photographs and color illustrations may not appear.

 	Trademarks

 Trademarks

 IBM,
 the IBM logo,
 and ibm.com are
 trademarks or registered trademarks of International Business Machines
 Corp., registered in many jurisdictions worldwide. Other product and
 service names might be trademarks of IBM or other companies. A current list of IBM trademarks
 is available on the Web at "Copyright
 and trademark information" at www.ibm.com/legal/copytrade.shtml.

 Intel is a trademark
 of Intel Corporation or its
 subsidiaries in the United States and other countries.

 Java and all Java-based trademarks
 and logos are trademarks or registered trademarks of Oracle and/or
 its affiliates.

 Linux is
 a registered trademark of Linus Torvalds in the United States, other
 countries, or both.

 Microsoft, Windows, and Windows NT are trademarks of Microsoft Corporation in the United States,
 other countries, or both.

 UNIX is
 a registered trademark of The Open Group in the United States and
 other countries.

 Parent topic: Notices

 Glossary

 This glossary provides terms and definitions for the GPFS product.

 The following cross-references are used in this glossary:

 	See refers you from a nonpreferred term to the preferred
 term or from an abbreviation to the spelled-out form.

 	See also refers you to a related or contrasting term.

 For other terms and definitions, see the IBM Terminology
 website (opens
 in new window).

 B

 	block utilization

 	The measurement of the percentage of used subblocks per allocated
 blocks.

 C

 	cluster

 	A loosely-coupled collection of independent systems (nodes) organized
 into a network for the purpose of sharing resources and communicating
 with each other. See also GPFS cluster.

 	[bookmark: glossry__gpfsdrd]
 cluster configuration data

 	The configuration data that is stored on the cluster configuration
 servers.

 	cluster manager

 	The node that monitors node status using disk leases, detects
 failures, drives recovery, and selects file system managers. The
 cluster manager is the node with the lowest node number among the
 quorum nodes that are operating at a particular time.

 	control data structures

 	Data structures needed to manage file data and metadata cached
 in memory. Control data structures include hash tables and link pointers
 for finding cached data; lock states and tokens to implement distributed
 locking; and various flags and sequence numbers to keep track of updates
 to the cached data.

 D

 	Data Management Application Program Interface (DMAPI)

 	The interface defined by the Open Group's XDSM standard as described
 in the publication System Management: Data Storage Management (XDSM)
 API Common Application Environment (CAE) Specification C429, The
 Open Group ISBN 1-85912-190-X.

 	deadman switch timer

 	A kernel timer that works on a node that has lost its disk lease
 and has outstanding I/O requests. This timer ensures that the node
 cannot complete the outstanding I/O requests (which would risk causing
 file system corruption), by causing a panic in the kernel.

 	dependent fileset

 	A fileset that shares the inode space of an existing independent
 fileset.

 	disk descriptor

 	A definition of the type of data that the disk contains and the
 failure group to which this disk belongs. See also failure group.

 	[bookmark: glossry__dsklease]
 disk leasing

 	A method for controlling access to storage devices from multiple
 host systems. Any host that wants to access a storage device configured
 to use disk leasing registers for a lease; in the event of a perceived
 failure, a host system can deny access, preventing I/O operations
 with the storage device until the preempted system has reregistered.

 	disposition

 	The session to which a data management event is delivered. An
 individual disposition is set for each type of event from each file
 system.

 	domain

 	A logical grouping of resources in a network for the purpose of
 common management and administration.

 [image: Start of change]E

 	[bookmark: glossry__x2481703]
 [image: Start of change]ECKD[image: End of change]

 	[image: Start of change]See extended count key data (ECKD).[image: End of change]

 	[bookmark: glossry__x2199484]
 [image: Start of change]ECKD device[image: End of change]

 	[image: Start of change]See extended count key data device (ECKD device).[image: End of change]

 	[bookmark: glossry__x2026772]
 [image: Start of change]encryption key[image: End of change]

 	[image: Start of change]A mathematical value that allows components to verify that they
 are in communication with the expected server. Encryption keys are
 based on a public or private key pair that is created during the installation
 process. See also file encryption key, master encryption
 key.[image: End of change]

 	[bookmark: glossry__x2436401]
 [image: Start of change]extended count key data (ECKD)[image: End of change]

