
IBM Endpoint Manager
Version 9.1

Relevance Language Guide

IBM

IBM Endpoint Manager
Version 9.1

Relevance Language Guide

IBM

Note
Before using this information and the product it supports, read the information in “Notices” on page 67.

This edition applies to version 9, release 1, modification level 0 of IBM Endpoint Manager and to all subsequent
releases and modifications until otherwise indicated in new editions.

© Copyright IBM Corporation 2013, 2014.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Chapter 1. Introducing the Relevance
language 1
The Scope of Relevance 2
Using the Fixlet Debugger 5
Using the Presentation Debugger 6

Chapter 2. Using Relevance 9
Relevance language Overview 9

Primary Elements 10
Exists 11
Plurals (Collections) 11
Whose - It 13
Sets 17
Properties and References 17
Relations 18
Casting 19
Indexing 19
Tuples 19
Plurals with Tuples 20
Comparing Tuples 21
Arithmetic 22
ANDs and ORs 23
If-then-else 23
Expressions 24

IBM Endpoint Manager Inspectors. 24
Core Inspectors 25
Other Inspector Examples 25
Propagation of non-existence 26
Determining Object Properties 26

Relevance in Property Analysis 28
Viewing Property Analyses 28
Creating Property Analyses 28

Relevance in action Scripts 28
Viewing action Scripts 28
Creating action Scripts. 29

Useful Relevance Expressions 30
Using Number Ranges. 30

Using the Bar Operator 31
Manipulating Strings 32
Substring index of string 33
Manipulating Dates and Times 34
Summing Over Time Units 35
Operating on Lists of Floating Point Numbers . . 36
Using Wildcard Searches for Files and Folders . . 36
Comparing Versions 37
Inspecting the Windows Registry 38
Environment variables. 40
Determining Operating System Information . . 41
Accessing the Task Manager (Processes) 41
Examining Running and Scheduled Tasks . . . 42
Recognizing Office Service Packs 43
Detecting Foreign Language Service Packs . . . 44
Deconstructing XML 44
Using White Lists 45

Appendix A. Relevance language
Grammar 47
Relevance Operators 48
Precedence and Associativity 48
Relevance Key Phrases 49
Language History 51

BES 1.x 51
Error Messages 53

Appendix B. Glossary 63

Appendix C. Support. 65

Notices 67
Programming interface information 69
Trademarks 69
Terms and conditions for product documentation. . 70

© Copyright IBM Corp. 2013, 2014 iii

iv IBM Endpoint Manager: Relevance Language Guide

Chapter 1. Introducing the Relevance language

IBM Endpoint Manager allows large networks of computers to be easily
monitored and patched in real time using Fixlet technology. A Fixlet inspects a
client computer and reports back to central servers. This allows a patch or an
update to be efficiently applied to just those computers where it is relevant, and no
others. It also enables the retrieval of various computer properties that can be
collected, analyzed, charted and archived.

The heart of the Fixlet technology is the Relevance language that allows authors to
interrogate the hardware and software properties of your managed clients using
Inspectors. With the Relevance language, you can write expressions describing
virtually any aspect of the client environment. Some Fixlets are simply designed to
return Relevance information to the servers, but most of them suggest actions that
can patch or update the client computer. The actions, in turn, also take advantage
of Relevance expressions.

Fixlet messages and Relevance expressions by themselves can only notify the user
or the administrator. Actions, on the other hand, are specifically designed to modify
the client, so there is a clear dividing line between a Relevance expression and its
associated action – typically a human is required to deploy the action.

Dividing the labor in this fashion, using Relevance clauses to benignly inspect the
client and actions to fix them (upon approval), the IBM Endpoint Manager
applications provide an unprecedented blend of both safety and power.

Relevance expressions are designed to be human-readable. This allows users and
administrators to examine them before deploying any associated actions. The
language gives you access to thousands of computer properties using Inspectors.
The values returned by the Inspectors can be used for calculations and
comparisons, allowing the Fixlet to determine relevance and target a computer for
action.

This guide is your reference for the Relevance language. With this guide and the
appropriate platform-specific Inspector Guides, you will be able to write Relevance
expressions that can trigger Fixlet messages. You can learn how to create actions by
reading the IBM Endpoint Manager Action Language Reference.

This reference is for IT managers who want to write Fixlet messages for computers
managed by the IBM Endpoint Manager. The standard IBM Endpoint Manager
package includes tens of thousands of pre-packaged Fixlets and associated actions,
but you can to expand on these offerings with custom content tuned to your
specific enterprise and security configuration.

This reference is also for IT managers who want to better understand the
Relevance expressions that trigger a Fixlet message. Although the language is
designed to be human-readable, it is possible to make sophisticated expressions
that require careful analysis. This will allow users to understand the Relevance
clauses embedded in action scripts as well.

© Copyright IBM Corp. 2013, 2014 1

The Scope of Relevance

Relevance is a continuous thread used throughout all aspects of the IBM Endpoint
Manager. Some of its more important manifestations include:
v Evaluating Fixlet relevance. This is the most common place to find the

Relevance language and explains how it got its name. As you’ll see in detail
below, expressions in this language are designed to trigger only when the client
computer exhibits a particular state – thus the Fixlet is not displayed unless it’s
relevant. You can see the Relevance expression behind each Fixlet in the IBM
Endpoint Manager Console: click on a Fixlet from the list, then look at the
Details tab.

You may see more than one Relevance expression; these are all ANDed together
to form the final expression.

v Evaluating Tasks. Tasks are functionally similar to Fixlets and use Relevance
expressions to determine which computers should be targeted. Whereas Fixlets
are designed with remediation in mind, Tasks are designed with continuing
maintenance in mind. The main difference between Fixlets and Tasks lies in how
they are judged to be "fixed". Fixlet actions will report back as fixed when they
are no longer relevant, while by default Task actions will report back as fixed
once all the lines of its action have completed.

v Displaying Retrieved Properties. From the IBM Endpoint Manager Console,
you can retrieve properties of the Client computers. There are some built-in
properties, but you can also create your own. To see an example, select an item
from the Analyses tab, then click on the subsequent Details tab.

2 IBM Endpoint Manager: Relevance Language Guide

Here you will find named Relevance expressions that are used to interrogate
some property of the client computer and return a value. Using the extensive
Inspector library, you can create your own customized Relevance expressions to
examine properties such as 'administrators of client', ‘computer manufacturer’,
‘brand of cpu’, ‘DNS Servers’, ‘operating system’ and hundreds of others.

v Using Relevance in actions. Actions have their own language, but they can
incorporate Relevance clauses that are evaluated at run time. That means that
the same powerful set of Inspectors that you can use to target a client can also
be used to customize the action.

Chapter 1. 3

In this context, Relevance clauses are enclosed in curly brackets, such as
{parameter "inputMinutes" ...} and {pathname of system folder...}. boolean
Relevance clauses can be used to govern if statements and otherwise control the
flow of the action script. These can be used as assertions at run-time about the
validity of some procedure or data. This is commonly used in Fixlet actions to
make sure that a downloaded file has the proper size and hash value before
proceeding. Assertions make your code safer, more robust and easier to debug.

v Reporting on IBM Endpoint Manager deployment. Session Inspectors can be
used to visualize the state of the IBM Endpoint Manager deployment itself.
There are hundreds of Inspectors that can examine Fixlets, actions, computers,
users, properties, wizards and more. An extensive set of statistical measures are
also provided to help you analyze, report and chart the state of your
deployment.

In the following sections, we introduce two of the primary tools for experimenting,
testing and debugging your own Relevance expressions. Keep in mind that there
are two distinct venues for Relevance expressions: client and session. Client
Relevance allows you to inspect and repair the endpoints of your network. Session
Relevance allows you to analyze your central database. These two groups don't
always overlap, and viewing Relevance expressions in the wrong debugger can
give incorrect results.

4 IBM Endpoint Manager: Relevance Language Guide

Using the Fixlet Debugger

For testing and debugging client relevance, there is also a stand-alone debugger
called the Fixlet Debugger (previously called the Relevance Debugger or QnA) that
you can use.

Here is how to use it:
1. Log in as an Administrator and run the program FixletDebugger.exe. It is

located in Program Files > BigFix Enterprise > BES Console > QnA.
2. Click Yes to allow the program to run.
3. Type in a Relevance expression preceded by Q:, such as

Q: now

4. Click the Evaluate button.
5. Beneath the expression, you will see the evaluation, such as

Q: now
A: Tue, 27 Mar 2012 18:51:00 -0400

T: 0.053 ms

Note that, in addition to returning the answer, the program can also display the
time (in milliseconds) it takes to process the request. This is important if you are
trying to avoid time-consuming evaluations. In order to show the time, select it as
an option from the View menu.

If an error is encountered, a message will be printed preceded by ‘E:’. (Refer to the
Appendix for descriptions of Relevance error messages.)

There are options in the View menu that provide more information:

Show Evaluation Time: To analyze performance, select this setting. It will show
you the elapsed time of the Relevance execution in microseconds. This is important
for creating Fixlet messages that are as responsive as possible.

Show Type Information: You can view the Inspector Type of the returned object
by selecting this option. Examining the returned type will help you know how to
properly combine your results with more complicated expressions.

Chapter 1. 5

This guide presents many examples in the QnA (question and answer) format, to
make it easy for you to follow along. Examples are in a Courier font, preceded by
a square red bullet. For example:
Q: names of files of folder "c:/"
A: AUTOEXEC.BAT
A: boot.ini
A: CONFIG.SYS
A: IO.SYS
A: MSDOS.SYS ...

T: 1.944 ms
I: plural string

This relevance snippet returns the names of the files on the C: drive (this shows a
partial list), each preceded by an ‘A:’. The time for retrieving this information is
1.944 microseconds and the return type is a plural string.

Note: When Endpoint Manager runs on a 64-bit operating system, system folder
refers to the SysWow64 folder, not the System32 folder.

To redirect to the 64-bit System32 folder use either system x64 folder or native
system folder. For additional information about the file system redirector see File
System Redirector.

Using the Presentation Debugger

IBM Endpoint Manager includes tools to help you write and debug session
relevance expressions. Here is how to install the session (also called presentation)
debugger:
1. While the IBM Endpoint Manager Console is running, press Ctrl-Shift-Alt-D to

bring up the Debug window.
2. Click the check box next to Show Debug Menu, at the top of the window. This

installs a new menu in the Console called Debug that contains several handy
debugging tools.

3. From the Debug menu, click on Presentation Debugger to open the
Presentation Debugger window.

To use the debugger:

6 IBM Endpoint Manager: Relevance Language Guide

https://msdn.microsoft.com/en-us/library/windows/desktop/aa384187(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa384187(v=vs.85).aspx

1. Type a Relevance expression in the top box. As a simple example, type the key
phrase now. This expression extracts the current time and date from the system
clock.

2. Click the Evaluate button.
3. In the bottom text box, the current date is displayed.

Chapter 1. 7

8 IBM Endpoint Manager: Relevance Language Guide

Chapter 2. Using Relevance

Relevance language Overview

The Relevance language, along with the Inspector extensions, is designed to let
you mine your client computers for useful information, or to see if they need
remediation. Inspectors are the key phrases of the Relevance language, so let's see
how they are formed. Here is a illustrative page from the Windows Inspector
Guide:

A Inspector has one or more creation methods to define the object. Each defined
object, in turn, has properties that can be inspected. Here, operating system is the
name of the object and the properties include various aspects of the OS, including
build numbers and boot times.

© Copyright IBM Corp. 2013, 2014 9

To illustrate specific Relevance elements and Inspectors, the following sections
include examples using the Fixlet Debugger (using the QnA view style). If possible,
run the program (FixletDebugger.exe) and enter the examples as you go along.

Primary Elements

The basic building blocks of the language are numbers, strings and expressions
that combine them.
Q: "hello world"
A: hello world

This example outputs a string of characters.

Literal strings like this are parsed for one special character: the percent sign. This is
an escape character that encodes for other characters, including control characters
and delete. When a percent sign is found, the encoding expects the next two
characters to be hex digits producing a one-byte hex value. That hex value is then
added to the internal representation of the string, allowing you to incorporate
otherwise unavailable characters into a string. Since the percent is used as the
escape key, to actually get a percent into a string you must use %25, the hex value
of percent.

Strings aren’t the only primitives:
Q: 6000
A: 6000

This above example demonstrates an integer. You can also do math:
Q: (8+3)*6
A: 66

Primary elements include parenthetical expressions like (8+3) above. These primary
elements can be teased apart as well:
Q: substrings separated by "-" of "an-over-hyphenated-string"
A: an
A: over
A: hyphenated
A: string
I: plural substring

Note in the example above that four values were returned, not just one. This
output is typical of a plural Inspector like ‘substrings’. You can filter this list with a
‘whose’ statement:
Q: (substrings separated by " " of "who observed what happened, when and where?")
whose (it contains "w")
A: who
A: what
A: when
A: where?
I: plural substring

This example shows two clauses in parentheses. The first parenthetical clause
creates a list of words (substrings separated by a space). This ‘whose’ clause
contains the primary keyword ‘it’ (discussed in greater detail below), that can
stand in for another object – in this case, ‘it’ stands in for each of the individual
words, and the expression returns just those words that contain the letter ‘w’. How
many of these substrings are there?

10 IBM Endpoint Manager: Relevance Language Guide

Q: number of (substrings separated by " " of "who observed what happened, when
and where?")
whose (it contains "w")
A: 4

This expression shows how you can count up the number of items returned and
filtered from a plural Inspector. As these examples show, you can get either
singular or plural items back from a Relevance expression. What about no items at
all? That’s a subject for the next section.

Exists

Exists is an important keyword that returns TRUE or FALSE based upon the
existence of the specified object. This is an important technique that lets you test
for existence before you test for a value and possibly incur an error. The keyword
has two slightly different typical uses. The first is to determine whether a singular
object specified by an Inspector exists:
Q: exists drive "c:"
A: True
Q: exists drive "z:"
A: False

The above examples test for the existence of the specified objects on the client
computer. In these examples, you can see that the client has a drive c:, but not a
drive z:. Attempting to find out more about the non-existent drive can generate an
error. If you aren’t sure about the existence of an object, use the ‘exist’ keyword
before you attempt to examine its properties.

The second usage is to determine whether a plural result contains any values:
Q: exists (files of folder "c:")
A: True

This expression returns TRUE, since files exist on drive c:. Note that using the
plural property (files) is a safe way to refer to something that may or may not
exist. For instance:
Q: file of folders "z:"
E: Singular expression refers to nonexistent object.

