Note

Before using this information and the product it supports, read the information in “Notices” on page 17.
Contents

Introduction v

Chapter 1. Updates to relative time .. 1
 New relative time level types ... 1
 New predefined relative time members ... 1
 New custom relative time members ... 3
 Custom single period ... 4
 Custom period-to-date ... 5
 Custom N period running total .. 7
 Create a custom relative time member .. 8
 Control the automatic generation of predefined relative time members . . . 8

Chapter 2. Named sets ... 11

Chapter 3. Shared dimensions ... 13

Chapter 4. Sort measure descendants 15

Notices ... 17

Index ... 21
Introduction

This document describes the new and updated features for IBM® Cognos®
Dynamic Cubes Version 10.2.1.1 Interim Fix 3.

Before you read this document, you should be familiar with the IBM Cognos
Dynamic Cubes User Guide.
Chapter 1. Updates to relative time

The following updates to relative time are available in this release of IBM Cognos Dynamic Cubes:

- "New relative time level types"
- "New predefined relative time members"
- "New custom relative time members" on page 3
- "Control the automatic generation of predefined relative time members" on page 3

New relative time level types

When you define a time-based hierarchy level, there are four new level types: semesters, trimesters, holidays, and seasons.

The following rules apply when you use these level types:

- Level types must appear in order in a hierarchy.
 - The order in which they can be used is reflected in the level type list. The order is enforced during validation.
 - Holidays and seasons (like periods) are exceptions to this rule. They can be assigned in any order to any level, and can be used multiple times in the same hierarchy.
- Semesters and trimesters cannot be used in the same hierarchy.
- Trimesters and quarters cannot be used in the same hierarchy.
- Semesters and quarters can be used in the same hierarchy.

The level type is used to construct the name of predefined relative time members. For example, 'Current Semester'.

New predefined relative time members

When you create a hierarchy for a time-based dimension, the following next period relative time members are now available:

- Next Period
- Next Period to Date
- Next Period to Date Change
 - This member is derived from 'Next Period to Date' - 'Period to Date'
- Next Period to Date % Growth
 - This member is derived from 'Next Period to Date Change' / 'Period to Date' * 100

In all cases, "Period" is the level type that is defined for the hierarchy, for example Year or Semester.

These members have a fixed offset from the current period of +1. For example, if the current month is November, the next month is December.
Consider the following Time dimension and Sales fact tables. The current quarter is 201303.

Table 1. Time dimension

<table>
<thead>
<tr>
<th>Year</th>
<th>Quarter</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012</td>
<td>201201</td>
</tr>
<tr>
<td>2012</td>
<td>201202</td>
</tr>
<tr>
<td>2012</td>
<td>201203</td>
</tr>
<tr>
<td>2012</td>
<td>201204</td>
</tr>
<tr>
<td>2013</td>
<td>201301</td>
</tr>
<tr>
<td>2013</td>
<td>201302</td>
</tr>
<tr>
<td>2013</td>
<td>201303</td>
</tr>
<tr>
<td>2013</td>
<td>201304</td>
</tr>
<tr>
<td>2014</td>
<td>201401</td>
</tr>
<tr>
<td>2014</td>
<td>201402</td>
</tr>
<tr>
<td>2014</td>
<td>201403</td>
</tr>
<tr>
<td>2014</td>
<td>201404</td>
</tr>
</tbody>
</table>

Table 2. Sales fact table

<table>
<thead>
<tr>
<th>Year</th>
<th>Quarter</th>
</tr>
</thead>
<tbody>
<tr>
<td>201201</td>
<td>3</td>
</tr>
<tr>
<td>201202</td>
<td>4</td>
</tr>
<tr>
<td>201203</td>
<td>5</td>
</tr>
<tr>
<td>201204</td>
<td>6</td>
</tr>
<tr>
<td>201301</td>
<td>7</td>
</tr>
<tr>
<td>201302</td>
<td>8</td>
</tr>
<tr>
<td>201303</td>
<td>9</td>
</tr>
<tr>
<td>201304</td>
<td>10</td>
</tr>
<tr>
<td>201401</td>
<td>11</td>
</tr>
<tr>
<td>201402</td>
<td>12</td>
</tr>
<tr>
<td>201403</td>
<td>13</td>
</tr>
<tr>
<td>201404</td>
<td>14</td>
</tr>
</tbody>
</table>

The value of 'Year to Date (2013)' is 24. This value is derived from 'aggregate(currentMeasure within set periodsToDate(Year, 201303))'.