 	[image: Start of change]An extension of the count-key-data (CKD) architecture. It includes
 additional commands that can be used to improve performance.[image: End of change]

 	[bookmark: glossry__x2199482]
 [image: Start of change]extended count key data device (ECKD device)[image: End of change]

 	[image: Start of change]A disk storage device that has a data transfer rate faster than
 some processors can utilize and that is connected to the processor
 through use of a speed matching buffer. A specialized channel program
 is needed to communicate with such a device. See also fixed-block
 architecture disk device.[image: End of change]

 [image: End of change]

 F

 	failback

 	Cluster recovery from failover following repair. See also failover.

 	failover

 	(1) The assumption of file system duties by another node when
 a node fails. (2) The process of transferring all control of the ESS
 to a single cluster in the ESS when the other clusters in the ESS
 fails. See also cluster. (3) The routing of all transactions
 to a second controller when the first controller fails. See also cluster.

 	[bookmark: glossry__failg]
 failure group

 	A collection of disks that share common access paths or adapter
 connection, and could all become unavailable through a single hardware
 failure.

 	[image: Start of change]FEK[image: End of change]

 	[image: Start of change]See file encryption key.[image: End of change]

 	fileset

 	A hierarchical grouping of files managed as a unit for balancing
 workload across a cluster. See also dependent fileset, independent
 fileset.

 	fileset snapshot

 	A snapshot of an independent fileset plus all dependent filesets.

 	file clone

 	A writable snapshot of an individual file.

 	[bookmark: glossry__x7629823]
 [image: Start of change]file encryption key (FEK)[image: End of change]

 	[image: Start of change]A key used to encrypt sectors of an individual file. See also encryption
 key.[image: End of change]

 	file-management policy

 	A set of rules defined in a policy file that GPFS uses to manage file migration and file
 deletion. See also policy.

 	file-placement policy

 	A set of rules defined in a policy file that GPFS uses to manage the initial placement of
 a newly created file. See also policy.

 	file system descriptor

 	A data structure containing key information about a file system.
 This information includes the disks assigned to the file system (stripe
 group), the current state of the file system, and pointers to
 key files such as quota files and log files.

 	file system descriptor quorum

 	The number of disks needed in order to write the file system descriptor
 correctly.

 	file system manager

 	The provider of services for all the nodes using a single file
 system. A file system manager processes changes to the state or description
 of the file system, controls the regions of disks that are allocated
 to each node, and controls token management and quota management.

 	[bookmark: glossry__x2199676]
 [image: Start of change]fixed-block architecture disk device (FBA disk device)[image: End of change]

 	[image: Start of change]A disk device that stores data in blocks of fixed size. These
 blocks are addressed by block number relative to the beginning of
 the file. See also extended count key data device.[image: End of change]

 	fragment

 	The space allocated for an amount of data too small to require
 a full block. A fragment consists of one or more subblocks.

 G

 	global snapshot

 	A snapshot of an entire GPFS file
 system.

 	[bookmark: glossry__gpfscld]
 GPFS cluster

 	A cluster of nodes defined as being available for use by GPFS file systems.

 	GPFS portability layer

 	The interface module that each installation must build for its
 specific hardware platform and Linux distribution.

 	GPFS recovery log

 	A file that contains a record of metadata activity, and exists
 for each node of a cluster. In the event of a node failure, the recovery
 log for the failed node is replayed, restoring the file system to
 a consistent state and allowing other nodes to continue working.

 I

 	ill-placed file

 	A file assigned to one storage pool, but having some or all of
 its data in a different storage pool.

 	ill-replicated file

 	A file with contents that are not correctly replicated according
 to the desired setting for that file. This situation occurs in the
 interval between a change in the file's replication settings or suspending
 one of its disks, and the restripe of the file.

 	independent fileset

 	A fileset that has its own inode space.

 	indirect block

 	A block containing pointers to other blocks.

 	inode

 	The internal structure that describes the individual files in
 the file system. There is one inode for each file.

 	inode space

 	A collection of inode number ranges reserved for an independent
 fileset, which enables more efficient per-fileset functions.

 	ISKLM

 	IBM Security Key Lifecycle
 Manager. For GPFS encryption,
 the ISKLM is used as an RKM server to store MEKs.

