

 Note

 Before using this information and the product it supports, read
 the information in Notices.

 Edition
 notice

 This edition applies to version 4 release 1 modification 0.4 of
 the following products, and to all subsequent releases and modifications
 until otherwise indicated in new editions:

 	IBM General Parallel
 File System ordered through Passport Advantage (product number
 5725-Q01)

 	IBM General Parallel
 File System ordered through AAS/eConfig (product number 5641-GPF)

 	IBM General Parallel
 File System ordered through HVEC/Xcel (product number 5641-GP6,
 5641-GP7, or 5641-GP8)

 	IBM General Parallel
 File System for Linux on System z (product number 5725-S28)

 Significant changes or additions to the
 text and illustrations are surrounded with double angle brackets ([image: Start of change] [image: End of change]).

 IBM welcomes your comments;
 see the topic How to send your comments.
 When you send information to IBM,
 you grant IBM a nonexclusive
 right to use or distribute the information in any way it believes
 appropriate without incurring any obligation to you.

 Contents

 	 Note

 	 Edition notice

 	Figures

 	Tables

 	 About this information
 	 Prerequisite and related information

 	 Conventions used in this information

 	 How to send your comments

 	 Summary of changes

 	 GPFS Data Management Application Programming Interface Information

 	 Overview of the Data Management API for GPFS
 	 GPFS-specific DMAPI events

 	 DMAPI functions
 	 Mandatory functions implemented in DMAPI for GPFS

 	 Optional functions implemented in DMAPI for GPFS

 	 Optional functions that are not implemented in DMAPI for GPFS

 	 GPFS-specific DMAPI functions

 	 DMAPI configuration attributes

 	 DMAPI restrictions for GPFS

 	 Data Management API principles for GPFS
 	 Sessions

 	 Events
 	 Reliable DMAPI destroy events

 	 Mount and unmount

 	 Tokens and access rights

 	 Parallelism in Data Management applications

 	 Data Management attributes

 	 Support for NFS

 	 Quota

 	 Memory mapped files

 	 Administering the Data Management API for GPFS
 	 Required files for implementation of Data Management applications

 	 GPFS configuration options for DMAPI

 	 Enabling DMAPI for a file system

 	 Initializing the Data Management application

 	 Specifications of enhancements in the GPFS implementation of the Data Management API
 	 Enhancements to data structures

 	 Usage restrictions on DMAPI functions

 	 Definitions for GPFS-specific DMAPI functions
 	 dm_handle_to_snap

 	 dm_make_xhandle

 	 dm_remove_dmattr_nosync

 	 dm_set_dmattr_nosync

 	 dm_set_eventlist_nosync

 	 dm_set_region_nosync

 	 dm_sync_dmattr_by_handle

 	 Semantic changes to DMAPI functions

 	 GPFS-specific DMAPI events

 	 Additional error codes returned by DMAPI functions

 	 Failure and recovery of the Data Management API for GPFS
 	 Single-node failure

 	 Session failure and recovery

 	 Event recovery

 	 Loss of access rights

 	 DODeferred deletions

 	 DM application failure

 	 Accessibility features for GPFS
 	 Accessibility features

 	 Keyboard navigation

 	 IBM and accessibility

 	 Notices
 	 Trademarks

 	 Glossary

 Figures

 	Figure 1.Flow of a typical synchronous event in a multiple-node GPFS environment

 Tables

 	Table 1. GPFS library
 information units

 	Table 2. Conventions

 	Table 3. DMAPI configuration attributes

 	Table 4. Specific DMAPI functions
 and associated error codes.

 About this information

 This edition applies to GPFS version 4.1.0.4 for AIX, Linux,
 and Windows.

 To find out which version of GPFS is
 running on a particular AIX node,
 enter: lslpp -l gpfs*

 To find out which version of GPFS is
 running on a particular Linux node,
 enter: rpm -qa | grep gpfs

 To find out which version of GPFS is
 running on a particular Windows node,
 open the Programs and Features control panel. The IBM General Parallel File System installed
 program name includes the version number.

 Which GPFS information
 unit provides the information you need?

 The GPFS library consists
 of the information units listed in Table 1.

 To use these information units effectively, you must be familiar
 with the GPFS licensed product
 and the AIX, Linux, or Windows operating
 system, or all of them, depending on which operating systems are in
 use at your installation. Where necessary, these information units
 provide some background information relating to AIX, Linux,
 or Windows; however, more
 commonly they refer to the appropriate operating system documentation.
 Note: [image: Start of change]Throughout this documentation, the term "Linux" refers to all supported distributions
 of Linux, unless otherwise
 specified.[image: End of change]

 Table 1. GPFS library
 information units.

 	Information unit

 	Type of information

 	Intended users

 	GPFS:
 Administration and Programming Reference

 	This information unit explains how to do the
 following:

 	Use the commands, programming interfaces, and user exits unique
 to GPFS

 	Manage clusters, file systems, disks, and quotas

 	Export a GPFS file system
 using the Network File System (NFS) protocol

 	System administrators or programmers of GPFS systems

 	GPFS:
 Advanced Administration Guide

 	This information unit explains how to use the
 following advanced features of GPFS:

 	Accessing GPFS file systems
 from other GPFS clusters

 	Policy-based data management for GPFS

 	Creating and maintaining snapshots of GPFS file systems

 	Establishing disaster recovery for your GPFS cluster

 	Monitoring GPFS I/O performance
 with the mmpmon command

 	Miscellaneous advanced administration topics

 	System administrators or programmers seeking
 to understand and use the advanced features of GPFS

 	GPFS:
 Concepts, Planning, and Installation Guide

 	This information unit provides information about
 the following topics:

 	Introducing GPFS

 	GPFS architecture

 	Planning concepts for GPFS

 	Installing GPFS

 	Migration, coexistence and compatibility

 	Applying maintenance

 	Configuration and tuning

 	Uninstalling GPFS

 	System administrators, analysts, installers,
 planners, and programmers of GPFS clusters
 who are very experienced with the operating systems on which each GPFS cluster is based

 	GPFS:
 Data Management API Guide

 	This information unit describes the Data Management
 Application Programming Interface (DMAPI) for GPFS.
 This implementation is based on The
 Open Group's System Management: Data Storage Management (XDSM) API
 Common Applications Environment (CAE) Specification C429, The Open
 Group, ISBN 1-85912-190-X specification. The implementation is compliant
 with the standard. Some optional features are not implemented.

 The
 XDSM DMAPI model is intended mainly for a single-node environment.
 Some of the key concepts, such as sessions, event delivery, and recovery,
 required enhancements for a multiple-node environment such as GPFS.

 Use this information
 if you intend to write application programs to do the following:

 	Monitor events associated with a GPFS file
 system or with an individual file

 	Manage and maintain GPFS file
 system data

 	Application programmers who are experienced
 with GPFS systems and familiar
 with the terminology and concepts in the XDSM standard

 	GPFS:
 Problem Determination Guide

 	
 This information unit contains explanations
 of GPFS error messages and explains
 how to handle problems you may encounter with GPFS.

 	System administrators of GPFS systems who are experienced with the subsystems
 used to manage disks and who are familiar with the concepts presented
 in the GPFS:
 Concepts, Planning, and Installation Guide

 	Prerequisite and related information

 	Conventions used in this information

 	How to send your comments

 Prerequisite and related information

 For updates to this information, see GPFS in IBM Knowledge Center.

 For
 the latest support information, see the GPFS FAQ
 in IBM Knowledge Center.

 Parent topic: About this information

 Conventions used in this information

 Table 1 describes
 the typographic conventions used in this information. UNIX file name conventions are used throughout
 this information.

 Note: Users of GPFS for Windows must be aware that
 on Windows, UNIX-style file names need to be converted appropriately.
 For example, the GPFS cluster
 configuration data is stored in the /var/mmfs/gen/mmsdrfs file.
 On Windows, the UNIX name space starts under the %SystemDrive%\cygwin
 directory, so the GPFS cluster
 configuration data is stored in the C:\cygwin\var\mmfs\gen\mmsdrfs file.

 Table 2. Conventions.

 	Convention

 	Usage

 	bold

 	Bold words
 or characters represent system elements that you must use literally,
 such as commands, flags, values, and selected menu options.
 Depending
 on the context, bold typeface sometimes represents path names,
 directories, or file names.

 	bold
 underlined

 	bold
 underlined keywords are defaults. These take effect
 if you do not specify a different keyword.

 	constant width

 	Examples and information that the
 system displays appear in constant-width typeface.
 Depending
 on the context, constant-width typeface sometimes
 represents path names, directories, or file names.

 	italic

 	Italic words or characters
 represent variable values that you must supply.
 Italics are
 also used for information unit titles, for the first use of a glossary
 term, and for general emphasis in text.

 	<key>

 	Angle brackets (less-than and greater-than)
 enclose the name of a key on the keyboard. For example, <Enter> refers
 to the key on your terminal or workstation that is labeled with the
 word Enter.

 	\

 	In command examples, a backslash
 indicates that the command or coding example continues on the next
 line. For example: mkcondition -r IBM.FileSystem -e "PercentTotUsed > 90" \
-E "PercentTotUsed < 85" -m p "FileSystem space used"

 	{item}

 	Braces enclose a list from which
 you must choose an item in format and syntax descriptions.

 	[item]

 	Brackets enclose optional items
 in format and syntax descriptions.

 	<Ctrl-x>

 	The notation <Ctrl-x>
 indicates a control character sequence. For example, <Ctrl-c>
 means that you hold down the control key while pressing <c>.

 	item...

 	Ellipses indicate that you can
 repeat the preceding item one or more times.

 	|

 	In synopsis statements,
 vertical lines separate a list of choices. In other words, a vertical
 line means Or.

 Parent topic: About this information

 How to send your comments

 Your feedback is important in helping us to produce accurate,
 high-quality information. If you have any comments about this information
 or any other GPFS documentation,
 send your comments to the following e-mail address:

 mhvrcfs@us.ibm.com

 Include
 the publication title and order number, and, if applicable, the specific
 location of the information about which you have comments (for example,
 a page number or a table number).

 To contact the GPFS development
 organization, send your comments to the following e-mail address:

 gpfs@us.ibm.com

 Parent topic: About this information

 Summary of changes

 This topic summarizes changes to the GPFS licensed program and the GPFS library. Within each topic, double angle brackets ([image: Start of change] [image: End of change]) surrounding text or illustrations indicate
 technical changes or additions made to the previous edition of the
 information.

 [image: Start of change]Summary of changes

 for GPFS version 4 release 1.0.4

 as updated, October 2014

 Changes to this release
 of the GPFS licensed program
 and the GPFS library include
 the following:

 	ACL and chmod operation control

 	Introduces the --allow-permission-change parameter
 of the mmchfileset and mmcrfileset commands.
 This parameter controls how chmod and ACL
 operations are handled on objects in a fileset.

 	AFM support for encryption

 	Supports the encryption of data in a file system that includes
 AFM filesets.

 	Batching snapshot commands

 	The performance of multiple concurrent snapshot create and delete
 operations was improved by combining the work into fewer larger steps.

 	Building the GPFS portability
 layer

 	The mmbuildgpl command can manage prerequisite
 packages for Linux and build
 the GPFS portability layer.

 	Changing the internal log file size

 	The size of the internal log file can now be changed with the -L LogFileSize parameter
 of the mmchfs command.

 	Compacting directory sizes

 	For a directory created before GPFS 4.1,
 the new --compact parameter of the mmchattr command
 converts the directory to GPFS 4.1
 format and then compacts the directory, potentially reducing its size.
 If many files were previously removed from the directory, --compact can
 improve the performance of directory operations.

 	Directories that are created with a GPFS 4.1
 or higher file system, or directories that were previously converted
 to GPFS 4.1 format with the
 use of --compact, are compacted automatically
 as files are removed.

 	Crypto acceleration for POWER8

 	GPFS encryption can take
 advantage of the POWER8 cryptographic
 enhancements.

 	File Placement Optimizer: Hadoop support

 	Provides FPO support of the following Hadoop features:

 	In-memory caching

 	ACL enhancement

 	GPFS for Linux on System
 z

 	Provides a high-performance cluster file system on the IBM System z platform. For information about
 availability, see IBM Software
 Announcement 214-367 dated October 6, 2014.

 	GPFS Storage Server (GSS)
 2.0

 	Provides several product enhancements. For more information, see
 the GPFS:
 Advanced Administration Guide.

 	Policy improvements

 	The following improvements were added for policies:

 	The ACTION clause was added to the MIGRATE, EXCLUDE, LIST, DELETE, SET
 POOL, and RESTORE TO POOL rules.

 	The DIRECTORIES_PLUS clause was added
 to the DELETE and EXCLUDE rules.

 	The GetXattrs() and REGEXREPLACE() functions
 were added.

 	The --split-filelists-by-weight option
 was added to the mmapplypolicy command.

 	RDMA over Converged Ethernet (RoCE)

 	Provides a link layer protocol with efficient low-latency RDMA
 services over Layer 2 Ethernet. It enables InfiniBand transport over
 Ethernet networks, and takes advantage of Priority Flow Control in
 Data Center Bridging Ethernet for lossless connectivity.

 	Re-establishing RDMA connections after network error

 	Enables the re-establishment of an RDMA connection for configurations
 where multiple RDMA connections are established between two nodes,
 and one or more of the RDMA connections break due to a network error.

 	Remote Procedure Call (RPC) statistics

 	RPC statistics can now be displayed using the mmpmon command.

 	Documented commands, structures, and subroutines

 	The following lists the modifications to the documented commands,
 structures, and subroutines:

 	New commands

 	The following command is new:

 	mmbuildgpl

 	New structures

 	There are no new structures.

 	New subroutines

 	There are no new subroutines.

 	Changed commands

 	The following commands were changed:

 	mmaddcallback

 	mmaddpdisk

 	mmafmlocal

 	mmapplypolicy

 	mmchattr

 	mmchcluster

 	mmchconfig

 	mmchfileset

 	mmchfirmware

 	mmchfs

 	mmchmgr

 	mmchpool

 	mmchrecoverygroup

 	mmcrcluster

 	mmcrfileset

 	mmcrfs

 	mmcrnsd

 	mmcrrecoverygroup

 	mmdelpdisk

 	mmfsck

 	mmfsctl

 	mmimgbackup

 	mmlsdisk

 	mmlsfileset

 	mmlsfs

 	mmlspdisk

 	mmlsrecoverygroup

 	mmpmon

 	Changed structures

 	The documentation for the following structures was changed although
 the structures themselves remained unchanged:

 	gpfsGetSetXAttr_t

 	gpfsRestripeData_t

 	Changed subroutines

 	The documentation for the following subroutines was changed although
 the subroutines themselves remained unchanged:

 	gpfs_clone_split()

 	gpfs_clone_unsnap()

 	gpfs_declone()

 	gpfs_fcntl()

 	gpfs_fgetattrs()

 	gpfs_fputattrs()

 	gpfs_fputattrswithpathname()

 	gpfs_getacl()

 	gpfs_iclose()

 	gpfs_igetattrsx()

 	gpfs_iopen64()

 	gpfs_iputattrsx()

 	gpfs_ireaddir64()

 	gpfs_ireadlink64()

 	gpfs_next_inode64()

 	gpfs_next_inode_with_xattrs()

 	gpfs_next_inode_with_xattrs64()

 	gpfs_next_xattr()

 	gpfs_open_inodescan64()

 	gpfs_open_inodescan_with_xattrs()

 	gpfs_open_inodescan_with_xattrs64()

 	gpfs_prealloc()

 	gpfs_putacl()

 	gpfs_quotactl()

 	gpfs_seek_inode64()

 	gpfs_stat()

 	gpfs_stat_inode()

 	gpfs_stat_inode64()

 	gpfs_stat_inode_with_xattrs()

 	gpfs_stat_inode_with_xattrs64()

 	Deleted commands

 	There are no deleted commands.

 	Deleted structures

 	There are no deleted structures.

 	Deleted subroutines

 	There are no deleted subroutines.

 	Messages

 	The following lists the new, changed, and deleted messages:

 	New messages

 	6027-1753, 6027-1754, 6027-2144, 6027-2236, 6027-2237, 6027-2239,
 6027-2275, 6027-2276, 6027-2277, 6027-2278, 6027-2279, 6027-2280,
 6027-2799, 6027-2959, 6027-3084, 6027-3085, 6027-3086, 6027-3087,
 6027-3088, 6027-3089, 6027-3101, 6027-3102, 6027-3103, 6027-3105,
 6027-3106, 6027-3556, 6027-3557, 6027-3558, 6027-3559, 6027-3560,
 6027-3561, 6027-3562, 6027-3563, 6027-3564, 6027-3565, 6027-3566,
 6027-3567, 6027-3568, 6027-3569, 6027-3570, 6027-3571, 6027-3572,
 6027-3573, 6027-3574, 6027-3575, 6027-3576, 6027-3577, 6027-3578,
 6027-3705, 6027-3706, 6027-3707

 	Changed messages

 	6027-474, 6027-494, 6027-633, 6027-1152, 6027-1864, 6027-2822

 	Deleted messages

 	There are no deleted messages.

 [image: End of change]

 Summary of changes

 for GPFS version 4 release 1

 as updated, May 2014

 Changes to this release of the GPFS licensed program and the GPFS library include the following:

 	GPFS product structure

 	GPFS now comes in three
 levels of function: GPFS Standard
 Edition, GPFS Express Edition, and GPFS Advanced
 Edition.

 	Active file management (AFM)

 	Enhancements to AFM include the following:

 	AFM environments can now support Parallel I/O. During reads, all
 mapped gateway nodes are used to fetch a single file from home. During
 writes, all mapped gateways are used to synchronize file changes to
 home.

 	In addition to the NFS protocol, AFM now supports the native GPFS protocol for the AFM communication
 channel providing improved integration of GPFS features and attributes.

 	GPFS 4.1 includes a number
 of features optimizing AFM operations and usability. These features
 include prefetch enhancements to handle gateway node failures during
 prefetch. AFM introduces new version of hashing (afmHashVersion=2),
 which minimizes the impact of gateway nodes joining or leaving the
 active cluster. Also, AFM cache states will now have different states
 based on fileset and queue states.

 	GPFS 4.1 supports the migration
 of data from any legacy NFS storage device or GPFS cluster to an AFM fileset. Data migration
 eases data transfer when upgrading hardware or buying a new system.
 The data source is an NFS v3 export and can be either a GPFS or a non-GPFS source as well. AFM based
 migration can minimize downtime for applications and consolidate data
 from multiple legacy systems into a more powerful cache.

 	Autonomic tuning for mmbackup

 	The mmbackup command can be tuned to
 control the numbers of threads used on each node to scan the file
 system, perform inactive object expiration, and carry out modified
 object backup. In addition, the sizes of lists of objects expired
 or backed up can be controlled or autonomically tuned to select these
 list sizes if they are not specified. List sizes are now independent
 for backup and expire tasks. For more information, see the GPFS:
 Administration and Programming Reference topic: "Tuning
 backups with the mmbackup command".

