
IBM Software Group

®

WebSphere® Support Technical Exchange

IBM® Java™ Health Center – Overview
and Usage

Kevin Grigorenko (kevin.grigorenko@us.ibm.com)
IBM WAS SWAT Team
1 May 2012

mailto:kevin.grigorenko@us.ibm.com
mailto:kevin.grigorenko@us.ibm.com

IBM Software Group

 WebSphere® Support Technical Exchange 2 of 53

Agenda

What is IBM Java Health Center
How to install it
How to gather data
How to analyze data
Screenshots
Tips & Tricks
Questions & Answers

IBM Software Group

 WebSphere® Support Technical Exchange 3 of 53

IBM Java Health Center
 The IBM Java Health Center is a very low overhead tool

that runs in the IBM JVM and provides information on
method profiling, garbage collection, I/O, lock analysis,
threads, native memory, and more.

 Fully supported by the IBM Java Tools team through PMRs.
 Important Links:

 Product Page: http://www.ibm.com/developerworks/java/jdk/tools/healthcenter/

 Documentation:
http://publib.boulder.ibm.com/infocenter/hctool/v1r0/topic/com.ibm.java.diagnostics.healthcenter.doc/topics/introduction.html

 Similar to HotSpot/Oracle's VisualVM and JRockit Mission
Control

 It runs with the IBM JVM (32- or 64-bit) on: AIX, Linux®,
Windows®, and z/OS.

http://www.ibm.com/developerworks/java/jdk/tools/healthcenter/
http://www.ibm.com/developerworks/java/jdk/tools/healthcenter/
http://www.ibm.com/developerworks/java/jdk/tools/healthcenter/
http://publib.boulder.ibm.com/infocenter/hctool/v1r0/topic/com.ibm.java.diagnostics.healthcenter.doc/topics/introduction.html
http://visualvm.java.net/
http://visualvm.java.net/
http://www.oracle.com/technetwork/middleware/jrockit/overview/missioncontrol-whitepaper-june08-1-130357.pdf
http://www.oracle.com/technetwork/middleware/jrockit/overview/missioncontrol-whitepaper-june08-1-130357.pdf
http://www.oracle.com/technetwork/middleware/jrockit/overview/missioncontrol-whitepaper-june08-1-130357.pdf

IBM Software Group

 WebSphere® Support Technical Exchange 4 of 53

When to Use Health Center
 Health Center is particularly good for deep dives into

performance issues, high CPU and monitor contention.
 It does not have the overall capabilities of monitoring

products such as ITCAM.
 The sampling profiler currently has lower overhead than

monitoring products due to very tight coupling with IBM JVM
internals and bypassing of JVMTI interfaces.
Overhead of sampling profiler usually as low as < 1% or

2%

IBM Software Group

 WebSphere® Support Technical Exchange 5 of 53

Agent & Client
 The Health Center Agent is a JVMTI native library that must be enabled (off

by default)
Most often enabled using a generic JVM argument

-Xhealthcenter or -Xhealthcenter:level=headless and restarting
the JVM

Recent versions can be enabled dynamically using late attach

Two modes: 1) Connected to a client through a socket, 2)
headless

 The Health Center Client is an Eclipse-based GUI perspective which is used
to analyze agent data
Two modes: 1) Connected to the agent through a socket, 2) load

HCD file produced by the agent or exported from another client

IBM Software Group

 WebSphere® Support Technical Exchange 6 of 53

Agent: Getting Started
 The IBM JVM ships with Health Center:

…/java/jre/lib/$PLATFORM/libhealthcenter.so
…/java/jre/lib/ext/healthcenter.jar
…/java/jre/lib/healthcenter.properties
…/java/jre/bin/libhealthcenter.so

 Health Center performance and functionality is affected by two things: 1)
the version & service release of the JVM, and 2) the version of the agent
If practical, it's always best to update the agent because the

agent is independent of the JVM and the latest will have bug
fixes, additional collection, better command line options, etc.