An error is generated here because there is no drive "z:" on the client computer. If
you ask for a plural answer,
Q: files of folders "z:"
I: plural file

It doesn’t give you an answer (there is no a: response), but it also doesn’t throw an
error. Nevertheless, both of these constructs can be examined with the ‘exists’
keyword without causing an error:
Q: exists file of folders "z:"
A: False
Q: exists files of folders "z:"
A: False

Plurals (Collections)

As you saw in the preceding section, plurals of Inspectors are easy to create,
typically by adding an ‘s’ to the end of the name. ‘Substring’ is singular,
‘substrings’ is plural:

Chapter 2. Using Relevance 11

Q: substrings separated by " " of "a short string"
A: a
A: short
A: string
I: plural substring

But a plural Inspector doesn’t have to return a plural result:
Q: substrings separated by " " whose (it contains "o") of "a short string"
A: short
I: plural substring

Although the result is a plural substring type, there is only a single value. In fact,
as you saw in the last section, a plural expression can return no value at all,
without incurring an error:
Q: substrings separated by " " whose (it contains "z") of "a short string"
I: plural substring

This returns no values, but no error either. So it’s important to remember that
plurality is a property of the expression itself, not necessarily the results.

Furthermore, there are restraints on singular expressions. Whereas a plural can
return zero, one or more values, a singular expression is expected to return exactly
one value. For example,
Q: substring separated by " " whose (it contains "o") of "a short string"
A: short
I: singular substring

You should be expecting a solitary value like this as a result of evaluating a
singular inspector. However, the following returns an error:
Q: substring separated by " " whose (it contains "s") of "a short string"
E: Singular expression refers to non-unique object.

This is because there are two words containing ‘s’, and this expression is looking
for a singular value. While two is too much, zero is not enough:
Q: substring separated by " " whose (it contains "z") of "a short string"
E: Singular expression refers to nonexistent object.

If you’re certain of retrieving a solitary value, use the singular version. Otherwise,
for greater flexibility, use the plural. As a practical example, you can find a single
folder like this:
Q: name of folder of folder "c:/Documents and Settings"
A: All Users
E: Singular expression refers to non-unique object.

But as you can see, even though it returns an answer, it also generates an error.
This is because there are multiple folders in the specified location, and this
command only retrieves the first one. To see the complete list, you need to use the
plural version:
Q: names of folders of folder "c:/Documents and Settings"
A: All Users
A: Default User
A: LocalService
A: NetworkService ...

You can explicitly create plurals using a semi-colon (;) to separate the items. These
are called collections:

12 IBM Endpoint Manager: Relevance Language Guide

Q: "two"; "words"
A: two
A: words
Q: exist files ("c:\whitelist.txt"; "c:\blacklist.txt")
A: True
Q: conjunction of (True; True)
A: True
Q: conjunction of (True; False)
A: False

The last two Relevance expressions AND together the semi-colon separated
collection. Notice that plurals must be the same type, or you will generate an error:
Q: "one"; 1
E: Incompatible types.

If you want to combine different types, use a tuple (see below).

Whose - It

‘Whose’ and ‘it’ are a popular pair in the Relevance language, although ‘it’ has a
life of its own. The following sections detail first the ‘whose’ and then the ‘it’, but
of necessity, there is much overlap.

Whose

The ‘whose’ clause allows you to filter a result or set of results based on specified
relevance criteria. It has the form:

<list> whose <filter expression>

For instance:
Q: (1;2;3;5;8;17) whose (it mod 2 = 1)
A: 1
A: 3
A: 5
A: 17

The special keyword ‘it’ refers to the elements of the list – in this case the
collection of numbers – and is bound only within the filter expression. The
Relevance language executes the filter expression once for every value in the
filtered property, with ‘it’ referring to each result in turn. The results where the
filter clause evaluates to TRUE are included in the output list. Note that ‘it’ refers
to the list immediately to the left of the ‘whose’ statement (outside of a 'whose'
statement, 'it' refers to the first item to the right of the parentheses).

‘It’ can also refer to direct objects that are not part of a whose clause:
Q: (it * 2) of (1;2;3)
A: 2
A: 4
A: 6

Here, ‘it’ takes on the values in the list, one at a time.

You can also use parentheses to define the scope of the whose-it objects. A
judicious use of parentheses can ensure proper results while improving readability.
For instance, the following examples show how subtle rearrangement of whose
clauses can change the output significantly:

Chapter 2. Using Relevance 13

Q: preceding texts of characters of "banana" whose (it contains "n")
A:
A: b
A: ba
A: ban
A: bana
A: banan

Q: preceding texts of characters of ("banana" whose (it contains "n"))
A:
A: b
A: ba
A: ban
A: bana
A: banan

These expressions both go character-by-character through the word ‘banana’ and
return the text preceding each character. Because it returns the text before the
character, it returns the blank before ‘b’ and stops at the final ‘a’ with ‘banan’. The
expressions both return the same values, but the second one makes it more clear
what ‘it’ refers to, namely ‘banana’. Since ‘banana’ will always have an ‘n’, this
expression will return all the specified substrings.
Q: preceding texts of characters whose (it contains "n") of "banana"
A: ba
A: bana

Q: preceding texts of (characters of "banana") whose (it contains "n")
A: ba
A: bana

These two expressions are equivalent, but the second one shows more explicitly
what ‘it’ refers to, namely the characters of the word ‘banana’. The ‘n’ appears
twice in banana, and so two substrings are returned.
Q: preceding texts whose (it contains "n") of characters of "banana"
A: ban
A: bana
A: banan

Q: (preceding texts of characters of "banana") whose (it contains "n")
A: ban
A: bana
A: banan

These two expressions do the same thing, returning those initial substrings of
‘banana’ that contain an ‘n’.

In practical usage, you could use ‘whose-it’ clauses to filter folders:
Q: names whose (it contains "a") of files of folder "c:"
A: atl70.dll
A: blacklist.txt
A: pagefile.sys...

Or you can put the ‘whose’ clause at the end of the expression, which makes the
object of ‘it’ more explicit and may be easier to read:
Q: (names of files of folder "c:") whose (it contains "a")
A: atl70.dll
A: blacklist.txt
A: pagefile.sys

If the filtered property is singular, the result of the ‘whose’ clause is singular. If the
filtered property is a plural type, the result is a plural type.

14 IBM Endpoint Manager: Relevance Language Guide

Q: exists active device whose (class of it = "Display")
A: True

This singular property evaluates to true if there is an active display device on the
client computer.
Q: files whose (name of it starts with "x") of system folder
A: "xactsrv.dll" "5.1.2600.2180" "Downlevel API Server DLL" "5.1.2600.2180
(xpsp_sp2_rtm.040803-2158)" "Microsoft Corporation"
A: "xcopy.exe" "5.1.2600.2180" "Extended Copy Utility" "5.1.2600.2180
(xpsp_sp2_rtm.040803-2158)" "Microsoft Corporation"

This plural expression returns a list of system files whose names start with ‘x’.

As it loops through the plural values, the expression in the filter may attempt to
evaluate a non-existent object. By itself, such an expression would throw an error
such as:
E: Singular expression refers to nonexistent object.

But in the case of a ‘whose’ clause, the non-existent value is simply ignored and
gets excluded from the resulting set. As a side effect, this feature allows you to
examine an object for existence before you attempt to inspect it (and throw an
error). As an example, here’s a Relevance clause that will trigger an existence error:
Q: exists file of folder "z:\bar"
E: Singular expression refers to nonexistent object.

But, by placing this clause inside a ‘whose’ statement, you can avoid the error:
Q: exists folder "z:\bar" whose(exists files of it)
A: False

It

The ‘it’ keyword always refers to the closest direct object or the object of the closest
enclosing ‘whose’ clause, whichever is closer. There are three simple contexts in
which ‘it’ has a meaning:
v <‘it’ expression> of <direct_object>
v phrase (<‘it’ expression>) of <direct_object>
v (<whose_object>) whose (<‘it’ expression>)

The first two contexts involve direct objects, the third involves a ‘whose’ clause. An
example of a direct object is this expression, which lists the names and file sizes of
a specified folder:
Q: (name of it, size of it) of files of folder "c:"
A: AUTOEXEC.BAT, 0
A: blacklist.txt, 42
A: boot.ini, 209
A: CONFIG.SYS, 0
...
A: whitelist.txt, 213

Here, ‘it’ refers to the ‘files of folder "c:"’.

The ‘whose’ clause lets you filter a list based on the evaluation of an ‘it’
expression. This is one of the most important targets of the ‘it’ keyword:
Q: exist files whose (name of it starts with "b") of folder "c:"
A: True
Q: number of (files whose (name of it starts with "b") of folder "c:")
A: 2

Chapter 2. Using Relevance 15

In these expressions, ‘it’ still refers to the ‘files of folder "c:"’.

You must be careful about the placement of parentheses, which can change the
target of the ‘it’ keyword. In the following expression, ‘it’ refers to files:
Q: (files of folder "c:") whose (name of it contains "a")
A: "atl70.dll" "7.0.9466.0" "ATL Module for Windows (Unicode)" "7.00.9466.0"
"Microsoft Corporation"
A: "blacklist.txt" "" "" "" ""
...

Note that this is not the same as the following Relevance expressions, which both
have the wrong placement of parentheses:
Q: files of folder "c:" whose (name of it contains "a")
E: Singular expression refers to nonexistent object.
Q: files of (folder "c:" whose (name of it contains "a"))
E: Singular expression refers to nonexistent object.

These are two equivalent (and wrong) statements where the ‘it’ refers to the closest
object, which is the folder, not the files.

There can be more than one ‘it’ in an expression. The rule is that each one refers to
the objects listed to the left of the associated ‘whose’. For instance:
Q: preceding texts whose (it contains "n") of characters whose (it is "a")
of "banana"
A: ban
A: banan

Here the expression returns the substrings preceding ‘a’ that contain ‘n’. The first
‘it’ refers to the substrings; the second refers to the characters. This simple and
intuitive rule makes it easy to develop complex expressions. Here’s another
example:
Q: (characters of "banana") whose (exists character whose (it is "n")
of preceding text
of it)
A: a
A: n
A: a

This expression illustrates two nested whose-it clauses. The inner one finds leading
substrings that contain an ‘n’. The outer one returns the characters following those
substrings.

Since ‘it’ represents a value, you can operate on it like any other variable:
Q: (it * it) of (1;2;3;4)
A: 1
A: 4
A: 9
A: 16

You can nest these references:
Q: (it * it) whose (it > 8) of (1;2;3;4)
A: 9
A: 16

Here, the first instances of ‘it’ are multiplied and passed on to the third instance of
‘it’ for comparison.

‘It’ always refers to a single value, and never a list.

16 IBM Endpoint Manager: Relevance Language Guide

Sets

You can convert a list returned by a plural Inspector into a mathematical set. As
such, you can perform typical set operations such as union and intersection. You
can create sets from individual elements, separated by semicolons:
intersection of (set of ("to";"be"); set of ("or";"not";"to";"be"))

This phrase returns the set composed of the two elements: be and to. Sets cannot
be directly represented in the debugger. To see the individual items in the list, use
the elements command:
Q: elements of intersection of (set of ("to";"be"); set of ("or";"not";
"to";"be"))
A: be
A: to

You can also create sets from ordinary lists. Here's an example using session
inspectors that must be run in the Presentation Debugger:
intersection of administered computer sets of bes users whose (name of it is "joe"
or name of it is "sue")

The "intersection" phrase returns the set of computers administered by both Sue
and Joe. Similarly, you can compute the union of sets:
size of union of applicable computer sets of bes fixlets whose ((source severity
of it is "Critical") and (current date - source release date of it > 7 * day)) as
floating point / size of bes computer set as floating point

This expression returns the ratio of computers which have at least one relevant
critical Fixlet released more than 1 week ago. Note the use of the word size which
returns the number of elements in the set.

Note: The phrases with "bes", such as "bes fixlet" and "bes computer" are session
inspectors and will only work in the Presentation Debugger while the Console is in
session. Attempting to evaluate these expressions in the Fixlet Debugger will
produce an error indicating that the operator is not defined.

Sets also allow subtraction:
set of (1;2;3;4) – set of (1;5)

Returns the set composed of the elements 2,3 and 4. Note that subtracting a
number not in the original set doesn’t affect the result. You can convert the set
back to a printable list, using the elements command.
Q: elements of (set of (1;2;3;4) – set of (1;5))
A: 2
A: 3
A: 4

The elements keyword iterates over the set object, returning the individual set
elements as an ordinary list.

Properties and References

Properties of objects can be inspected and referenced. There are thousands of
property Inspectors available to cover the majority of software and hardware
features of *nix, Windows and Mac systems.
Q: day_of_week of current date
A: Tuesday

Chapter 2. Using Relevance 17

Returns a reference to the day of the week from today’s system date.
Q: year of current date
A: 2012

Returns the year portion of today’s date
Q: number of processors
A: 2

Returns the number of processors in the client computer.
Q: names of local groups
A: Administrators
A: Backup Operators
A: Guests

Returns a plural property (names) as a list corresponding to the local group names.
Q: bit 0 of 5
A: True

Returns the zero (low order) bit as True (1) or False (0).

Relations

You use relations to compare values in the Relevance language. There are the
standard alpha and numeric comparators (=, !=, <, >, >=, <=) as well a few strictly
string relations (starts with, ends with, contains). Here are some examples of
expressions that use relations:
Q: 1 < 2
A: True
Q: 2 is not less than or equal to 1
A: True

String compares use alphabetic order:
Q: "the whole" is greater than "the sum of the parts"
A: True

Some relations look for substrings of other strings:
Q: "nowhere" starts with "now"
A: True
Q: "nowhere" ends with "here"
A: True
Q: "nowhere" contains "her"
A: True
Q: "he" is contained by "nowhere"
A: True

Relations return a boolean TRUE or FALSE depending on the outcome of the
comparison. Here is a table of the relation symbols and their English equivalents:

Symbol English Version

= is

!= is not

< is less than

<= is less than or equal to

> is greater than

>= is greater than or equal to

18 IBM Endpoint Manager: Relevance Language Guide

Symbol English Version

starts with

ends with

contains

is contained by

Casting

Types can be converted, making it easy to create, concatenate and combine
Inspectors into complex Relevance expressions.
Q: "01 Apr 2020" as date
A: Wed, 01 Apr 2020

Converts (casts) a string into a date type.
Q: 5 as month
A: May

Converts an integer into the corresponding month type.
Q: january as three letters
A: Jan

Converts the month January into a three-letter abbreviation.

The Fixlet Debugger casts values to strings in order to print them. If an object does
not result in a string, the debugger uses the ‘as string’ method of the object to turn
it into a string. If the object can’t be cast as a string, an error message is displayed.

Indexing

You can index into lists of objects to select the desired property.
Q: line 2 of file "c:/frost_poem.txt"
A: his house is in the village, though.

Returns the second line of the specified text file.
Q: month 9
A: September

Returns the name of the ninth month.

Tuples

Tuples add some useful properties to the Relevance language. A Tuple is basically
a compound type composed of two or more other types. It can be returned directly
from an Inspector, like this:
Q: extrema of (1;2;3;4;5)
A: 1, 5
T: 0.127 ms
I: singular (integer, integer)

This Relevance clause returns a compound object including a time range and an
associated boolean TRUE/FALSE. Notice the use of the concatenation operator (&),
used here to create a time range (see arithmetic operators, below).