 	Backup 3.2 format discontinued

 	Starting with GPFS 4.1,
 the mmbackup command will no longer support
 incremental backup using the /Device/.snapshots/.mmbuSnapshot path
 name that was used with GPFS 3.2
 and earlier. For more information, see the GPFS:
 Administration and Programming Reference topic: "File
 systems backed up using GPFS 3.2
 or earlier versions of mmbackup".

 	Cluster Configuration Repository (CCR)

 	GPFS 4.1 introduces a new
 quorum-based repository for the configuration data. This replaces
 the current server-based repository, which required specific nodes
 to be designated as primary and backup configuration server nodes.

 	Cluster NFS improvements

 	Cluster NFS (CNFS) has been enhanced to support IPv6 and NFS V4.

 	Cygwin replaces SUA for Windows nodes

 	SUA is no longer supported for Windows nodes.
 Cygwin is now a required prerequisite before installing GPFS on Windows nodes.

 	Deadlock amelioration

 	Automated deadlock detection, automated deadlock data collection,
 and automated deadlock breakup can be used to help simplify deadlock
 troubleshooting.

 	Encryption

 	Support is provided for file encryption that ensures both secure
 storage and secure deletion of data. Encryption is only available
 with the GPFS Advanced
 Edition.
 For more information, see the GPFS:
 Advanced Administration Guide topic: "Encryption".

 	File Placement Optimizer (FPO)

 	Enhancements to FPO include the following:

 	To avoid performance impacts, data locality is now maintained
 when running the mmrestripefs -r command.

 	Asynchronous I/O performance was improved.

 	The performance of GPFS O_DIRECT vectored
 I/O was improved.

 	Data locality performance for AFM-FPO was improved.

 	The mmchpool command was provided to
 change GPFS-FPO relevant attributes (writeAffinityDepth and blockGroupFactor)
 for FPO storage pools.

 	Write affinity depth of 2 was improved to assign (write) all of
 the files in a fileset to the same second-replica node.

 	Fileset snapshot restore

 	Files can be restored from a fileset-level snapshot in a mounted
 file system.

 	Local read-only cache

 	Support is provided for large local read-only cache using solid-state
 disks. This makes data available with very low latency, and the cache
 serves to reduce the load on the shared network and on the backend
 disk storage, optimizing performance.

 	Message logging

 	Starting with GPFS 4.1,
 many GPFS log messages can be
 sent to syslog on Linux. Severity tags were added to numerous
 messages, and these tags can be used to filter the messages that are
 sent to syslog. The systemLogLevel attribute
 of the mmchconfig command controls which GPFS log messages are sent to syslog.

 	mmsetquota command

 	The new mmsetquota command enables you
 to set quota limits, default quota limits, or grace periods for users,
 groups, and filesets in the specified file system.

 	NFSv4 ACL formats

 	The ACL entry MKDIR was replaced by APPEND/MKDIR to
 allow WRITE and APPEND to
 be specified independently. A new NoPropagateInherit ACL
 flag was introduced; this flag indicates that the ACL entry should
 be included in the initial ACL for subdirectories created in this
 directory but not further propagated to subdirectories created below
 that level.

 	NIST SP800-131A compliance

 	GPFS can be configured to
 operate in conformance with the NIST SP800-131A recommendations for
 communication across nodes when the cipherList configuration
 variable is specified. The nistCompliance configuration
 variable controls whether conformance with NIST SP800-131A is enforced.
 The algorithms and key lengths used for file encryption all conform
 with NIST SP800-131A.

 	NSD formats

 	A new NSD format was introduced. The new format is referred to
 as NSD v2, and the old format is referred to as NSD v1. The NSD v1
 format is compatible with GPFS releases
 prior to 4.1. The latest GPFS release
 recognizes both NSD v1 and NSD v2 formatted disks.

 	Online migration of extended attributes

 	The mmmigratefs command can now be run
 with the file system mounted.

 	Quota management

 	Quota management improvements for file system format 4.1 and higher
 include:

 	Allowing quota management to be enabled and disabled without unmounting
 the file system.

 	The user.quota, group.quota,
 and fileset.quota files are no longer used.
 Quota files are now metadata files and do not appear in the file system
 name space.

 	Rapid repair

 	Performance of repairing large replicated files when restarting
 disks which were down has been improved. The repair will occur only
 on the blocks that changed while the disk was down, rather than on
 the entire file.

 	snapshotCreated callback

 	A new event called snapshotCreated was
 added to help correlate the timing of DMAPI events with the creation
 of a snapshot.

 	TSM version verification

 	The TSM Backup-Archive client must
 be installed and at the same version on all the nodes that will execute
 the mmbackup command or named in a node
 specification with -N. Starting with GPFS 4.1, the mmbackup command
 will verify that the TSM Backup-Archive client versions
 and configuration are correct before executing the backup.

 	User-defined node classes

 	Nodes can now be grouped into user-defined node classes that are
 created with the mmcrnodeclass command.
 After a node class is created, it can be specified as an argument
 on commands that accept the -N NodeClass option.
 User-defined node classes are managed with the mmchnodeclass, mmdelnodeclass,
 and mmlsnodeclass commands.

 	Documented commands, structures, and subroutines

 	The following lists the modifications to the documented commands,
 structures, and subroutines:

 	New commands

 	The following commands are new:

 	mmafmconfig

 	mmchnodeclass

 	mmchpool

 	mmcrnodeclass

 	mmdelnodeclass

 	mmlsnodeclass

 	mmsetquota

 	New structures

 	There are no new structures.

 	New subroutines

 	There are no new subroutines.

 	Changed commands

 	The following commands were changed:

 	mmaddcallback

 	mmafmctl

 	mmafmlocal

 	mmauth

 	mmbackup

 	mmchattr

 	mmchcluster

 	mmchconfig

 	mmchfileset

 	mmchfs

 	mmchpdisk

 	mmchrecoverygroup

 	mmcrcluster

 	mmcrfileset

 	mmcrfs

 	mmcrnsd

 	mmcrrecoverygroup

 	mmcrvdisk

 	mmdelvdisk

 	mmdiag

 	mmlscluster

 	mmlsfs

 	mmlsmount

 	mmlsrecoverygroup

 	mmmigratefs

 	mmmount

 	mmrestorefs

 	mmsnapdir

 	mmumount

 	Changed structures

 	The following structures were changed:

 	gpfs_acl_t

 	gpfs_direntx_t

 	gpfs_direntx64_t

 	gpfs_iattr_t

 	gpfs_iattr64_t

 	Changed subroutines

 	The following subroutines were changed:

 	gpfs_fgetattrs()

 	gpfs_fputattrs()

 	gpfs_fputattrswithpathname()

 	gpfs_fstat()

 	gpfs_stat()

 	Deleted commands

 	The following commands were deleted:

 	mmafmhomeconfig

 	Deleted structures

 	There are no deleted structures.

 	Deleted subroutines

 	There are no deleted subroutines.

 	Messages

 	The following lists the new, changed, and deleted messages:

 	New messages

 	6027-680, 6027-760, 6027-873, 6027-939, 6027-953, 6027-954, 6027-955,
 6027-956, 6027-957, 6027-959, 6027-960, 6027-1629, 6027-1743, 6027-1744,
 6027-1745, 6027-1746, 6027-1747, 6027-1748, 6027-1749, 6027-1750,
 6027-1751, 6027-1752, 6027-2229, 6027-2231, 6027-2232, 6027-2233,
 6027-2728, 6027-2767, 6027-2793, 6027-2794, 6027-2795, 6027-2796,
 6027-2797, 6027-2798, 6027-2822, 6027-2823, 6027-2824, 6027-2825,
 6027-2826, 6027-2827, 6027-2828, 6027-2956, 6027-2957, 6027-2958,
 6027-3066, 6027-3067, 6027-3068, 6027-3069, 6027-3070, 6027-3071,
 6027-3072, 6027-3073, 6027-3074, 6027-3075, 6027-3076, 6027-3077,
 6027-3078, 6027-3079, 6027-3080, 6027-3241, 6027-3242, 6027-3243,
 6027-3244, 6027-3245, 6027-3246, 6027-3247, 6027-3248, 6027-3249,
 6027-3250, 6027-3252, 6027-3253, 6027-3254, 6027-3304, 6027-3305,
 6027-3404, 6027-3450, 6027-3451, 6027-3452, 6027-3453, 6027-3457,
 6027-3458, 6027-3459, 6027-3460, 6027-3461, 6027-3462, 6027-3463,
 6027-3464, 6027-3465, 6027-3466, 6027-3468, 6027-3469, 6027-3470,
 6027-3471, 6027-3472, 6027-3473, 6027-3474, 6027-3475, 6027-3476,
 6027-3477, 6027-3478, 6027-3479, 6027-3480, 6027-3481, 6027-3482,
 6027-3483, 6027-3484, 6027-3485, 6027-3486, 6027-3487, 6027-3488,
 6027-3489, 6027-3490, 6027-3491, 6027-3493, 6027-3494, 6027-3495,
 6027-3496, 6027-3497, 6027-3498, 6027-3499, 6027-3500, 6027-3501,
 6027-3502, 6027-3503, 6027-3504, 6027-3505, 6027-3506, 6027-3509,
 6027-3510, 6027-3511, 6027-3512, 6027-3513, 6027-3514, 6027-3515,
 6027-3516, 6027-3517, 6027-3518, 6027-3519, 6027-3520, 6027-3521,
 6027-3522, 6027-3524, 6027-3527, 6027-3528, 6027-3529, 6027-3530,
 6027-3533, 6027-3534, 6027-3535, 6027-3536, 6027-3537, 6027-3540,
 6027-3541, 6027-3543, 6027-3544, 6027-3545, 6027-3546, 6027-3547,
 6027-3548, 6027-3549, 6027-3550, 6027-3555, 6027-3700, 6027-3701,
 6027-3702, 6027-3703, 6027-3704

 	Changed messages

 	6027-328, 6027-542, 6027-573, 6027-575, 6027-595, 6027-597, 6027-755,
 6027-882, 6027-884, 6027-885, 6027-886, 6027-906, 6027-907, 6027-910,
 6027-996, 6027-1227, 6027-1260, 6027-1261, 6027-1262, 6027-1263, 6027-1292,
 6027-1303, 6027-1305, 6027-1308, 6027-1309, 6027-1524, 6027-1717,
 6027-1718, 6027-1890, 6027-1891, 6027-1898, 6027-2150, 6027-2158,
 6027-2204, 6027-2205, 6027-2206, 6027-2741, 6027-2756, 6027-2758,
 6027-3026, 6027-3060, 6027-3215, 6027-3226, 6027-3227, 6027-3228,
 6027-3232, 6027-3236, 6027-3239, 6027-3240

 	Changed messages (only severity tags added)

 	6027-300, 6027-302, 6027-303, 6027-304, 6027-305, 6027-306, 6027-310,
 6027-311, 6027-312, 6027-313, 6027-314, 6027-315, 6027-316, 6027-317,
 6027-318, 6027-323, 6027-334, 6027-335, 6027-336, 6027-337, 6027-338,
 6027-339, 6027-341, 6027-342, 6027-343, 6027-344, 6027-346, 6027-347,
 6027-348, 6027-349, 6027-350, 6027-361, 6027-365, 6027-378, 6027-435,
 6027-472, 6027-473, 6027-474, 6027-479, 6027-481, 6027-482, 6027-483,
 6027-490, 6027-499, 6027-532, 6027-533, 6027-550, 6027-590, 6027-593,
 6027-596, 6027-598, 6027-599, 6027-604, 6027-605, 6027-606, 6027-608,
 6027-611, 6027-613, 6027-616, 6027-617, 6027-618, 6027-622, 6027-629,
 6027-630, 6027-635, 6027-636, 6027-637, 6027-638, 6027-639, 6027-640,
 6027-641, 6027-642, 6027-643, 6027-646, 6027-647, 6027-650, 6027-695,
 6027-696, 6027-697, 6027-698, 6027-699, 6027-700, 6027-701, 6027-702,
 6027-703, 6027-711, 6027-712, 6027-716, 6027-717, 6027-719, 6027-720,
 6027-721, 6027-724, 6027-726, 6027-734, 6027-747, 6027-750, 6027-751,
 6027-752, 6027-753, 6027-756, 6027-761, 6027-765, 6027-766, 6027-767,
 6027-777, 6027-778, 6027-784, 6027-785, 6027-786, 6027-787, 6027-788,
 6027-866, 6027-870, 6027-871, 6027-872, 6027-874, 6027-875, 6027-876,
 6027-877, 6027-878, 6027-879, 6027-881, 6027-883, 6027-887, 6027-888,
 6027-889, 6027-890, 6027-891, 6027-892, 6027-893, 6027-894, 6027-895,
 6027-896, 6027-897, 6027-898, 6027-899, 6027-900, 6027-901, 6027-902,
 6027-903, 6027-904, 6027-905, 6027-908, 6027-909, 6027-911, 6027-912,
 6027-920, 6027-921, 6027-922, 6027-923, 6027-924, 6027-928, 6027-929,
 6027-930, 6027-931, 6027-932, 6027-933, 6027-934, 6027-935, 6027-936,
 6027-937, 6027-938, 6027-948, 6027-949, 6027-950, 6027-951, 6027-997,
 6027-998, 6027-999, 6027-1500, 6027-1501, 6027-1502, 6027-1510, 6027-1511,
 6027-1512, 6027-1537, 6027-1538, 6027-1539, 6027-1540, 6027-1541,
 6027-1542, 6027-1544, 6027-1545, 6027-1546, 6027-1547, 6027-1548,
 6027-1549, 6027-1550, 6027-1666, 6027-1709, 6027-1710, 6027-1711,
 6027-1716, 6027-1724, 6027-1725, 6027-1726, 6027-1727, 6027-1728,
 6027-1729, 6027-1730, 6027-1731, 6027-1732, 6027-1734, 6027-1735,
 6027-1736, 6027-1737, 6027-1738, 6027-1739, 6027-1740, 6027-1741,
 6027-1742, 6027-1803, 6027-1804, 6027-1805, 6027-1806, 6027-1807,
 6027-1808, 6027-1809, 6027-1810, 6027-1811, 6027-1812, 6027-1813,
 6027-1814, 6027-1815, 6027-1816, 6027-1817, 6027-1818, 6027-1824,
 6027-1825, 6027-1851, 6027-1852, 6027-2049, 6027-2050, 6027-2576,
 6027-2618, 6027-2621, 6027-2623, 6027-2667, 6027-2673, 6027-2674,
 6027-2682, 6027-2694, 6027-2695, 6027-2696, 6027-2700, 6027-2706,
 6027-2707, 6027-2708, 6027-2710, 6027-2711, 6027-2716, 6027-2722,
 6027-2723, 6027-2724, 6027-2725, 6027-2726, 6027-2730, 6027-2734,
 6027-2735, 6027-2740, 6027-2742, 6027-2744, 6027-2745, 6027-2746,
 6027-2747, 6027-2750, 6027-2751, 6027-2752, 6027-2753, 6027-2754,
 6027-2755, 6027-2757, 6027-2759, 6027-2760, 6027-2766, 6027-2777,
 6027-2778, 6027-2779, 6027-2780, 6027-2781, 6027-2782, 6027-2783,
 6027-2784, 6027-2785, 6027-2786, 6027-2787, 6027-2788, 6027-2789,
 6027-2805, 6027-2806, 6027-2807, 6027-2810, 6027-2950, 6027-2952,
 6027-2953, 6027-2954, 6027-2955, 6027-3035, 6027-3045, 6027-3058,
 6027-3214, 6027-3224, 6027-3225, 6027-3229, 6027-3230, 6027-3233,
 6027-3234, 6027-3235, 6027-3402

 	Deleted messages

 	6027-1264, 6027-1265, 6027-1311, 6027-1312, 6027-1323, 6027-1324,
 6027-1325, 6027-1327, 6027-1328, 6027-1330, 6027-1336, 6027-1337,
 6027-1354, 6027-1355, 6027-1356, 6027-1369, 6027-1376, 6027-1397,
 6027-1558, 6027-1569, 6027-1580, 6027-1585, 6027-1586, 6027-1629,
 6027-1698, 6027-1868, 6027-1920, 6027-1944, 6027-1965, 6027-1971,
 6027-1972, 6027-1973, 6027-1991, 6027-3218, 6027-3219, 6027-3237,
 6027-3238

 GPFS Data Management
 Application Programming Interface Information

 The Data Management Application Programming Interface (DMAPI) for General
 Parallel File System (GPFS)
 is based on The Open Group's System Management: Data Storage Management
 (XDSM) API Common Applications Environment (CAE) Specification C429,
 The Open Group, ISBN 1-85912-190-X specification. The implementation
 is compliant with the standard. Some optional features are not implemented.

 The XDSM DMAPI model is intended mainly for a single node environment.
 Some of the key concepts, such as sessions, event delivery, and recovery,
 required enhancements for a multiple-node environment such as GPFS.

 Overview of the Data Management API for GPFS

 The Data Management Application Programming Interface (DMAPI)
 for General Parallel File System (GPFS) allows you to monitor events
 associated with a GPFS file
 system or with an individual file. You can also manage and maintain
 file system data.

 See the GPFS FAQ
 in IBM Knowledge Center for
 the current limitations of DMAPI-managed file systems.

 Note: Tivoli Storage Manager
 for Space Management client (Hierarchical Storage Management) for GPFS file system is not available
 for Windows.

 The GPFS implementation of
 DMAPI is compliant with the Open Group's XDSM Standard.

 	GPFS-specific DMAPI events

 There are three GPFS-specific DMAPI events: events implemented
 in DMAPI for GPFS, optional
 events that are not implemented in DMAPI for GPFS, and GPFS-specific
 attribute events that are not part of the DMAPI standard.

 	DMAPI functions

 All mandatory DMAPI functions and most optional functions
 that are defined in the System Management: Data Storage Management
 (XDSM) API Common Applications Environment (CAE) Specification
 C429, The Open Group, ISBN 1-85912-190-X, are implemented in DMAPI
 for GPFS.

 	DMAPI configuration attributes

 The System Management: Data Storage Management (XDSM)
 API Common Applications Environment (CAE) Specification C429,
 The Open Group, ISBN 1-85912-190-X defines a set of configuration
 attributes to be exported by each DMAPI implementation. These attributes
 specify which optional features are supported and give bounds on various
 resources.

 	DMAPI restrictions for GPFS

 All DMAPI APIs must be called from nodes that are in the
 cluster where the file system is created. DMAPI APIs may not be
 invoked from a remote cluster.