IBM Software Group

 WebSphere® Support Technical Exchange 7 of 53

Minimum JVM Version for Use in Production
 Platform requirements:

 http://publib.boulder.ibm.com/infocenter/hctool/v1r0/topic/com.ibm.java.diagnostics.healthcenter.doc/topics/platforms.html

IBM Java
Versio
n

Minimum
Service
Release for
use in
Production

Minimum WAS
Release for use in
production

Owned
Monitor
Informati
on

Native
Memory
Breakdo
wn

Enable
verboseg
c at
runtime

Allocation
Sampli
ng

Java 5 SR10 WAS 6.1.0.27

   
Java 6 SR5 WAS 7.0.0.5

   
Java 626 Any WAS 8.0

   
Java 7 Any WAS 8.5

   

http://publib.boulder.ibm.com/infocenter/hctool/v1r0/topic/com.ibm.java.diagnostics.healthcenter.doc/topics/platforms.html

IBM Software Group

 WebSphere® Support Technical Exchange 8 of 53

Checking the Installed Agent Version
 Two ways to figure out the installed version:

Run java -version -Xhealthcenter

• $ …/java/bin/java -version -Xhealthcenter
− …

Feb 14, 2012 11:06:56 AM
com.ibm.java.diagnostics.healthcenter.agent.mbean.HCLaunc
hMBean startAgent
INFO: Agent version "1.3.0.20101014"

Extract version.properties from …/java/jre/lib/ext/healthcenter.jar

• $ jar xvf …/java/jre/lib/ext/healthcenter.jar
version.properties

• $ cat version.properties
− jar.version=1.3.0.20101014

IBM Software Group

 WebSphere® Support Technical Exchange 9 of 53

Getting the Latest Agent
 Three ways to get the latest agent:

Health Center Documentation Page:
http://publib.boulder.ibm.com/infocenter/hctool/v1r0/topic/com.ibm.java.diagnostics.healthcenter.doc/topics/installingagent.ht
ml

From within IBM Support Assistant, click Help > Help
Contents > … Health Center > … Installing the Health
Center Agent

 The agent bitness (32- or 64-bit) should match the JVM
bitness, not the operating system bitness.

• For example, if it is a 32-bit JVM running on a 64-bit
operating system, download the 32-bit agent.

http://publib.boulder.ibm.com/infocenter/hctool/v1r0/topic/com.ibm.java.diagnostics.healthcenter.doc/topics/installingagent.html
http://publib.boulder.ibm.com/infocenter/hctool/v1r0/topic/com.ibm.java.diagnostics.healthcenter.doc/topics/installingagent.html

IBM Software Group

 WebSphere® Support Technical Exchange 10 of 53

Updating the Agent
 Some customers are weary about updating the WAS installation files; however,

the files being updated do not relate to non-Health Center functionality.
 Consider backing up the existing agent files in case there are problems.
 Procedure (for z/OS, see documentation)

 Upload the ZIP file to <WAS>/java/$FILE.zip

 Change directory to <WAS>/java/ and run the command:

• ./bin/jar xvf $FILE.zip

 Make sure to chown the updated files properly.

 Error “in use” because you just tried running health center (e.g. checking the
version) and on some operating systems, may persist unless all related Java
processes are stopped.

• If it still doesn't work, and the JVM is run by a non-root user, then try extracting
the zip using the root user, and then chown to the non-root user.

IBM Software Group

 WebSphere® Support Technical Exchange 11 of 53

Enabling the Agent
 There are three modes:

Socket Communication (-Xhealthcenter)
• By default opens port 1972 or the first available increment up to 2072
• Communication either in IIOP (default) or JRMP
• Security available: MBean authentication and/or SSL
• Use -Xhealthcenter:level=off to only start collection when the first client connects

(pseudo late attach). Preferences > Subsystem Enablement to turn off.