Chapter 2. Using Relevance 19

Tuples can also be explicitly generated using the comma (,) keyword. Any mix of
types is allowed:
Q: number of processors, "B or not", 8/4, character 66
A: 2, B or not, 2, B
I: (integer, string, integer, string)

Q: now, "is the time"
A: (Fri, 22 Sep 2006 12:14:55 -0400), is the time
I: (time, string)

Q: 1, number of processors < 3, "friend"
A: 1, True, friend
I: (integer, boolean, string)

Note that if an individual Inspector returns a tuple, it will always return the same
types in the same order. It’s not possible to have an Inspector return tuples of type
<int, string, int> in one case and <int, int, string> in another.

Tuples can also be indexed by using the ‘item’ keyword (indices start at 0). For
instance:
Q: item 0 of ("foo", 3, free space of drive of system folder)
A: foo
I: singular string

Q: (item 1 of it; item 2 of it) of ("foo", 3, free space of drive of system folder)
A: 3
A: 18105667584
I: plural integer

Tuples provide a way for a relevance expression to return several related
properties. For instance, you could generate a set of filenames and corresponding
file sizes for all files that meet a specific criteria with a Relevance statement like
this:
Q: (name of it, size of it) of files whose (size of it > 100000) of folder "c:"
A: hiberfil.sys, 536301568
A: ntldr, 250032
A: pagefile.sys, 805306368
I: plural (string, integer)

Plurals with Tuples

Tuples can be combined with plurals to create Relevance clauses of surprising
complexity and power. The easiest combination is also the least useful. Forming
plurals of tuples (of the same type) just creates a plural tuple:
Q: (1,2); (3,4)
A: 1, 2
A: 3, 4
I: (integer, integer)

However, attempting to form a plural of tuples of different types yields an error. As
we’ve already seen, plurals must always be of the same type:
Q: (1,2);("a","b")
E: Incompatible types.

Interestingly, forming a tuple of plural expressions generates a set of tuples that
represents the cross product of all the component plurals:
Q: ((1; 2), ("a"; "b"), ("*"; "$"))
A: 1, a, *
A: 1, a, $

20 IBM Endpoint Manager: Relevance Language Guide

A: 1, b, *
A: 1, b, $
A: 2, a, *
A: 2, a, $
A: 2, b, *
A: 2, b, $
I: plural (integer, string, string)

Tuples of plurals can also be used to search two lists for commonality. For
example, suppose we have two lists of integers, and want to know what numbers
are in the intersection of the lists. We can do this by using a nested whose, and
then we refer to the outer list by wrapping it in a tuple:
Q: (1;2;3;4) whose (exists (it, (2;4;6;8)) whose (item 0 of it is item 1 of it))
A: 2
A: 4

The downside of this method is that the second list is bound within the ‘whose’
clause and must be recreated for every iteration. To maintain responsiveness, you
should keep lists like this short.

Tuples of plurals can also be used to compare two sets of data:
Q:((1;2;3;4),(5;6;7;8)) whose (item 1 of it = 2*item 0 of it)
A: 3, 6
A: 4, 8

You can also find out just which files are in common by serially comparing the
tuples of ‘new folder, old folder’:
Q: (names of files of folder "c:/") whose (exists (it, (names of files of folder
"c:/old C")) whose (item 0 of it is item 1 of it))
A: CONFIG.SYS
A: IO.SYS
A: MSDOS.SYS
A: report.txt

Comparing Tuples

You can directly compare tuples with the usual comparison operators, <,>,=. Here
are some examples:
Q: (1, 2, 3) < (2, 3, 4)
A: True
Q: ("a", "b", "c") < ("a", "b", "d")
A: True

The comparison proceeds through the elements from left to right, and the first pair
of elements that fails the test ends the tuple comparison:
Q: ("abc", 17, 25, 4) < ("zzz", 17, 25, 4)
A: True

This is true even though the rest of the numbers are equal, because the test fails on
the leftmost element comparison. In this sense, the comparison acts like it does
with version numbers, where the leftmost digits are considered to have greater
significance. Thus, if you have control over the ordering of the tuple, you should
place the most "important" items earliest in the list.

The size of the tuples must be equal for the result to be defined. For instance,
Q: (1, 2, 3) < (4, 5)
E: The operator "less than" is not defined.

Chapter 2. Using Relevance 21

Also the types of the tuple elements must match:
Q: (1, 2, 3) < (4, 5, "a")
E: The operator "less than" is not defined.

Any comparisons with <nothing> will cause an error:
Q: (nothing) < (nothing)
E: A singular expression is required.

Q: (nothing) < (1)
E: A singular expression is required.

Q: (nothing, nothing) < (1)
E: A singular expression is required.

Q: (nothing, nothing) < (1,2)
E: A singular expression is required.

Q: (nothing , 1) < (nothing , 2)
E: A singular expression is required.

Q: (nothing , 1) < (1,2)
E: A singular expression is required.

Arithmetic

The Relevance language includes the typical binary mathematical functions,
including addition, subtraction, multiplication, division and modulo.
Q: 21 mod 5
A: 1

Returns the integer corresponding to 21 modulo 5.
Q: 36*month/2
A: 1 years, 6 months

Multiplies and divides months resulting in a ‘month and year’ type.
Q: 2+3
A: 5

Adds integers together to produce a sum.
Q: current month + 2*month
A: November

Adds two months to the current month (in this case, September).
Q: december - current month
A: 3 months

Subtracts the current month (1-12) from December (12) to produce a ‘number of
months’ type.

A few operators in the language are unary (requiring only one argument), such as
negation:
Q: -(3*5)
A: -15

As expected, this minus sign negates its argument (the product in parentheses).

There is another "arithmetic" symbol, the ampersand (&). This is the concatenation
operator that joins strings:

22 IBM Endpoint Manager: Relevance Language Guide

Q: "now" & "then"
A: nowthen

It’s also used to create time ranges:
Q: now & day
A: Sat, 21 Oct 2006 21:55:28 -0400 to Sun, 22 Oct 2006 21:55:28 -0400

ANDs and ORs

Logical ANDing and ORing are also available as binary operators.
Q: version of regapp "wordpad.exe" as string = "5.1.2600.2180" and name of operating
system = "WinXP"
A: True

Returns TRUE only if both equations are true (AND expression).
Q: name of operating system = "WinNT" or name of operating system = "WinXP"
A: True

Returns TRUE if one OR the other equation is true. You can also logically negate a
boolean expression with the ‘not’ keyword.
Q: not exists drive "z:"
A: True

Returns True is the z: drive doesn’t exist. This is a unary operation (not) being
used to negate another unary operator (exists).

Using existence with boolean logic even lets you check for things that might
otherwise return an error:
Q: Exists folder "C:\doesn’t exist" AND Exists files "this should normally break"
of folder "c:\doesn’t exist"
A: False

If-then-else

If-then-else clauses have the form:
if <conditional-expression> then <expression1> else <expression2>

If statements require both a 'then' and 'else' clause or they will throw an error.

Both <expression1> and <expression2> must have the same type, and
<conditional-expression> must be a singular boolean.

If <conditional-expression> is true, then <expression1> is evaluated and returned;
otherwise <expression2> is evaluated and returned.

Starting with version 5.1 of IBM Endpoint Manager, if-then-else clauses have been
implemented as late-binding, so potential vocabulary errors on the branch not
taken are ignored. This makes it safe to write cross-platform Relevance expressions
without worrying about throwing errors for incorrect OS-specific Inspectors. For
instance, you can write:
Q: if name of operating system contains "Win" then name of application "conf.exe"
of registry else "conf.exe"
A: conf.exe
I: singular string

Chapter 2. Using Relevance 23

On a non-Windows OS, this expression will execute the ‘else’ expression and avoid
an attempt to inspect a non-existent registry.

Note: Prior to version 5.1 of IBM Endpoint Manager, both branches were checked
to be sure they were meaningful, which could generate an error. In that case, a
parse error would have occurred on any non-Windows system when the unknown
keyword ‘registry’ was encountered.

If-then statements can be useful for reporting user-defined errors:
Q: if (year of current date as integer < 2006) then "Still good" else error
"Expired"
E: User-defined error: Expired

This expression throws a user-defined error if the argument is false.
Q: if (name of operating system = "WinXP") then "wired" else if (name of operating
system ="WinNT") then "tired" else "expired"
A: wired

This expression does a three-way test of the operating system.

Expressions

Putting all the pieces together yields complete relevance expressions. They can be
short and to the point:
Q: number of active devices
A: 156

or they can be extremely specific:
Q: exists key whose (value "DisplayVersion" of it as string as version >=
"10.0.6626.0" as version AND (character 1 of it = "9" AND (character 2 of
it = "0" OR character 2 of it = "1") AND (first 2 of following text of
first 3 of it = "11" OR first 2 of following text of first 3 of it =
"12" OR first 2 of following text of first 3 of it = "13" OR first 2
of following text of first 3 of it = "28") AND (preceding text of first "}"
of it ends with "6000-11D3-8CFE-0050048383C9")) of name of it) of key
"HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Uninstall"
of registry

Relevance expressions allow you to analyze and report on specific properties of
your client computers with minimal disturbance, so that you act only on the
computers that need assistance and none of the others.

IBM Endpoint Manager Inspectors

The Relevance language is dedicated to manipulating Inspector objects, which can
be thought of as modular extensions of the language. Inspectors are designed to
interrogate the software, firmware and hardware of each of the client computers on
the network. There are thousands of Inspectors that you can use to analyze various
aspects of the computer to make sure that any actions you propose are properly
targeted. Inspectors are also used to produce substituted variables in action scripts
There are OS-specific Inspector libraries for Windows, HP-Unix, AIX, Linux, Solaris
and the Macintosh. For more information, see the Inspector Library for the OS
you’re interested in.

24 IBM Endpoint Manager: Relevance Language Guide

Many of the keywords of the language are not unique; they get their meaning from
their context. An Inspector’s context is dictated by the form of the Inspector. There
are seven forms:

Form Syntax required

Cast <object> as keyword

Global keyword

Named keyword "name" of <object>

NamedGlobal keyword "name"

Numbered keyword number of <object>

NumberedGlobal keyword number

Plain keyword of <object>

These differ from one another in format and syntax. Except for Cast, these forms
can be used to access both single objects and lists of objects by using the plural
form of the keyword.

Core Inspectors

A few basic Inspectors serve to expand the core language. They are similar to
Relevance language elements, but they are often OS-dependent and therefore easier
to compile into Inspector libraries.
Q: floating point "3.14159"
A: 3.14159
I: floating point

Creates a floating point number out of the specified string.
Q: string "hello"
A: hello
I: string

Creates a string type from the specified quoted string.
Q: nan of (floating point "1.e-99999" / 0)
A: True

Nan (Not A Number) is used to test floating point numbers.
Q: first 6 of "Now is the time"
A: Now is

Returns the first N characters of the specified string.
Q: multiplicities of unique values of (1;2;3;3)
A: 1
A: 1
A: 2

The multiplicity Inspector allows you to analyze the frequencies of items in a list.

Other Inspector Examples

Some more examples of basic Inspectors include the following:
Q: now
A: Thu, 21 Sep 2006 19:39:33 -0400
I: time

Chapter 2. Using Relevance 25

The ‘now’ Inspector returns the current day, date, time and time zone from the
client computer. This is an Inspector of the ‘world’ (the environment on the local
client computer) that returns a time.
Q: exists file "c:/report.txt"
A: True
I: boolean

This Relevance expression returns True if the specified file exists. This is a
filesystem Inspector that evaluates to boolean using the existence operator.
Q: names of folders of folder "c:/program files"
A: Adobe
A: BigFix Enterprise
A: Cisco Systems
A: iPod
A: Macromedia
A: Microsoft Office ...
I: string

The above expression returns a list of folders that reside in the specified folder. The
names of the folders are string types.
Q: name of current user
A: John
I: string

This phrase returns the name of the current user as a sting type.

Propagation of non-existence

If a property doesn’t exist, any other derivatives of that property also don’t exist:
Q: exists folder "z:/foo"
A: False
Q: files of folder "z:/foo"
E: Singular expression refers to nonexistent object.
Q: line 1 of files of folder "z:/foo"
E: Singular expression refers to nonexistent object.

Since the original folder doesn’t exist, any references to the folder are also
nonexistent.

Determining Object Properties

The relevance language has some features built into it that help you to determine
the object properties you can query. For example, suppose we evaluate the
following relevance expression:
Q: folder "c:\"
E: The operator "string" is not defined.

This error message means that the relevance expression evaluated successfully, but
the relevance language doesn’t know how to display a folder. In order to get some
information out of the folder, we’re going to have to query its properties. To do
this, we can use the relevance language ‘Introspectors’. The Introspectors return
information about the Inspectors currently being used by the relevance debugger
and QnA. They contain all the information about what properties of an object can
be queried. In essence, they are Inspector Inspectors. For example, to find out the
properties of a folder, we use the query:

26 IBM Endpoint Manager: Relevance Language Guide

Q: properties of type "folder"
A: descendants of <folder>: file
A: file <string> of <folder>: file
A: folder <string> of <folder>: folder
A: application <string> of <folder>: application
A: files of <folder>: file
A: find files <string> of <folder>: file
A: folders of <folder>: folder
A: security descriptor of <folder>: security descriptor

However, this is not an exhaustive list of folder properties. A folder type also has a
parent type, the filesystem object type. We can query all the properties of a
filesystem object as well. For example, pathname is a property of a filesystem
object, but it didn’t show up in the properties query above. However, since folder
is a subtype of a filesystem object, we can query the pathname of a folder:
Q: pathname of folder "c:\"
A: c:

In order to find out whether the folder type has a parent type, use the following
relevance query:
Q: parent of type "folder"
A: filesystem object

Most types do not have a parent type. For example, filesystem object types don’t
have a parent type.
Q: parent of type "filesystem object"
A: Singular expression refers to nonexistent object.

Thus, all of the properties that can be queried of a folder are either properties of
folder or filesystem, and so the following relevance expression will list both:
Q: properties of type "folder"; properties of type "filesystem object"
A: descendants of <folder>: file
A: file <string> of <folder>: file
A: folder <string> of <folder>: folder
...
A: normal of <filesystem object>: boolean
A: temporary of <filesystem object>: boolean
A: compressed of <filesystem object>: boolean
A: offline of <filesystem object>: boolean
...

An even more thorough list of properties can be discovered using the following
expression:
Q: properties whose (it as string contains "folder")
A: ancestors of <filesystem object>: folder
A: descendants of <folder>: file
A: parent folder of <filesystem object>: folder
...
A: application folder <string> of <registry>: folder
A: application folder of <registry key>: folder
A: application folder <string> of <registry key>: folder
A: install folder <integer>: folder

Chapter 2. Using Relevance 27

Relevance in Property Analysis

Viewing Property Analyses

From the IBM Endpoint Manager Console, click on an item from the Analyses tab.
In the bottom window, click on the Details tab. Here you can see the Relevance
expressions behind a property analysis.

For example, select BES Component Versions from the Analyses list. Click on the
Details tab to see the Relevance expressions behind each Analysis. These Analyses
return the client, relay, console and server version of each client computer. For
instance, BES Relay Version has the following Relevance statement:
if (exists regapp "BESRelay.exe") then version of regapp "BESRelay.exe" as string
else "Not Installed"

This returns the version of the BES Relay, after first determining that it exists. If it
does not, it returns ‘Not Installed’.