 GPFS-specific DMAPI events

 There are three GPFS-specific DMAPI events: events implemented
 in DMAPI for GPFS, optional
 events that are not implemented in DMAPI for GPFS, and GPFS-specific
 attribute events that are not part of the DMAPI standard.

 Events implemented in DMAPI for GPFS

 These are the events, as
 defined in the System Management: Data Storage Management (XDSM)
 API Common Applications Environment (CAE) Specification C429,
 The Open Group, ISBN 1-85912-190-X, implemented in DMAPI for GPFS:

 	File System Administration Events

 	

 	mount

 	preunmount

 	unmount

 	nospace

 	Namespace Events

 	

 	create, postcreate

 	remove, postremove

 	rename, postrename

 	symlink, postsymlink

 	link, postlink

 	Data Events

 	

 	read

 	write

 	truncate

 	Metadata Events

 	

 	attribute

 	destroy

 	close

 	Pseudo Event

 	

 	user event

 GPFS guarantees
 that asynchronous events are delivered, except when the GPFS daemon fails. Events are enqueued to the
 session before the corresponding file operation completes. For further
 information on failures, see Failure and recovery of the Data Management API for GPFS.

 Optional events that are not implemented
 in DMAPI for GPFS

 The
 following optional events, as defined in the System Management:
 Data Storage Management (XDSM) API Common Applications Environment
 (CAE) Specification C429, The Open Group, ISBN 1-85912-190-X, are not implemented
 in DMAPI for GPFS:

 	File System Administration Event

 	

 	debut

 	Metadata Event

 	

 	cancel

 GPFS-specific
 attribute events that are not part of the DMAPI standard

 GPFS generates the following attribute events
 for DMAPI that are specific to GPFS and
 not part of the DMAPI standard:

 	Pre-permission change

 	Post-permission change

 For additional information, refer to GPFS-specific DMAPI events.

 Parent topic: Overview of the Data Management API for GPFS

 DMAPI functions

 All mandatory DMAPI functions and most optional functions
 that are defined in the System Management: Data Storage Management
 (XDSM) API Common Applications Environment (CAE) Specification
 C429, The Open Group, ISBN 1-85912-190-X, are implemented in DMAPI
 for GPFS.

 For
 C declarations of all DMAPI functions in the GPFS implementation of DMAPI, refer to the dmapi.h file
 located in the /usr/lpp/mmfs/include directory as part of the GPFS installation.

 For changes and restrictions on DMAPI functions as implemented
 in GPFS, see Usage restrictions on DMAPI functions, and Semantic changes to DMAPI functions.

 	Mandatory functions implemented in DMAPI for GPFS

 These mandatory functions, as defined in the System
 Management: Data Storage Management (XDSM) API Common Applications
 Environment (CAE) Specification C429, The Open Group, ISBN 1-85912-190-X,
 are implemented in DMAPI for GPFS.

 	Optional functions implemented in DMAPI for GPFS

 These optional functions, as defined in the System Management:
 Data Storage Management (XDSM) API Common Applications Environment
 (CAE) Specification C429, The Open Group, ISBN 1-85912-190-X, are
 implemented in DMAPI for GPFS.

 	Optional functions that are not implemented in DMAPI for GPFS

 There are optional functions that are not implemented in
 DMAPI for GPFS.

 	GPFS-specific DMAPI functions

 There are several GPFS-specific
 DMAPI functions that are not part of the DMAPI open standard.

 Parent topic: Overview of the Data Management API for GPFS

 Mandatory functions implemented in DMAPI for GPFS

 These mandatory functions, as defined in the System
 Management: Data Storage Management (XDSM) API Common Applications
 Environment (CAE) Specification C429, The Open Group, ISBN 1-85912-190-X,
 are implemented in DMAPI for GPFS.

 For
 C declarations of all DMAPI functions in the GPFS implementation of DMAPI, refer to the dmapi.h file
 located in the /usr/lpp/mmfs/include directory as part of the GPFS installation. However, for
 a quick description of the mandatory functions and their applications,
 refer to the following set of functions:

 	dm_create_session

 	Create a new session.

 	dm_create_userevent

 	Create a pseudo-event message for a user.

 	dm_destroy_session

 	Destroy an existing session.

 	dm_fd_to_handle

 	Create a file handle using a file descriptor.

 	dm_find_eventmsg

 	Return the message for an event.

 	dm_get_allocinfo

 	Get a file's current allocation information.

 	dm_get_bulkattr

 	Get bulk attributes of a file system.

 	dm_get_config

 	Get specific data on DMAPI implementation.

 	dm_get_config_events

 	List all events supported by the DMAPI implementation.

 	dm_get_dirattrs

 	Return a directory's bulk attributes.

 	dm_get_eventlist

 	Return a list of an object's enabled events.

 	dm_get_events

 	Return the next available event messages.

 	dm_get_fileattr

 	Get file attributes.

 	dm_get_mountinfo

 	Return details from a mount event.

 	dm_get_region

 	Get a file's managed regions.

 	dm_getall_disp

 	For a given session, return the disposition of all file system's
 events.

 	dm_getall_sessions

 	Return all extant sessions.

 	dm_getall_tokens

 	Return a session's outstanding tokens.

 	dm_handle_cmp

 	Compare file handles.

 	dm_handle_free

 	Free a handle's storage.

 	dm_handle_hash

 	Hash the contents of a handle.

 	dm_handle_is_valid

 	Check a handle's validity.

 	dm_handle_to_fshandle

 	Return the file system handle associated with an object handle.

 	dm_handle_to_path

 	Return a path name from a file system handle.

 	dm_init_attrloc

 	Initialize a bulk attribute location offset.

 	dm_init_service

 	Initialization processing that is implementation-specific.

 	dm_move_event

 	Move an event from one session to another.

 	dm_path_to_fshandle

 	Create a file system handle using a path name.

 	dm_path_to_handle

 	Create a file handle using a path name.

 	dm_query_right

 	Determine an object's access rights.

 	dm_query_session

 	Query a session.

 	dm_read_invis

 	Read a file without using DMAPI events.

 	dm_release_right

 	Release an object's access rights.

 	dm_request_right

 	Request an object's access rights.

 	dm_respond_event

 	Issue a response to an event.

 	dm_send_msg

 	Send a message to a session.

 	dm_set_disp

 	For a given session, set the disposition of all file system's
 events.

 	dm_set_eventlist

 	For a given object, set the list of events to be enabled.

 	dm_set_fileattr

 	Set a file's time stamps, ownership and mode.

 	dm_set_region

 	Set a file's managed regions.

 	dm_write_invis

 	Write to a file without using DMAPI events.

 Parent topic: DMAPI functions

 Optional functions implemented in DMAPI for GPFS

 These optional functions, as defined in the System Management:
 Data Storage Management (XDSM) API Common Applications Environment
 (CAE) Specification C429, The Open Group, ISBN 1-85912-190-X, are
 implemented in DMAPI for GPFS.

 For
 C declarations of all DMAPI functions in the GPFS implementation of DMAPI, refer to the dmapi.h file
 located in the /usr/lpp/mmfs/include directory
 as part of the GPFS installation.
 However, for a quick description of the optional functions and their
 applications, refer to the following set of functions:

 	dm_downgrade_right

 	Change an exclusive access right to a shared access right.

 	dm_get_bulkall

 	Return a file system's bulk data management attributes.

 	dm_get_dmattr

 	Return a data management attribute.

 	dm_getall_dmattr

 	Return all data management attributes of a file.

 	dm_handle_to_fsid

 	Get a file system ID using its handle.

 	dm_handle_to_igen

 	Get inode generation count using a handle.

 	dm_handle_to_ino

 	Get inode from a handle.

 	dm_make_handle

 	Create a DMAPI object handle.

 	dm_make_fshandle

 	Create a DMAPI file system handle.

 	dm_punch_hole

 	Make a hole in a file.

 	dm_probe_hole

 	Calculate the rounded result of the area where it is assumed that
 a hole is to be punched.

 	dm_remove_dmattr

 	Delete a data management attribute.

 	dm_set_dmattr

 	Define or update a data management attribute.

 	dm_set_return_on_destroy

 	Indicate a DM attribute to return with destroy events.

 	dm_sync_by_handle

 	Synchronize the in-memory state of a file with the physical medium.

 	dm_upgrade_right

 	Change a currently held access right to be exclusive.

 Parent topic: DMAPI functions

 Optional functions that are not implemented in DMAPI for GPFS

 There are optional functions that are not implemented in
 DMAPI for GPFS.

 The following optional functions,
 as defined in the System Management: Data Storage Management (XDSM)
 API Common Applications Environment (CAE) Specification C429,
 The Open Group, ISBN 1-85912-190-X, are not implemented
 in DMAPI for GPFS:

 	dm_clear_inherit

 	Reset the inherit-on-create status of an attribute.

 	dm_create_by_handle

 	Define a file system object using a DM handle.

 	dm_getall_inherit

 	Return a file system's inheritable attributes.

 	dm_mkdir_by_handle

 	Define a directory object using a handle.

 	dm_obj_ref_hold

 	Put a hold on a file system object.

 	dm_obj_ref_query

 	Determine if there is a hold on a file system object.

 	dm_obj_ref_rele

 	Release the hold on a file system object.

 	dm_pending

 	Notify FS of slow DM application processing.

 	dm_set_inherit

 	Indicate that an attribute is inheritable.

 	dm_symlink_by_handle

 	Define a symbolic link using a DM handle.

 Parent topic: DMAPI functions

 GPFS-specific DMAPI functions

 There are several GPFS-specific
 DMAPI functions that are not part of the DMAPI open standard.

 The GPFS-specific functions are listed and described in Definitions for GPFS-specific DMAPI functions.

 Parent topic: DMAPI functions

 DMAPI configuration attributes

 The System Management: Data Storage Management (XDSM)
 API Common Applications Environment (CAE) Specification C429,
 The Open Group, ISBN 1-85912-190-X defines a set of configuration
 attributes to be exported by each DMAPI implementation. These attributes
 specify which optional features are supported and give bounds on various
 resources.

 The
 Data Management (DM) application can query the attribute values using
 the function dm_get_config. It can also
 query which events are supported, using the function dm_get_config_events.

 The functions dm_get_config and dm_get_config_events receive
 a file handle from input arguments hanp and hlen.
 In GPFS, both functions ignore
 the handle, as the configuration is not dependent on the specific
 file or file system. This enables the DM application to query the
 configuration during initialization, when file handles may not yet
 be available.

 Note: To guarantee that the most current values are being used,
 the DM application should always query the configuration at runtime
 by using dm_get_config.

 Table 1 shows the attribute
 values that are used in GPFS:

 Table 3. DMAPI configuration attributes

 	Name

 	Value

 	DM_CONFIG_BULKALL

 	1

 	DM_CONFIG_CREATE_BY_HANDLE

 	0

 	DM_CONFIG_DTIME_OVERLOAD

 	1

 	DM_CONFIG_LEGACY

 	1

 	DM_CONFIG_LOCK_UPGRADE

 	1

 	DM_CONFIG_MAX_ATTR_ON_DESTROY

 	1022

 	DM_CONFIG_MAX_ATTRIBUTE_SIZE

 	1022

 	DM_CONFIG_MAX_HANDLE_SIZE

 	32

 	DM_CONFIG_MAX_MANAGED_REGIONS

 	32

 	DM_CONFIG_MAX_MESSAGE_DATA

 	4096

 	DM_CONFIG_OBJ_REF

 	0

 	DM_CONFIG_PENDING

 	0

 	DM_CONFIG_PERS_ATTRIBUTE

 	1

 	DM_CONFIG_PERS_EVENTS

 	1

 	DM_CONFIG_PERS_INHERIT_ATTRIBS

 	0

 	DM_CONFIG_PERS_MANAGED_REGIONS

 	1

 	DM_CONFIG_PUNCH_HOLE

 	1

 	DM_CONFIG_TOTAL_ATTRIBUTE_SPACE

 	7168

 	DM_CONFIG_WILL_RETRY

 	0

 Attribute
 value DM_CONFIG_TOTAL_ATTRIBUTE_SPACE is
 per file. The entire space is available for opaque attributes. Non-opaque
 attributes (event list and managed regions) use separate space.

 Parent topic: Overview of the Data Management API for GPFS

 DMAPI restrictions for GPFS

 All DMAPI APIs must be called from nodes that are in the
 cluster where the file system is created. DMAPI APIs may not be
 invoked from a remote cluster.

 In
 addition to the DMAPI API restrictions, GPFS places
 the following restrictions on the use of file system snapshots when
 you have DMAPI enabled:

 	Snapshots cannot coexist with file systems using GPFS 3.1 or earlier.

 	GPFS 3.2 and later permits
 snapshots with DMAPI-enabled file systems. However, GPFS places the following restrictions on DMAPI
 access to the snapshot files:

 	The DM server may read files in a snapshot using dm_read_invis.

 	The DM server is not allowed to modify or delete the file using dm_write_invis or dm_punch_hole.

 	The DM server is not allowed to establish a managed region on
 the file.

 	Snapshot creation or deletion does not generate DMAPI name space
 events.

 	Snapshots of a file are not managed regardless of the state of
 the original file and they do not inherit the DMAPI attributes of
 the 	original file.

 Parent topic: Overview of the Data Management API for GPFS

 Data Management API principles for GPFS

 The XDSM standard is intended mainly for a single-node
 environment. Some of the key concepts in the standard such as sessions,
 event delivery, mount and unmount, and failure and recovery, are not
 well defined for a multiple-node environment such as GPFS.

 For a list of restrictions and coexistence considerations,
 see Usage restrictions on DMAPI functions.

 All DMAPI APIs must be called from nodes that are in the cluster
 where the file system is created.

 Enhancements in the DMAPI model used in GPFS include these areas:

 	Sessions

 In GPFS, a session
 is associated only with the node on which the session was created.
 This node is known as the session node.

 	Events

 Events arrive on a session queue from any of the nodes
 in the GPFS cluster.

 	Mount and unmount

 The XDSM standard implicitly assumes that there is a single
 mount, pre-unmount and unmount event per file system. In GPFS, a separate mount event is generated by
 each mount operation on each node. Similarly, if the pre-unmount and
 unmount events are enabled, they are generated by each unmount operation
 on each node. Thus, there may be multiple such events for the same
 file system.

 	Tokens and access rights

 A DMAPI token is an identifier of an outstanding event
 (a synchronous event that the DM application has received and is currently
 handling). The token is unique over time in the cluster. The token
 becomes invalid when the event receives a response.

 	Parallelism in Data Management applications

 Given the multiple-node environment of GPFS, it is desirable to exploit parallelism
 in the Data Management application as well.

 	Data Management attributes

 Data Management attributes can be associated with any individual
 file. There are opaque and non-opaque attributes.

 	Support for NFS

 A DM application could be slow in handling events. NFS
 servers have a limited number of threads which must not all be blocked
 simultaneously for extended periods of time. GPFS provides a mechanism to guarantee progress
 of NFS file operations that generate data events without blocking
 the server threads indefinitely.

 	Quota

 GPFS supports user
 quota. When dm_punch_hole is invoked, the
 file owner's quota is adjusted by the disk space that is freed. The
 quota is also adjusted when dm_write_invis is
 invoked and additional disk space is consumed.

 	Memory mapped files

 In GPFS, a read event
 or a write event will be generated (if enabled) at the time the memory
 mapping of a file is established.

 Sessions

 In GPFS, a session
 is associated only with the node on which the session was created.
 This node is known as the session node.

 Events are generated at any node where
 the file system is mounted. The node on which a given event is generated
 is called the source node of that event. The event is delivered
 to a session queue on the session node.

 There are restrictions as to which DMAPI functions can and cannot
 be called from a node other than the session node. In general, functions
 that change the state of a session or event can only be called on
 the session node. For example, the maximum number of DMAPI sessions
 that can be created on a node is 4000. See Usage restrictions on DMAPI functions for details.

 Session ids are unique over time within a GPFS cluster. When an existing session is assumed,
 using dm_create_session, the new session
 id returned is the same as the old session id.

 A session fails when the GPFS daemon
 fails on the session node. Unless this is a total failure of GPFS on all nodes, the session is
 recoverable. The DM application is expected to assume the old session,
 possibly on another node. This will trigger the reconstruction of
 the session queue. All pending synchronous events from surviving nodes
 are resubmitted to the recovered session queue. Such events will have
 the same token id as before the failure, except mount events. Asynchronous
 events, on the other hand, are lost when the session fails. See Failure and recovery of the Data Management API for GPFS for information on
 failure and recovery.

 Parent topic: Data Management API principles for GPFS

 Events

 Events arrive on a session queue from any of the nodes
 in the GPFS cluster.

 The
 source node of the event is identified by the ev_nodeid field
 in the header of each event message in the structure dm_eventmsg.
 The identification is the GPFS cluster
 data node number, which is attribute node_number in
 the mmsdrfs2 file for a PSSP node or mmsdrfs file
 for any other type of node.

 Data Management events are generated only if the following two
 conditions are true:

 	The event is enabled.

 	It has a disposition.

 A file operation will fail with the EIO error if there is
 no disposition for an event that is enabled and would otherwise be
 generated.

 A list
 of enabled events can be associated individually with a file and globally
 with an entire file system. The XDSM standard leaves undefined the
 situation where the individual and the global event lists are in conflict.
 In GPFS, such conflicts are
 resolved by always using the individual event list, if it exists.
 Note: The
 XDSM standard does not provide the means to remove the individual
 event list of a file. Thus, there is no way to enable or disable an
 event for an entire file system without explicitly changing each conflicting
 individual event list.

 In GPFS, event lists are persistent.

 Event dispositions are specified per file system and are not persistent.
 They must be set explicitly after the session is created.

 Event generation mechanisms have limited capacity. In case resources
 are exceeded, new file operations will wait indefinitely for free
 resources.

 File operations wait indefinitely for a response from synchronous
 events. The GPFS configuration
 option, dmapiEventTimeout, can be used to
 set a timeout on events that originate from NFS file operations. This
 is necessary because NFS servers have a limited number of threads
 that cannot be blocked for long periods of time. Refer to GPFS configuration options for DMAPI and Support for NFS.

 The
 XDSM standard permits asynchronous events to be discarded at any time.
 In GPFS, asynchronous events
 are guaranteed when the system runs normally, but may be lost during
 abnormal conditions, such as failure of GPFS on
 the session node. Asynchronous events are delivered in a timely manner.
 That is, an asynchronous event is enqueued to the session before the
 corresponding file operation completes.

 Figure 1, shows the flow of a typical
 synchronous event in a multiple-node GPFS environment.
 The numbered arrows in the figure correspond to the following steps:

 	The user application on the source node performs a file operation
 on a GPFS file. The file operation
 thread generates a synchronous event and blocks, waiting for a response.

 	GPFS on the source node
 sends the event to GPFS on the
 session node, according to the disposition for that event. The event
 is enqueued to the session queue on the session node.