Headless (-Xhealthcenter:level=headless)

Late Attach (into either of the above two modes)
 Logging

Log file created in the temp directory named healthcenter.$PID.log
 The agent does use ~50MB native memory in the JVM

http://publib.boulder.ibm.com/infocenter/hctool/v1r0/topic/com.ibm.java.diagnostics.healthcenter.doc/topics/securing.html
http://publib.boulder.ibm.com/infocenter/hctool/v1r0/topic/com.ibm.java.diagnostics.healthcenter.doc/topics/securing.html

IBM Software Group

 WebSphere® Support Technical Exchange 12 of 53

Dynamically Starting the Agent
 The Java Late Attach API allows the injection of a native or

Java library into a running JVM without restarting it.
 Late attach is available on these IBM JVM levels:

Java 5 >= SR10 (disabled by default) [WAS >= 6.1.0.27]
Java 6 >= SR6 (enabled by default on non-z/OS

platforms) [WAS >= 7.0.0.7]
Java 6 R26 [WAS 8] (enabled by default)
Java 7 (enabled by default)

 Late attached can be controlled with the generic JVM
argument -Dcom.ibm.tools.attach.enable=[yes|no]

IBM Software Group

 WebSphere® Support Technical Exchange 13 of 53

Dynamically Starting the Agent
 If the JVM supports late attach and it is enabled:

$ cd <WAS>/java/jre/lib/ext
List available late attach JVMs:

• $../../bin/java -jar healthcenter.jar
Attach to a particular JVM:

• $../../bin/java -jar healthcenter.jar ID=$PID
-Dcom.ibm.java.diagnostics.healthcenter.data.collection.level=headless

 It's currently not possible to disable headless mode with late attach.

IBM Software Group

 WebSphere® Support Technical Exchange 14 of 53

Socket Mode
 Generally problematic in production environments because of firewalls;

however, here are a few things to note about socket mode:
 If client X connects, they get all data up to that point that fit in memory

buffers. If X disconnects and a new client Y connects, the data that X
saw will not be available, only new data since then.

• Methods classloaded before client Y may not show for Y.
 In memory buffers have a limited size, so some data may be lost.

Export collected data into an HCD file by clicking File > Save Data

Client refreshes every 10 seconds

Supports requesting java dump, heap dump, and system dump

 The agent uses a random port for ORB which needs firewall hole:
-Dcom.ibm.java.diagnostics.healthcenter.agent.iiop.port=N

IBM Software Group

 WebSphere® Support Technical Exchange 15 of 53

Headless Mode
 Usually the best way to use health center in production

environments, but also usually requires updating the shipped
agent.

 Does not open a socket but instead writes agent data to the
local file system:
Directory controlled with

-Dcom.ibm.java.diagnostics.healthcenter.headless.output
.directory=DIR

Defaults to the WAS profile directory

IBM Software Group

 WebSphere® Support Technical Exchange 16 of 53

Headless Mode
 Files the agent writes to while the JVM is running:

 EnvironmentSource$PID*

 JLASource$PID*

 MemoryCountersSource$PID*

 MemorySource$PID*

 MethodDictionarySource$PID*

 TRACESubscriberSource$PID*
 When the JVM stops, the agent ZIPs these files into a file in the

output directory called healthcenter$PID.hcd. The files (other than the
HCD) are then deleted.
These files are compressed well into the HCD (up to 75%).

 If the JVM crashes, manually ZIP the files into an HCD

IBM Software Group

 WebSphere® Support Technical Exchange 17 of 53

Headless Mode
 I've run HC in headless mode in massive production systems

with little overhead; however, the agent files can be quite
large – the largest I've seen are a few GB per hour.

 Each output file has a maximum size of 2GB
 Recent versions of the agent have options to roll over the

files:
 -Dcom.ibm.java.diagnostics.healthcenter.headless.files.max.size

=BYTES

 -Dcom.ibm.java.diagnostics.healthcenter.headless.files.to.keep=N

• Use 0 to keep all of them

IBM Software Group

 WebSphere® Support Technical Exchange 18 of 53

Headless Mode
 To do rollover, the agent appends _N to each file where N is the

iteration number. When one of the files reaches 2GB or the value
of max.size (usually the TRACESubscriberSource which has the
profiling data), the agent will create an healthcenter$PID_N.hcd
file and then start _N+1 files.