A property can return more than a single item. It can, for instance, return a tuple:
(total run count of it, first start time of it, last time seen of it, total duration
of it) of application usage summaries "excel.exe"

This Relevance clause returns several properties that summarize the client’s usage
of Excel.

Creating Property Analyses

You can create your own properties. These allow you to track any combination of
software, hardware and firmware that you desire, across your entire network. Once
created, the results of the property analysis can be printed or charted.

For instance, you might want to monitor the status of the operating system
languages across your network. You could use a Relevance clause like this to
retrieve the information:
Q: system language
A: English (United States)
I: singular string

You can give this expression a name that you can track, such as ‘System
Language’. Here’s how:

From the Tools menu, select Create New Analysis. Enter the title and description
of the analysis, and then click on the Properties tab. Enter your desired Name,
Relevance expression and evaluation period in the appropriate fields. Once
activated, this Analysis will report back to the IBM Endpoint Manager Server,
allowing you to view or chart the results.

Relevance in action Scripts

Viewing action Scripts

You can view an action script from the IBM Endpoint Manager Console by
selecting a Fixlet or Task and clicking on the Details tab. For more information on
the action syntax, see the IBM Endpoint Manager action Language Reference.

28 IBM Endpoint Manager: Relevance Language Guide

In many of the action scripts, you can see Relevance expressions inside of curly
brackets {}. When the action is executed, these expressions are evaluated on each
client computer and the results are substituted into the action script. This allows an
author to create actions that are custom-tailored for each client. For instance:
run "{pathname of regapp "excel.exe"}"

This example can run a program without knowing where it is located. The
bracketed relevance expression evaluates the pathname automatically using the
regapp inspector. Embedding Relevance expressions lets you execute precisely
targeted action scripts. This script might use a different pathname on every client,
but still operate as intended. This allows you to write readable, compact scripts
that will automatically customize themselves to each client on your network.

As well as substituting variables, you can use Relevance expressions to make
assertions that can alter the flow of the code:
pause while {exists running application "c:\updater.exe"}

This action pauses until a program finishes executing, using the running
application inspector.

Substitution is not recursive, although any particular command may have one or
more expressions to evaluate before execution. The IBM Endpoint Manager
application is expecting to find a single expression inside the curly braces. If it sees
another left brace before it encounters a closing right brace, it treats it as an
ordinary character:
echo {"a left brace: {"}

would send this string to output:
a left brace: {

Therefore no special escape characters are necessary to represent a left brace. To
output a literal right brace without ending the substitution, use a double character:
echo {"{a string inside braces}}"}

would send this string to output:
{a string inside braces}

Or consider this example:
appendfile {{ name of operating system } {name of operating system}

When this example is parsed, the double left braces indicate that what follows is
not a relevance expression. Therefore, this part of the script is treated as a string,
up to the first right brace. The third left brace indicates the actual start of a
Relevance expression. This outputs the following line to __appendfile:
{ name of operating system } WinXP

Creating action Scripts

You can create your own action scripts in the IBM Endpoint Manager Console by
selecting Take Custom action from the Tools menu. This brings up a dialog box
where you can set Relevance, the message and more. Click on the action Script
tab. In the text window that shows up, you can enter any action script you please.
You can embed the results of a Relevance expression anywhere in your script by
enclosing it in curly brackets {}.

Chapter 2. Using Relevance 29

For instance, you might want to download a file with a command like:
download http://download.bigfix.com/download/bes/60/BESServerUpgrade-6.0.12.5.exe

Then, to make sure it downloaded properly with a secure hash, you could add this
command with an embedded Relevance clause:
continue if {(size of it = 18455939 AND sha1 of it =
"58a879f5b98357c4ec6f5ff7dbe3307eef5ca2ec") of file "BESServerUpgrade-6.0.12.5.exe"
of folder "__Download"}

This expression compares the length of the file (found by looking in the
__Download folder) to a known size. It also compares the sha1 of the file to a
known value. This construct allows you to stop execution of the action script if the
file was not downloaded properly. This illustrates a common usage of the
Relevance language to make an assertion in an action script.

You might want to set a registry key with the results of a Relevance expression:
regset "{"[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\SharedAccess
\Parameters\FirewallPolicy\" & (if (current profile type of firewall = domain
firewall profile type) then ("DomainProfile") else ("StandardProfile")) & "]"}"
"EnableFirewall"=dword:00000000

Here, the result of the Relevance expression in the curly brackets is substituted into
the name of the registry setting. This example shows how to branch based on the
value of an Inspector in order to set a registry with the proper string.

You can also set action variables with the results of Relevance statements. This is
done with the parameter command:
parameter "tmpfolder" = "{pathname of folder (value of variable "tmp" of
environment)}"

Because the Relevance expression used to target the Fixlet is often the same one
used in the corresponding action, you are more likely to be solving the right
problem. That makes script-writing easier and makes scripts more robust and
accurate.

Useful Relevance Expressions

This section contains some real-world relevance clauses that are easy to customize
for your own use. In these samples, you can see how you might build up a
complex expression from some simple, basic elements.

Using Number Ranges

As of version 8 of TEM, you can use number ranges in a variety of ways. To
generate the first four numbers, you could use an expression like the following:
Q: integers to (3)
A: 0
A: 1
A: 2
A: 3

Note that the index is zero-based, so the range goes from 0-3, not 1-3. You can use
negative numbers as well:

30 IBM Endpoint Manager: Relevance Language Guide

Q: integers in (-2, 2)
A: -2
A: -1
A: 0
A: 1
A: 2

As well as listing numbers incrementally by one, you can also specify a step size:
Q: integers in (-10, 3, 3)
A: -10
A: -7
A: -4
A: -1
A: 2

This expression goes from the first value (-10) in steps of three, stopping at the first
integer that doesn't exceed the final value. You can derive the final value from the
length of a string, as in this example:
Q: integers in ((0, length of it, 2) of "00000b000100")
A: 0
A: 2
A: 4
A: 6
A: 8
A: 10
A: 12

Note that the length is 12, and the integers command is inclusive of the endpoints,
so it includes a pointer to the end of the string.
Q: concatenation "," of substrings (integers in (0, length of it, 2), 2) of
"00000b00010002000000000000000000"
A: 00,00,0b,00,01,00,02,00,00,00,00,00,00,00,00,00

Here is a more complicated example that combines two lists. The first list is
numeric (1, 2, 3) and the second list is alphabetic (a, b, c). This expression
combines the two to produce (1a, 2b, 3c):
Q: substrings (integers in (0, length of it, 2) , 2) of (concatenation of
substrings ((item 0 of it ; item 0 of it + item 1 of it) of (positions of
first ((length of it - 1) / 2) of it, length of it / 2), 1) of it) of
concatenation of (("1";"2";"3"); ("a";"b";"c"))
A: 1a
A: 2b
A: 3c

The expression makes good use of the "item N of it" syntax for indexing into a list
of objects.

Using the Bar Operator

As of version 8 of TEM, you can use the bar (|) operator to iterate through a list
and find the first item that doesn't produce an error. In the following example, we
assume that the file gone.txt doesn't exist, so getting its size throws an error:
Q: size of file "c:\gone.txt" | 10
A: 10

The expression skips past the file error and lands on 10.
Q: (size of file "c:\gone.txt" > 0) | false
A: False

Chapter 2. Using Relevance 31

The bar operator is looking for errors, not true or false, so it will report false if that
is the first error-free phrase.
Q: ((not exists file "c:\gone.txt") | (size of file "c:\gone.txt" = 0))
A: False

Because the bar operator can skip through errors, it can simplify your code.
Typically you check for the existence of each file before examining it:
(

if
(
exists result (it,bes properties "Shared Groups")
whose (exists value of it)
)
then
value of result (it,bes properties "Shared Groups")
else
"No Result"

)
of bes computers

Here is how you might write this using the bar operator:
(

value of result (it,bes property "Shared Groups") | "No Result"
)
of bes computers

The bar operator just keeps iterating through the list until it reaches an error-free
phrase, which in this case is the "No Result" message.

Manipulating Strings

Creating Multiple Results

Multiple substrings can be extracted from a string with commas (,) as delimiters:
Q: substrings separated by ", " of "apple, orange, pear, kiwi"
A: apple
A: orange
A: pear
A: kiwi
I: plural substring

Or if you want, just use spaces:
Q: substrings separated by " " of "apple orange pear kiwi"

Reversing a String

If you know the length of the string, you can explicitly reverse the order of the
characters:
Q: concatenation of characters (4; 3; 2; 1; 0) of "abcde"
A: edcba

This uses the positions of the characters in reverse order to flip the string. But
what if you don’t know how many characters are in the string? There are some
properties of strings that can be turned to the task:
Q: positions of "abcde"
A: 0
A: 1

32 IBM Endpoint Manager: Relevance Language Guide

A: 2
A: 3
A: 4
A: 5

This states that there are six positions in the string (including the pointer to the
end of the string), corresponding to the number of characters, plus one. As you
scan through the string, there are fewer and fewer characters after the specified
position:
Q: following texts of (positions of "abcde")
A: abcde
A: bcde
A: cde
A: de
A: e
A:

The length of these strings can be measured, to produce a list of numbers that is a
perfect inversion of the positions listed above.
Q: lengths of (following texts of (positions of "abcde"))
A: 5
A: 4
A: 3
A: 2
A: 1
A: 0

This inverted list can be used to scan in reverse order through the string,
concatenating as you go:
Q: concatenation of characters (lengths of (following texts of (positions of it)))
of "abcde"
A: edcba

Substring index of string

As of version 8 of TEM, you can retrieve indexed substring values:
Q: substring(0, 3) of "abcdefgh"
A: abc

This expression returns the first three characters of the specified string. The
starting value is zero-based, so to find a substring starting at the fourth character,
use and expression like this:
Q: substring(3, 3) of "abcdefgh"
A: def

You can concatenate the substrings you find as well. For instance, to produce a
series of hex bytes from a string of hex characters, use an expression like the
following:
Q: concatenation "," of substrings (integers in (0, length of it, 2), 2) of
"00000b00010002000000000000000000"
A: 00,00,0b,00,01,00,02,00,00,00,00,00,00,00,00,00

This expression uses the integers in command, that returns a list of number pairs
with a starting number (starting at 0) and a step size (2):
Q: (integers in (0, length of it, 2), 2) of "123456"
A: 0, 2
A: 2, 2
A: 4, 2
A: 6, 2

Chapter 2. Using Relevance 33

Since we want two-digit hex values here, we add the ",2" to the starting values.

Manipulating Dates and Times

Converting time to mm/dd/yyyy

To convert the time format returned by the "now" Inspector into mm/dd/yyyy
format, you extract the three components (month, day, year) and then concatenate
them with slashes. Start with the date portion of now (excludes the time portion):
Q: date (local time zone) of now
A: Mon, 25 Sep 2006
I: date

This returns a date with the elements we want to rearrange. The "month" Inspector
can give us a properly formatted numeric month (two-digits, with a leading zero):
Q: (month of date (local time zone) of now) as two digits
A: 09
I: string

The "day_of_month" Inspector returns the date, which we format as above:
Q: day_of_month of date (local time zone) of now as two digits
A: 25
I: day of month

The year Inspector rounds things out:
Q: year of date (local time zone) of now as string
A: 2006
I: string

Concatenate these components with slashes to finish it off:
Q: (month of date (local time zone) of now) as two digits & "/" &
day_of_month of date (local time zone) of now as two digits & "/"
& year of date (local time zone) of now as string
A: 09/25/2006
T: 0.263 ms
I: string

This can be improved considerably by calling the "now" function only once and
referring to it elsewhere with the keyword "it":
Q: (month of it as two digits & "/" & day_of_month of it as two digits
& "/" & year of it as string) of date (local time zone) of now
A: 09/25/2006
T: 0.170 ms
I: string

This version is shorter, easier to read and about a third faster. Perhaps of greater
importance, the value of now can change between invocations, so you may
actually get a wrong answer with the first technique. On New Year’s Eve, for
instance, you might get December coupled with the wrong year.

Converting yyyymmdd to date

Converting from yyyymmdd to a standard date format uses a different set of
Inspectors. First, break the string apart into day, month and year parts:

34 IBM Endpoint Manager: Relevance Language Guide

Q: first 2 of following text of position 6 of "20071201" as integer
A: 1
Q: first 2 of following text of position 4 of "20071201" as integer
A: 12
Q: first 4 of "20071201" as integer
A: 2007

Then convert these integers to their component date types:
Q: day_of_month (first 2 of following text of position 6 of "20071201")
A: 1
I: day of month
Q: month (first 2 of following text of position 4 of "20071201" as integer)
A: December
I: month
Q: year (first 4 of "20071201" as integer)
A: 2007
I: year

These components are then concatenated to produce a standard date:
Q: day_of_month (first 2 of following text of position 6 of "20071201" as integer)
& month (first 2 of following text of position 4 of "20071201" as integer) & year
(first 4 of "20071201" as integer)
A: Sat, 01 Dec 2007
I: date

This can be simplified by using the ‘it’ keyword as a variable representing
"20071201":
Q: (day_of_month (first 2 of following text of position 6 of it
as integer) & month (first 2 of following text of position 4 of it
as integer) & year (first 4 of it as integer)) of "20071201"
A: Sat, 01 Dec 2007
I: date

A similar result can be accomplished by using a regular expression. The date can
be extracted by choosing the first four digits:
Q: parenthesized part 1 of (matches (regex "(\d\d\d\d)(\d\d)(\d\d)")
of "20051201")
A: 2005

The various date segments can be assembled along these lines to create:
Q: (day_of_month (parenthesized part 3 of it as integer) & month (parenthesized
part 2 of it as integer) & year (parenthesized part 1 of it as integer))of
(matches (regex "(\d\d\d\d)(\d\d)(\d\d)") of "20051201")
A: Thu, 01 Dec 2005

As above, this expression uses the ‘day_of_month’ Inspector to return a date
corresponding to the concatenation of the components.

Summing Over Time Units

As of version 8 of TEM, you can sum over different units of time to create a
complex time value. This allows you to work with finer time granularity and
greater accuracy. Here are some examples:
Q: sum of (second; minute; hour; day)
A: 1 day, 01:01:01
Q: sum of ((second * 5); (minute * 3))
A: 00:03:05
Q: sum of ((second * 1); (second * 2); (minute * 3); (minute * 4); (hour * 5);
(hour * 6); (day * 7); (day * 8))
A: 15 days, 11:07:03

Chapter 2. Using Relevance 35

Q: sum of ((second * 5); (minute * 3); (hour * 17); (day * -23))
A: -22 days, 06:56:55
Q: sum of (second / 10)
A: 00:00:00.100
Q: sum of ((hour + hour))
A: 02:00:00

Note that summing over a time interval includes weeks, days, hours, minutes and
seconds only. It will not sum months or years.