The value of 'Prior Year to Date (2012)' is 12. This value is derived from 'aggregate(currentMeasure within set periodsToDate(Year, parallelPeriod(Year,1, 201303)))'.

The value of 'Next Year to Date (2014)' is 36. This value is derived from 'aggregate(currentMeasure within set periodsToDate(Year, parallelPeriod(Year,-1, 201303)))'.

The value of 'Year to Date Change' is 12. This value is derived from 'Year to Date' - 'Prior Year to Date'.

The value of 'Next Year to Date Change' is 12. This value is derived from 'Next Year to Date' - 'Year to Date'.

The value of 'Next Year to Date % Growth' is 50%. This value is derived from 'Next Year to Date Change' / 'Year to Date' * 100.

Predefined relative time members in virtual cubes

All relative time members are inherited from the single source cube that supplies the current period.

Relative time calculated members

The following relative time members behave the same as the Current® Period, Prior Period, Current Period to Date and Prior Period to Date members:
- Next Period
- Next Period to Date

The following relative time members behave the same as the Period to Date Change and Period to Date Growth relative time calculated members:
- Next Period to Date Change
- Next Period to Date % Growth

New custom relative time members

When you create a hierarchy for a time-based dimension, you can now create the following types of custom relative time members:

"Custom single period” on page 4

"Custom period-to-date” on page 5

"Custom N period running total” on page 7

For information on how to create a custom relative time member, see "Create a custom relative time member” on page 8

IBM Cognos Cube Designer validates custom member property values as follows:
- Offsets must be an integer value (-n, 0, +n).
- The context period must be higher than the target period. If the target period is set to the highest level, the context period must be blank.
- For period-to-date, if life-to-date is false, the target period must be lower than the to-date period. If life-to-date is true, target period can be the highest level.
- For n-period running total, the target period cannot be the highest level, and number of periods must be an integer greater than or equal to 1.

If the target and context properties are set so that the corresponding member is outside the bounds of the hierarchy, the custom member is dropped at cube start time, and an event is logged in the xqelog log file.

The parent of a custom relative time member in a hierarchy is assigned automatically by the server as follows:
- Custom single period - the parent is the predefined current period member at the level above the target period. For example, Current Quarter is the parent of 'Same Month Last Year'.

- Custom period-to-date - the parent is the predefined period-to-date member at the level above the to-date period. For example, Year to Date is the parent of 'Quarter to Date Last Year'.

- Life-to-date - the parent is the All member for a single root hierarchy, or the member is at the root level for a multi-root hierarchy.

- N-period running total - the parent is the All member for a single root hierarchy, or the member is at the root level for a multi-root hierarchy.

If the target and context properties are such that the corresponding member is outside the bounds of the hierarchy, the custom member is dropped at cube start time, and an event is logged in the xqelog log file.

Limitations

Custom relative time members have the following limitations:

- When you browse relative time members in Cognos Cube Designer, the endpoint member (normally shown in parenthesis) is not displayed for custom members.

 This applies only to source cube, not virtual cubes.

- When you browse relative time members in Cube Designer, the sub tree of reference members is not displayed for custom members.

 This applies only to source cube, not virtual cubes.

- For the life-to-date custom member, there is no sub tree of relative time members available in IBM Cognos Cube Designer or the IBM Cognos studios.

- Values that are returned by custom and predefined relative time members for a retail calendar or Gregorian calendar with a week level differ from values that are returned by IBM Cognos Transformer or PowerPlay®.