 J

 	journaled file system (JFS)

 	A technology designed for high-throughput server environments,
 which are important for running intranet and other high-performance
 e-business file servers.

 	junction

 	A special directory entry that connects a name in a directory
 of one fileset to the root directory of another fileset.

 K

 	kernel

 	The part of an operating system that contains programs for such
 tasks as input/output, management and control of hardware, and the
 scheduling of user tasks.

 M

 	[bookmark: glossry__x7025398]
 [image: Start of change]master encryption key (MEK)[image: End of change]

 	[image: Start of change]A key used to encrypt other keys. See also encryption key.[image: End of change]

 	[image: Start of change]MEK[image: End of change]

 	[image: Start of change]See master encryption key.[image: End of change]

 	[bookmark: glossry__mdata]
 metadata

 	A data structures that contain access information about file data.
 These include: inodes, indirect blocks, and directories. These data
 structures are not accessible to user applications.

 	metanode

 	The one node per open file that is responsible for maintaining
 file metadata integrity. In most cases, the node that has had the
 file open for the longest period of continuous time is the metanode.

 	mirroring

 	The process of writing the same data to multiple disks at the
 same time. The mirroring of data protects it against data loss within
 the database or within the recovery log.

 	multi-tailed

 	A disk connected to multiple nodes.

 N

 	namespace

 	Space reserved by a file system to contain the names of its objects.

 	Network File System (NFS)

 	A protocol, developed by Sun Microsystems, Incorporated, that
 allows any host in a network to gain access to another host or netgroup
 and their file directories.

 	Network Shared Disk (NSD)

 	A component for cluster-wide disk naming and access.

 	NSD volume ID

 	A unique 16 digit hex number that is used to identify and access
 all NSDs.

 	[bookmark: glossry__nodeg]
 node

 	An individual operating-system image within a cluster. Depending
 on the way in which the computer system is partitioned, it may contain
 one or more nodes.

 	node descriptor

 	A definition that indicates how GPFS uses
 a node. Possible functions include: manager node, client node, quorum
 node, and nonquorum node.

 	node number

 	A number that is generated and maintained by GPFS as the cluster is created, and as nodes
 are added to or deleted from the cluster.

 	[bookmark: glossry__quorumd]
 node quorum

 	The minimum number of nodes that must be running in order for
 the daemon to start.

 	node quorum with tiebreaker disks

 	A form of quorum that allows GPFS to
 run with as little as one quorum node available, as long as there
 is access to a majority of the quorum disks.

 	[bookmark: glossry__nonqn]
 non-quorum node

 	A node in a cluster that is not counted for the purposes of quorum
 determination.

 P

 	policy

 	A list of file-placement, service-class, and encryption rules
 that define characteristics and placement of files. Several policies
 can be defined within the configuration, but only one policy set is
 active at one time.

 	policy rule

 	A programming statement within a policy that defines a specific
 action to be performed.

 	pool

 	A group of resources with similar characteristics and attributes.

 	portability

 	The ability of a programming language to compile successfully
 on different operating systems without requiring changes to the source
 code.

 	[bookmark: glossry__prigsdd]
 primary GPFS cluster configuration
 server

 	In a GPFS cluster, the node
 chosen to maintain the GPFS cluster
 configuration data.

 	private IP address

 	A IP address used to communicate on a private network.

 	public IP address

 	A IP address used to communicate on a public network.

 Q

 	[bookmark: glossry__quorumn]
 quorum node

 	A node in the cluster that is counted to determine whether a quorum
 exists.

 	quota

 	The amount of disk space and number of inodes assigned as upper
 limits for a specified user, group of users, or fileset.

 	quota management

 	The allocation of disk blocks to the other nodes writing to the
 file system, and comparison of the allocated space to quota limits
 at regular intervals.

 R

 	Redundant Array of Independent Disks (RAID)

 	A collection of two or more disk physical drives that present
 to the host an image of one or more logical disk drives. In the event
 of a single physical device failure, the data can be read or regenerated
 from the other disk drives in the array due to data redundancy.

 	recovery

 	The process of restoring access to file system data when a failure
 has occurred. Recovery can involve reconstructing data or providing
 alternative routing through a different server.

 	[bookmark: glossry__x7629830]
 [image: Start of change]remote key management server (RKM server)[image: End of change]

 	[image: Start of change]A server that is used to store master encryption keys.[image: End of change]

 	replication

 	The process of maintaining a defined set of data in more than
 one location. Replication involves copying designated changes for
 one location (a source) to another (a target), and synchronizing the
 data in both locations.