Operating on Lists of Floating Point Numbers

As of version 8 of TEM, you can sum over multiple floating point numbers in a
semicolon-separated list:
Q: sum of ("1.2" as floating point; "1.5" as floating point)
A: 2.7

This is just like adding floating point numbers, but it allows you to sum up a list
of multiple numbers:
Q: sum of ("1.0" as floating point; "1.1" as floating point; "1.9" as
floating point)
A: 4.0

Not that, as with normal floating point addition, you need to pay attention to the
digits of accuracy you use. The least accurate number in the summation
determines the accuracy of the answer. If you only require one digit to the right of
the decimal point, you could indicate that with a phrase like this:
Q: sum of ("1.1" as floating point; "1.06" as floating point)
A: 2.2

If you require more digits of accuracy, add zeroes.
Q: sum of ("1.10" as floating point; "1.06" as floating point)
A: 2.16

You can explicitly increase the accuracy with the more significance operator:
Q: sum of (more significance 1 of floating point "1.1"; "1.06" as floating point)
A: 2.16

You can also multiply a list of numbers with the product operator:
Q: product of ("1" as floating point; "2" as floating point; "3" as floating point)
A: 6

Using Wildcard Searches for Files and Folders

As of version 8 of TEM, you can use the find Inspectors to search for files and
folders with wildcard searches:
Q: names of find folders "system*" of windows folder
A: system
A: system32

This expression returns all folders in the Windows folder that have "system" in
their name. You can also sum over your search to find the number of relevant
folders:
Q: number of names of find folders "*86*" of folder "C:\windows\winsxs"
A: 5050

36 IBM Endpoint Manager: Relevance Language Guide

This expression found 23 files with "86" in the name. Here, the asterisks are wild
card characters that stand for any set of characters (including null), and will find
files named "86skidoo", "my86th" and "last86".

You can also use the "?" wild card which matches a single character and is thus
more restrictive:
Q: number of names of find folders "?86*" of folder "C:\windows\winsxs"
A: 4325

You can use multiple wild cards to expand your search:
Q: number of find folders "win*" of find folders "system*" of windows folder
A: 3

You can search for the existence of any file name at all using a naked asterisk:
Q: number of names of find files "*" of find folders "X86*" of find folders "win*"
of windows folder
A: 51

This expression finds all the files in the root c: drive.
Q: find files "*" of folder "c:\"
A: "AUTOEXEC.BAT" "" "" "" ""
A: "boot.ini" "" "" "" ""
A: "CONFIG.SYS" "" "" "" ""
A: "IO.SYS" "" "" "" ""
A: "MSDOS.SYS" "" "" "" ""
A: "NTDETECT.COM" "" "" "" ""
A: "ntldr" "" "" "" ""
A: "pagefile.sys" "" "" "" ""
A: "test.txt" "" "" "" ""

Comparing Versions

Numeric version comparisons can be tricky, because they are not numbers in the
traditional sense. Version numbers typically have multiple segments separated by
periods, such as "6.01.2.3". A common (but not universal) structure numbers the
releases like this:

major.minor[.revision[.build]]

So, when you compare versions, you need to specify all the relevant segments to
get a proper comparison. If you compare them as if they were integers or floating
point numbers, you may get the wrong answer. Consider these examples:
Q: "6" as version < "6.44" as version
A: False
Q: "6.0" as version < "6.44" as version
A: True

The second relevance expression works, because it has the same number of version
segments, so it compares properly.
Q: "5" as version = "5.50" as version
A: True
Q: "5.00" as version = "5.50" as version
A: False

The second expression fails properly, because it compares a two-segment version to
another two-segment version.

Don’t assume the version segments are two-digits:

Chapter 2. Using Relevance 37

Q: "5.100" as version > "5.99" as version
A: True
Q: "5.10" as version > "5.99" as version
A: False

The Relevance language compares the numeric values of the version segments
(separated by periods), regardless of the number of digits in the segment. To be
safe, always specify complete version numbers.

Inspecting the Windows Registry

You can abbreviate the root keys of the registry. For instance, instead of
"HKEY_LOCAL_MACHINE\Software" you can write "HKLM\Software", etc. Here
is the complete list of registry shortcuts:

HKCR HKEY_CLASSES_ROOT

HKCU HKEY_CURRENT_USER

HKLM HKEY_LOCAL_MACHINE

HKU HKEY_USERS

HKCC HKEY_CURRENT_CONFIG

Accessing the Current User Keys

The IBM Endpoint Manager Client runs as the LOCAL SYSTEM account and so its
HKEY_CURRENT_USER branch does not match the logged in user’s branch.
However, it is still possible to get the logged in user’s HKEY_CURRENT_USER
branch of HKEY_USERS by searching through the Logon keys for the name of the
current user:
Q: name of key whose ((it = name of current user as lowercase OR it starts with
name of current user as lowercase & "@") of (it as string as lowercase) of value
"Logon User Name" of key "Software\Microsoft\Windows\CurrentVersion\Explorer"
of it) of key "HKEY_USERS" of registry
A: S-1-5-21-1214450339-2025729265-839522115-1013

Be sure to include the word "key" when you want to examine a registry key. It is
easy to look at an expression like this and think you are getting a valid answer:
Q: exists "HKEY_LOCAL_MACHINE\Software\Microsoft\Active Setup\Installed Components
\{f502aef4-a754-4c82-9f12-a5149f71ea89}" of registry
A: True

However, what is true here is that the string literal exists, not the key. The correct
expression is:
Q: exists key "HKEY_LOCAL_MACHINE\Software\Microsoft\Active Setup
\Installed Components\{f502aef4-a754-4c82-9f12-a5149f71ea89}" of registry
A: False

Finding Registry Keys and values

Here's how to iterate through the names and values of keys in the registry:
Q: (names of it, it) of values of key "HKLM\SOFTWARE\Microsoft\Windows
\CurrentVersion\Installer\UserData\S-1-5-18\Products\FAA9C0AB723160F34
BC943B9B48E7F04\Patches\30BCFA5611132E741BDE91D8B6B09CE6" of registry
A: MSI3, 1
A: State, 1
A: Uninstallable, 1

38 IBM Endpoint Manager: Relevance Language Guide

A: LUAEnabled, 0
A: PatchType, 1
A: Installed, 20110106
A: DisplayName, KB945140

A: MoreInfoURL, http://www.microsoft.com/

You can test for the existence of specific keys:
Q: exists value whose (name of it is "DisplayName") of key "HKEY_LOCAL_MACHINE
\SOFTWARE\Microsoft\Windows\CurrentVersion\Installer\UserData\S-1-5-18\Products
\FAA9C0AB723160F34BC943B9B48E7F04\Patches\30BCFA5611132E741BDE91D8B6B09CE6"
of registry
A: True

And you can test for specific values of a key:
Q: exists value whose (name of it is "DisplayName" and it is "KB945140") of key
"HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Installer\UserData
\S-1-5-18\Products\FAA9C0AB723160F34BC943B9B48E7F04\Patches\30BCFA5611132E741BDE
91D8B6B09CE6" of registry
A: True

Discovering Mapped Network Drives

It’s easy and fast to find the names of the drives connected to the local computer:
Q: names of drives
A: A:
A: C:
A: D:
A: E:
A: F:
A: G:

But how do you find out about mapped drives?
Q: (selects ("ProviderName from win32_LogicalDisk")of WMI)
A: ProviderName
A: ProviderName
A: ProviderName
A: ProviderName
A: ProviderName
A: ProviderName=\\Plato\shared docs

Using a WMI Inspector like the one above shows that the last drive is mapped to a
shared docs folder. You can correlate the drive names to the shared names as well:
Q: (if property "ProviderName" of it as string contains "=" then (substring
after "=" of (property "Name" of it as string) &" -- " & substring after "="
of (property "ProviderName" of it as string)) else nothing) of select objects
("Name,ProviderName from win32_LogicalDisk")of WMI
A: G: -- \\Plato\shared docs

This expression finds all the mapped drives, and returns their names and their
mapping.

Note: If you run the WMI query on a system with a local user, ZERO RESULTS is
returned. This might be because either there are no results or because there is a
lack of user context.

Finding the Paging File Size

The following expression returns the paging file size in Megabytes:

Chapter 2. Using Relevance 39

http://www.microsoft.com/

Q: sum of (preceding texts of firsts " " of following texts of firsts ".sys " of
preceding texts of firsts "%00" of following texts of substrings "%00" of ("%00"
& value "PagingFiles" of key "HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control
\Session Manager\Memory Management" of registry as string) as integer)
A: 1536

Discovering Services

The following will return the display name and ‘imagepath’ of services that should
be listed under the services control:
Q: (display name of it, image paths of it) of services
A: Alerter, %SystemRoot%\system32\svchost.exe -k LocalServic
A: Application Layer Gateway Service, %SystemRoot%\System32\alg.exe
A: Application Management, %SystemRoot%\system32\svchost.exe -k netsvcs
A: ASP.NET State Service, %SystemRoot%\Microsoft.NET\Framework\v1.1.4322
\aspnet_state.exe
A: Windows Audio, %SystemRoot%\System32\svchost.exe -k netsvcs
A: Background Intelligent Transfer Service, %SystemRoot%\system32\svchost.exe
-k netsvcs
A: Computer Browser, %SystemRoot%\system32\svchost.exe -k netsvcs...

See the Microsoft registry documentation reference for more information.

Finding the Last Write Time of Registry Keys

You can discover the last time any given registry key was written:
Q: last write time of key "HKEY_LOCAL_MACHINE\SOFTWARE\BigFix\" of registry
A: Thu, 07 Jan 2010 17:32:08 -0800

Environment variables

Windows environment variables are available for Inspection using a phrase like
this:
Q: value of variable "PATH" of environment
A:/usr/kerberos/sbin:/usr/kerberos/bin:/usr/local/sbin:/usr/local/bin:
/sbin:/bin:/usr/sbin:/usr/bin:/root/bin

You can find and return all the environment variables with a simple expression:
Q: (names of it, values of it) of variables of environment
A: BESClientactionMastheadPath, /etc/opt/BESClient/actionsite.afxm
A: BESClientConfigPath, /var/opt/BESClient/besclient.config
A: CVS_RSH, ssh
A: DISPLAY, :0
A: G_BROKEN_FILENAMES, 1
A: HISTSIZE, 1000
A: HOME, /root
A: HOSTNAME, t-rhel5-x86-1
A: INPUTRC, /etc/inputrc
A: KDEDIR, /usr
A: KDE_IS_PRELINKED, 1
A: KDE_NO_IPV6, 1
A: LANG, en_US.UTF-8
A: LD_LIBRARY_PATH, /opt/BESClient/bin
A: LESSOPEN, |/usr/bin/lesspipe.sh %25s
A: LOGNAME, root

As of version 8 of TEM, you can also inspect environment variables associated
with processes on *nix machines:

40 IBM Endpoint Manager: Relevance Language Guide

http://msdn.microsoft.com/en-us/library/windows/desktop/ms724871(v=vs.85).aspx

Q: variables of environment of process 2186
A: BESClientactionMastheadPath = /etc/opt/BESClient/actionsite.afxm
A: BESClientConfigPath = /var/opt/BESClient/besclient.config
A: BESRelayConfigPath =
A: CONSOLE = /dev/pts/0
A: DISPLAY = :0

Determining Operating System Information

There are Inspectors that can interrogate the operating system for you. For instance
to find the version, you might use an expression like this:
Q: version of operating system
A: 6.1.7600

To retrieve the language of the current Windows Operating System, use:
Q: language of version block of file "user32.dll" of system folder
A: English (United States)

This Relevance clause applies to all existing versions of Windows, including 95, 98,
ME, XP, NT4 and 2000.

To find the name of the client operating system, you might use a statement like
this:
Q: name of operating system as lowercase contains "win"
A: True

As of TEM version 8, there is a shortcut for this syntax.
Q: windows of operating system
A: True

Acceptable values are windows, mac, and unix.

Accessing the Task Manager (Processes)

The Task Manager can be accessed on a Windows system (as of version 8 of TEM)
so that you can examine all the running processes. Here is an example that returns
various properties of the specific process named SQLAGENT:
Q: (working set size of it / 1024, page file usage of it / 1024, user of it)
of processes whose (name of it is "SQLAGENT.EXE")
A: 6492, 9336, TESTBOX\Administrator

You can examine virtually every property of running processes:
(name of it,
(if exists image file of it then pathname of image file of it else "n/a"),
id of it,
page fault count of it,
peak working set size of it,
working set size of it,
quota peak paged pool usage of it,
quota paged pool usage of it,
quota peak nonpaged pool usage of it,
quota nonpaged pool usage of it,
page file usage of it,
peak page file usage of it,
io read count of it,
io write count of it,
io other count of it,
io read size of it,
io write size of it,

Chapter 2. Using Relevance 41

io other size of it,
creation time of it,
kernel time of it,
user time of it,
handle count of it,
session id of it,
wow64 of it,
user of it,
(if (base priority of it = normal priority) then "Normal" else
if (base priority of it = high priority) then "High" else
if (base priority of it = idle priority) then "Idle" else
if (base priority of it = realtime priority) then "Realtime" else
if (base priority of it = above normal priority) then "Above Normal" else
if (base priority of it = below normal priority) then "Below Normal" else "N/A")
)
of processes

When you run this expression in the Fixlet debugger, use the Single Clause tab
(File > New Tab > New Single Clause Tab). You will iterate through the running
processes, returning strings like this:
smss.exe, C:\Windows\System32\smss.exe, 284, 540, 1175552, 69632, 38360, 10648,
3568, 1624, 454656, 520192, 12, 4, 654, 53790, 4, 10990, (Wed, 04 Apr 2012 11:06:35
-0400), 00:00:00.031200, 00:00:00.015600, 30, 0, False, NT AUTHORITY\SYSTEM, Normal
csrss.exe, C:\Windows\System32\csrss.exe, 408, 2778, 4558848, 1863680, 155376,
143920, 15368, 13088, 2154496, 2154496, 497, 0, 5590, 386796, 0, 262035, (Wed,
04 Apr 2012 11:06:40 -0400), 00:00:01.404009, 00:00:00.218401, 646, 0, False,
NT AUTHORITY\SYSTEM, Normal
wininit.exe, C:\Windows\System32\wininit.exe, 480, 1351, 4579328, 167936, 106368,
102384, 13960, 9736, 1531904, 1847296, 1, 0, 1848, 7168, 0, 9374, (Wed, 04 Apr
2012 11:06:45 -0400), 00:00:00.093600, 00:00:00.046800, 77, 0, False,
NT AUTHORITY\SYSTEM, High

Examining Running and Scheduled Tasks

Scheduled and running tasks on a Windows computer can be accessed and
examined as of version 8 of TEM. For instance, you can find the names of
currently running tasks with an expression like this:
Q: names of running tasks
A: SystemSoundsService
A: MsCtfMonitor

To see what tasks are scheduled to run and when, use an expression like the
following:
Q: (names of it, paths of it, next run times of it) of scheduled tasks
A: AD RMS Rights Policy Template Management (Automated), \Microsoft
\Windows\Active Directory Rights Management Services Client\AD RMS Rights
Policy Template Management (Automated), (Thu, 19 Aug 2010 03:05:32 -0700)
A: AitAgent, \Microsoft\Windows\Application Experience\AitAgent,
(Thu, 19 Aug 2010 02:30:00 -0700)
A: ProgramDataUpdater, \Microsoft\Windows\Application Experience
\ProgramDataUpdater, (Thu, 19 Aug 2010 00:30:00 -0700)
A: Consolidator, \Microsoft\Windows\Customer Experience Improvement
Program\Consolidator, (Wed, 18 Aug 2010 22:00:00 -0700)
A: KernelCeipTask, \Microsoft\Windows\Customer Experience
Improvement Program\KernelCeipTask, (Thu, 19 Aug 2010 03:30:00 -0700)

The following example shows how to list all of the tasks that will run at logon:
Q: names of scheduled tasks whose (exists definitions whose (exists
triggers whose (type of it is logon task trigger type) of it) of it)
A: AD RMS Rights Policy Template Management (Automated)

42 IBM Endpoint Manager: Relevance Language Guide

A: AD RMS Rights Policy Template Management (Manual)
A: Microsoft-Windows-DiskDiagnosticResolver
A: Logon Synchronization
A: AutoWake

Recognizing Office Service Packs

You may need to verify an Office Service Pack before you apply an action. This is
not always a trivial procedure. Information about Office XP is stored as an
uninstall key in the registry, which has a name enclosed in curly brackets like this:
{WXYYZZZZ-6000-11D3-8CFE-0050048383C9}

Similarly, Office 2003 has a registry entry like this:
{WXYYZZZZ-6000-11D3-8CFE-0150048383C9}

Where:

W: Release Type = 9 (Manufacturing)

X: Edition Type = 0 or 1

YY: SKU of product

Office XP:11 (Pro), 12 (Standard), 13 (Sm Bus), 28 (Pro w/ FrontPage), ...