Relative time calculated members

The following relative time members behave the same as the Current Period, Prior Period, Current Period to Date and Prior Period to Date members:

- Custom single period
- Custom period-to-date

The custom N-period running total relative time member behaves the same as the Current Period, Prior Period, Current Period to Date and Prior Period to Date members.

Custom relative members in virtual cubes

All relative time definitions (members and auto-generation options) are inherited from the single source cube that supplies the current period.

Custom single period

Use custom single period to define a relative time member that corresponds to a single member at the same level as a current period member, but offset by a defined period. The relative position is specified by a target period with offset, and a context period with offset.
For example, to define a relative time member "Same month, last quarter" you specify:

- target period: month
- target period offset: 0
- context period: quarter
- context offset: -1

This example is illustrated in the following diagram.

![Diagram illustrating single period example]

Use a positive offset for a future period. For example, to define relative time member "Next month, next year" you specify:

- target period: month
- target period offset: 1
- context period: year
- context offset: 1

Custom period-to-date

Use custom period-to-date to define a relative time member that is an aggregation from the beginning of a time period to an endpoint within the period.

You must specify whether the period is life-to-date or for a specific to-date period. You then specify target period with offset, and context period with offset.

Life-to-date aggregates data for all time periods to a defined endpoint. The endpoint is defined by the target and context properties.

The target period that you specify affects the granularity of the period-to-date calculation. The calculation ends at the 'close' of the target period, where the close is the last sibling among the descendants. For example, if the current day is January 10, and day is the leaf level, quarter-to-date aggregates January 1 to
January 10, if target period is day. If target period is month, quarter-to-date includes all days in the month, January 1 to January 31.

For example, assume a hierarchy with All, Year, Quarter, and Month levels. To define a relative time member "Quarter to date, last year" you specify:

- life-to-date: false
- to-date period: quarter
- target period: month
- target period offset: 0
- context period: year
- context offset: -1

This example is illustrated in the following diagram.

In this example, if the current month is February, and the quarter ends in March, the defined endpoint is February because the target period is month.

To define a relative time member "life to date (target = quarter)", you specify:

- life-to-date: true
- to-date period: n/a
- target period: quarter
- target period offset: 0
- context period: year
- context offset: 0

This example is illustrated in the following diagram.
For life-to-date members, the sub tree of reference members is not generated in the member browser or in the IBM Cognos studios.

Custom N period running total

Use custom N-period running total to define a relative time member that is an aggregation of a defined number of consecutive periods.

You must specify the number of periods, target period with offset, and context period with offset. The endpoint is defined by the target and context properties.

For example, to define a relative time member for "Trailing 6 months, next year" you specify:

- number of periods: 6
- target period: months
- target period offset: -1
- context period: year
- context offset: 1

This example is illustrated in the following diagram.
You cannot select the highest level. For example, if levels are All, Year, Quarter, and Month, you cannot select Year as the target period.

Create a custom relative time member

When you create a hierarchy for a time-based dimension, you can now create custom relative time members.

Procedure

1. From the Project Explorer tree, right-click the hierarchy you want to work with, and then select Open Editor.
2. Select the Relative Time tab.
3. Click one of the following options to create a custom relative time member:
 - New Custom Single Period Definition
 - New Custom Period To Date Definition
 - New Custom N-Period Running Total Definition
4. Complete the definition using the Properties tab.

Control the automatic generation of predefined relative time members

You can now control the automatic generation of the following relative time members:

- prior period members
 For more information about these members, see the IBM Cognos Dynamic Cubes User Guide.
- next period members
 For more information about these members, see “New predefined relative time members” on page 1.
the sub tree of reference members for all relative time members

Relative time reference members are relative time members that refer to regular members within a time hierarchy. They have the same caption and business key value as the members to which they refer.

The purpose of the reference members is to show the sub tree of a hierarchy to which a relative time member corresponds.

In the following example, you can see the first level of reference members highlighted in blue.

![Figure 5. Example of first level reference members](image)

By default, the sub tree of reference members is generated. Depending on the hierarchy structure, there may be a large number of reference members, and you can now exclude them from being auto-generated.