 	[image: Start of change]RGD[image: End of change]

 	[image: Start of change]Recovery group data.[image: End of change]

 	[image: Start of change]RKM server[image: End of change]

 	[image: Start of change]See remote key management server.[image: End of change]

 	rule

 	A list of conditions and actions that are triggered when certain
 conditions are met. Conditions include attributes about an object
 (file name, type or extension, dates, owner, and groups), the requesting
 client, and the container name associated with the object.

 S

 	SAN-attached

 	Disks that are physically attached to all nodes in the cluster
 using Serial Storage Architecture (SSA) connections or using Fibre
 Channel switches.

 	Scale Out Backup and Restore (SOBAR)

 	A specialized mechanism for data protection against disaster only
 for GPFS file systems that are
 managed by Tivoli Storage
 Manager (TSM) Hierarchical Storage Management (HSM).

 	[bookmark: glossry__secgsdd]
 secondary GPFS cluster configuration
 server

 	In a GPFS cluster, the node
 chosen to maintain the GPFS cluster
 configuration data in the event that the primary GPFS cluster configuration server fails or becomes
 unavailable.

 	Secure Hash Algorithm digest (SHA digest)

 	A character string used to identify a GPFS security key.

 	session failure

 	The loss of all resources of a data management session due to
 the failure of the daemon on the session node.

 	session node

 	The node on which a data management session was created.

 	Small Computer System Interface (SCSI)

 	An ANSI-standard electronic interface that allows personal computers
 to communicate with peripheral hardware, such as disk drives, tape
 drives, CD-ROM drives, printers, and scanners faster and more flexibly
 than previous interfaces.

 	snapshot

 	An exact copy of changed data in the active files and directories
 of a file system or fileset at a single point in time. See also fileset
 snapshot, global snapshot.

 	source node

 	The node on which a data management event is generated.

 	stand-alone client

 	The node in a one-node cluster.

 	storage area network (SAN)

 	A dedicated storage network tailored to a specific environment,
 combining servers, storage products, networking products, software,
 and services.

 	storage pool

 	A grouping of storage space consisting of volumes, logical unit
 numbers (LUNs), or addresses that share a common set of administrative
 characteristics.

 	stripe group

 	The set of disks comprising the storage assigned to a file system.

 	striping

 	A storage process in which information is split into blocks (a
 fixed amount of data) and the blocks are written to (or read from)
 a series of disks in parallel.

 	subblock

 	The smallest unit of data accessible in an I/O operation, equal
 to one thirty-second of a data block.

 	system storage pool

 	A storage pool containing file system control structures, reserved
 files, directories, symbolic links, special devices, as well as the
 metadata associated with regular files, including indirect blocks
 and extended attributes The system storage pool can
 also contain user data.

 T

 	token management

 	A system for controlling file access in which each application
 performing a read or write operation is granted some form of access
 to a specific block of file data. Token management provides data consistency
 and controls conflicts. Token management has two components: the token
 management server, and the token management function.

 	token management function

 	A component of token management that requests tokens from the
 token management server. The token management function is located
 on each cluster node.

 	token management server

 	A component of token management that controls tokens relating
 to the operation of the file system. The token management server is
 located at the file system manager node.

 	twin-tailed

 	A disk connected to two nodes.

 U

 	user storage pool

 	A storage pool containing the blocks of data that make up user
 files.

 V

 	[image: Start of change]VCD[image: End of change]

 	[image: Start of change]See vdisk configuration data.[image: End of change]

 	[bookmark: glossry__x2484335]
 [image: Start of change]VFS[image: End of change]

 	[image: Start of change]See virtual file system.[image: End of change]

 	[bookmark: glossry__x7629848]
 [image: Start of change]vdisk configuration data (VCD)[image: End of change]

 	[image: Start of change]Configuration data associated with a disk.[image: End of change]

 	virtual file system (VFS)

 	A remote file system that has been mounted so that it is accessible
 to the local user.

 	virtual node (vnode)

 	The structure that contains information about a file system object
 in a virtual file system (VFS).

 images/bl1adv040.gif
Infiniband Switch 7.2.24/13

raan ramg
o
o
a a
vmn) ramn] s
.