Office 2003: 11 (Pro), 12 (Std), 13 (Basic), CA (Sm Bus), ...

ZZZZ: Hexadecimal language identifier of product; English = 0409 (1033 decimal)

Office XP SP3

The pattern of numbers that identifies Office XP SP3 is encoded in the following
Relevance expression:
Q: exists key whose (value "DisplayVersion" of it as string as version >=
"10.0.6626.0" as version AND (character 1 of it = "9" AND (character 2 of
it = "0" OR character 2 of it = "1") AND (first 2 of following text of first
3 of it = "11" OR first 2 of following text of first 3 of it = "12" OR first
2 of following text of first 3 of it = "13" OR first 2 of following text of
first 3 of it = "28") AND (preceding text of first "}" of it ends with
"6000-11D3-8CFE-0050048383C9")) of name of it) of key "HKEY_LOCAL_MACHINE
\SOFTWARE\Microsoft\Windows\CurrentVersion\Uninstall" of registry

Office 2003 SP2

The pattern of numbers that identifies Office 2003 SP2 is encoded in the following
Relevance expression:
Q: exists key whose (value "DisplayVersion" of it as string as version >=
"11.0.7969.0" as version AND (character 1 of it = "9" AND (character 2 of
it = "0" OR character 2 of it = "1") AND (first 2 of following text of
first 3 of it = "11" OR first 2 of following text of first 3 of it =
"12" OR first 2 of following text of first 3 of it = "13" OR first 2
of following text of first 3 of it = "CA" OR first 2 of following text of
first 3 of it = "E3") AND (preceding text of first "}" of it ends with
"6000-11D3-8CFE-0150048383C9")) of name of it) of key "HKEY_LOCAL_MACHINE
\SOFTWARE\Microsoft\Windows\CurrentVersion\Uninstall" of registry

Chapter 2. Using Relevance 43

Detecting Foreign Language Service Packs

Typically, it is a simple matter to find out if a Windows Service Pack is installed by
inspecting the Corrective Service Disk (CSD) version of the operating system:
Q: csd version of operating system
A: Service Pack 2

For instance, this Relevance expression will be true if Service Pack 1 or 2 is
installed:
Q: (csd version of it = "Service Pack 1" or csd version of it = "Service Pack 2") of
operating system
A: True

However, both Hungarian and Polish have unconventional names for their
Windows Service Packs. The following Inspectors will properly identify these
anomalies:

Hungarian
Q: (name of it = "WinXP" AND (it = "Service Pack 1" OR it = "Szervizcsomag 1" OR
it = "Service Pack 2" OR it = "Szervizcsomag 2") of csd version of it) of
operating system
Q: (name of it = "Win2003" AND (it = "" OR it = "Service Pack 1" OR it =
"Szervizcsomag 1") of csd version of it) of operating system

The first expression finds the service pack on WinXP, and the second works for
Win2000 machines. They will return true if Service Pack 1 or 2 have been installed.

Polish
Q: (name of it = "WinXP" AND (csd version of it = "Service Pack 1" OR csd version of
it = "Service Pack 2" OR (csd version of it as lowercase starts with "dodatek" AND
(csd version of it ends with " 1" OR csd version of it ends with " 2"))))
of operating system

Deconstructing XML

You can deconstruct XML files using the appropriate Inspectors. For this example,
assume you have an XML file named "c:\sample.xml" that looks like this:
<?xml version="1.0"?>
<message>

<to>jim@rocket_science.com
<name>Jim Neutron</name>
<nickname>Jimmy the Geek</nickname>

</to>
<to>bob@rocket_science.com

<name>Bob Goddard</name>
<nickname>The Bobster</nickname>

</to>
<from>joe@big_sky.com</from>
<subject>Let's do launch!</subject>
<text>We are ready to test the new orbiter!</text>

</message>

Here are the results of using various XML Inspectors on this file:
Q: node names of child nodes of xml document of file "c:\sample.xml"
A: xml
A: message

Q: node names of child nodes of selects "message" of xml document of file
"c:\sample.xml"
A: to

44 IBM Endpoint Manager: Relevance Language Guide

A: to
A: from
A: subject
A: text

Q: node names of child nodes of selects "message/to" of xml document of file
"c:\sample.xml"
A: #text
A: name
A: nickname
A: #text
A: name
A: nickname

Q: unique values of node names of child nodes of selects "message/to" of
xml document of file "c:\sample.xml"
A: #text
A: name
A: nickname

Q: node values of child nodes 0 of selects "message/to" of xml document
of file "c:\sample.xml"
A: jim@rocket_science.com%0a

A: bob@rocket_science.com%0a

Q: node values of child nodes of selects "message/to/nickname" of
xml document of file "c:\sample.xml"
A: Jimmy the Geek
A: The Bobster

Q: node names of next siblings of selects "message/to" of xml document
of file "c:\sample.xml"
A: to
A: from

Q: node names of parent nodes of selects "message/to" of xml document
of file "c:\sample.xml"
A: message
A: message

Using White Lists

You can use Relevance expressions to search client computers for approved
applications. First, create a file named ‘whitelist.txt’ with the names of the
approved applications. The names should match the registered application name as
returned by the regapp Inspector. Here’s a relevance statement that outputs the
names of registered applications:
Q: unique values of names of regapps
A: AcroRd32.exe
A: Acrobat Elements.exe
A: Ahqrun.exe
A: CTDVDA.exe
A: CTDVDDET.exe
A: CTRegSvr.exe
A: EPSONCD.exe
A: EXCEL.EXE...

Now create a white-list file with one application name per line, like the following:
Q: lines of file "c:\whitelist.txt"
A: acrodist.exe
A: conf.exe
A: EXCEL.EXE
A: IEXPLORE.EXE

Chapter 2. Using Relevance 45

mailto:bob@rocket_science.com%0a

A: msconfig.exe
A: OUTLOOK.EXE
A: Photoshop.exe
A: WINWORD.EXE
A: WINZIP32.EXE
A: wmplayer.exe
A: wordpad.exe...

Now you can craft an expression that compares your white-listed applications with
the installed applications stored in the registry. This expression outputs a list of the
approved applications that exist on the client computer:
Q: (lines of file "c:/whitelist.txt", unique values of names of regapps)
whose (item 0 of it is item 1 of it)
A: conf.exe, conf.exe
A: EXCEL.EXE, EXCEL.EXE
A: IEXPLORE.EXE, IEXPLORE.EXE
A: msconfig.exe, msconfig.exe
A: OUTLOOK.EXE, OUTLOOK.EXE
A: Photoshop.exe, Photoshop.exe
A: WINWORD.EXE, WINWORD.EXE
A: WINZIP32.EXE, WINZIP32.EXE
A: wmplayer.exe, wmplayer.exe
A: wordpad.exe, wordpad.exe

You can test for files that are not approved by checking to make sure that a given
registered application doesn’t exist anywhere in the white-list. This is done by
checking the multiplicity of non-matches. If the non-matches equal the number of
lines in the white-list, then the application is nowhere on the list:
Q: unique values whose (multiplicity of it = number of lines of file
"c:/whitelist.txt") of (item 1 of it) of it whose ((item 1 of it)
does not start with (item 0 of it)) of ((lines of file "c:/whitelist.txt"),
unique values of names of regapps)
A: AHQTbU.exe
A: AcroRd32.exe
A: Ahqrun.exe
A: AudioCvt.exe
A: AudioHQU.exe
A: BrainExplorer.exe
A: CISDS.ds
A: CTCMSGo.exe
A: CTDVDA.exe ...

This produces a list of applications on the client computer that are not approved.
This list can directly drive an action, or it can be sent to the IBM Endpoint
Manager Administrator who can decide how to handle it.

Note that you could also have a black-list that could serve to identify known
unapproved applications.

46 IBM Endpoint Manager: Relevance Language Guide

Appendix A. Relevance language Grammar

The grammar for the relevance language can be expressed in the Backus Naur
Format as follows:

<primary> := (<expression>) | string | numeral | it

<index> := phrase <primary> | phrase | <primary>

<property> := phrase <primary> <whose primary> <of property> |

primary <whose primary> <of property>

<cast> := <cast> as phrase | < property >

<phrase> := item | number | <expression>

<unary> := exists <unary> | notExists <unary> | not <unary> | - <unary> |
<cast>

<productOperator> := * | / | mod | &

<product> := <product> <productOperator> <unary> | <unary>

<sum> := <sum> + <product> | <sum> - <product> | <product>

<relationExpr> := <sum> relation <sum> | <sum>

<relation> := relationOperator | relationPhrase

<relationOperator> := = | != | < | > | <= | >=

<relationPhrase> := is | is equal to | equals | is not | is not equal to | does not
equal |

is greater than | is not greater than | is less than | is not less than |

is less than or equal to | is not less than or equal to |

is greater than or equal to | is not greater than or equal to | contains |

does not contain | is contained by | is not contained by | starts with |

does not start with | ends with | does not end with

<andExpression> := <andExpression> and <relationExpr> | <relationExpr>

<orExpression> := <orExpression> or <andExpression> | <andExpression>

<tuple> := <orExpression> , <tuple> | <orExpression>

<collection> := <collection> ; <tuple> | <tuple>

© Copyright IBM Corp. 2013, 2014 47

<expression> := if <expression> then <expression> else <expression> |
<collection>

Relevance Operators

Operator Effect Grammatic Value

& The string concatenation
operator.

&

, The tuple operator. Creates a
tuple of objects.

,

; The collection operator.
Collects its operands into one
plural result.

;

+ The sum operator. +

- The subtraction operator. -

* The multiplication operator. *

/ The division operator. /

= Equivalent to the ‘is’
keyword.

relation

!= Equivalent to ‘is not’. relation

< The ‘less than’ operator. relation

<= The ‘less than or equal to’
operator.

relation

> The ‘greater than’ operator. relation

>= The ‘greater than or equal to’
operator.

relation

Precedence and Associativity

In the Relevance language, the operator precedence is fairly standard, e.g.
multiplication has a higher precedence than addition, so 3+5*2 = 3+(5*2), not
(3+5)*2:
Q: 3+5*2
A: 13

Parentheses, as expected, trump the other operators:
Q: (3+5)*2
A: 16

If two operators with the same precedence act on the same object, then a choice is
made to associate first with either the left or right object. Addition and subtraction
are left-associative, thus, 1+2-3+4 is processed as (((1+2)-3)+4).

Casting is also left-associative, so that ‘3 as string as integer’ is interpreted as (3 as
string) as integer:
Q: 3 as string as integer
A: 3
I: singular integer

48 IBM Endpoint Manager: Relevance Language Guide

The following is a list of the language elements, from highest to lowest precedence,
including associativity where appropriate:

Description Grammatic Value Associativity

parentheses ()

casting operator as left

unary operator exists, not exists, not, -

products *, /, mod, & left

addition +, - left

relations =, !=, <, <=, >, >=

AND and left

OR or left

Tuple ,

plural ; left

Note there is no associativity listed for a relation, because multiple relation
operators cannot appear in the same sub-expression. For example:
Q: 1 is 1 is 1
A: This expression could not be parsed.

Also, the tuple operator (comma) is right associative, but is not listed that way in
the table because parentheses can change the association. For example, the first
expression below is a triple, but the second is a pair:
Q: (1), (2), (3)
A: 1, 2, 3
Q: (1), (2,(3))
A: 1, (2, 3)

Relevance Key Phrases

This section presents an alphabetized table of the keywords in the Relevance
language, along with their grammatical values.

Keyword Effect Grammatic Value

a Ignored by the relevance
evaluator. Used to improve
readability.

<none>

an Ignored by the relevance
evaluator. Used to improve
readability.

<none>

and The logical AND operator.
Doesn’t evaluate the right
hand side if the left hand
side is false.

and

as The typecast operator, used
to convert one type to
another.

as

contains Returns TRUE when a string
contains another string as a
substring.

relation

Appendix A. Relevance language Grammar 49

Keyword Effect Grammatic Value

does not contain Equivalent to ‘not contains’. relation

does not end with Returns TRUE when a string
does not end with the
specified substring.

relation

does not equal Equivalent to ‘is not’. relation

does not start with Returns TRUE when a string
does not start with the
specified substring.

relation

else Denotes the alternative path
in an ‘if-then-else’ statement.

else

ends with Returns TRUE when a string
ends with the specified
substring.

relation

equals Equivalent to ‘is’. relation

exist Returns a boolean TRUE /
FALSE indicating whether an
object exists.

exists

exist no Equivalent to ‘not exist’. not exists

exists Equivalent to ‘exist’. exists

exists no Equivalent to ‘not exist’. not exists

if The keyword to begin an
‘if-then-else’ expression.

if

is Returns TRUE when two
objects are equal. Note that
not all objects can be tested
for equality. Equivalent to
the ‘=’ operator.

relation

is contained by Returns TRUE when a string
contains another string as a
substring.

relation

is equal to Equivalent to ‘is’. relation

is greater than The ‘>’ comparison. relation

is greater than or equal to The ‘>=’ comparison. relation

is less than The ‘<’ comparison. relation

is less than or equal to The ‘<=’ comparison. relation

is not Returns TRUE when two
objects are not equal. Note
that not all objects can be
compared with this keyword.

relation

is not contained by Returns TRUE when a string
does not contain another
string as a substring.

relation

is not equal to Equivalent to the keyword ‘is
not’ and the ‘!=’ operator.

relation

is not greater than Equivalent to is less than or
equal to or ‘<=’.

relation

is not greater than or equal
to

Equivalent to is less than or
‘<’.

relation

50 IBM Endpoint Manager: Relevance Language Guide

Keyword Effect Grammatic Value

is not less than Equivalent to is greater than
or equal to or ‘>=’.

relation

is not less than or equal to Equivalent to is greater than
or ‘>’.

relation

it A reference to the closest
direct object or ‘whose’
clause.

it

item Used to index into a tuple.
Always returns a singular
value.

phrase

items Equivalent to item, but
returns a plural value.

phrase

mod The modulo operator. mod

not The logical NOT operator. relation

number Returns the number of
results in an expression.

phrase

of Used to access a property of
an object.

of

or The logical OR operator.
Doesn’t evaluate the right
hand side if the left hand
side is true.

or

starts with Returns TRUE when a string
begins with the specified
substring.

relation

the Ignored by the relevance
evaluator. Used to improve
readability.