 When max.size files is hit, the agent will delete the oldest ones.
 If headless mode is not supported by agent version, error:

SEVERE: Health Center agent failed to start.
java.lang.IllegalArgumentException: No enum const class
com.ibm.java.diagnostics.healthcenter.agent.dataproviders.Da
taCollectionLevel.HEADLESS

Check both healthcenter.log and native_std*.log

IBM Software Group

 WebSphere® Support Technical Exchange 19 of 53

Headless Mode
 The volume of data will be a function of many variables:

The length of time of the data collection
The average number of active threads
The average stack depth of said threads
The available number of processors
The number of method calls per request
Etc.

 The best approach is to run a stress test in a stress test
environment to gauge how much space will be needed.

IBM Software Group

 WebSphere® Support Technical Exchange 20 of 53

Client: Installing
 Four ways to install the client:

IBM Support Assistant > Tools Addon > JVM-based
Tools

• IBM Monitoring and Diagnostic Tools for Java - Health
Center

Extend an existing Eclipse installation

• Add an update site:
http://download.boulder.ibm.com/ibmdl/pub/software/isa/isa410/production/

• Select the same tool as above

http://download.boulder.ibm.com/ibmdl/pub/software/isa/isa410/production/

IBM Software Group

 WebSphere® Support Technical Exchange 21 of 53

Loading an HCD in the Client
 The file must have a .zip or .hcd extension
 Start the client
 Click Cancel on the dialog that pops up asking to connect to

an existing JVM
 Click File > Load Data

IBM Software Group

 WebSphere® Support Technical Exchange 22 of 53

Client Timeline
 When zooming in on any of the timelines, all of the data

views update to just that time range
 This is great for comparing two time ranges, or focusing in on

important time ranges (for example, removing the startup
time so that it does not skew the statistics)

 However, the time ranges are specified in time from the start
of the JVM instead of in absolute terms.

 The healthcenter.log can be used to approximate when the
JVM started (when the agent reports it started).

IBM Software Group

 WebSphere® Support Technical Exchange 23 of 53

Client Timeline
 To get an exact start time:

 Load the HCD file

 File > Export JVM Trace...

 java com.ibm.jvm.format.TraceFormat hcd.trc

 In the resulting .fmt file, search for:

• First tracepoint: 03:43:38.131447000
 This is in the GMT/UTC time zone.

 The end of the HCD:

• Last tracepoint : 03:59:37.406350000
Normally, it is important to use the same JVM version and get the

J9TraceFormat.dat file, but in this case we just want the timestamp
which does not depend on that info, so use any IBM JVM.

IBM Software Group

 WebSphere® Support Technical Exchange 24 of 53

Client Summary
 Summary view highlights warnings

IBM Software Group

 WebSphere® Support Technical Exchange 25 of 53

Profiling

 Self (%): The percentage of samples taken while a particular method was being run at the top of the stack. This
value is a good indicator of how expensive a method is...

 This is roughly the CPU % usage of the Java CPU % usage. So, gather OS CPU stats with HC.

 For example, if Java CPU% was 50% (let's say of all CPUs), and a method is 50% in Self, then that
method used roughly 25% of all CPUs.

 Tree (%): The percentage of samples taken while a particular method was anywhere in the call stack. This value
shows the percentage of time that this method, and methods it called (descendants), were being processed. This
value gives a good guide to the areas of your application where most processing time is spent.

 Samples: Number of samples while a particular method was being run at the top of the stack.

IBM Software Group

 WebSphere® Support Technical Exchange 26 of 53

Profiling

 This is a simple case where, if we sort by Self (%), MutableBigInteger.divideOneWord is at
the top of sampled stacks almost half the time.

 Sorting by Tree % is sometimes useful, but WAS tends to have big stacks, so a lot of
methods will be in a lot of the stacks. There are some heuristics here such as skipping the
“common, do-nothing” methods, but this is an art more than a science.

IBM Software Group

 WebSphere® Support Technical Exchange 27 of 53

Profiling

 Select the first row and the Invocation paths view will show who is calling this method.
 Each row contains a percentage of how many times that method called the above method

out of all callers of that method.
 DoComplicatedWork.doWork is the primary caller, and this shows itself in the samples too.