mznm'lz\

Gigabit Etheret 1018

images/bl1adv050.gif
sie C (tobroaker)

aa

[A

GPFS cluster

site Astorage site B storage

P - primary clster configuraton server
S -sacondary clustr configuration server
a- quorum node

images/bl1adv060.gif
tabreaker

[

[o) 8]) —F—Lsl [D L]

GPFS cluster

PPRC source volumes PPRC target volumes

P primary clster configuraton server
S -sacondary clustr configuration server
a- quorum node

images/bl1adv070.gif
production site

1P network

recovery site

PR

PPRC source volumes

P - primary lster configuraton server
S - sacondary custer confguraion server

a- quorum node

PPRC targot volumes

images/bl1adv010.gif
CIUSter A cluster 5
wide area
etwork
Sppication | [‘@ppicaton | [[appcaton Sppicatin | [‘appicaton | [[sppicaton
L AKX L x A Linux
Gors, GrFs Grs GPFS, Gors, Grs
NsD 5D | [NSD server gD NSD NSD

images/bl1adv020.gif
CIUSter A cluster 5
wide area
etwork
Sppication | [‘@ppicaton | [[appcaton Sppicatin | [‘appicaton | [[sppicaton
L AKX L x A Linux
Gors, GrFs Gers GPFS, Gors, Grs
NsD NSD NsD D NSD NsD

images/bl1adv030.gif
Gigabit Etheret

InfiniBand swich network 2

2]

3|

Nowe

Sl

images/bl1adv190.gif
Enclosure 1

5888886888060

5658868888060

SSiSSISSISSIS[SIS]S,

SSSSSSSS[S[SIS]S,

Enclosure 2

SiSISSISSISSISSIS]S!

S[SIS[SISSSSISISIS]S!

5888668866860

5688886888068

images/bl1adv080.gif
Production site

recovery site

Essat
(PPRC primary)

EssBt
(PPRC secondary)

3

PPRC paih 1

0

EssB2
(PPRC secondary)

3

PPRC paih 2

8

images/bl1adv090.gif
production site recovery site

-

P - primary lster configuraton server
S - sacondary clustr configuration server
a- quorum node

images/bl1adv200.gif
Enclosure 1

s Sclclame

&Faﬁ;d @

89(‘ Vil “888

~wd088e8E. .2

Enclosure 2

5666688860606

BRFIEC A8

568668886066

8666688886866

Survived!

images/bl1adv180.gif
Chents access:
Tglosadatat
Igosalitaz
gobaldata
iosalta
globaldatas
Isalietas

Chonts accese:
“giosaata’
gobaldataz
oalras
gobaldatat
globaldatas
Isalietas

-

Fil Systor: siore2

Toca Filses:
Teaas

Loca Filsets:
Taaas

Jdatas.

Loca Fllsets:
ema

Cents sccess
“gjosaata’
goaldata
iosaltas
glosaldata
iosaltas
gosaldatas

images/bl1adv110.gif
Test One Properties. [Z1x]
MerberOf | Disin | Envionment | Sessions
General | Addess | Accout | Profle | Telephones | Oigarization
Remole contiol | Tesminal Services Profle | COMs UNIX Attibutes

To enable access o tis use for UNIX clens, you vl have 10 speciy the.
NIS doman tis user belongs to.

5 Denn [|
uio: 20002

LognShet [/on/ih

Home
= [Phome testi

images/bl1adv120.gif
2l 8+2p Read-Solomon cods

e | INEEEEEE (10

3-way replication (1 + 2)

O

s 5+3p Reod-Soomon code seuay repicaion 1+
oo | INEEEEEE [0 B OO
[
8siips 2003 1Sy 203
o generated = generated
PFS biock partystips GPFS roplcas.

i

images/bl1adv130.gif
7 tracks per array .
(2 stips per track)
==

Samays spare
onGdisks ik

‘strips.

7 spare 1 declustéred aray

"on 7 disks

21 virtual
iracks
(@2 stips)

49 stips

images/bl1adv140.gif
o aak

ime

ras Perrr

images/bl1adv150.gif

images/bl1adv160.gif
(4

images/bl1adv170.gif

images/bl1adv100.gif
application

AX or Linux

mmpmon

GPFS
NSD

images/delta.gif

images/deltaend.gif