<none>

then Denotes the main path to
take in an if-then-else
expression.

then

there do not exist Equivalent to ‘not exist’. not exists

there does not exist Equivalent to ‘not exist’. not exists

there exist Equivalent to ‘exist’. exists

there exist no Equivalent to ‘not exist’. not exists

there exists Equivalent to ‘exist’. exists

there exists no Equivalent to ‘not exist’. not exists

whose Used along with the ‘it’
keyword to filter plural
results.

whose

Language History

BES 1.x
v Includes starting primitives, such as boolean, integer, hertz, string, rope and time

types.

Appendix A. Relevance language Grammar 51

v Includes file, application, version, folder, drive, OS, bios, registry, environment,
current user Inspectors.

v Includes processor, device and RAM Inspectors.
v Includes service, network interface and IPV4 address types.
v Includes action properties.
v Includes DMI Inspectors.
v Includes casting operators.

BES 2.x
v Adds network adapters.
v Adds Clients and Settings.
v Adds WMI.

BES 3.x
v Adds some world, string, client and service Inspectors.

BES 4.x
v Adds access control entries and lists (ACEs, ACLs).
v Extends file version properties.
v Adds floating point numbers and integer ranges.
v Adds metabase Inspectors.
v Adds network shares and port mapping.
v Adds security descriptors and identifies.
v Introduces internet firewall inspectors.

BES 5.0
v Adds connections.
v Adds Fixlet Inspectors.
v Adds media type inspectors.

BES 5.1
v If-then-else clauses gain the ability to guard against unknown vocabulary by late

binding, helping to write safe cross-platform expressions.
v Introduces Introspectors that can query the language itself.
v Introduces bit sets.
v Adds file lines and folder descendents.
v Adds more firewall Inspectors.
v Adds wake-on-lan status.
v Adds XML Inspectors.

BES 6.0
v Introduces session Inspectors, including BES actions, computers, sites, Fixlets,

results, properties, users and Wizards.
v Introduces statistical Inspectors.
v Introduces multiplicities of strings and integer.
v Introduces multi-valued results (tuples).
v Adds conjunction and disjunction of boolean lists.
v Introduces new date Inspectors, including months, years and the day of week,

month and year.

52 IBM Endpoint Manager: Relevance Language Guide

v Adds regular expressions.
v Extends access control list (ACL) Inspectors.
v Improves WMI hierarchy Inspectors.
v Adds HTML-creation Inspectors.
v Adds Windows Event logs and local groups.
v Introduces application usage summaries.

TEM 7.0
v Adds new session Inspectors.
v Adds distinguished name Inspectors.
v Adds firewall Inspectors.
v Adds integer set Inspectors.
v Adds IPv6 address and conversion Inspectors

TEM 8.0
v Introduces Scheduled Task and Task Manager Inspectors.
v Adds wildcard searches for files and folders.
v Adds indexed substring Inspectors.
v Adds range operators.
v Introduces sum of time Inspectors.
v Introduces sum and product of operators on floating point lists.
v Introduces new OS operators and environment variable Inspectors.

Error Messages

"It" used outside of "whose" clause

This is a potentially confusing error message because it is perfectly legal to use it
without a whose clause as long as you form the syntax correctly. This message just
means that interpreter does not know what it refers to, typically due to a syntax
error. For example:
Q: it
E: "It" used outside of "whose" clause.

Here the "it" keyword is used in a context where it can't refer to anything. Here is
another example:
Q: system folder (name of it & pathname of it)
E: "It" used outside of "whose" clause.

The error indicates that the interpreter does not know what it is, because the
statement is formulated incorrectly. The correct statement would be:
(name of it & pathname of it) of system folder

To ensure that it points toward an object, you must make sure that you include of
<object> after the statement.

A boolean expression is required

This error message is produced when a statement requires a boolean value to
evaluate, but instead the receives a different type. The Relevance language is

Appendix A. Relevance language Grammar 53

strongly typed, and inattention to proper type matching is the source of most bugs.
Among other things, a boolean type is required after if and whose statements. For
example:
Q: Names of files whose (version of it = "5") of system folder

This example works because the value in the parenthesis is a boolean. Otherwise
you get this error, as in this incorrect example:
Q: Names of files whose (version of it) of system folder
E: A boolean expression is required.

Here, the parenthetical statement doesn't evaluate to a boolean, so the expression
fails with an error.

The test for an if-then statement must also be boolean. You might think a non-zero
number would evaluate to true, but types must be carefully matched, and in the
Relevance language, a number is a number, and not a boolean:
Q: if 1 then "boo" else "hoo"
E: A boolean expression is required.

One (1) is a number; use a boolean instead:
Q: if 1=1 then "boo" else "hoo"
A: boo

Which is the same as
Q: if true then "boo" else "hoo"
A: boo

Along the same lines, you might think to test for an executable file like this:
Q: If regapp "besclient.exe" then version of regapp "besclient.exe" as string
else "N/A"
E: A boolean expression is required.

Instead, you should check for the existence of the file, which is boolean:
If exists regapp "besclient.exe" then version of regapp "besclient.exe" as string
else "N/A"

A singular expression is required

This error message can result from trying to compare two lists or a list to an object.
In general, all comparisons must be made between two singular objects. For
instance:
Q: Versions of files of folder "c:\temp2" = versions of files of folder "c:\temp"
e: A singular expression is required.

Returns the error because comparing two lists is undefined. This will result in an
error even if both folders contain exactly the same files. Similarly,
Versions of files of folder "c:\temp" = "4.5"

Gives the same error because you can’t compare a list to a single value. You will
get this error even if there is only one file in the folder "c:\temp" whose version is
4.5. If you want to iterate through multiple comparisons, use the whose statement:
versions of files whose (version of it = "4.5") of folder "c:\temp"

You can also get this error when you try to operate on two objects with different
plurality, as in this example where we attempt to add a number and a list:

54 IBM Endpoint Manager: Relevance Language Guide

Q: 1 + (2;3)
E: A singular expression is required.

A string constant had an improper %-sequence

You can insert characters into a string by entering a percent sign and then the
ASCII hex value of the character. Percent-encoded literals are parsed to make sure
they are of the form %hh, where h is a hexadecimal number. Improper codes
(non-hex numbers) will trigger this error.

When you use a percent sign in a string, the relevance engine looks at the next two
characters to see if they correspond to an ASCII hex value. For instance:
Q: "html uses %3Cangle brackets%3E"
A: html uses <angle brackets>
Q: "This is the %22truth%22"
A: This is the "truth"

However, a string with a percent sign in it will return this error if either of the
following conditions are true:
v There are less than two characters in the string after the percent sign.
v The two characters following the percent sign aren't valid hexadecimal

characters (0-9, a-f, A-F).

You won’t get the error message if the percent sign is followed by letters or
numbers, even if they don’t correspond to a valid ASCII value (00-7F). For
instance:
Q: "html uses %3cangle brackets%9E"
A: html uses <angle brackets%9e

This may not give the desired result, because 9E is not a valid ASCII character, but
it doesn't result in an error. However, this does:
Q: "html uses %3cangle brackets%9"
E: A string constant had an improper %-sequence.

This returns the error because the percent is followed by only one character.

Since the percent sign is an escape character, this means you can’t casually place it
in a string literal. To get a percent sign into a string, use ‘%25’:
exists "c:\testfolder\percent%25.txt"

This expression returns true if you have a file named percent%.txt in the given
folder. Note that this string will print out differently in the Fixlet debugger context:
q: "c:\testfolder\percent%25.txt"
A: c:\testfolder\percent%25.txt

This is because the value is re-inserted into the text until the final invocation, to
ensure that a naked percent sign never gets exposed.

A string constant had no ending quotation mark

All strings need a beginning and ending pair of quotes. This error message
indicates that there is an odd number of quotation marks in the expression. For
instance:
Q: "hello
E: A string constant had no ending quotation mark.

Appendix A. Relevance language Grammar 55

Make sure all your quotes are matched.

An integer constant was too large
Q: 99999999999999999999
E: An integer constant was too large.

There is a limit on the magnitude of integer constants. As of version 6.0, an integer
constant can’t have a value greater than 2^64-1. Also, if an integer in an expression
has a value between 2^63 and 2^64-1 inclusive, the error "Singular expression
refers to nonexistent object" will be thrown.

Cannot evaluate now

An Inspector encountered an error that it expects to be transient.

Conversion has wrong type

When a complete expression has the wrong type for the context in which it's used,
an implicit conversion is attempted:
v as boolean when used in x-relevant-when statements
v as string for most other contexts

If the conversion exists, but doesn't return the expected type, you get this error.

Incompatible types
Q: 3; "three"
E: Incompatible types.

Some operations have multiple arguments that must be the same type, or at least
share a base type. This example uses the plural (;) operator, which requires a list of
objects with the same type. This same example works fine, however, with a tuple
operator (,):
Q: 3, "three"
A: 3, three

Another example is with an if/then/else statement. This returns either the
expression after then or else, but both must return the same object type. For
instance:
Q: if exists regapp "Besconsole.exe" then version of regapp "Besconsole.exe" else
"Not Installed"
E: Incompatible types.

The error is generated because the then expression returns a version, while the
else expression returns a string. Make sure that both statements return the same
type by converting the version to a string:
If exists regapp "Besconsole.exe" then version of regapp "Besconsole.exe" as string
else "Not Installed"

Inspector-defined error

Some errors are specific to the Inspector.
Q: total duration of application usage summaries "excel.exe"
E: application usage summary inspector is disabled

This is an error built into the ‘application usage summary’ Inspector.

56 IBM Endpoint Manager: Relevance Language Guide

Invalid operator (<&)

A sequence of legal punctuation marks does not resolve to be a recognized
operator.

No inspector context

Certain inspectors can only be evaluated by the client and therefore will not work
in the Fixlet debugger. If you try to evaluate one of these in the Fixlet debugger,
you will receive No Inspector Context. A common example is something like:
Q: pending restart
E: No inspector context.

In general, in order to evaluate statements that return this error you must define
them as retrieved properties from the IBM Endpoint Manager Console.

Phrase too long

There is a 64-character length limit on property names.

Singular expression refers to non-unique object

This error message arises when you try to query a singular property of multiple
objects. Relevance expressions require a match between the number of items in the
argument and the plurality of the Inspector. For instance:
Q: character of "abc"
A: a
E: Singular expression refers to non-unique object.

This expression returns a single character, as requested by the singular Inspector
character. However, the extra characters in the argument then generate the error.
To avoid this error, use a plural expression:
Q: characters of "abc"
A: a
A: b
A: c

Every Inspector has both a singular and plural version. They are both listed for
each Inspector in the appropriate guides.

To return a single value, you must query a single object.

Singular expression refers to nonexistent object

This is one of the most common error messages generated. It usually results from
querying a property of an object that does not exist, or querying a non-existent
property of an object. For instance:
Q: version of file "mslib.dll" of folder "c:\temp"
E: Singular expression refers to nonexistent object.

Q: character of ""
E: Singular expression refers to nonexistent object.

Singular expressions require at least one value. To avoid this error, use a plural
expression, such as characters. It won't return a value, since none is available, but
it won't generate an error, either.

Appendix A. Relevance language Grammar 57

For this particular expression, the error is generated if any of the following are
true:
v The folder "c:\temp" does not exist.
v There is no file named "misspelled.dll" in the folder "c:\temp".
v The file "misspelled.dll" located in the folder "c:\temp" does not have a version.

You could craft an expression that will not return an error by using plurals:
Q: versions of files "mslib.dll" of folders "c:\temp"

However, the better idea is to check for existence first:
Q: if (version of file "mslib.dll" of folder "c:\temp") then (version of file
"mslib.dll" of folder "c:\temp" as string) else "n/a"

This error message might display also when the user has not the permission rights
to access a property, for example the user has no access rights to a site containing
analysis defining that property. To avoid this problem, the administrator must give
users the proper access rights to the required properties.

The operator "<operator>" is not defined

This error occurs when the operation chosen is wrong or it can't be applied to the
specified types.
Q: 3 + "four"
E: The operator "plus" is not defined.

You also receive this message if you use a word that the Relevance interpreter does
not recognize. Here are some examples:
Q: Exists executable "file_name.exe" of system folder
E: The operator "executable" is not defined.

Here the word ‘executable’ is not a valid command in the relevance language.

The error is also generated when a non-existent property is queried:
Q: Version of key "HLKM/Software" of registry
E: The operator "version" is not defined.

Here, even though the relevance language knows the word ‘version’, it does not
recognize it as a valid property of registry key, and therefore generates this error.

The Operator "String" is not defined

This error occurs on the client machine (not in the debugger) when there is no way
to cast the result as a string, so it can't be represented. For instance:
set of (1;2;3)

This expression refers to a legitimate set, but the Relevance language doesn't know
how to represent it in the debugger. To see the set, use a syntax like this:
Q: elements of set of (1;2;3)
A: 1
A: 2
A: 3

Note, however, that although the client gets a string error, the Fixlet debugger will
produce a different error:
Q: set of (1;2;3)
E: This expression evaluates to an unrepresentable object of type "integer set"

58 IBM Endpoint Manager: Relevance Language Guide

The tuple index <index> is out of range

Tuples can be accessed by an index, but it must not exceed the range of the data:
Q: item 2 of (1,"a")
E: The tuple index 2 is out of range.

Tuple items are zero-based. Here the item is out of range – the legal values are 0
and 1:
Q: item 1 of (1,"a")
A: a

This expression contained a character which is not allowed

This error message is given when the relevance interpreter finds a character that it
does not recognize. For instance:
Q: {pathname of regapp "besclient.exe"}
E: This expression contained a character which is not allowed.

Curly braces are valid tokens in the action language, but not in relevance. For use
in the debugger, you need to drop the braces:
Q: pathname of regapp "besclient.exe"
A: C:\Program Files (x86)\BigFix Enterprise\BES Client\BESClient.exe

Similarly:
Q: #
E: This expression contained a character which is not allowed.

Here, a character that has no meaning in the language was used outside of string
constants.

This expression contained a tuple index which was not an
integer literal
Q: item (4-3) of (1,"a")
E: This expression contained a tuple index which was not an integer literal.