IBM Software Group

 WebSphere® Support Technical Exchange 28 of 53

Profiling

 The percentages are not cumulative. For example, in the above, of all calls to the first row,
the second row (Branch.match) was 73.8% of them. The third row called the second row
73.2% of the time. So the third row was the indirect caller of the first row .738*.732=54% of
the time.

IBM Software Group

 WebSphere® Support Technical Exchange 29 of 53

Profiling

 Some JVM versions and service releases, and some agent versions, may not be able to determine the
method name and you'll see a hexadecimal address. This may also occur with methods that were used
before the agent started (and the JVM version didn't have the capability to tell the agent after the fact).
Two methods (pun!) to find the method:

 Take a system dump and use DTFJ to find the method at that address.

 Infer the method (or its general area) by looking at the invocation paths and called methods.
Above, we can infer that method is in LTPA/security.

IBM Software Group

 WebSphere® Support Technical Exchange 30 of 53

Profiling
 Breaking down

“overall” profiles
Sort by Tree (%)
Select the first row

which is usually
ThreadPool$Worker.r
un()

Go to the Called
Methods view

Follow down
the highest
percentages
(may split)

IBM Software Group

 WebSphere® Support Technical Exchange 31 of 53

Profiling
 If garbage collection analysis highlights System.gc calls,

profiling view may have caught some of these and will show
who called System.gc under Invocation Paths (Filter methods to
System.gc)

 This is a statistical profiler, sampling the call stacks periodically
rather than recording every method that is run. Methods that do
not run often, or methods that run quickly, might not show in the
profile list. Methods compiled by the Just-In-Time (JIT) compiler
are profiled, but methods that have been inlined are not.

 Methods may be inlined at runtime! This will cause them to
“drop down” in the profiling view and the calling method picks
up the samples.

IBM Software Group

 WebSphere® Support Technical Exchange 32 of 53

Profiling
 To get more details on particular methods:

 Then restart the JVM with those generic JVM arguments
‑Xtrace:maximal=mt,methods={"java/math/MutableBigInt

eger.divideOneWord"}

IBM Software Group

 WebSphere® Support Technical Exchange 33 of 53

Profiling
 With method trace enabled

IBM Software Group

 WebSphere® Support Technical Exchange 34 of 53

Low Mode
 -Xhealthcenter:level=low disables method profiling since this has the

highest overhead and creates the most data. This would be useful if you
wanted something else from health center (e.g. garbage collection, native
memory, etc.) with less overhead.

 Low cannot be combined with headless (e.g.
-Xhealthcenter:level=low,level=headless), so the way to do it is to use
headless mode and then:
 In jre/lib/ext there is a file called healthcenter.jar. If you unpack that

you will find a file called TRACESourceConfiguration.properties and
this is what defines which data is switched on by Trace. When we
run in low mode, we turn off one of the profiling trace points. You can
do this manually by editing this file and finding the entry "j9jit.16=on"
and then changing it to "j9jit.16=off". If you repackage the jar up you
should find that the amount of trace generated is a lot less (but you
won't get method profiling).

IBM Software Group

 WebSphere® Support Technical Exchange 35 of 53

Profiling Theory
 The Health Center profiler has the same limitations as other sampling profilers; it can't

distinguish between a method which is invoked once but takes a really long time to
run, and a method which is very quick but invoked frequently. It won't report methods
which take a long time where the majority of that time is spent waiting, because it only
reports methods which are using CPU. For a class which loops with sleep statements
in each loop, Health Center won't report the looping method because that method isn't
actually using any CPU, even though it has a long elapsed time.

 These limitations are the same for all sampling profilers. The alternative is to use a
tracing profiler, which captures method entry and exit. It will report elapsed time in
methods, but it won't report CPU utilisation. This has its own set of disadvantages,
since it could suggest optimising a method where most time is actually spent waiting
on an external input. Tracing profilers in general also have far higher overhead than
sampling profilers. In order to keep the overhead manageable, they tend to focus on
just some sections of the codebase, and will only report elapsed time for certain
methods or classes. This is risky, since it requires the performance analyst to guess
which areas are causing performance problems before doing the performance
analysis - serious bottlenecks could be missed entirely.