 	The Data Management application on the session node receives the
 event (using dm_get_events) and handles
 it.

 	The Data Management application on the session node responds to
 the event (using dm_respond_event).

 	GPFS on the session node
 sends the response to GPFS on
 the source node.

 	GPFS on the source node
 passes the response to the file operation thread and unblocks it.
 The file operation continues.

 [image: This graphic depicts the typical flow of a synchronous event in a multiple-node GPFS environment. In a three node GPFS cluster: 1) The first node is a session node with GPFS and the Data Management API installed. 2) The second node is a source node with GPFS and the user application installed. 3) The third node has only GPFS installed on it and is therefore not defined to the Data Management API. The flow of communication for the event is: 1) The user application on the source node performs a file operation on a GPFS file. The file operation thread generates a synchronous event and blocks, waiting for a response. 2) GPFS on the source node sends the event to GPFS on the session node, according to the disposition for that event. The event is enqueued to the session queue on the session node. 3) The Data Management application on the session node receives the event (using dm_get_events) and handles it. 4) The Data Management application on the session node responds to the event (using dm_respond_event). 5) GPFS on the session node sends the response to GPFS on the source node. 6) GPFS on the source node passes the response to the file operation thread and unblocks it. The file operation continues.]

Figure 1. Flow of a typical synchronous event in a multiple-node GPFS environment

 	Reliable DMAPI destroy events

 Parent topic: Data Management API principles for GPFS

 Reliable DMAPI destroy events

 A metadata destroy event is generated when the operating system
 has destroyed an object. This type of event is different from a remove
 event, which is a namespace event and is not related to the destruction
 of an object. A reliable destroy event supports synchronous destroy
 events in the same way that other synchronous events do. When a synchronous
 event is generated, a user process is suspended in the kernel; it
 will be suspended until a DM application issues an explicit response
 to the event. The DM application at the session that supports the
 reliable destroy event must be capable of handling the synchronous
 destroy event. In other words, it must respond to the DM_EVENT_DESTROY event
 with DM_RESPOND_EVENT. Otherwise, the event
 will wait forever at the session node for a response. Based on this,
 it is recommended that the cluster not be made up of nodes that are
 running back-level code and new code, because the destroy event is
 not reliable in a mixed environment.

 Parent topic: Events

 Mount and unmount

 The XDSM standard implicitly assumes that there is a single
 mount, pre-unmount and unmount event per file system. In GPFS, a separate mount event is generated by
 each mount operation on each node. Similarly, if the pre-unmount and
 unmount events are enabled, they are generated by each unmount operation
 on each node. Thus, there may be multiple such events for the same
 file system.

 To provide additional information to the DM application, the mode
 field in the respective event message structures (me_mode for
 mount, and ne_mode for pre-unmount and unmount)
 has a new flag, DM_LOCAL_MOUNT, which is
 not defined in the standard. When the flag is set, the mount or unmount
 operation is local to the session node. In addition, the new field ev_nodeid in
 the header of the event message can be used to identify the source
 node where the mount or unmount operation was invoked. The identification
 is the GPFS cluster data node
 number, which is attribute node_number in
 the mmsdrfs2 file for a PSSP node or mmsdrfs file
 for any other type of node.

 The
 mount event is sent to multiple sessions that have a disposition for
 it. If there is no disposition for the mount event, the mount operation
 fails with an EIO error.

 There is no practical way to designate the last unmount,
 since there is no serialization of all mount and unmount operations
 of each file system. Receiving an unmount event with the value 0 in
 the ne_retcode field is no indication that
 there will be no further events from the file system.

 An unmount initiated internally by the GPFS daemon, due to file system forced unmount
 or daemon shutdown, will not generate any events. Consequently, there
 need not be a match between the number of mount events and the number
 of pre-unmount or unmount events for a given file system.

 The GPFS configuration option dmapiMountTimeout enables
 blocking the mount operation for a limited time until some session
 has set the mount disposition. This helps GPFS and the DM application synchronize during
 initialization. See GPFS configuration options for DMAPI and Initializing the Data Management application.

 Mount events are enqueued on the session queue ahead of any other
 events. This gives mount events a higher priority, which improves
 the response time for mount events when the queue is very busy.

 If the DM_UNMOUNT_FORCE flag
 is set in the pre-unmount event message, the response of the DM application
 to the pre-unmount event is ignored, and the forced unmount proceeds.
 If the DM_LOCAL_MOUNT flag is also set,
 the forced unmount will result in the loss of all access rights of
 the given file system that are associated with any local session.

 If the unmount is not forced (the DM_UNMOUNT_FORCE flag
 is not set), and the DM_LOCAL_MOUNT flag
 is set, the DM application is expected to release all access rights
 on files of the given file system associated with any local session.
 If any access rights remain held after the DM_RESP_CONTINUE response
 is given, the unmount will fail with EBUSY. This is because
 access rights render the file system busy, similar to other locks
 on files.

 The
 function dm_get_mountinfo can be called
 from any node, even if the file system is not mounted on that node.
 The dm_mount_event structure returned by
 the dm_get_mountinfo function provides the
 following enhanced information. The me_mode field
 contains two new flags, DM_LOCAL_MOUNT and DM_REMOTE_MOUNT.
 At least one of the two flags is always set. When both flags are set
 simultaneously, it is an indication that the file system is mounted
 on the local node, as well as one or more other (remote) nodes. When
 only DM_LOCAL_MOUNT is set, it is an indication
 that the file system is mounted on the local node but not on any other
 node. When only DM_REMOTE_MOUNT is set,
 it is an indication that the file system is mounted on some remote
 node, but not on the local node.

 In
 the latter case (only DM_REMOTE_MOUNT is
 set), the fields me_roothandle and me_handle2 (the
 mount point handle) in the dm_mount_event structure
 are set to DM_INVALID_HANDLE. Also in this
 case, the me_name1 field (the mount point
 path) is taken from the stanza in the file /etc/filesystems on
 one of the remote nodes (with the use of GPFS cluster
 data, the stanzas on all nodes are identical).

 The
 enhanced information provided by the dm_get_mountinfo function
 can be useful during the processing of mount and pre-unmount events.
 For example, before responding to a mount event from a remote (non-session)
 node, dm_get_mountinfo could be invoked
 to find out whether the file system is already mounted locally at
 the session node, and if not, initiate a local mount. On receiving
 a pre-unmount event from the local session node, it is possible to
 find out whether the file system is still mounted elsewhere, and if
 so, fail the local unmount or delay the response until after all remote
 nodes have unmounted the file system.

 Note: The DM_REMOTE_MOUNT flag
 is redundant in the dm_mount_event structure
 obtained from the mount event (as opposed to the dm_get_mountinfo function).

 Parent topic: Data Management API principles for GPFS

 Tokens and access rights

 A DMAPI token is an identifier of an outstanding event
 (a synchronous event that the DM application has received and is currently
 handling). The token is unique over time in the cluster. The token
 becomes invalid when the event receives a response.

 The
 main purpose of tokens is to convey access rights in DMAPI functions.
 Access rights are associated with a specific event token. A function
 requiring access rights to some file may present an event token that
 has the proper access rights.

 DMAPI functions can also be invoked using DM_NO_TOKEN,
 in which case sufficient access protection is provided for the duration
 of the operation. This is semantically equivalent to holding an access
 right, but no access right on the file is actually acquired.

 In GPFS, when an event is received,
 it's token has no associated access rights.

 DM access rights are implemented in GPFS using
 an internal lock on the file. Access rights can be acquired, changed,
 queried, and released only at the session node. This is an implementation
 restriction caused by the GPFS locking
 mechanisms.

 In GPFS, it is not possible
 to set an access right on an entire file system from the file system
 handle. Thus, DMAPI function calls that reference a file system, using
 a file system handle, are not allowed to present a token and must
 specify DM_NO_TOKEN. For the same reason,
 functions that acquire or change access rights are not allowed to
 present a file system handle.

 Holding access rights renders the corresponding file system busy
 at the session node, preventing normal (non-forced) unmount. This
 behavior is similar to that of other locks on files. When receiving
 a pre-unmount event, the DM application is expected to release all
 access rights before responding. Otherwise, the unmount operation
 will fail with an EBUSY error.

 All access rights associated with an event token are released when
 the response is given. There is no transfer of access rights from
 DMAPI to the file operation thread. The file operation will acquire
 any necessary locks after receiving the response of the event.

 Parent topic: Data Management API principles for GPFS

 Parallelism in Data Management applications

 Given the multiple-node environment of GPFS, it is desirable to exploit parallelism
 in the Data Management application as well.

 This
 can be accomplished in several ways:

 	On a given session node, multiple DM application
 threads can access the same file in parallel, using the same session.
 There is no limit on the number of threads that can invoke DMAPI functions
 simultaneously on each node.

 	Multiple sessions, each with event dispositions for a different
 file system, can be created on separate nodes. Thus, files in different
 file systems can be accessed independently and simultaneously, from
 different session nodes.

 	Dispositions for events of the same file system can be partitioned
 among multiple sessions, each on a different node. This distributes
 the management of one file system among several session nodes.

 	Although GPFS routes all
 events to a single session node, data movement may occur on multiple
 nodes. The function calls dm_read_invis, dm_write_invis, dm_probe_hole,
 and dm_punch_hole are honored from a root
 process on another node, provided it presents a session ID for an
 established session on the session node.
 A DM application may create
 a worker process, which exists on any node
 within the GPFS cluster. This
 worker process can move data to or from GPFS using
 the dm_read_invis and dm_write_invis functions.
 The worker processes must adhere to these guidelines:

 	They must run as root.

 	They must present a valid session ID that was obtained on the
 session node.

 	All writes to the same file which are done in parallel must be
 done in multiples of the file system block size, to allow correct
 management of disk blocks on the writes.

 	No DMAPI calls other than dm_read_invis, dm_write_invis, dm_probe_hole,
 and dm_punch_hole may be issued on nodes
 other than the session node. This means that any rights required on
 a file must be obtained within the session on the session node, prior
 to the data movement.

 	There is no persistent state on the nodes hosting the worker process.
 It is the responsibility of the DM application to recover any failure
 which results from the failure of GPFS or
 the data movement process.

 Parent topic: Data Management API principles for GPFS

 Data Management attributes

 Data Management attributes can be associated with any individual
 file. There are opaque and non-opaque attributes.

 An
 opaque attribute has a unique name, and a byte string value which
 is not interpreted by the DMAPI implementation. Non-opaque attributes,
 such as managed regions and event lists, are used internally by the
 DMAPI implementation.

 DM attributes are persistent. They are kept in a hidden file in
 the file system.

 GPFS provides two quick
 access single-bit opaque DM attributes for each file, stored directly
 in the inode. These attributes are accessible through regular DMAPI
 functions, by specifying the reserved attribute names _GPFSQA1 and _GPFSQA2 (where _GPF is
 a reserved prefix). The attribute data must be a single byte with
 contents 0 or 1.

 Parent topic: Data Management API principles for GPFS

 Support for NFS

 A DM application could be slow in handling events. NFS
 servers have a limited number of threads which must not all be blocked
 simultaneously for extended periods of time. GPFS provides a mechanism to guarantee progress
 of NFS file operations that generate data events without blocking
 the server threads indefinitely.

 The mechanism uses a timeout on synchronous events. Initially the
 NFS server thread is blocked on the event. When the timeout expires,
 the thread unblocks and the file operation fails with an ENOTREADY error
 code. The event itself continues to exist and will eventually be handled.
 When a response for the event arrives at the source node it is saved.
 NFS is expected to periodically retry the operation. The retry will
 either find the response which has arrived between retries, or cause
 the operation to fail again with ENOTREADY.
 After repeated retries, the operation is eventually expected to succeed.

 The interval is configurable using the GPFS configuration option dmapiEventTimeout.
 See GPFS configuration options for DMAPI. The default
 is no timeout.

 The timeout mechanism is activated only for data events (read,
 write, truncate), and only when the file operation comes from NFS.

 Parent topic: Data Management API principles for GPFS

 Quota

 GPFS supports user
 quota. When dm_punch_hole is invoked, the
 file owner's quota is adjusted by the disk space that is freed. The
 quota is also adjusted when dm_write_invis is
 invoked and additional disk space is consumed.

 Since dm_write_invis runs
 with root credentials, it will never fail due to insufficient quota.
 However, it is possible that the quota of the file owner will be exceeded
 as a result of the invisible write. In that case the owner will not
 be able to perform further file operations that consume quota.

 Parent topic: Data Management API principles for GPFS

 Memory mapped files

 In GPFS, a read event
 or a write event will be generated (if enabled) at the time the memory
 mapping of a file is established.

 No events will be generated
 during actual mapped access, regardless of the setting of the event
 list or the managed regions. Access to the file with regular file
 operations, while the file is memory mapped, will generate events,
 if such events are enabled.

 To
 protect the integrity of memory mapped access, the DM application
 is not permitted to punch a hole in a file while the file is memory
 mapped. If the DM application calls dm_punch_hole while
 the file is memory mapped, the error code EBUSY will
 be returned.

 Parent topic: Data Management API principles for GPFS

 Administering the Data Management API for GPFS

 To set up the DMAPI for GPFS,
 install the DMAPI files that are included in the GPFS installation package, and then choose configuration
 options for DMAPI with the mmchconfig command.
 For each file system that you want DMAPI access, enable DMAPI with
 the -z flag of the mmcrfs or mmchfs command.

 All DMAPI APIs must be called from nodes that are in the cluster
 where the file system is created. DMAPI APIs may not be
 invoked from a remote cluster. The GPFS daemon
 and each DMAPI application must be synchronized to prevent failures.

 	Required files for implementation of Data Management applications

 The installation image for GPFS contains
 the required files for implementation of Data Management applications.

 	GPFS configuration options for DMAPI

 GPFS uses several
 options for DMAPI that define various timeout intervals. These options
 can be changed with the mmchconfig command.

 	Enabling DMAPI for a file system

 DMAPI must be enabled individually for each file system.

 	Initializing the Data Management application

 All DMAPI APIs must be called from nodes that are in the
 cluster where the file system is created. DMAPI APIs may not be
 invoked from a remote cluster.

 Required files for implementation of Data Management applications

 The installation image for GPFS contains
 the required files for implementation of Data Management applications.

 For more information about GPFS installation,
 see the GPFS:
 Concepts, Planning, and Installation Guide.

 The
 required files are:

 	dmapi.h

 	The
 header file that contains the C declarations of the DMAPI functions.
 This
 header file must be included in the source files of the DM application.

 The
 file is installed in directory: /usr/lpp/mmfs/include.

 	dmapi_types.h

 	The
 header file that contains the C declarations of the data types for
 the DMAPI functions and event messages.
 The header file dmapi.h includes
 this header file.

 The file is installed in directory: /usr/lpp/mmfs/include.

 	libdmapi.a

 	The
 library that contains the DMAPI functions.
 The library libdmapi.a consists
 of a single shared object, which is built with auto-import of the
 system calls that are listed in the export file dmapi.exp.

 The
 file is installed in directory: /usr/lpp/mmfs/lib.

 	dmapi.exp

 	The
 export file that contains the DMAPI system call names.
 The file dmapi.exp needs
 to be explicitly used only if the DM application is to be explicitly
 built with static binding, using the binder options -bnso
 -bI:dmapi.exp.

 The file is installed in directory: /usr/lpp/mmfs/lib.

 	dmapicalls, dmapicalls64

 	Module
 loaded during processing of the DMAPI functions.
 The module is
 installed in directory: /usr/lpp/mmfs/bin.

 Notes:
 	On Linux nodes running
 DMAPI, the required files libdmapi.a, dmapi.exp, dmapicalls,
 and dmapicalls64 are replaced by libdmapi.so.

 	If you are compiling with a non-IBM compiler on AIX nodes, you must compile DMAPI applications
 with -D_AIX.

 Parent topic: Administering the Data Management API for GPFS

 GPFS configuration options
 for DMAPI

 GPFS uses several
 options for DMAPI that define various timeout intervals. These options
 can be changed with the mmchconfig command.

 The DMAPI configuration options are:

 	dmapiDataEventRetry

 	Controls
 how GPFS handles the data event
 when it is enabled again right after this event is handled by the
 DMAPI application. Valid values are:

 	-1

 	Specifies that GPFS will
 always regenerate the event as long as it is enabled. This value should
 only be used when the DMAPI application recalls and migrates the same
 file in parallel by many processes at the same time.

 	0

 	Specifies to never regenerate the event. This value should not
 be used if a file could be migrated and recalled at the same time.

 	Positive Number

 	Specifies how many times the data event should be retried. The
 default is 2, which should be enough to cover most DMAPI applications.
 Unless a special situation occurs, you can increase this to a larger
 number or even set this to -1 to always regenerate the events.
 Unless you perform careful testing, IBM recommends
 that you never change the default setting.

 	dmapiEventTimeout

 	Controls
 the blocking of file operation threads of NFS, while in the kernel
 waiting for the handling of a DMAPI synchronous event. The parameter
 value is the maximum time, in milliseconds, the thread will block.
 When this time expires, the file operation returns ENOTREADY,
 and the event continues asynchronously. The NFS server is expected
 to repeatedly retry the operation, which eventually will find the
 response of the original event and continue. This mechanism applies
 only to read, write, and truncate events, and only when such events
 come from NFS server threads.
 The timeout value is given in milliseconds.
 The value 0 indicates immediate timeout (fully asynchronous event).
 A value greater than or equal to 86400000 (which is 24 hours) is considered
 'infinity' (no timeout, fully synchronous event). The default value
 is 86400000. See also Support for NFS.

 	dmapiFileHandleSize

 	Controls
 the size of file handles generated by GPFS.
 For clusters created with GPFS 3.2
 or later, the default DMAPI file handle size is 32 bytes. For clusters
 created prior to GPFS 3.2, the
 default DMAPI file handle size is 16 bytes. After all of the nodes
 in the cluster are upgraded to the latest GPFS release and you have also run the mmchconfig
 release=LATEST command, then you can change the file
 handle size to 32 bytes by issuing the command: mmchconfig
 dmapiFileHandleSize=32.
 Note: To change the DMAPI file
 handle size, GPFS must be stopped
 on all nodes in the cluster.

 	dmapiMountEvent

 	Controls
 the generation of the mount, preunmount,
 and unmount events. Valid values are:

 	all

 	Specifies that mount, preunmount,
 and unmount events are generated on each
 node. This is the default behavior.

 	LocalNode

 	Specifies that mount, preunmount,
 and unmount events are generated only if
 the node is a session node.

 	SessionNode

 	Specifies that mount, preunmount,
 and unmount events are generated on each
 node and are delivered to the session node, but the session node will
 respond with DM_RESP_CONTINUE to the event
 node without delivering the event to the DMAPI application, unless
 the event is originated from the SessionNode itself.