Procedure

1. From the **Project Explorer** tree, right click the hierarchy you want to work with, and then select **Open Editor**.
2. Select the **Relative Time** tab.
3. Select one of the following options for prior period members:
 - **Auto-generate members** to include predefined members (default).
 - **Do not auto generate members** to exclude predefined members.
4. Select one of the following options for next period members:
 - **Auto-generate members** to include predefined members.
 - **Do not auto generate members** to exclude predefined members (default).
5. Select one of the following options for the **Reference relative time members subtree**:
 - **Include** to include a sub tree of members (default).
 - **Exclude** to exclude a sub tree of members.
Chapter 2. Named sets

You can now create named sets in a project. A named set is defined by a dimensional set expression that evaluates to a set of members from a single hierarchy. For example, topcount(Customers, 5, Sales). When you run a report containing a named set, the corresponding expression is evaluated and the resulting set of members is rendered in the report.

When a dynamic cube is published, named sets are available as data items in a Named sets folder within the metadata/member tree in the IBM Cognos studios.

Tip: The advantage of using dynamic cube-defined named sets over query-defined sets is that they can be authored once and reused multiple times in different reports.

IBM Cognos Cube Designer validates the syntax of named set expressions. After a cube is started, the dynamic cube engine validates the semantics of the expressions (using the cube default member context and the security of the access account). Any expression which is not successfully validated during cube start is removed from the cube and is not available in the studios. If removed, the error reason is recorded in the xqelog log file. For example, a named set containing circular references (a reference to itself) is not valid.

A named set is dynamic. It is evaluated at report execution time using the query context and the security of the currently logged in user. For example, a named set nested under a set of years is evaluated independently for each year.

Tip: You can use named sets within other named set expressions or within a calculated member/measure expression. Named sets can also make use of parameters and macros.

You create named sets in a project at the cube level. Named sets are stored within the Named sets folder. You can also organize named sets by creating sub folders within this folder.

If you are using member or attribute security, it is also applied to named sets members. Named sets from source cubes are not inherited in a virtual cube; if you want to use named sets in a virtual cube, you must define them.

Procedure

1. From the Project Explorer tree, right click the Named sets folder for a dynamic cube and select New, Named set folder.
2. Rename the folder as required.
3. From the Project Explorer tree, right click the named set folder where you want to store the named set expression.
5. Using the expression editor on the properties page, define the named set expression using members and a valid set of multidimensional operators and functions.
6. Click Validate Syntax to validate the named set expression syntax.
Chapter 3. Shared dimensions

If a project contains dimensions that are referenced by more than one cube or virtual cube, you can now create a shared member cache. This means that each shared dimension is only published once regardless of the number of cubes that reference it. Creating a shared member cache improves performance by reducing the amount of memory consumed when cubes are published.

A shared dimension can include calculated members and relative time members. You can add a shared dimension to security views and security filters defined for a cube. You cannot share a measure dimension.

Procedure

1. From the **Project Explorer** tree, select the required dimension.
2. In the **Properties** tab, set the **Share member cache for all cubes** property to true.

Results

When you validate a shared dimension in a virtual cube, IBM Cognos Cube Designer checks whether a dimension can be shared between the source cube and virtual cube. You can check for warnings on the **Issues** tab.

After publishing cubes with shared dimensions, the dimension members are not automatically updated when a member cache is refreshed. This is to prevent all the cubes sharing a dimension from refreshing. If you want to update the dimension members, you must stop all cubes to remove the dimension from the shared dimension cache. You can then publish the cubes again.
Chapter 4. Sort measure descendants

You can now change the order in which measures, calculated measures, and folders are sorted from a selected measure dimension or folder to the lowest level nested folder.

For example, suppose your measure dimension contains these objects:

Measure dimension:
- measure C
- calculated measure Z
- measure folder B
 - measure D
 - measure A

If you sort descendants in ascending order, this is the resulting sort order:

Measure dimension:
- measure folder B
 - measure A
 - measure D
- measure C
- calculated measure Z

Note that if the selected measure dimension or folder contains a very large number of measures, calculated measures, and nested measure folders, sorting descendants may take some time.