IBM Software Group

 WebSphere® Support Technical Exchange 36 of 53

Large Object Allocations
 Properties:

 -Dcom.ibm.java.diagnostics.healthcenter.allocation.threshold.low=BYTES

 -Dcom.ibm.java.diagnostics.healthcenter.allocation.threshold.high=BYTES

 Example:
 -Dcom.ibm.java.diagnostics.healthcenter.allocation.threshold.low=1048576

 Under
Garbage
Collection >
Object
Allocations

IBM Software Group

 WebSphere® Support Technical Exchange 37 of 53

Locking

IBM Software Group

 WebSphere® Support Technical Exchange 38 of 53

Locking
 Gets: The total number of times the lock has been taken while it was inflated.
 Slow: The total number of non-recursive lock acquires for which the requesting thread had to wait

for the lock because it was already owned by another thread.
 % miss: The percentage of the total Gets, or acquires, for which the thread trying to enter the lock

on the synchronized code had to block until it could take the lock. % miss = (Slow / Gets) * 100
 A high % miss shows that frequent contention occurs on the synchronized resource

protected by the lock. This contention might be preventing the Java application from scaling
further.

 If a lock has a high % miss value, look at the average hold time and % util. If % util and
average hold time are both high, you might need to reduce the amount of work done while
the lock is held. If % util is high but the average hold time is low, you might need to make
the resource protected by the lock more granular to separate the lock into multiple locks.

 Recursive: The total number of recursive acquires. A recursive acquire occurs when the
requesting thread already owns the monitor.

 % util: The amount of time the lock was held, divided by the amount of time the output was taken
over.

 Average hold time: The average amount of time the lock was held, or owned, by a thread. For
example, the amount of time spent in the synchronized block, measured in processor clock ticks.

IBM Software Group

 WebSphere® Support Technical Exchange 39 of 53

 The height of the bars represents the slow lock count and is
relative to all the columns in the graph. A slow count occurs when
the requested monitor is already owned by another thread and the
requesting thread is blocked.

 The color of each bar is based on the value of the % miss column
in the table. The gradient moves from red (100%), through yellow
(50%), to green (0%). A red bar indicates that the thread blocks
every time that the monitor is requested. A green bar indicates a
thread that never blocks.

 Show internal JVM monitor lock information:

 If a lock is held while a garbage collection runs, this time is
removed from the statistics of that lock.

Locking

IBM Software Group

 WebSphere® Support Technical Exchange 40 of 53

Lock Name
 Lock name of the form:

[00007F418A0265E0]
java/lang/Object@0000000004A2E408 (Object)

 The number after the @ is the object address that can be
looked up in a system dump or heapdump.

IBM Software Group

 WebSphere® Support Technical Exchange 41 of 53

Garbage Collection

IBM Software Group

 WebSphere® Support Technical Exchange 42 of 53

Environment

IBM Software Group

 WebSphere® Support Technical Exchange 43 of 53

Classes

IBM Software Group

 WebSphere® Support Technical Exchange 44 of 53

I/O Files Open

IBM Software Group

 WebSphere® Support Technical Exchange 45 of 53

Native Memory

IBM Software Group

 WebSphere® Support Technical Exchange 46 of 53

Native Memory - Breakdown
 Select Process Virtual Memory, then click breakdown

IBM Software Group

 WebSphere® Support Technical Exchange 47 of 53

Threads

IBM Software Group

 WebSphere® Support Technical Exchange 48 of 53

Getting Help
 Java Tools Email: javatool@uk.ibm.com
 Public Forum: http://www.ibm.com/developerworks/forums/forum.jspa?