 	[bookmark: bl1_dmp_config__mntime]
 dmapiMountTimeout

 	Controls
 the blocking of mount operations, waiting for a disposition for the
 mount event to be set. This timeout is activated at most once on each
 node, by the first mount of a file system which has DMAPI enabled,
 and only if there has never before been a mount disposition. Any mount
 operation on this node that starts while the timeout period is active
 will wait for the mount disposition. The parameter value is the maximum
 time, in seconds, that the mount operation will wait for a disposition.
 When this time expires and there still is no disposition for the mount
 event, the mount operation fails, returning the EIO error.

 The timeout value is given in full seconds. The value 0 indicates
 immediate timeout (immediate failure of the mount operation). A value
 greater than or equal to 86400 (which is 24 hours) is considered 'infinity'
 (no timeout, indefinite blocking until there is a disposition). The
 default value is 60. See also Mount and unmount and Initializing the Data Management application.

 	[bookmark: bl1_dmp_config__sestime]
 dmapiSessionFailureTimeout

 	Controls
 the blocking of file operation threads, while in the kernel, waiting
 for the handling of a DMAPI synchronous event that is enqueued on
 a session that has suffered a failure. The parameter value is the
 maximum time, in seconds, the thread will wait for the recovery of
 the failed session. When this time expires and the session has not
 yet recovered, the event is aborted and the file operation fails,
 returning the EIO error.
 The timeout value is given in
 full seconds. The value 0 indicates immediate timeout (immediate failure
 of the file operation). A value greater than or equal to 86400 (which
 is 24 hours) is considered 'infinity' (no timeout, indefinite blocking
 until the session recovers). The default value is 0. See also Failure and recovery of the Data Management API for GPFS for details on session
 failure and recovery.

 For more information about the mmchconfig command,
 see the GPFS:
 Administration and Programming Reference.

 Parent topic: Administering the Data Management API for GPFS

 Enabling DMAPI for a file system

 DMAPI must be enabled individually for each file system.

 About this task

 DMAPI can be enabled for a file system when the file system
 is created, using the -z yes option on the mmcrfs command.
 The default is -z no. The setting can be
 changed when the file system is not mounted anywhere, using the -z
 yes | no option on the mmchfs command.
 The setting is persistent.

 The current setting can be queried
 using the -z option on the mmlsfs command.

 While
 DMAPI is disabled for a given file system, no events are generated
 by file operations of that file system. Any DMAPI function calls referencing
 that file system fail with an EPERM error.

 When mmchfs
 -z no is used to disable DMAPI, existing event lists, extended
 attributes, and managed regions in the given file system remain defined,
 but will be ignored until DMAPI is re-enabled. The command mmchfs
 -z no should be used with caution, since punched holes, if any,
 are no longer protected by managed regions.

 If the file system
 was created with a release of GPFS earlier
 than GPFS 1.3, the file system
 descriptor must be upgraded before attempting to enable DMAPI. The
 upgrade is done using the -V option on the mmchfs command.

 For
 more information about GPFS commands,
 see the GPFS:
 Administration and Programming Reference.

 Parent topic: Administering the Data Management API for GPFS

 Initializing the Data Management application

 All DMAPI APIs must be called from nodes that are in the
 cluster where the file system is created. DMAPI APIs may not be
 invoked from a remote cluster.

 About this task

 During initialization of GPFS, it is necessary to synchronize
 the GPFS daemon and the DM application
 to prevent mount operations from failing. There are two mechanisms
 to accomplish this:

 	The shell script gpfsready invoked by the GPFS daemon during initialization.

 	A timeout interval, allowing mount operations to wait for a disposition
 to be set for the mount event.

 During GPFS initialization,
 the daemon invokes the shell script gpfsready, located in directory /var/mmfs/etc.
 This occurs as the file systems are starting to be mounted. The shell
 script can be modified to start or restart the DM application. Upon
 return from this script, a session should have been created and a
 disposition set for the mount event. Otherwise, mount operations may
 fail due to a lack of disposition.

 In a multiple-node environment
 such as GPFS, usually only a
 small subset of the nodes are session nodes, having DM applications
 running locally. On a node that is not a session node, the gpfsready script
 can be modified to synchronize between the local GPFS daemon and a remote DM application. This
 will prevent mount from failing on any node.

 A sample shell
 script gpfsready.sample is installed in
 directory /usr/lpp/mmfs/samples.

 If
 no mount disposition has ever been set in the cluster, the first external
 mount of a DMAPI-enabled file system on each node will activate a
 timeout interval on that node. Any mount operation on that node that
 starts during the timeout interval will wait for the mount disposition
 until the timeout expires. The timeout interval is configurable, using
 the GPFS configuration option dmapiMountTimeout (the
 interval can even be made infinite). A message is displayed at the
 beginning of the wait. If there is still no disposition for the mount
 event when the timeout expires, the mount operation will fail with
 an EIO error code. See GPFS configuration options for DMAPI for more information
 on dmapiMountTimeout.

 Parent topic: Administering the Data Management API for GPFS

 Specifications of enhancements in the GPFS implementation of the Data Management API

 The GPFS implementation
 of DMAPI provides numerous enhancements in data structures and functions.

 These enhancements
 are provided mainly by the multiple-node environment. Some data structures
 have additional fields. Many functions have usage restrictions, changes
 in semantics, and additional error codes. The enhancements are in
 these areas:

 	Enhancements to data structures

 This is a description of GPFS enhancements
 to data structures defined in the XDSM standard.

 	Usage restrictions on DMAPI functions

 There are usage restrictions on DMAPI functions in the GPFS implementation.

 	Definitions for GPFS-specific DMAPI functions

 GPFS provides GPFS-specific DMAPI functions that
 are not part of the DMAPI open standard.

 	Semantic changes to DMAPI functions

 There are semantic changes to DMAPI functions in GPFS. These changes are entailed
 mostly by the multiple-node environment.

 	GPFS-specific DMAPI events

 GPFS provides events
 that are not part of the DMAPI open standard. You can use these GPFS events to filter out events
 that are not critical to file management and to prevent system overloads
 from trivial information.

 	Additional error codes returned by DMAPI functions

 The GPFS implementation
 of DMAPI uses additional error codes, not specified in the XDSM standard,
 for most DMAPI functions.

 Enhancements to data structures

 This is a description of GPFS enhancements
 to data structures defined in the XDSM standard.

 For
 complete C declarations of all DMAPI data structures that are used
 in the GPFS implementation of
 DMAPI, refer to the dmapi_types.h file located
 in the /usr/lpp/mmfs/include directory as part of the GPFS installation.

 	All file offsets and sizes in DMAPI data structures are 64 bits
 long.

 	Names
 or path names that are passed in event messages are character strings,
 terminated by a null character. The length of the name buffer, as
 specified in the dm_vardata_t structure,
 includes the null character.

 	The dm_region_t structure
 has a new 4-byte field, rg_opaque. The DMAPI
 implementation does not interpret rg_opaque.
 The DM application can use this field to store additional information
 within the managed region.

 	The dt_change field
 in the dm_stat structure is not implemented
 in the inode. The value will change each time it is returned by the dm_get_fileattr function.

 	The dt_dtime field
 in the dm_stat structure is overloaded on
 the dt_ctime field.

 	The dm_eventmsg structure
 has a 4 byte field, ev_nodeid that uniquely
 identifies the node that generated the event. The id is the GPFS cluster data node number, which
 is attribute node_number in the mmsdrfs2 file
 for a PSSP node or mmsdrfs file for any
 other type of node.

 	The ne_mode field
 in the dm_namesp_event structure has an
 additional flag, DM_LOCAL_MOUNT. For the
 events preunmount and unmount when this flag is set, the unmount operation
 is local to the session node. See Mount and unmount. The me_mode field
 in the dm_mount_event structure has two
 additional flags; DM_LOCAL_MOUNT, and DM_REMOTE_MOUNT.
 See Mount and unmount.

 	There are two 'quick access' single-bit opaque DM attributes for
 each file, stored directly in the inode. See Data Management attributes.

 	The
 data type dm_eventset_t is implemented as
 a bit map, containing one bit for each event that is defined in DMAPI.
 The bit is set if, and only if, the event is present.
 Variables
 of type dm_eventset_t should be manipulated
 only using special macros. The XDSM standard provides a basic set
 of such macros. GPFS provides
 a number of additional macros. The names of all such macros begin
 with the prefix DMEV_.

 This is the
 list of additional macros that are provided by the GPFS implementation of DMAPI:

 	DMEV_ALL(eset)

 	Add
 all events to eset

 	DMEV_ISZERO(eset)

 	Check
 if eset is empty

 	DMEV_ISALL(eset)

 	Check
 if eset contains all events

 	DMEV_ADD(eset1, eset2)

 	Add
 to eset2 all events in eset1

 	DMEV_REM(eset1, eset2)

 	Remove
 from eset2 all events in eset1

 	DMEV_RES(eset1, eset2)

 	Restrict eset2 by eset1

 	DMEV_ISEQ(eset1, eset2)

 	Check
 if eset1 and eset2 are
 equal

 	DMEV_ISDISJ(eset1, eset2)

 	Check
 if eset1 and eset2 are
 disjoint

 	DMEV_ISSUB(eset2)

 	Check
 if eset1 is a subset of eset2

 	DMEV_NORM(eset)

 	Normalize
 the internal format of eset, clearing all
 unused bits

 	GPFS provides
 a set of macros for comparison of token ids (value of type dm_token_t).

 	DM_TOKEN_EQ (x,y)

 	Check if x and y are the same

 	DM_TOKEN_NE (x,y)

 	Check if x and y are different

 	DM_TOKEN_LT (x,y)

 	Check if x is less than y

 	DM_TOKEN_GT (x,y)

 	Check if x is greater than y

 	DM_TOKEN_LE (x,y)

 	Check if x is less than or equal to y

 	DM_TOKEN_GE (x,y)

 	Check if x is greater than or equal to y

 Parent topic: Specifications of enhancements in the GPFS implementation of the Data Management API

 Usage restrictions on DMAPI functions

 There are usage restrictions on DMAPI functions in the GPFS implementation.

 	The maximum number of DMAPI sessions that can be created on a
 node is 4000.

 	Root credentials are a prerequisite for invoking
 any DMAPI function, otherwise the function fails with an EPERM error
 code.

 	DMAPI
 functions are unable to run if the GPFS kernel
 extension is not loaded, or if the runtime module dmapicalls is
 not installed. An ENOSYS error code is returned in this case.

 	Invoking
 a DMAPI function that is not implemented in GPFS results in returning the ENOSYS error
 code.

 	DMAPI
 functions will fail, with the ENOTREADY error code, if the
 local GPFS daemon is not running.

 	DMAPI
 functions will fail, with the EPERM error code, if DMAPI is
 disabled for the file system that is referenced by the file handle
 argument.

 	DMAPI
 functions cannot access GPFS reserved
 files, such as quota files, inode allocation maps, and so forth. The EBADF error
 code is returned in this case.

 	GPFS does not support access rights
 on entire file systems (as opposed to individual files). Hence, DMAPI
 function calls that reference a file system (with a file system handle)
 cannot present a token, and must use DM_NO_TOKEN.
 Functions affected by this restriction are:

 	dm_set_eventlist

 	dm_get_eventlist

 	dm_set_disp

 	dm_get_mountinfo

 	dm_set_return_on_destroy

 	dm_get_bulkattr

 	dm_get_bulkall

 If a token is presented, these functions fail with the EINVAL error
 code.

 	DMAPI
 functions that acquire, change, query, or release access rights, must
 not present a file system handle. These functions are:

 	dm_request_right

 	dm_upgrade_right

 	dm_downgrade_right

 	dm_release_right

 	dm_query_right

 If a file system handle is presented, these functions fail
 with the EINVAL error code.

 	The
 function dm_request_right, when invoked
 without wait (the flags argument has a value
 of 0), will almost always fail with the EAGAIN error. A GPFS implementation constraint prevents
 this function from completing successfully without wait, even if it
 is known that the requested access right is available. The DM_RR_WAIT flag
 must always be used. If the access right is available, there will
 be no noticeable delay.

 	DMAPI
 function calls that reference a specific token, either as input or
 as output, can be made only on the session node. Otherwise, the call
 fails with the EINVAL error code.

 	DMAPI
 function calls that reference an individual file by handle must be
 made on the session node. The corresponding file system must be mounted
 on the session node. The call fails with EINVAL if it is not
 on the session node, and with EBADF if the file system is not
 mounted.

 	DMAPI
 function calls that reference a file system by handle (as opposed
 to an individual file) can be made on any node, not just the session
 node. The relevant functions are:

 	dm_set_eventlist

 	dm_get_eventlist

 	dm_set_disp

 	dm_get_mountinfo

 	dm_set_return_on_destroy

 	dm_get_bulkattr

 	dm_get_bulkall

 For dm_get_bulkattr and dm_get_bulkall,
 the system file must be mounted on the node that is making the call.
 For the other functions, the file system must be mounted on some node,
 but not necessarily on the node that is making the call. As specified
 previously, all such function calls must use DM_NO_TOKEN.
 The function fails with the EBADF error code if the file system
 is not mounted as required.

 	The
 function dm_punch_hole will fail with the EBUSY error
 code if the file to be punched is currently memory-mapped.

 	The
 function dm_move_event can only be used
 when the source session and the target session are on the same node.
 The function must be called on the session node. Otherwise, the function
 fails with the EINVAL error code.

 	The function dm_create_session, when
 providing an existing session id in the argument oldsid, can
 only be called on the session node, except after session node failure.
 Otherwise, the call will return the EINVAL error code.

 	The function dm_destroy_session can
 only be called on the session node, otherwise the call will fail with
 the EINVAL error code.

 	The
 function dm_set_fileattr cannot change the
 file size. If the dm_at_size bit in the
 attribute mask is set, the call fails with the EINVAL error
 code.

 	DMAPI
 functions that reference an event with a token fail with the ESRCH error
 code, if the event is not in an outstanding state. This is related
 to session recovery. See Failure and recovery of the Data Management API for GPFS for
 details on session failure and recovery.

 For additional information about:

 	Semantic changes to DMAPI functions in GPFS, see Semantic changes to DMAPI functions.

 	C declarations of all DMAPI functions in the GPFS implementation of DMAPI, refer to the dmapi.h file
 located in the /usr/lpp/mmfs/include directory as part of the
 GPFS installation.

 Parent topic: Specifications of enhancements in the GPFS implementation of the Data Management API

 Definitions for GPFS-specific
 DMAPI functions

 GPFS provides GPFS-specific DMAPI functions that
 are not part of the DMAPI open standard.

 You can use the following GPFS-specific
 DMAPI functions to work with file system snapshots:

 	dm_handle_to_snap

 	dm_make_xhandle

 You can use the following GPFS-specific
 DMAPI functions to make asynchronous updates to attributes, managed
 regions, and event lists on files:

 	dm_remove_dmattr_nosync

 	dm_set_dmattr_nosync

 	dm_set_eventlist_nosync

 	dm_set_region_nosync

 You can use the following GPFS-specific
 DMAPI function to make the previously listed asynchronous updates
 persistent by flushing them to disk:

 	dm_sync_dmattr_by_handle

 	dm_handle_to_snap

 Extracts a snapshot ID from a handle.

 	dm_make_xhandle

 Converts a file system ID, inode number, inode generation
 count, and snapshot ID into a handle.

 	dm_remove_dmattr_nosync

 Asynchronously removes the specified attribute.

 	dm_set_dmattr_nosync

 Asynchronously creates or replaces the value of the named
 attribute with the specified data.

 	dm_set_eventlist_nosync

 Asynchronously sets the list of events to be enabled for
 an object.

 	dm_set_region_nosync

 Asynchronously replaces the set of managed regions for
 a file.

 	dm_sync_dmattr_by_handle

 Synchronizes one or more files' in-memory attributes
 with those on the physical medium.

 Parent topic: Specifications of enhancements in the GPFS implementation of the Data Management API

 dm_handle_to_snap

 Extracts a snapshot ID from a handle.

 Synopsis
int dm_handle_to_snap(
 void *hanp, /* IN */
 size_t hlen, /* IN */
 dm_snap_t *isnapp /* OUT */
);

 Description

 Use the dm_handle_to_snap function
 to extract a snapshot ID from a handle. dm_handle_to_snap() is
 a GPFS-specific DMAPI function.
 It is not part of the open standard.

 Parameters

 	void *hanp (IN)

 	A pointer to an opaque DM handle previously returned by DMAPI.

 	size_t hlen (IN)

 	The length of the handle in bytes.

 	dm_snap_t *isnapp (OUT)

 	A pointer to the snapshot ID.

 Return values

 Zero is returned on success.
 On error, -1 is returned, and the global errno is set to one
 of the following values:

 	[EBADF]

 	The file handle does not refer to an existing or accessible object.

 	[EFAULT]

 	The system detected an invalid address in attempting to use an
 argument.

 	[EINVAL]

 	The argument token is not a valid token.

 	[ENOMEM]

 	DMAPI could not obtain the required resources to complete the
 call.

 	[ENOSYS]

 	Function is not supported by the DM implementation.

 	[EPERM]

 	The caller does not hold the appropriate privilege.

 See also

 dm_make_xhandle

 Parent topic: Definitions for GPFS-specific DMAPI functions

 dm_make_xhandle

 Converts a file system ID, inode number, inode generation
 count, and snapshot ID into a handle.

 Synopsis
int dm_make_xhandle(
 dm_fsid_t *fsidp, /* IN */
 dm_ino_t *inop, /* IN */
 dm_igen_t *igenp, /* IN */
 dm_snap_t *isnapp, /* IN */
 void **hanpp, /* OUT */
 size_t *hlenp /* OUT */
);

 Description

 Use the dm_make_xhandle() function
 to convert a file system ID, inode number, inode generation count,
 and snapshot ID into a handle. dm_make_xhandle() is
 a GPFS-specific DMAPI function.
 It is not part of the open standard.

 Parameters

 	dm_fsid_t *fsidp (IN)

 	The file system ID.

 	dm_ino_t *inop (IN)

 	The inode number.

 	dm_igen_t *igenp (IN)

 	The inode generation count.

 	dm_snap_t *isnapp (IN)

 	The snapshot ID.

 	void **hanpp (OUT)

 	A DMAPI initialized pointer that identifies a region of memory
 containing an opaque DM handle. The caller is responsible for freeing
 the allocated memory.

 	size_t *hlenp (OUT)

 	The length of the handle in bytes.

 Return values

 Zero is returned on success.
 On error, -1 is returned, and the global errno is set to one
 of the following values:

 	[EBADF]

 	The file handle does not refer to an existing or accessible object.

 	[EFAULT]

 	The system detected an invalid address in attempting to use an
 argument.

 	[EINVAL]

 	The argument token is not a valid token.

 	[ENOMEM]

 	DMAPI could not obtain the required resources to complete the
 call.