Procedure

From the Project Explorer tree, right-click a measure dimension or folder in which to sort items, and click one of the following options:
- Sort, Descendants, Ascending.
- Sort, Descendants, Descending.
Notices

This information was developed for products and services offered worldwide.

This material may be available from IBM in other languages. However, you may be required to own a copy of the product or product version in that language in order to access it.

IBM may not offer the products, services, or features discussed in this document in other countries. Consult your local IBM representative for information on the products and services currently available in your area. Any reference to an IBM product, program, or service is not intended to state or imply that only that IBM product, program, or service may be used. Any functionally equivalent product, program, or service that does not infringe any IBM intellectual property right may be used instead. However, it is the user’s responsibility to evaluate and verify the operation of any non-IBM product, program, or service. This document may describe products, services, or features that are not included in the Program or license entitlement that you have purchased.

IBM may have patents or pending patent applications covering subject matter described in this document. The furnishing of this document does not grant you any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuoku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other country where such provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or implied warranties in certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the publication. IBM may make improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time without notice.
Any references in this information to non-IBM Web sites are provided for convenience only and do not in any manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the materials for this IBM product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose of enabling: (i) the exchange of information between independently created programs and other programs (including this one) and (ii) the mutual use of the information which has been exchanged, should contact:

IBM Software Group
Attention: Licensing
3755 Riverside Dr.
Ottawa, ON
K1V 1B7
Canada

Such information may be available, subject to appropriate terms and conditions, including in some cases, payment of a fee.

The licensed program described in this document and all licensed material available for it are provided by IBM under terms of the IBM Customer Agreement, IBM International Program License Agreement or any equivalent agreement between us.

Any performance data contained herein was determined in a controlled environment. Therefore, the results obtained in other operating environments may vary significantly. Some measurements may have been made on development-level systems and there is no guarantee that these measurements will be the same on generally available systems. Furthermore, some measurements may have been estimated through extrapolation. Actual results may vary. Users of this document should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of those products, their published announcements or other publicly available sources. IBM has not tested those products and cannot confirm the accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the capabilities of non-IBM products should be addressed to the suppliers of those products.

All statements regarding IBM’s future direction or intent are subject to change or withdrawal without notice, and represent goals and objectives only.

This information is for planning purposes only. The information herein is subject to change before the products described become available.

This information contains examples of data and reports used in daily business operations. To illustrate them as completely as possible, the examples include the names of individuals, companies, brands, and products. All of these names are fictitious and any similarity to the names and addresses used by an actual business enterprise is entirely coincidental.
If you are viewing this information softcopy, the photographs and color illustrations may not appear.

This Software Offering does not use cookies or other technologies to collect personally identifiable information.

Trademarks

IBM, the IBM logo and ibm.com are trademarks or registered trademarks of International Business Machines Corp., registered in many jurisdictions worldwide. Other product and service names might be trademarks of IBM or other companies. A current list of IBM trademarks is available on the Web at "Copyright and trademark information" at www.ibm.com/legal/copytrade.shtml.

The following terms are trademarks or registered trademarks of other companies:

- Java and all Java-based trademarks and logos are trademarks or registered trademarks of Oracle and/or its affiliates.
Index

C
controlling the automatic generation of members 8
 next period 8
 prior period 8
 sub tree of reference members 8
custom N period running total 3, 7
custom period-to-date 3, 5
custom single period 3, 4

custom N period running total 3, 7
custom period-to-date 3, 5
custom single period 3, 4

H
holidays 1

N
named sets 11
next period 1
next period to date 1
next period to date % growth 1
next period to date change 1

R
reduced member cache 13
relative time 1
 controlling the automatic generation of members 8
relative time (continued)
 creating a relative time member 8
 holidays 1
 next period 1
 next period to date 1
 next period to date % growth 1
 next period to date change 1
 seasons 1
 semesters 1
 trimesters 1

S
seasons 1
semesters 1
shared dimensions 13
sorting
 descendants 15
 measures 15

T
trimesters 1