forumID=1461

mailto:javatool@uk.ibm.com
http://www.ibm.com/developerworks/forums/forum.jspa?forumID=1461
http://www.ibm.com/developerworks/forums/forum.jspa?forumID=1461
http://www.ibm.com/developerworks/forums/forum.jspa?forumID=1461
http://www.ibm.com/developerworks/forums/forum.jspa?forumID=1461

IBM Software Group

 WebSphere® Support Technical Exchange 49 of 53

MustGather
 If agent < version 2, upgrade the Health Center agent and stop/start the JVM:

 Download:
http://publib.boulder.ibm.com/infocenter/hctool/v1r0/topic/com.ibm.java.diagnostics.healthcenter.doc/topics/installingagent.html

 cd <WAS>/java/

 ./bin/jar xvf $FILE.zip
 If running WAS >= 7.0.0.7 on a non/z-OS platform, you may enable health center with late attach:

 cd <WAS>/java/bin

 ./java -jar ../jre/lib/ext/healthcenter.jar ID=$PID
-Dcom.ibm.java.diagnostics.healthcenter.data.collection.level=headless
-Dcom.ibm.java.diagnostics.healthcenter.headless.files.max.size=268435456
-Dcom.ibm.java.diagnostics.healthcenter.headless.files.to.keep=8

 Otherwise, restart the JVM with the following generic JVM arguments:
 -Xhealthcenter:level=headless

-Dcom.ibm.java.diagnostics.healthcenter.headless.files.max.size=268435456
-Dcom.ibm.java.diagnostics.healthcenter.headless.files.to.keep=8

 Start the WAIT data collector: https://wait.researchlabs.ibm.com/submit/dataCollector.html
 Reproduce the problem, stop the JVM(s) completely, stop the WAIT collector, upload *.hcd, WAS logs,

<TEMP>/healthcenter.*.log, and waitData

http://publib.boulder.ibm.com/infocenter/hctool/v1r0/topic/com.ibm.java.diagnostics.healthcenter.doc/topics/installingagent.html
https://www-304.ibm.com/support/docview.wss?uid=swg21417365
https://www-304.ibm.com/support/docview.wss?uid=swg21417365
https://wait.researchlabs.ibm.com/submit/dataCollector.html
https://wait.researchlabs.ibm.com/submit/dataCollector.html

IBM Software Group

 WebSphere® Support Technical Exchange 50 of 53

Conclusion
 In summary, IBM Java Health Center is an extremely

powerful tool which has a very low-overhead sampling
profiler (among other features) and can be used on recent
versions of WAS (>= 6.1.0.27 and >= 7.0.0.5) to determine
the root cause of performance issues.
In general, recommend the headless mode to customers,

which does involve ensuring the latest agent binaries are
installed.

IBM Software Group

 WebSphere® Support Technical Exchange 51 of 53

Reference

 Summary of Links:
 Product Page:

http://www.ibm.com/developerworks/java/jdk/tools/healthcenter/

 Documentation:
http://publib.boulder.ibm.com/infocenter/hctool/v1r0/topic/com.ibm.java.diagnostics.healthcenter.doc/to
pics/introduction.html

 Download the latest agent:
http://publib.boulder.ibm.com/infocenter/hctool/v1r0/topic/com.ibm.java.diagnostics.healthcenter.doc/to
pics/installingagent.html

 Download the visualization client:

• Download IBM Support Assistant: http://www-
01.ibm.com/software/support/isa/

• Then install the Health Center Tool Add-on

http://www.ibm.com/developerworks/java/jdk/tools/healthcenter/
http://www.ibm.com/developerworks/java/jdk/tools/healthcenter/
http://www.ibm.com/developerworks/java/jdk/tools/healthcenter/
http://publib.boulder.ibm.com/infocenter/hctool/v1r0/topic/com.ibm.java.diagnostics.healthcenter.doc/topics/introduction.html
http://publib.boulder.ibm.com/infocenter/hctool/v1r0/topic/com.ibm.java.diagnostics.healthcenter.doc/topics/introduction.html
http://publib.boulder.ibm.com/infocenter/hctool/v1r0/topic/com.ibm.java.diagnostics.healthcenter.doc/topics/installingagent.html
http://publib.boulder.ibm.com/infocenter/hctool/v1r0/topic/com.ibm.java.diagnostics.healthcenter.doc/topics/installingagent.html
http://www-01.ibm.com/software/support/isa/
http://www-01.ibm.com/software/support/isa/