 	[ENOSYS]

 	Function is not supported by the DM implementation.

 	[EPERM]

 	The caller does not hold the appropriate privilege.

 See also

 dm_handle_to_snap

 Parent topic: Definitions for GPFS-specific DMAPI functions

 dm_remove_dmattr_nosync

 Asynchronously removes the specified attribute.

 Synopsis
int dm_remove_dmattr_nosync(
 dm_sessid_t sid,
 void *hanp,
 size_t hlen,
 dm_token_t token,
 int setdtime,
 dm_attrname_t *attrnamep
);

 Description

 Use the dm_remove_dmattr_nosync function
 to asynchronously remove the attribute specified by attrname.

 dm_remove_dmattr_nosync is
 a GPFS-specific DMAPI function;
 it is not part of the open standard. It has the same purpose, parameters,
 and return values as the standard DMAPI dm_remove_dmattr function,
 except that the update that it performs is not persistent until some
 other activity on that file (or on other files in the file system)
 happens to flush it to disk. To be certain that your update is made
 persistent, use one of the following functions:

 	Standard DMAPI dm_sync_by_handle function,
 which flushes the file data and attributes

 	GPFS-specific dm_sync_dmattr_by_handle function,
 which flushes only the attributes.

 Parameters

 	dm_sessid_t sid (IN)

 	The identifier for the session of interest.

 	void *hanp (IN)

 	The handle for the file for which the attributes should be removed.

 	size_t hlen (IN)

 	The length of the handle in bytes.

 	dm_token_t *token (IN)

 	The token referencing the access right for the handle. The access
 right must be DM_RIGHT_EXCL, or the token DM_NO_TOKEN may
 be used and the interface acquires the appropriate rights.

 	int setdtime (IN)

 	If setdtime is non-zero, updates the file's
 attribute time stamp.

 	dm_attrname_t *attrnamep (IN)

 	The attribute to be removed.

 Return values

 Zero is returned on success.
 On error, -1 is returned, and the global errno is set to one
 of the following values:

 	[EACCES]

 	The access right referenced by the token for the handle is not DM_RIGHT_EXCL.

 	[EBADF]

 	The file handle does not refer to an existing or accessible object.

 	[EFAULT]

 	The system detected an invalid address in attempting to use an
 argument.

 	[EINVAL]

 	The argument token is not a valid token.

 	[EINVAL]

 	The session is not valid.

 	[EIO]

 	I/O error resulted in failure of operation.

 	[ENOSYS]

 	The DMAPI implementation does not support this optional function.

 	[EPERM]

 	The caller does not hold the appropriate privilege.

 	[EROFS]

 	The operation is not allowed on a read-only file system.

 See also

 dm_set_dmattr_nosync, dm_sync_dmattr_by_handle

 Parent topic: Definitions for GPFS-specific DMAPI functions

 dm_set_dmattr_nosync

 Asynchronously creates or replaces the value of the named
 attribute with the specified data.

 Synopsis
int dm_set_dmattr_nosync(
 dm_sessid_t sid,
 void *hanp,
 size_t hlen,
 dm_token_t token,
 dm_attrname_t *attrnamep,
 int setdtime,
 size_t buflen,
 void *bufp
);

 Description

 Use the dm_set_dmattr_nosync function
 to asynchronously create or replace the value of the named attribute
 with the specified data.

 dm_set_dmattr_nosync is
 a GPFS-specific DMAPI function;
 it is not part of the open standard. It has the same purpose, parameters,
 and return values as the standard DMAPI dm_set_dmattr function,
 except that the update that it performs is not persistent until some
 other activity on that file (or on other files in the file system)
 happens to flush it to disk. To be certain that your update is made
 persistent, use one of the following functions:

 	Standard DMAPI dm_sync_by_handle function,
 which flushes the file data and attributes

 	GPFS-specific dm_sync_dmattr_by_handle function,
 which flushes only the attributes.

 Parameters

 	dm_sessid_t sid (IN)

 	The identifier for the session of interest.

 	void *hanp (IN)

 	The handle for the file for which the attributes should be created
 or replaced.

 	size_t hlen (IN)

 	The length of the handle in bytes.

 	dm_token_t *token (IN)

 	The token referencing the access right for the handle. The access
 right must be DM_RIGHT_EXCL, or the token DM_NO_TOKEN may
 be used and the interface acquires the appropriate rights.

 	dm_attrname_t *attrnamep (IN)

 	The attribute to be created or replaced.

 	int setdtime (IN)

 	If setdtime is non-zero, updates the file's
 attribute time stamp.

 	size_t buflen (IN)

 	The size of the buffer in bytes.

 	void *bufp (IN)

 	The buffer containing the attribute data.

 Return values

 Zero is returned on success.
 On error, -1 is returned, and the global errno is set to one
 of the following values:

 	[E2BIG]

 	The attribute value exceeds one of the implementation defined
 storage limits.

 	[E2BIG]

 	buflen is larger than the implementation
 defined limit. The limit can be determined by calling the dm_get_config() function.

 	[EACCES]

 	The access right referenced by the token for the handle is not DM_RIGHT_EXCL.

 	[EBADF]

 	The file handle does not refer to an existing or accessible object.

 	[EFAULT]

 	The system detected an invalid address in attempting to use an
 argument.

 	[EIO]

 	An attempt to write the new or updated attribute resulted in an
 I/O error.

 	[EINVAL]

 	The argument token is not a valid token.

 	[EINVAL]

 	The session is not valid.

 	[ENOMEM]

 	The DMAPI could not acquire the required resources to complete
 the call.

 	[ENOSPC]

 	An attempt to write the new or updated attribute resulted in an
 error due to no free space being available on the device.

 	[ENOSYS]

 	The DMAPI implementation does not support this optional function.

 	[EPERM]

 	The caller does not hold the appropriate privilege.

 	[EROFS]

 	The operation is not allowed on a read-only file system.

 See also

 dm_remove_dmattr_nosync, dm_sync_dmattr_by_handle

 Parent topic: Definitions for GPFS-specific DMAPI functions

 dm_set_eventlist_nosync

 Asynchronously sets the list of events to be enabled for
 an object.

 Synopsis
int dm_set_eventlist_nosync(
 dm_sessid_t sid,
 void *hanp,
 size_t hlen,
 dm_token_t token,
 dm_eventset_t *eventsetp,
 u_int maxevent
);

 Description

 Use the dm_set_eventlist_nosync function
 to asynchronously set the list of events to be enabled for an object.

 dm_set_eventlist_nosync is
 a GPFS-specific DMAPI function;
 it is not part of the open standard. It has the same purpose, parameters,
 and return values as the standard DMAPI dm_set_eventlist function,
 except that the update that it performs is not persistent until some
 other activity on that file (or on other files in the file system)
 happens to flush it to disk. To be certain that your update is made
 persistent, use one of the following functions:

 	Standard DMAPI dm_sync_by_handle function,
 which flushes the file data and attributes

 	GPFS-specific dm_sync_dmattr_by_handle function,
 which flushes only the attributes.

 Parameters

 	dm_sessid_t sid (IN)

 	The identifier for the session of interest.

 	void *hanp (IN)

 	The handle for the object. The handle can be either the system
 handle or a file handle.

 	size_t hlen (IN)

 	The length of the handle in bytes.

 	dm_token_t *token (IN)

 	The token referencing the access right for the handle. The access
 right must be DM_RIGHT_EXCL, or the token DM_NO_TOKEN may
 be used and the interface acquires the appropriate rights.

 	dm_eventset_t *eventsetp (IN)

 	The list of events to be enabled for the object.

 	u_int maxevent (IN)

 	The number of events to be checked for dispositions in the event
 set. The events from 0 to maxevent-1 are
 examined.

 Return values

 Zero is returned on success.
 On error, -1 is returned, and the global errno is set to one
 of the following values:

 	[EACCES]

 	The access right referenced by the token for the handle is not DM_RIGHT_EXCL.

 	[EBADF]

 	The file handle does not refer to an existing or accessible object.

 	[EFAULT]

 	The system detected an invalid address in attempting to use an
 argument.

 	[EINVAL]

 	The argument token is not a valid token.

 	[EINVAL]

 	The session is not valid.

 	[EINVAL]

 	Tried to set event on a global handle.

 	[ENOMEM]

 	The DMAPI could not acquire the required resources to complete
 the call.

 	[ENXIO]

 	The implementation of the DMAPI does not support enabling event
 delivery on the specified handle.

 	[EPERM]

 	The caller does not hold the appropriate privilege.

 	[EROFS]

 	The operation is not allowed on a read-only file system.

 See also

 dm_sync_dmattr_by_handle

 Parent topic: Definitions for GPFS-specific DMAPI functions

 dm_set_region_nosync

 Asynchronously replaces the set of managed regions for
 a file.

 Synopsis
int dm_set_region_nosync(
 dm_sessid_t sid,
 void *hanp,
 size_t hlen,
 dm_token_t token,
 u_int nelem,
 dm_region_t *regbufp,
 dm_boolean_t *exactflagp
);

 Description

 Use the dm_set_region_nosync function
 to asynchronously replace the set of managed regions for a file.

 dm_set_region_nosync is
 a GPFS-specific DMAPI function;
 it is not part of the open standard. It has the same purpose, parameters,
 and return values as the standard DMAPI dm_set_region function,
 except that the update that it performs is not persistent until some
 other activity on that file (or on other files in the file system)
 happens to flush it to disk. To be certain that your update is made
 persistent, use one of the following functions:

 	Standard DMAPI dm_sync_by_handle function,
 which flushes the file data and attributes

 	GPFS-specific dm_sync_dmattr_by_handle function,
 which flushes only the attributes.

 Parameters

 	dm_sessid_t sid (IN)

 	The identifier for the session of interest.

 	void *hanp (IN)

 	The handle for the regular file to be affected.

 	size_t hlen (IN)

 	The length of the handle in bytes.

 	dm_token_t *token (IN)

 	The token referencing the access right for the handle. The access
 right must be DM_RIGHT_EXCL, or the token DM_NO_TOKEN may
 be used and the interface acquires the appropriate rights.

 	u_int nelem (IN)

 	The number of input regions in regbufp. If nelem is
 0, then all existing managed regions are cleared.

 	dm_region_t *regbufp (IN)

 	A pointer to the structure defining the regions to be set. May
 be NULL if nelem is zero.

 	dm_boolean_t *exactflagp (OUT)

 	If DM_TRUE, the file system did not
 alter the requested managed region set.
 Valid values for the rg_flags field
 of the region structure are created by OR'ing together one or more
 of the following values:

 	DM_REGION_READ

 	Enable synchronous event for read operations that overlap this
 managed region.

 	DM_REGION_WRITE

 	Enable synchronous event for write operations that overlap this
 managed region.

 	DM_REGION_TRUNCATE

 	Enable synchronous event for truncate operations that overlap
 this managed region.

 	DM_REGION_NOEVENT

 	Do not generate any events for this managed region.

 Return values

 Zero is returned on success.
 On error, -1 is returned, and the global errno is set to one
 of the following values:

 	[E2BIG]

 	The number of regions specified by nelem exceeded the implementation
 capacity.

 	[EACCES]

 	The access right referenced by the token for the handle is not DM_RIGHT_EXCL.

 	[EBADF]

 	The file handle does not refer to an existing or accessible object.

 	[EFAULT]

 	The system detected an invalid address in attempting to use an
 argument.

 	[EINVAL]

 	The argument token is not a valid token.

 	[EINVAL]

 	The file handle does not refer to a regular file.

 	[EINVAL]

 	The regions passed in are not valid because they overlap or some
 other problem.

 	[EINVAL]

 	The session is not valid.

 	[EIO]

 	An I/O error resulted in failure of operation.

 	[ENOMEM]

 	The DMAPI could not acquire the required resources to complete
 the call.

 	[EPERM]

 	The caller does not hold the appropriate privilege.

 	[EROFS]

 	The operation is not allowed on a read-only file system.

 See also

 dm_sync_dmattr_by_handle

 Parent topic: Definitions for GPFS-specific DMAPI functions

 dm_sync_dmattr_by_handle

 Synchronizes one or more files' in-memory attributes
 with those on the physical medium.

 Synopsis
int m_sync_dmattr_by_handle(
 dm_sessid_t sid,
 void *hanp,
 size_t hlen,
 dm_token_t token
);

 Description

 Use the dm_sync_dmattr_by_handle function
 to synchronize one or more files' in-memory attributes with those
 on the physical medium.

 dm_sync_dmattr_by_handle is
 a GPFS-specific DMAPI function;
 it is not part of the open standard. It has the same purpose, parameters,
 and return values as the standard DMAPI dm_sync_by_handle function,
 except that it flushes only the attributes, not the file data.

 Like dm_sync_by_handle, dm_sync_dmattr_by_handle commits
 all previously unsynchronized updates for that node, not just the
 updates for one file. Therefore, if you update a list of files and
 call dm_sync_dmattr_by_handle on the last
 file, the attribute updates to all of the files in the list are made
 persistent.

 Parameters

 	dm_sessid_t sid (IN)

 	The identifier for the session of interest.

 	void *hanp (IN)

 	The handle for the file whose attributes are to be synchronized.

 	size_t hlen (IN)

 	The length of the handle in bytes.

 	dm_token_t *token (IN)

 	The token referencing the access right for the handle. The access
 right must be DM_RIGHT_EXCL, or the token DM_NO_TOKEN may
 be used and the interface acquires the appropriate rights.

 Return values

 Zero is returned on success.
 On error, -1 is returned, and the global errno is set to one
 of the following values:

 	[EACCES]

 	The access right referenced by the token for the handle is not DM_RIGHT_EXCL.

 	[EBADF]

 	The file handle does not refer to an existing or accessible object.

 	[EFAULT]

 	The system detected an invalid address in attempting to use an
 argument.

 	[EINVAL]

 	The argument token is not a valid token.

 	[ENOMEM]

 	The DMAPI could not acquire the required resources to complete
 the call.

 	[ENOSYS]

 	The DMAPI implementation does not support this optional function.

 	[EPERM]

 	The caller does not hold the appropriate privilege.

 See also

 dm_remove_dmattr_nosync, dm_set_dmattr_nosync, dm_set_eventlist_nosync,
 and dm_set_region_nosync

 Parent topic: Definitions for GPFS-specific DMAPI functions

 Semantic changes to DMAPI functions

 There are semantic changes to DMAPI functions in GPFS. These changes are entailed
 mostly by the multiple-node environment.

 For
 a list of additional error codes that are used in the GPFS implementation of DMAPI, see Additional error codes returned by DMAPI functions. For C declarations
 of all DMAPI functions in the GPFS implementation
 of DMAPI, refer to the dmapi.h file located
 in the /usr/lpp/mmfs/include directory as part of the GPFS installation.

 	The following DMAPI functions
 can be invoked on any node, not just the session node, as long as
 the session exists on some node in the GPFS cluster.

 	dm_getall_disp

 	dm_query_session

 	dm_send_msg

 	DMAPI
 functions that reference a file system, as opposed to an individual
 file, can be made on any node, not just the session node. Being able
 to call certain functions on any node has advantages. The DM application
 can establish event monitoring when receiving a mount event from any
 node. Also, a distributed DM application can change event lists and
 dispositions of any file system from any node.

 	dm_set_eventlist

 	dm_get_eventlist

 	dm_set_disp

 	dm_get_mount_info

 	dm_set_return_on_destroy

 	dm_get_bulkattr

 	dm_get_bulkall

 	The
 following functions, that construct a handle from its components,
 do not check if the resulting handle references a valid file. Validity
 is checked when the handle is presented in function calls that actually
 reference the file.

 	dm_make_handle

 	dm_make_fshandle

 	dm_make_xhandle

 	The
 following data movement functions may be invoked on any node within
 the GPFS cluster, provided they
 are run as root and present a session ID for an established session
 on the session node. For guidelines on how to perform data movement
 from multiple nodes, see Parallelism in Data Management applications.

 	dm_read_invis

 	dm_write_invis

 	dm_probe_hole

 	dm_punch_hole

 	The
 following functions that extract components of the handle, do not
 check whether the specified handle references a valid file. Validity
 is checked when the handle is presented in function calls that actually
 reference the file.

 	dm_handle_to_fsid

 	dm_handle_to_igen

 	dm_handle_to_ino

 	dm_handle_to_snap

 	dm_handle_to_fshandle converts
 a file handle to a file system handle without checking the validity
 of either handle.

 	dm_handle_is_valid does
 not check if the handle references a valid file. It verifies only
 that the internal format of the handle is correct.

 	dm_init_attrloc ignores
 all of its arguments, except the output argument locp.
 In the GPFS implementation
 of DMAPI, the location pointer is initialized to a constant. Validation
 of the session, token, and handle arguments is done by the bulk access
 functions.

 	When dm_query_session is
 called on a node other than the session node, it returns only the
 first eight bytes of the session information string.

 	dm_create_session can
 be used to move an existing session to another node, if the current
 session node has failed. The call must be made on the new session
 node. See Failure and recovery of the Data Management API for GPFS for
 details on session node failure and recovery.

 	Assuming an existing session, using dm_create_session does
 not change the session id. If the argument sessinfop is NULL,
 the session information string is not changed.

 	The
 argument maxevent in the functions dm_set_disp and dm_set_eventlist is
 ignored. In GPFS the set of
 events is implemented as a bitmap, containing a bit for each possible
 event.

 	The
 value pointed to by the argument nelemp,
 on return from the functions dm_get_eventlist and dm_get_config_events,
 is always DM_EVENT_MAX-1. The argument nelem in
 these functions is ignored.

 	The dt_nevents field
 in the dm_stat_t structure, which is returned
 by the dm_get_fileattr and dm_get_bulkall functions,
 has a value of DM_EVENT_MAX-1 when the file has a file-system–wide
 event enabled by calling the dm_set_eventlist function.
 The value will always be 3 when there is no file-system–wide
 event enabled. A value of 3 indicates that there could be a
 managed region enabled for the specific file, which might have enabled
 a maximum of three events: READ, WRITE, and TRUNCATE.

 	The
 functions dm_get_config and dm_get_config_events ignore
 the arguments hanp and hlen.
 This is because the configuration is not dependent on the specific
 file or file system.

 	The
 function dm_set_disp, when called with the
 global handle, ignores any events in the event set being presented,
 except the mount event. When dm_set_disp is
 called with a file system handle, it ignores the mount event.

 	The
 function dm_handle_hash, when called with
 an individual file handle, returns the inode number of the file. When dm_handle_hash is
 called with a file system handle, it returns the value 0.

 	The
 function dm_get_mountinfo returns two additional
 flags in the me_mode field in the dm_mount_event structure.
 The flags are DM_MOUNT_LOCAL and DM_MOUNT_REMOTE.
 See Mount and unmount for details.