Calculating an index into a tuple isn’t allowed. You must use a literal:
Q: item 1 of (1,"a")
A: a

This expression could not be parsed

The first step of interpreting a relevance statement is parsing the expression into its
various

components. This error results from a failure of the parsing engine. This is
typically

caused by unmatched parentheses or by syntax errors involving certain reserved
words used by

the parsing engine. Reserved words are syntactical statements like of, and, equals,
and so

on.

Here are a couple of examples:

Appendix A. Relevance language Grammar 59

Q: =)
E: This expression could not be parsed.
Q: Name of (file whose (version of it = "2.6") of system folder
E: This expression could not be parsed.

The expression:
Exists file "name" of or system folder

Will return the same error message due to the improper use of the reserved words
of and or. This error is a catch-all for ungrammatical arrangements.

This expression evaluates to an unrepresentable object of type
"<type>"

The Relevance engine requires a basic framework for an answer. Sometimes a
statement can exist and be usable, but not be representable in the debugger
context:
Q: Key "HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\DirectX" of registry
E: This expression evaluates to an unrepresentable object of type "registry key"

Even though this key exists, there is no operation indicated and the Relevance
engine doesn't know what to produce. We need to be more specific:
Q: exists Key "HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\DirectX" of registry
A: True

Or perhaps we want to know about a value in the key:
Q: value "Version" of key "HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\DirectX" of
registry
A: 4.09.00.0904

This expression has a very long string
Q:"0123456789012345678901234567890123456789012345678901234567890123456789012345
6789012345678901234567890123456789012345678901234567890123456789012345678901234
5678901234567890123456789012345678901234567890123456789012345678901234567890123
4567890123456789012345678901234567890123456789012345678901234567890123456789012
3456789012345678901234567890123456789012345678901234567890123456789012345678901
2345678901234567890123456789012345678901234567890123456789012345678901234567890
123456789012345678901234567890123456789012"
E: This expression has a very long string.

There is a current (as of IBM Endpoint Manager 6.0) limit of 512 characters for the
length of a string constant, after encoding any escape (%) sequences in it. This can
be avoided by breaking the string up into two literals and concatenating them, like
so:
Q:"0123456789012345678901234567890123456789012345678901234567890123456789012345
6789012345678901234567890123456789012345678901234567890123456789012345678901234
5678901234567890123456789012345678901234567890123456789012345678901234567890123
45678901234567890123456789012345678901234567890" & "123456789012345678901234567
8901234567890123456789012345678901234567890123456789012345678901234567890123456
7890123456789012345678901234567890123456789012345678901234567890123456789012345
67890123456789012345678901234567890123456789012"

If the string being assembled is very long, the rope Inspector can be used to extend
the size limit:
Q:rope "01234567890123456789012345678901234567890123456789012345678901234567890
1234567890123456789012345678901234567890123456789012345678901234567890123456789
0123456789012345678901234567890123456789012345678901234567890123456789012345678
9012345678901234567890123456789012345678901234567890123456789012345678901234567

60 IBM Endpoint Manager: Relevance Language Guide

8901234567890123456789012345678901234567890123456789012345678901234567890123456
7890123456789012345678901234567890123456789012345678901234567890123456789012345
6789012345678901234567890123456789012345678901" & "2"

This expression has a very long word
Q: key longword01234567890123456789012345678901234567890123456789012345 of registry
E: This expression has a very long word.

A single word can only be 64 characters long, as of version 6.0.

This expression has strange punctuation
Q: !
E: This expression has strange punctuation.

The expression contains a character that is a prefix of an operator, but is not an
operator itself. A lone exclamation point can trigger this error.

User-defined error

You may want to define your own set of error messages. You can do this with the
error command:
Q: error "oops"
E: User-defined error: oops

A more useful formulation might be:
Q: if (year of current date as integer < 2006) then "Still good" else error
"Expired"
E: User-defined error: Expired

The error keyword allows you to set your own, user-defined error codes and
implement them in the else clause of an if/then/else statement.

Value not converted

The Relevance language attempts to implicitly convert results to a string, number
or boolean value. This error indicates that the value could not be converted.

See "Conversion has wrong type" and "The operator ‘string’ is not defined",
elsewhere in this list.

Appendix A. Relevance language Grammar 61

62 IBM Endpoint Manager: Relevance Language Guide

Appendix B. Glossary

action Password—See signing password.

action Scripting Language—The language used for crafting action scripts. Action
can be crafted in different scripting languages, including AppleScript and Unix
shells.

BigFix Enterprise Suite (BES)—The previous name for IBM Endpoint Manager.

Client—Software installed on each networked computer to be managed under the
IBM Endpoint Manager. The Client accesses a pool of Fixlets, checks the computer
it is installed on for vulnerabilities, and sends the Server a message when such a
condition occurs. Previously known as the BES Client, it is now known as the IBM
Endpoint Manager Client, or simply Client.

Console—A management program that provides an overview of the status of all
the computers with the Client installed in the network, identifying which might be
vulnerable and offering corrective actions. Previously known as the BES Console, it
is now known as the IBM Endpoint Manager Console, or simply Console.

Custom Site—You can create your own custom content and host it in a custom
site. This can only be done by a Master Operator that has been granted the rights
to create custom content (use the Admin program to allocate these users).

Fixlet—A mechanism for targeting and describing a problematic situation on a
computer and providing an automatic fix for it.

Fixlet servers—Web servers offering Fixlet site subscriptions. They can be either
internal to the enterprise network or external to the network (if direct external web
access is allowed).

Fixlet site—A trusted source from which the Client obtains Fixlets.

IBM Endpoint Manager database—A component of the system that stores data
about individual computers and Fixlets. The IBM Endpoint Manager Server’s
interactions primarily affect this database, which runs on SQL Server.

IBM Endpoint Manager—A preventive maintenance tool for enterprise
environments that monitors computers across networks to find and correct
vulnerabilities with a few simple mouse-clicks.

Management Rights—Ordinary Console Operators can be limited to a specified
group of computers. These limits represent the management rights for that user.
Only a Site Administrator or a Master Operator can assign management rights.

Master Operator—A Console Operator with administrative rights. A Master
Operator can do almost everything a Site Administrator can do, with the exception
of creating new operators.

© Copyright IBM Corp. 2013, 2014 63

masthead—Files containing the parameters of the IBM Endpoint Manager process,
including URLs that point to where trusted Fixlet content is available. The IBM
Endpoint Manager Client brings content into the enterprise based on subscribed
mastheads.

Operator—A person who operates the IBM Endpoint Manager Console. Ordinary
operators can deploy Fixlet actions and edit certain computer settings. Master
Operators have extra privileges, among them the ability to assign management
rights to other operators.

Relay—This is a Client that is running special server software. Relays spare your
server and the network by minimizing direct server-client downloads and by
compressing upstream data. Relays are automatically discovered by Clients, which
dynamically choose the best Relay to connect to. Previously known as the BES
Relay, it is now known as the IBM Endpoint Manager Relay, or simply Relay.

Relevance Language—The language in which relevance expressions are written.
Relevance expressions query the client computer to determine if remediation is
desired. Remediation may consist of an action script which can also use Relevance
expressions, ensuring that the item being fixed is the same as the item that was
initially identified.

Server—A collection of interacting applications (web server, CGI-BIN, and
database server) that coordinates the relay of information to and from individual
computers in the IBM Endpoint Manager system. The server processes may be
hosted by a single server computer or segmented to run on separate server
computers or replicated on redundant servers. Previously known as the BES
Server, it is now known as the IBM Endpoint Manager Server, or simply Server.

Signing password—The password (specified when the IBM Endpoint Manager
system was installed) used by a Console operator to sign an action for deployment.
It is called the action password in the Console interface.

Site Administrator —The only IBM Endpoint Manager Console Operator with the
right to create new Operators.

64 IBM Endpoint Manager: Relevance Language Guide

Appendix C. Support

For more information about this product, see the following resources:
v http://pic.dhe.ibm.com/infocenter/tivihelp/v26r1/topic/com.ibm.tem.doc_9.1/

welcome/welcome.html
v IBM Endpoint Manager Support site
v IBM Endpoint Manager wiki
v Knowledge Base
v Forums and Communities

© Copyright IBM Corp. 2013, 2014 65

http://pic.dhe.ibm.com/infocenter/tivihelp/v26r1/topic/com.ibm.tem.doc_9.1/welcome/welcome.html
http://pic.dhe.ibm.com/infocenter/tivihelp/v26r1/topic/com.ibm.tem.doc_9.1/welcome/welcome.html
http://www.ibm.com/support/entry/portal/Overview/Software/Tivoli/Tivoli_Endpoint_Manager
https://www.ibm.com/developerworks/mydeveloperworks/wikis/home?lang=en#/wiki/Tivoli%20Endpoint%20Manager/page/Home
http://www-01.ibm.com/support/docview.wss?uid=swg21584549
http://www.ibm.com/developerworks/forums/category.jspa?categoryID=506

66 IBM Endpoint Manager: Relevance Language Guide

Notices

This information was developed for products and services that are offered in the
USA.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
United States of America

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for
convenience only and do not in any manner serve as an endorsement of those

© Copyright IBM Corp. 2013, 2014 67

websites. The materials at those websites are not part of the materials for this IBM
product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
2Z4A/101
11400 Burnet Road
Austin, TX 78758 U.S.A.

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

All IBM prices shown are IBM's suggested retail prices, are current and are subject
to change without notice. Dealer prices may vary.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

68 IBM Endpoint Manager: Relevance Language Guide

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

Portions of this code are derived from IBM Corp. Sample Programs.

© Copyright IBM Corp. _enter the year or years_. All rights reserved.

Programming interface information

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the web at www.ibm.com/legal/
copytrade.shtml.

Adobe, Acrobat, PostScript and all Adobe-based trademarks are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States,
other countries, or both.

IT Infrastructure Library is a registered trademark of the Central Computer and
Telecommunications Agency which is now part of the Office of Government
Commerce.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo,
Celeron, Intel Xeon, Intel SpeedStep, Itanium, and Pentium are trademarks or
registered trademarks of Intel Corporation or its subsidiaries in the United States
and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or
both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of
Microsoft Corporation in the United States, other countries, or both.

ITIL is a registered trademark, and a registered community trademark of The
Minister for the Cabinet Office, and is registered in the U.S. Patent and Trademark
Office.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Notices 69

http://www.ibm.com/legal/us/en/copytrade.shtml
http://www.ibm.com/legal/us/en/copytrade.shtml

Java™ and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

Cell Broadband Engine is a trademark of Sony Computer Entertainment, Inc. in the
United States, other countries, or both and is used under license therefrom.

Linear Tape-Open, LTO, the LTO Logo, Ultrium, and the Ultrium logo are
trademarks of HP, IBM® Corp. and Quantum in the U.S. and other countries.

Terms and conditions for product documentation
Permissions for the use of these publications are granted subject to the following
terms and conditions.

Applicability

These terms and conditions are in addition to any terms of use for the IBM
website.

Personal use

You may reproduce these publications for your personal, noncommercial use
provided that all proprietary notices are preserved. You may not distribute, display
or make derivative work of these publications, or any portion thereof, without the
express consent of IBM.

Commercial use

You may reproduce, distribute and display these publications solely within your
enterprise provided that all proprietary notices are preserved. You may not make
derivative works of these publications, or reproduce, distribute or display these
publications or any portion thereof outside your enterprise, without the express
consent of IBM.

Rights

Except as expressly granted in this permission, no other permissions, licenses or
rights are granted, either express or implied, to the publications or any
information, data, software or other intellectual property contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its
discretion, the use of the publications is detrimental to its interest or, as
determined by IBM, the above instructions are not being properly followed.

You may not download, export or re-export this information except in full
compliance with all applicable laws and regulations, including all United States
export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE
PUBLICATIONS. THE PUBLICATIONS ARE PROVIDED "AS-IS" AND WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING
BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY,
NON-INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

70 IBM Endpoint Manager: Relevance Language Guide

Notices 71

IBM®

Printed in USA

	Contents
	Chapter 1. Introducing the Relevance language
	The Scope of Relevance
	Using the Fixlet Debugger
	Using the Presentation Debugger

	Chapter 2. Using Relevance
	Relevance language Overview
	Primary Elements
	Exists
	Plurals (Collections)
	Whose - It
	Whose
	It

	Sets
	Properties and References
	Relations
	Casting
	Indexing
	Tuples
	Plurals with Tuples
	Comparing Tuples
	Arithmetic
	ANDs and ORs
	If-then-else
	Expressions

	IBM Endpoint Manager Inspectors
	Core Inspectors
	Other Inspector Examples
	Propagation of non-existence
	Determining Object Properties

	Relevance in Property Analysis
	Viewing Property Analyses
	Creating Property Analyses

	Relevance in action Scripts
	Viewing action Scripts
	Creating action Scripts

	Useful Relevance Expressions
	Using Number Ranges
	Using the Bar Operator
	Manipulating Strings
	Creating Multiple Results
	Reversing a String

	Substring index of string
	Manipulating Dates and Times
	Converting time to mm/dd/yyyy
	Converting yyyymmdd to date

	Summing Over Time Units
	Operating on Lists of Floating Point Numbers
	Using Wildcard Searches for Files and Folders
	Comparing Versions
	Inspecting the Windows Registry
	Accessing the Current User Keys
	Finding Registry Keys and values
	Discovering Mapped Network Drives
	Finding the Paging File Size
	Discovering Services
	Finding the Last Write Time of Registry Keys

	Environment variables
	Determining Operating System Information
	Accessing the Task Manager (Processes)
	Examining Running and Scheduled Tasks
	Recognizing Office Service Packs
	Office XP SP3
	Office 2003 SP2

	Detecting Foreign Language Service Packs
	Hungarian
	Polish

	Deconstructing XML
	Using White Lists

	Appendix A. Relevance language Grammar
	Relevance Operators
	Precedence and Associativity
	Relevance Key Phrases
	Language History
	BES 1.x
	BES 2.x
	BES 3.x
	BES 4.x
	BES 5.0
	BES 5.1
	BES 6.0
	TEM 7.0
	TEM 8.0

	Error Messages
	"It" used outside of "whose" clause
	A boolean expression is required
	A singular expression is required
	A string constant had an improper %-sequence
	A string constant had no ending quotation mark
	An integer constant was too large
	Cannot evaluate now
	Conversion has wrong type
	Incompatible types
	Inspector-defined error
	Invalid operator (<&)
	No inspector context
	Phrase too long
	Singular expression refers to non-unique object
	Singular expression refers to nonexistent object
	The operator "<operator>" is not defined
	The Operator "String" is not defined
	The tuple index <index> is out of range
	This expression contained a character which is not allowed
	This expression contained a tuple index which was not an integer literal
	This expression could not be parsed
	This expression evaluates to an unrepresentable object of type "<type>"
	This expression has a very long string
	This expression has a very long word
	This expression has strange punctuation
	User-defined error
	Value not converted

	Appendix B. Glossary
	Appendix C. Support
	Notices
	Programming interface information
	Trademarks
	Terms and conditions for product documentation