IBM Software Group

 WebSphere® Support Technical Exchange 52 of 53

Additional WebSphere Product Resources
 Learn about upcoming WebSphere Support Technical Exchange webcasts, and access

previously recorded presentations at:
http://www.ibm.com/software/websphere/support/supp_tech.html

 Discover the latest trends in WebSphere Technology and implementation, participate in
technically-focused briefings, webcasts and podcasts at:
http://www.ibm.com/developerworks/websphere/community/

 Join the Global WebSphere Community:
http://www.websphereusergroup.org

 Access key product show-me demos and tutorials by visiting IBM Education Assistant:
http://www.ibm.com/software/info/education/assistant

 View a webcast replay with step-by-step instructions for using the Service Request (SR)
tool for submitting problems electronically:
http://www.ibm.com/software/websphere/support/d2w.html

 Sign up to receive weekly technical My Notifications emails:
http://www.ibm.com/software/support/einfo.html

http://www.ibm.com/software/websphere/support/supp_tech.html
http://www.ibm.com/developerworks/websphere/community/
http://www.ibm.com/developerworks/websphere/community/
http://www.ibm.com/developerworks/websphere/community/
http://www.websphereusergroup.org/
http://www.websphereusergroup.org/
http://www.websphereusergroup.org/
http://www.ibm.com/software/info/education/assistant
http://www.ibm.com/software/websphere/support/d2w.html
http://www.ibm.com/software/support/einfo.html
http://www.ibm.com/software/support/einfo.html

IBM Software Group

 WebSphere® Support Technical Exchange 53 of 53

Connect with us!

1. Get notified on upcoming webcasts
Send an e-mail to wsehelp@us.ibm.com with subject line “wste
subscribe” to get a list of mailing lists and to subscribe

2. Tell us what you want to learn
Send us suggestions for future topics or improvements about our
webcasts to wsehelp@us.ibm.com

3. Be connected!
Connect with us on Facebook
Connect with us on Twitter

mailto:wsehelp@us.ibm.com?subject=wste%20subscribe
mailto:wsehelp@us.ibm.com?subject=wste%20subscribe
mailto:wsehelp@us.ibm.com
http://www.facebook.com/pages/WebSphere-Support-Technical-Exchange/121293581419
http://www.twitter.com/ibmwste

IBM Software Group

 WebSphere® Support Technical Exchange 54 of 53

Questions and Answers

	IBM® Java™ Health Center – Overview and Usage
	Agenda
	IBM Java Health Center
	When to Use Health Center
	Agent & Client
	Agent: Getting Started
	Minimum JVM Version for Use in Production
	Checking the Installed Agent Version
	Getting the Latest Agent
	Updating the Agent
	Enabling the Agent
	Dynamically Starting the Agent
	Slide 13
	Socket Mode
	Headless Mode
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Client: Installing
	Loading an HCD in the Client
	Client Timeline
	Slide 23
	Client Summary
	Profiling
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Low Mode
	Profiling Theory
	Large Object Allocations
	Locking
	Slide 38
	The height of the bars represents the slow lock count and is relative to all the columns in the graph. A slow count occurs when the requested monitor is already owned by another thread and the requesting thread is blocked. The color of each bar is based on the value of the % miss column in the table. The gradient moves from red (100%), through yellow (50%), to green (0%). A red bar indicates that the thread blocks every time that the monitor is requested. A green bar indicates a thread that never blocks. Show internal JVM monitor lock information: If a lock is held while a garbage collection runs, this time is removed from the statistics of that lock.
	Lock Name
	Garbage Collection
	Environment
	Classes
	I/O Files Open
	Native Memory
	Native Memory - Breakdown
	Threads
	Getting Help
	MustGather
	Conclusion
	Slide 51
	Additional WebSphere Product Resources
	Slide 53
	Slide 54