 Parent topic: Specifications of enhancements in the GPFS implementation of the Data Management API

 GPFS-specific DMAPI events

 GPFS provides events
 that are not part of the DMAPI open standard. You can use these GPFS events to filter out events
 that are not critical to file management and to prevent system overloads
 from trivial information.

 The DMAPI standard specifies that the system must generate ATTRIBUTE
 events each time the "changed time" (ctime) attribute for a
 file changes. For systems that write files in parallel, like GPFS, this generates ATTRIBUTE events
 from every node writing to the file. Consequently, it is easy for
 ATTRIBUTE events to overwhelm a data management server. However, the
 only ctime changes that are critical to GPFS are changes to either the permissions or
 ACLs of a file. In most cases, GPFS can
 ignore other ctime changes.

 To distinguish file permission and ACL changes from other ctime updates,
 the following DMAPI metadata attribute events allow GPFS to filter ctime updates. Using these
 events, DM servers are able to track file permission changes without
 overwhelming the system with irrelevant ATTRIBUTE events. However,
 these events are not part of the CAE Specification C429 open standard
 and they were implemented specifically for GPFS 3.2 systems. Systems using GPFS 3.1 (or earlier versions) cannot enable
 or generate these events.

 Metadata
 Events
 	DM_EVENT_PREPERMCHANGE

 	Pre-permission change event. Event is triggered before file permission
 change.

 	DM_EVENT_POSTPERMCHANGE

 	Post-permission change event. Event is triggered after file permission
 change.

 Notes:

 	All nodes on your system must be running GPFS 3.2 or later. Mixed clusters and clusters
 with previous versions of GPFS will
 experience unexpected results if you enable these events.

 	If you only want to track permission and ACL changes, turn off
 the DM_EVENT_ATTRIBUTE and turn on both
 the DM_EVENT_PREPERMCHANGE and DM_EVENT_POSTPERMCHANGE events.

 Parent topic: Specifications of enhancements in the GPFS implementation of the Data Management API

 Additional error codes returned by DMAPI functions

 The GPFS implementation
 of DMAPI uses additional error codes, not specified in the XDSM standard,
 for most DMAPI functions.

 For C declarations of all DMAPI functions in the GPFS implementation of DMAPI, refer
 to the dmapi.h file located in the /usr/lpp/mmfs/include directory
 as part of the GPFS installation.

 For all DMAPI functions, these
 error codes are used:

 	ENOSYS

 	The GPFS kernel extension
 is not loaded, or the runtime module dmapicalls is
 not installed.

 	ENOSYS

 	An attempt has been made to invoke a DMAPI function that is not
 implemented in GPFS.

 	ENOTREADY

 	The local GPFS daemon is
 not running or is initializing.

 	ENOMEM

 	DMAPI could not acquire the required resources to complete the
 call. ENOMEM is defined in the XDSM standard for some DMAPI
 functions, but not for all.

 	ESTALE

 	An error has occurred which does not fit any other error code
 specified for this function.

 For DMAPI
 functions that provide a file handle as an input argument,
 these error codes are used:

 	EINVAL

 	The format of the file handle is not valid.
 This error is returned
 without attempting to locate any object that is referenced by the
 handle. The EINVAL error code is to be distinguished
 from the EBADF error code, which, as specified
 in the XDSM standard, indicates that the object does not exist or
 is inaccessible. Thus, GPFS provides
 a refinement, distinguishing between format and access errors related
 to handles.

 	EPERM

 	DMAPI is disabled for the file system that is referenced by the
 file handle.

 For DMAPI
 functions that provide a token as an input argument,
 these error codes are used:

 	ESRCH

 	The event referenced by the token is not in outstanding state.
 This
 is to be distinguished from the EINVAL error
 code, which is returned when the token itself is not valid. ESRCH is
 defined in the XDSM standard for some DMAPI functions, but not for
 all relevant functions. In GPFS,
 the ESRCH error code occurs mostly after
 recovery from session failure. See Event recovery for details.

 For these specific DMAPI functions,
 the error code listed is used:

 Table 4. Specific DMAPI functions
 and associated error codes..

 	Name of function

 	Error codes and descriptions

 	dm_downgrade_right()

 dm_upgrade_right()

 	EINVAL - The session
 or token is not valid.

 	dm_get_region()

 	EPERM - The caller
 does not hold the appropriate privilege.

 	dm_init_service()

 	EFAULT - The system
 detected an invalid address in attempting to use an argument.

 	dm_move_event()

 dm_respond_event()

 	EINVAL - The token
 is not valid.

 	dm_punch_hole()

 	EBUSY - The file is
 currently memory mapped.

 	dm_probe_hole()

 dm_punch_hole()

 	EINVAL - The argument len is
 too large, and will overflow if cast into offset_t.
 EINVAL -
 The argument off is negative.

 	dm_write_invis()

 	EINVAL - The argument flags is
 not valid.

 	dm_read_invis()

 dm_write_invis()

 	EINVAL - The argument len is
 too large, and will overflow if placed into the uio_resid field
 in the structure uio.
 EINVAL -
 The argument off is negative.

 	dm_sync_by_handle()

 	EROFS - The operation
 is not allowed on a read-only file system.

 	dm_find_eventmsg()

 dm_get_bulkall()

 dm_get_bulkattr()

 dm_get_dirattrs()

 dm_get_events()

 dm_get_mountinfo()

 dm_getall_disp()

 dm_getall_dmattr()

 dm_handle_to_path()

 	EINVAL - The argument buflen is
 too large; it must be smaller than INT_MAX.

 	dm_get_alloc_info()

 dm_getall_sessions()

 dm_getall_tokens()

 	EINVAL - The argument nelem is
 too large; DMAPI cannot acquire sufficient resources.

 Parent topic: Specifications of enhancements in the GPFS implementation of the Data Management API

 Failure and recovery of the Data Management API for GPFS

 Failure and recovery of DMAPI applications in the multiple-node GPFS environment is different than
 in a single-node environment.

 The failure model in XDSM is intended for a single-node environment.
 In this model, there are two types of failures:

 	DM application failure

 	The
 DM application has failed, but the file system works normally. Recovery
 entails restarting the DM application, which then continues handling
 events. Unless the DM application recovers, events may remain pending
 indefinitely.

 	Total system failure

 	The
 file system has failed. All non-persistent DMAPI resources are lost.
 The DM application itself may or may not have failed. Sessions are
 not persistent, so recovery of events is not necessary. The file system
 cleans its state when it is restarted. There is no involvement of
 the DM application in such cleanup.

 The simplistic XDSM failure model is
 inadequate for GPFS. In a multiple-node
 environment, GPFS can fail on
 one node, but survive on other nodes. This type of failure is called single-node
 failure (or partial system failure). GPFS is built to survive and recover from single-node
 failures, without meaningfully affecting file access on surviving
 nodes.

 Designers of Data Management applications for GPFS must comply with the enhanced DMAPI failure
 model, in order to support recoverability of GPFS. These areas are addressed:

 	Single-node failure

 For the GPFS implementation
 of DMAPI, single-node failure means that DMAPI resources are lost
 on the failing node, but not on any other node.

 	Session failure and recovery

 A session fails when the GPFS daemon
 of the session node fails.

 	Event recovery

 Synchronous events are recoverable after session failure.

 	Loss of access rights

 When the GPFS daemon
 fails on the session node, all file systems on the node are forced
 unmounted. As a result, all DM access rights associated with any local
 session are lost.

 	DODeferred deletions

 The asynchronous recovery code supports deferred deletions
 if there are no external mounts at the time of recovery.

 	DM application failure

 If only the DM application fails, the session itself remains
 active, events remain pending, and client threads remain blocked waiting
 for a response. New events will continue to arrive at the session
 queue.

 Single-node failure

 For the GPFS implementation
 of DMAPI, single-node failure means that DMAPI resources are lost
 on the failing node, but not on any other node.

 The most common single-node failure is when the local GPFS daemon fails. This renders
 any GPFS file system at that
 node inaccessible. Another possible single-node failure is file system
 forced unmount. When just an individual file system is forced unmounted
 on some node, its resources are lost, but the sessions on that node,
 if any, survive.

 Single-node failure has a different effect when it occurs on a
 session node or on a source node:

 	session node failure

 	When the GPFS daemon
 fails, all session queues are lost, as well as all nonpersistent local
 file system resources, particularly DM access rights. The DM application
 may or may not have failed. The missing resources may in turn cause
 DMAPI function calls to fail with errors such as ENOTREADY or ESRCH.
 Events
 generated at other source nodes remain pending despite any failure
 at the session node. Moreover, client threads remain blocked on such
 events.

 	source node failure

 	Events
 generated by that node are obsolete. If such events have already been
 enqueued at the session node, the DM application will process them,
 even though this may be redundant since no client is waiting for the
 response.

 According to the XDSM standard,
 sessions are not persistent. This is inadequate for GPFS. Sessions must be persistent to the extent
 of enabling recovery from single-node failures. This is in compliance
 with a basic GPFS premise that
 single-node failures do not affect file access on surviving nodes.
 Consequently, after session node failure, the session queue and the
 events on it must be reconstructed, possibly on another node.

 Session recovery is triggered by the actions of the DM application.
 The scenario depends on whether or not the DM application itself has
 failed.

 If the DM application has failed, it must be restarted, possibly
 on another node, and assume the old session by id. This will trigger
 reconstruction of the session queue and the events on it, using backup
 information replicated on surviving nodes. The DM application may
 then continue handling events. The session id is never changed when
 a session is assumed.

 If the DM application
 itself survives, it will notice that the session has failed by getting
 certain error codes from DMAPI function calls (ENOTREADY, ESRCH).
 The application could then be moved to another node and recover the
 session queue and events on it. Alternatively, the application could
 wait for the GPFS daemon to
 recover. There is also a possibility that the daemon will recover
 before the DM application even notices the failure. In these cases,
 session reconstruction is triggered when the DM application invokes
 the first DMAPI function after daemon recovery.

 Parent topic: Failure and recovery of the Data Management API for GPFS

 Session failure and recovery

 A session fails when the GPFS daemon
 of the session node fails.

 Session failure results in the loss of all DM access rights associated
 with events on the queue, and all the tokens become invalid. After
 the session has recovered, any previously outstanding synchronous
 events return to the initial (non-outstanding) state, and must be
 received again.

 Session failure may also result in partial loss of the session
 information string. In such case, GPFS will
 be able to restore only the first eight characters of the session
 string. It is suggested to not have the DM application be dependent
 on more than eight characters of the session string.

 In extreme situations, failure may also result in the loss of event
 dispositions for some file system. This happens only if the GPFS daemon fails simultaneously
 on all nodes where the file system was mounted. When the file system
 is remounted, a mount event will be generated, at which point the
 dispositions could be reestablished by the DM application.

 During
 session failure, events originating from surviving nodes remain pending,
 and client threads remain blocked on such events. It is therefore
 essential that the DM application assume the old session and continue
 processing the pending events. To prevent indefinite blocking of clients,
 a mechanism has been implemented whereby pending events will be aborted
 and corresponding file operations failed with the EIO error
 if the failed session is not recovered within a specified time-out
 interval. The interval is configurable using the GPFS configuration option dmapiSessionFailureTimeout.
 See GPFS configuration options for DMAPI. The default
 is immediate timeout.

 GPFS keeps the state of a
 failed session for 24 hours, during which the session should be assumed.
 When this time has elapsed, and the session has not been assumed,
 the session is discarded. An attempt to assume a session after it
 has been discarded will fail.

 Parent topic: Failure and recovery of the Data Management API for GPFS

 Event recovery

 Synchronous events are recoverable after session failure.

 The
 state of synchronous events is maintained both at the source node
 and at the session node. When the old session is assumed, pending
 synchronous events are resubmitted by surviving source nodes.

 All the events originating from the session node itself are lost
 during session failure, including user events generated by the DM
 application. All file operations on the session node fail with the ESTALE error
 code.

 When
 a session fails, all of its tokens become obsolete. After recovery,
 the dm_getall_tokens function returns an
 empty list of tokens, and it is therefore impossible to identify events
 that were outstanding when the failure occurred. All recovered events
 return to the initial non-received state, and must be explicitly received
 again. The token id of a recovered event is the same as prior to the
 failure (except for the mount event).

 If the token of a recovered
 event is presented in any DMAPI function before the event is explicitly
 received again, the call will fail with the ESRCH error code.
 The ESRCH error indicates that the event exists, but is not
 in the outstanding state. This is to be distinguished from the EINVAL error
 code, which indicates that the token id itself is not valid (there
 is no event).

 The semantics of the ESRCH error code in GPFS are different from the XDSM standard. This
 is entailed by the enhanced failure model. The DM application may
 not notice that the GPFS daemon
 has failed and recovered, and may attempt to use a token it has received
 prior to the failure. For example, it may try to respond to the event.
 The ESRCH error code tells the DM application that it must
 receive the event again, before it can continue using the token. Any
 access rights associated with the token prior to the failure are lost.
 See Loss of access rights.

 When a mount event is resubmitted to
 a session during session recovery, it will have a different token
 id than before the failure. This is an exception to the normal behavior,
 since all other recovered events have the same token id as before.
 The DM application thus cannot distinguish between recovered and new
 mount events. This should not be a problem, since the DM application
 must in any case be able to handle multiple mount events for the same
 file system.

 Unmount events will not be resubmitted after session recovery.
 All such events are lost. This should not be a problem, since the
 event cannot affect the unmount operation, which has already been
 completed by the time the event was generated. In other words, despite
 being synchronous, semantically the unmount event resembles an asynchronous
 post event.

 Parent topic: Failure and recovery of the Data Management API for GPFS

 Loss of access rights

 When the GPFS daemon
 fails on the session node, all file systems on the node are forced
 unmounted. As a result, all DM access rights associated with any local
 session are lost.

 After
 daemon recovery, when the old sessions are assumed and the events
 are resubmitted, there is no way of identifying events that were already
 being handled prior to the failure (outstanding events), nor is there
 a guarantee that objects have not been accessed or modified after
 the access rights were lost. The DM application must be able to recover
 consistently without depending on persistent access rights. For example,
 it could keep its own state of events in progress, or process events
 idempotently.

 Similarly, when a specific file system is forced unmounted at the
 session node, all DM access rights associated with the file system
 are lost, although the events themselves prevail on the session queue.
 After the file system is remounted, DMAPI calls using existing tokens
 may fail due to insufficient access rights. Also, there is no guarantee
 that objects have not been accessed or modified after the access rights
 were lost.

 Parent topic: Failure and recovery of the Data Management API for GPFS

 DODeferred deletions

 The asynchronous recovery code supports deferred deletions
 if there are no external mounts at the time of recovery.

 Once a node successfully generates a mount event for an external
 mount, the sgmgr node
 will start deferred deletions if it is needed. Any internal mounts
 would bypass deferred deletions if the file system is DMAPI enabled.

 Parent topic: Failure and recovery of the Data Management API for GPFS

 DM application failure

 If only the DM application fails, the session itself remains
 active, events remain pending, and client threads remain blocked waiting
 for a response. New events will continue to arrive at the session
 queue.

 Note: GPFS is unable to detect
 that the DM application has failed.

 The failed DM application must be recovered on the same node, and
 continue handling the events. Since no DMAPI resources are lost in
 this case, there is little purpose in moving the DM application to
 another node. Assuming an existing session on another node is not
 permitted in GPFS, except after
 session node failure.

 If the DM application fails simultaneously with the session node,
 the gpfsready shell script can be used to
 restart the DM application on the failed node. See Initializing the Data Management application. In the case of
 simultaneous failures, the DM application can also be moved to another
 node and assume the failed session there. See Single-node failure.

 Parent topic: Failure and recovery of the Data Management API for GPFS

 Accessibility features for GPFS

 Accessibility features help users who have a disability, such as
 restricted mobility or limited vision, to use information technology
 products successfully.

 	Accessibility features

 	Keyboard navigation

 	IBM and accessibility

 Accessibility features

 The following list includes the major accessibility features in GPFS:

 	Keyboard-only operation

 	Interfaces that are commonly used by screen readers

 	Keys that are discernible by touch but do not activate just by
 touching them

 	Industry-standard devices for ports and connectors

 	The attachment of alternative input and output devices

 IBM Knowledge Center, and
 its related publications, are accessibility-enabled. The accessibility
 features are described in IBM Knowledge Center.

 Parent topic: Accessibility features for GPFS

 Keyboard navigation

 This product uses standard Microsoft Windows navigation keys.

 Parent topic: Accessibility features for GPFS

 IBM and accessibility

 See the IBM Human Ability
 and Accessibility Center for
 more information about the commitment that IBM has to accessibility.

 Parent topic: Accessibility features for GPFS

 Notices

 This information was developed
 for products and services offered in the U.S.A.

 IBM may not offer
 the products, services, or features discussed in this document in
 other countries. Consult your local IBM representative for information on the products
 and services currently available in your area. Any reference to an IBM product, program,
 or service is not intended to state or imply that only that IBM product, program,
 or service may be used. Any functionally equivalent product, program,
 or service that does not infringe any IBM intellectual property right may be used instead.
 However, it is the user's responsibility to evaluate and verify the
 operation of any non-IBM product, program, or service.

 IBM may
 have patents or pending patent applications covering subject matter
 described in this document. The furnishing of this document does not
 grant you any license to these patents. You can send license inquiries,
 in writing, to:
 IBM Director of Licensing

 IBM Corporation

 North Castle Drive

 Armonk, NY 10504-1785

 U.S.A.

 For license
 inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual
 Property Department in your country or send inquiries, in writing,
 to:
 Intellectual Property Licensing

 Legal and Intellectual Property Law

 IBM Japan Ltd.

 19-21, Nihonbashi-Hakozakicho, Chuo-ku

 Tokyo 103-8510, Japan

 The following paragraph does
 not apply to the United Kingdom or any other country where such provisions
 are inconsistent with local law:

 INTERNATIONAL BUSINESS MACHINES
 CORPORATION PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF
 ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
 THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
 FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express
 or implied warranties in certain transactions, therefore, this statement
 may not apply to you.

 This information could include technical
 inaccuracies or typographical errors. Changes are periodically made
 to the information herein; these changes will be incorporated in new
 editions of the publication. IBM may
 make improvements and/or changes in the product(s) and/or the program(s)
 described in this publication at any time without notice.

 Any
 references in this information to non-IBM Web sites are provided for
 convenience only and do not in any manner serve as an endorsement
 of those Web sites. The materials at those Web sites are not part
 of the materials for this IBM product
 and use of those Web sites is at your own risk.

 IBM may use or distribute any of the information
 you supply in any way it believes appropriate without incurring any
 obligation to you.

 Licensees of this program who wish to have
 information about it for the purpose of enabling: (i) the exchange
 of information between independently created programs and other programs
 (including this one) and (ii) the mutual use of the information which
 has been exchanged, should contact:
 IBM Corporation

 Dept. 30ZA/Building 707

 Mail Station P300

 2455 South Road,

 Poughkeepsie, NY 12601-5400

 U.S.A.

 Such information may be available, subject to
 appropriate terms and conditions, including in some cases, payment
 or a fee.

 The licensed program described in this document and
 all licensed material available for it are provided by IBM under terms of the IBM Customer Agreement, IBM International Program
 License Agreement or
 any equivalent agreement between us.

 Any performance data contained
 herein was determined in a controlled environment. Therefore, the
 results obtained in other operating environments may vary significantly.
 Some measurements may have been made on development-level systems
 and there is no guarantee that these measurements will be the same
 on generally available systems. Furthermore, some measurements may
 have been estimated through extrapolation. Actual results may vary.
 Users of this document should verify the applicable data for their
 specific environment.

 Information concerning non-IBM products
 was obtained from the suppliers of those products, their published
 announcements or other publicly available sources. IBM has not tested those products
 and cannot confirm the accuracy of performance, compatibility or any
 other claims related to non-IBM products. Questions on the capabilities
 of non-IBM products should be addressed to the suppliers of those
 products.

 This information contains examples of data and reports
 used in daily business operations. To illustrate them as completely
 as possible, the examples include the names of individuals, companies,
 brands, and products. All of these names are fictitious and any similarity
 to the names and addresses used by an actual business enterprise is
 entirely coincidental.

 COPYRIGHT LICENSE:

 This information
 contains sample application programs in source language, which illustrate
 programming techniques on various operating platforms. You may copy,
 modify, and distribute these sample programs in any form without payment
 to IBM, for
 the purposes of developing, using, marketing or distributing application
 programs conforming to the application programming interface for the
 operating platform for which the sample programs are written. These
 examples have not been thoroughly tested under all conditions. IBM, therefore,
 cannot guarantee or imply reliability, serviceability, or function
 of these programs. The sample programs are provided "AS IS", without
 warranty of any kind. IBM shall
 not be liable for any damages arising out of your use of the sample
 programs.

 If you are viewing this information softcopy, the
 photographs and color illustrations may not appear.

 	Trademarks

 Trademarks

 IBM,
 the IBM logo,
 and ibm.com are
 trademarks or registered trademarks of International Business Machines
 Corp., registered in many jurisdictions worldwide. Other product and
 service names might be trademarks of IBM or other companies. A current list of IBM trademarks
 is available on the Web at "Copyright
 and trademark information" at www.ibm.com/legal/copytrade.shtml.

 Intel is a trademark
 of Intel Corporation or its
 subsidiaries in the United States and other countries.

 Java and all Java-based trademarks
 and logos are trademarks or registered trademarks of Oracle and/or
 its affiliates.

 Linux is
 a registered trademark of Linus Torvalds in the United States, other
 countries, or both.

 Microsoft, Windows, and Windows NT are trademarks of Microsoft Corporation in the United States,
 other countries, or both.

 UNIX is
 a registered trademark of The Open Group in the United States and
 other countries.

 Parent topic: Notices

 Glossary

 This glossary provides terms and definitions for the GPFS product.

 The following cross-references are used in this glossary:

 	See refers you from a nonpreferred term to the preferred
 term or from an abbreviation to the spelled-out form.

 	See also refers you to a related or contrasting term.

 For other terms and definitions, see the IBM Terminology
 website (opens
 in new window).

 B

 	block utilization

 	The measurement of the percentage of used subblocks per allocated
 blocks.

 C

 	cluster

 	A loosely-coupled collection of independent systems (nodes) organized
 into a network for the purpose of sharing resources and communicating
 with each other. See also GPFS cluster.

 	[bookmark: glossry__gpfsdrd]
 cluster configuration data

 	The configuration data that is stored on the cluster configuration
 servers.

 	cluster manager

 	The node that monitors node status using disk leases, detects
 failures, drives recovery, and selects file system managers. The
 cluster manager is the node with the lowest node number among the
 quorum nodes that are operating at a particular time.

 	control data structures

 	Data structures needed to manage file data and metadata cached
 in memory. Control data structures include hash tables and link pointers
 for finding cached data; lock states and tokens to implement distributed
 locking; and various flags and sequence numbers to keep track of updates
 to the cached data.

 D

 	Data Management Application Program Interface (DMAPI)

 	The interface defined by the Open Group's XDSM standard as described
 in the publication System Management: Data Storage Management (XDSM)
 API Common Application Environment (CAE) Specification C429, The
 Open Group ISBN 1-85912-190-X.

 	deadman switch timer

 	A kernel timer that works on a node that has lost its disk lease
 and has outstanding I/O requests. This timer ensures that the node
 cannot complete the outstanding I/O requests (which would risk causing
 file system corruption), by causing a panic in the kernel.

 	dependent fileset

 	A fileset that shares the inode space of an existing independent
 fileset.

 	disk descriptor

 	A definition of the type of data that the disk contains and the
 failure group to which this disk belongs. See also failure group.

 	[bookmark: glossry__dsklease]
 disk leasing

 	A method for controlling access to storage devices from multiple
 host systems. Any host that wants to access a storage device configured
 to use disk leasing registers for a lease; in the event of a perceived
 failure, a host system can deny access, preventing I/O operations
 with the storage device until the preempted system has reregistered.

 	disposition

 	The session to which a data management event is delivered. An
 individual disposition is set for each type of event from each file
 system.

 	domain

 	A logical grouping of resources in a network for the purpose of
 common management and administration.

 [image: Start of change]E

 	[bookmark: glossry__x2481703]
 [image: Start of change]ECKD[image: End of change]

 	[image: Start of change]See extended count key data (ECKD).[image: End of change]

 	[bookmark: glossry__x2199484]
 [image: Start of change]ECKD device[image: End of change]

 	[image: Start of change]See extended count key data device (ECKD device).[image: End of change]

 	[bookmark: glossry__x2026772]
 [image: Start of change]encryption key[image: End of change]

 	[image: Start of change]A mathematical value that allows components to verify that they
 are in communication with the expected server. Encryption keys are
 based on a public or private key pair that is created during the installation
 process. See also file encryption key, master encryption
 key.[image: End of change]

 	[bookmark: glossry__x2436401]
 [image: Start of change]extended count key data (ECKD)[image: End of change]

 	[image: Start of change]An extension of the count-key-data (CKD) architecture. It includes
 additional commands that can be used to improve performance.[image: End of change]

 	[bookmark: glossry__x2199482]
 [image: Start of change]extended count key data device (ECKD device)[image: End of change]

 	[image: Start of change]A disk storage device that has a data transfer rate faster than
 some processors can utilize and that is connected to the processor
 through use of a speed matching buffer. A specialized channel program
 is needed to communicate with such a device. See also fixed-block
 architecture disk device.[image: End of change]

 [image: End of change]

 F

 	failback

 	Cluster recovery from failover following repair. See also failover.

 	failover

 	(1) The assumption of file system duties by another node when
 a node fails. (2) The process of transferring all control of the ESS
 to a single cluster in the ESS when the other clusters in the ESS
 fails. See also cluster. (3) The routing of all transactions
 to a second controller when the first controller fails. See also cluster.

 	[bookmark: glossry__failg]
 failure group

 	A collection of disks that share common access paths or adapter
 connection, and could all become unavailable through a single hardware
 failure.

 	[image: Start of change]FEK[image: End of change]

 	[image: Start of change]See file encryption key.[image: End of change]

 	fileset

 	A hierarchical grouping of files managed as a unit for balancing
 workload across a cluster. See also dependent fileset, independent
 fileset.

 	fileset snapshot

 	A snapshot of an independent fileset plus all dependent filesets.

 	file clone

 	A writable snapshot of an individual file.

 	[bookmark: glossry__x7629823]
 [image: Start of change]file encryption key (FEK)[image: End of change]

 	[image: Start of change]A key used to encrypt sectors of an individual file. See also encryption
 key.[image: End of change]

 	file-management policy

 	A set of rules defined in a policy file that GPFS uses to manage file migration and file
 deletion. See also policy.

 	file-placement policy

 	A set of rules defined in a policy file that GPFS uses to manage the initial placement of
 a newly created file. See also policy.

 	file system descriptor

 	A data structure containing key information about a file system.
 This information includes the disks assigned to the file system (stripe
 group), the current state of the file system, and pointers to
 key files such as quota files and log files.

 	file system descriptor quorum

 	The number of disks needed in order to write the file system descriptor
 correctly.

 	file system manager

 	The provider of services for all the nodes using a single file
 system. A file system manager processes changes to the state or description
 of the file system, controls the regions of disks that are allocated
 to each node, and controls token management and quota management.

 	[bookmark: glossry__x2199676]
 [image: Start of change]fixed-block architecture disk device (FBA disk device)[image: End of change]

 	[image: Start of change]A disk device that stores data in blocks of fixed size. These
 blocks are addressed by block number relative to the beginning of
 the file. See also extended count key data device.[image: End of change]

 	fragment

 	The space allocated for an amount of data too small to require
 a full block. A fragment consists of one or more subblocks.

 G

 	global snapshot

 	A snapshot of an entire GPFS file
 system.

 	[bookmark: glossry__gpfscld]
 GPFS cluster

 	A cluster of nodes defined as being available for use by GPFS file systems.

 	GPFS portability layer

 	The interface module that each installation must build for its
 specific hardware platform and Linux distribution.

 	GPFS recovery log

 	A file that contains a record of metadata activity, and exists
 for each node of a cluster. In the event of a node failure, the recovery
 log for the failed node is replayed, restoring the file system to
 a consistent state and allowing other nodes to continue working.

 I

 	ill-placed file

 	A file assigned to one storage pool, but having some or all of
 its data in a different storage pool.

 	ill-replicated file

 	A file with contents that are not correctly replicated according
 to the desired setting for that file. This situation occurs in the
 interval between a change in the file's replication settings or suspending
 one of its disks, and the restripe of the file.

 	independent fileset

 	A fileset that has its own inode space.

 	indirect block

 	A block containing pointers to other blocks.

 	inode

 	The internal structure that describes the individual files in
 the file system. There is one inode for each file.

 	inode space

 	A collection of inode number ranges reserved for an independent
 fileset, which enables more efficient per-fileset functions.

 	ISKLM

 	IBM Security Key Lifecycle
 Manager. For GPFS encryption,
 the ISKLM is used as an RKM server to store MEKs.

 J

 	journaled file system (JFS)

 	A technology designed for high-throughput server environments,
 which are important for running intranet and other high-performance
 e-business file servers.

 	junction

 	A special directory entry that connects a name in a directory
 of one fileset to the root directory of another fileset.

 K

 	kernel

 	The part of an operating system that contains programs for such
 tasks as input/output, management and control of hardware, and the
 scheduling of user tasks.

 M

 	[bookmark: glossry__x7025398]
 [image: Start of change]master encryption key (MEK)[image: End of change]

 	[image: Start of change]A key used to encrypt other keys. See also encryption key.[image: End of change]

 	[image: Start of change]MEK[image: End of change]

 	[image: Start of change]See master encryption key.[image: End of change]

 	[bookmark: glossry__mdata]
 metadata

 	A data structures that contain access information about file data.
 These include: inodes, indirect blocks, and directories. These data
 structures are not accessible to user applications.

 	metanode

 	The one node per open file that is responsible for maintaining
 file metadata integrity. In most cases, the node that has had the
 file open for the longest period of continuous time is the metanode.

 	mirroring

 	The process of writing the same data to multiple disks at the
 same time. The mirroring of data protects it against data loss within
 the database or within the recovery log.

 	multi-tailed

 	A disk connected to multiple nodes.

 N

 	namespace

 	Space reserved by a file system to contain the names of its objects.

 	Network File System (NFS)

 	A protocol, developed by Sun Microsystems, Incorporated, that
 allows any host in a network to gain access to another host or netgroup
 and their file directories.

 	Network Shared Disk (NSD)

 	A component for cluster-wide disk naming and access.

 	NSD volume ID

 	A unique 16 digit hex number that is used to identify and access
 all NSDs.

 	[bookmark: glossry__nodeg]
 node

 	An individual operating-system image within a cluster. Depending
 on the way in which the computer system is partitioned, it may contain
 one or more nodes.

 	node descriptor

 	A definition that indicates how GPFS uses
 a node. Possible functions include: manager node, client node, quorum
 node, and nonquorum node.

 	node number

 	A number that is generated and maintained by GPFS as the cluster is created, and as nodes
 are added to or deleted from the cluster.

 	[bookmark: glossry__quorumd]
 node quorum

 	The minimum number of nodes that must be running in order for
 the daemon to start.

 	node quorum with tiebreaker disks

 	A form of quorum that allows GPFS to
 run with as little as one quorum node available, as long as there
 is access to a majority of the quorum disks.

 	[bookmark: glossry__nonqn]
 non-quorum node

 	A node in a cluster that is not counted for the purposes of quorum
 determination.

 P

 	policy

 	A list of file-placement, service-class, and encryption rules
 that define characteristics and placement of files. Several policies
 can be defined within the configuration, but only one policy set is
 active at one time.

 	policy rule

 	A programming statement within a policy that defines a specific
 action to be performed.

 	pool

 	A group of resources with similar characteristics and attributes.

 	portability

 	The ability of a programming language to compile successfully
 on different operating systems without requiring changes to the source
 code.

 	[bookmark: glossry__prigsdd]
 primary GPFS cluster configuration
 server

 	In a GPFS cluster, the node
 chosen to maintain the GPFS cluster
 configuration data.

 	private IP address

 	A IP address used to communicate on a private network.

 	public IP address

 	A IP address used to communicate on a public network.

 Q

 	[bookmark: glossry__quorumn]
 quorum node

 	A node in the cluster that is counted to determine whether a quorum
 exists.

 	quota

 	The amount of disk space and number of inodes assigned as upper
 limits for a specified user, group of users, or fileset.

 	quota management

 	The allocation of disk blocks to the other nodes writing to the
 file system, and comparison of the allocated space to quota limits
 at regular intervals.

 R

 	Redundant Array of Independent Disks (RAID)

 	A collection of two or more disk physical drives that present
 to the host an image of one or more logical disk drives. In the event
 of a single physical device failure, the data can be read or regenerated
 from the other disk drives in the array due to data redundancy.

 	recovery

 	The process of restoring access to file system data when a failure
 has occurred. Recovery can involve reconstructing data or providing
 alternative routing through a different server.

 	[bookmark: glossry__x7629830]
 [image: Start of change]remote key management server (RKM server)[image: End of change]

 	[image: Start of change]A server that is used to store master encryption keys.[image: End of change]

 	replication

 	The process of maintaining a defined set of data in more than
 one location. Replication involves copying designated changes for
 one location (a source) to another (a target), and synchronizing the
 data in both locations.

 	[image: Start of change]RGD[image: End of change]

 	[image: Start of change]Recovery group data.[image: End of change]

 	[image: Start of change]RKM server[image: End of change]

 	[image: Start of change]See remote key management server.[image: End of change]

 	rule

 	A list of conditions and actions that are triggered when certain
 conditions are met. Conditions include attributes about an object
 (file name, type or extension, dates, owner, and groups), the requesting
 client, and the container name associated with the object.

 S

 	SAN-attached

 	Disks that are physically attached to all nodes in the cluster
 using Serial Storage Architecture (SSA) connections or using Fibre
 Channel switches.

 	Scale Out Backup and Restore (SOBAR)

 	A specialized mechanism for data protection against disaster only
 for GPFS file systems that are
 managed by Tivoli Storage
 Manager (TSM) Hierarchical Storage Management (HSM).

 	[bookmark: glossry__secgsdd]
 secondary GPFS cluster configuration
 server

 	In a GPFS cluster, the node
 chosen to maintain the GPFS cluster
 configuration data in the event that the primary GPFS cluster configuration server fails or becomes
 unavailable.

 	Secure Hash Algorithm digest (SHA digest)

 	A character string used to identify a GPFS security key.

 	session failure

 	The loss of all resources of a data management session due to
 the failure of the daemon on the session node.

 	session node

 	The node on which a data management session was created.

 	Small Computer System Interface (SCSI)

 	An ANSI-standard electronic interface that allows personal computers
 to communicate with peripheral hardware, such as disk drives, tape
 drives, CD-ROM drives, printers, and scanners faster and more flexibly
 than previous interfaces.

 	snapshot

 	An exact copy of changed data in the active files and directories
 of a file system or fileset at a single point in time. See also fileset
 snapshot, global snapshot.

 	source node

 	The node on which a data management event is generated.

 	stand-alone client

 	The node in a one-node cluster.

 	storage area network (SAN)

 	A dedicated storage network tailored to a specific environment,
 combining servers, storage products, networking products, software,
 and services.

 	storage pool

 	A grouping of storage space consisting of volumes, logical unit
 numbers (LUNs), or addresses that share a common set of administrative
 characteristics.

 	stripe group

 	The set of disks comprising the storage assigned to a file system.

 	striping

 	A storage process in which information is split into blocks (a
 fixed amount of data) and the blocks are written to (or read from)
 a series of disks in parallel.

 	subblock

 	The smallest unit of data accessible in an I/O operation, equal
 to one thirty-second of a data block.

 	system storage pool

 	A storage pool containing file system control structures, reserved
 files, directories, symbolic links, special devices, as well as the
 metadata associated with regular files, including indirect blocks
 and extended attributes The system storage pool can
 also contain user data.

 T

 	token management

 	A system for controlling file access in which each application
 performing a read or write operation is granted some form of access
 to a specific block of file data. Token management provides data consistency
 and controls conflicts. Token management has two components: the token
 management server, and the token management function.

 	token management function

 	A component of token management that requests tokens from the
 token management server. The token management function is located
 on each cluster node.

 	token management server

 	A component of token management that controls tokens relating
 to the operation of the file system. The token management server is
 located at the file system manager node.

 	twin-tailed

 	A disk connected to two nodes.

 U

 	user storage pool

 	A storage pool containing the blocks of data that make up user
 files.

 V

 	[image: Start of change]VCD[image: End of change]

 	[image: Start of change]See vdisk configuration data.[image: End of change]

 	[bookmark: glossry__x2484335]
 [image: Start of change]VFS[image: End of change]

 	[image: Start of change]See virtual file system.[image: End of change]

 	[bookmark: glossry__x7629848]
 [image: Start of change]vdisk configuration data (VCD)[image: End of change]

 	[image: Start of change]Configuration data associated with a disk.[image: End of change]

 	virtual file system (VFS)

 	A remote file system that has been mounted so that it is accessible
 to the local user.

 	virtual node (vnode)

 	The structure that contains information about a file system object
 in a virtual file system (VFS).

 images/deltaend.gif

images/delta.gif

images/bl1dmp010.gif
Saswon hvamhag
Node Node Node

Data Managomont
Fovleaion 4

=
[t

GpFs apFs

